三个51单片机通信汇编程序

合集下载

51单片机汇编语言程序设计

51单片机汇编语言程序设计

51单片机汇编语言程序设计1.题目:数码管显示1~72.题目分析本实验将要求51单片机采用汇编程序来实现以上程序,我们首先要对51单片机进行硬件电路设计,然后编写相应的汇编程序3.硬件电路4.程序设计;-------------------------------------------------------------------------------;选择P1口作为数码管位选;-------------------------------------------------------------------------------org 0hmov p1,h ;启动P1作为数码管位选again: m ov p2,Fh ;0000 0011 1111 显示数字1sjmp againmov p2,h ;0000 0110 显示数字2sjmp againmov p2,Bh ;0101 1011 显示数字3sjmp againmov p2,Fh ;0100 1111 显示数字4sjmp againmov p2,h ;0110 0110 显示数字5sjmp againmov p2,Dh ;0110 1101 显示数字6sjmp againmov p2,dh ;0111 1101 显示数字7sjmp againend5.程序流程本汇编程序的程序流程如下:1)将P1口设置为数码管的位选;2)通过P2口设置相应的数字,P2口的值将会根据数字的不同而不同,以便实现将不同的数字显示到数码管上;3)循环2步骤,不断刷新P2口的值,从而实现数字的不断变化,从而实现将1-7数字在数码管上循环显示。

51单片机汇编语言入门教程

51单片机汇编语言入门教程

51单片机汇编语言入门教程什么是51单片机
51单片机指的是英特尔公司推出的一种单片机芯片种类,其名字为“AT89S52”。

后来,这种芯片因其使用广泛,被人们简称为“51单片机”。

为什么要研究汇编语言
研究汇编语言能够让我们更好地理解机器是如何执行指令的,
从而更好地优化程序,提高程序运行效率。

汇编语言基础知识
数据类型
- 字节:一个字节是8位二进制数,可以表示0~255之间的数。

- 字:一个字是16位二进制数,可以表示0~之间的数。

- 双字:一个双字是32位二进制数,可以表示0~之间的数。

指令集
51单片机有大约100条汇编指令,这些指令可以完成各种操作,如运算、数据传输、中断处理等。

寄存器
51单片机有4个8位的通用寄存器(寄存器0~3)和2个16
位的通用寄存器(DPTR和PC)。

程序结构
51单片机只有一种程序结构——线性结构。

程序从0地址开始执行,一条一条地执行,直到程序结束。

编写第一个汇编程序
以下是一个简单的汇编程序示例:
ORG 0H ;设置程序起始地址为0H
MOV P1, #55H ;将55H赋值给P1口
END ;程序结束指令
这个程序的作用是将55H赋值给P1口。

总结
通过学习本教程,我们了解了基本的汇编语言知识,包括数据
类型、指令集、寄存器、程序结构以及编写程序的基本步骤。

希望
这份教程可以帮助初学者顺利掌握51单片机汇编语言编程的基础。

第三章MCS51单片机的指令系统和汇编语言程序示例(第5范文

第三章MCS51单片机的指令系统和汇编语言程序示例(第5范文

第三章MCS51单片机的指令系统和汇编语言程序示例(第5、6、7节)1.试分析单片机执行下列指令后累加器A和PSW中各标志位的变化状况?(1)MOV A,#19HADD A,#66H(2)MOV A,#5AHADD A,#6BH2.已知:A=85H,R0=30H,(30H)=11H, (31H)=0FFH,C=1,试计算单片机执行下列指令后累加器A和C中的值各是多少?(1)ADDC A,R0, (2)ADDC A,31H(3) ADDC A,@R0, (4) ADDC A,#85H3.已知M1和M2中分别存放两个16位无符号数的低8位,M1+1和M2+1中分别存放两个16位无符号数的高8位,计算两数之和(低8位存放在M1,高8位存放在M1+1,设两数之和不超过16位)。

4.试分析单片机执行下列指令后累加器A和PSW中各标志位的变化状况?CLR CMOV A,#52HSUBB A,#0B4H5.已知:A=0DFH,R1=40H,R7=19H,(30H)=00H,(40H)=0FFH,试分析单片机执行下列指令后累加器A和PSW中各标志位的变化状况?(1) DEC A (2) DEC R7 (3) DEC 30H (4) DEC @R16.试写出能完成85+59的BCD加法程序,并对工作过程进行分析。

7.已知:两个8位无符号乘数分别放在30H和31H单元中,编程实现他们乘积的低8位存放在32H,高8位存放在33H。

8.已知:R0=30H,(30H)=0AAH,试分析执行下列指令后累加器A和30H单元的内容是什么?(1)MOV A, #0FFH ANL A, R0(2)MOV A, #0FH ANL A, 30H(3)MOV A, #0F0H ANL A, @R0(4)MOV A, #80H ANL 30H, A9.设:A=0AAH和P1=0FFH,试编程把累加器A的低四位送入P1口的低四位,P1口的高四位保持不变。

单片机c51汇编语言51单片机汇编语言

单片机c51汇编语言51单片机汇编语言

单片机c51汇编语言51单片机汇编语言单片机C51汇编语言单片机(C51)是指一种集成电路上只包含一个集中式控制器的微处理器,具有完整的CPU指令集、RAM、ROM、I/O接口等功能。

汇编语言是一种低级语言,是用于编写单片机指令的一种语言。

汇编语言能够直接操作单片机的寄存器和输入/输出端口,因此在嵌入式系统的开发中非常重要。

本文将介绍单片机C51的汇编语言编程。

一、了解单片机C51单片机C51是目前应用最广泛的一种单片机系列,广泛用于各种电子设备和嵌入式系统的开发。

C51指的是Intel公司推出的一种基于MCS-51架构的单片机。

该系列单片机具有较高的性能和低功耗的特点,可用于各种控制和通信应用。

二、汇编语言的基本概念汇编语言是一种低级语言,与机器语言紧密相关。

它使用助记符来代替机器指令的二进制表示,使程序的编写更加易读。

在单片机C51汇编语言中,每一条汇编指令都对应着特定的机器指令,可以直接在单片机上执行。

三、汇编语言的基本指令在单片机C51汇编语言中,有一些基本的指令用于控制程序的执行和操作寄存器。

以下是一些常用的指令:1. MOV指令:用于将数据从一个寄存器或内存单元复制到另一个寄存器或内存单元。

2. ADD指令:用于将两个操作数相加,并将结果存储到目的寄存器中。

3. SUB指令:用于将第一个操作数减去第二个操作数,并将结果存储到目的寄存器中。

4. JMP指令:用于无条件跳转到指定的地址。

5. JZ指令:用于在条件为零时跳转到指定的地址。

6. DJNZ指令:用于将指定寄存器的值减一,并根据结果进行跳转。

四、编写单片机C51汇编程序的步骤编写单片机C51汇编程序需要按照以下步骤进行:1. 确定程序的功能和目标。

2. 分析程序的控制流程和数据流程。

3. 设计算法和数据结构。

4. 编写汇编指令,实现程序的功能。

5. 调试程序,并进行测试。

六、实例演示以下是一个简单的单片机C51汇编程序的示例,用于实现两个数的相加,并将结果输出到LED灯上:org 0H ; 程序的起始地址为0mov a, 05H ; 将05H赋值给累加器mov b, 07H ; 将07H赋值给B寄存器add a, b ; 将A寄存器和B寄存器的值相加mov P1, a ; 将相加结果输出到P1口end ; 程序结束在这个例子中,首先将05H赋值给累加器A,然后将07H赋值给B寄存器,接着使用ADD指令将A和B的值相加,将结果存储到累加器A中,最后将累加器A的值输出到P1口。

第三章MCS51系列单片机指令系统及汇编语言程序设计

第三章MCS51系列单片机指令系统及汇编语言程序设计
AJMP addr11 绝对转移指令为2K地址范围内的转移指令,对转移目的地址的要求与 ACALL指令中对子程序入口地址的要求相同。 【3】短转移指令
SJMP rel ;PC+ 2 + rel→PC 短转移指令为一页地址范围内的相对转移指令。因为rel为1字节补码 偏移量,且SJMP rel指令为2字节指令,所以转移范围为-126D~+ 129D 【4】间接转移指令
表3.4 程序存储器空间中的32个基本2K地址范围
0000H~07FFH 0800H~0FFFH 1000H~17FFH 1800H~1FFFH 2000H~27FFH 2800H~2FFFH 3000H~37FFH 3800H~3FFFH 4000H~47FFH 4800H~4FFFH 5000H~57FFH
3. 寄存器寻址
以通用寄存器的内容为操作数的寻址方式。通用寄存 器包括:A,B,DPTR,R0~R7。其中,R0~R7必须在 工作寄存器组之中。
例如:INC R0 ;(R0)+1→R0
需要注意的是,A和B既是通用寄存器,又是具有直 接地址的特殊功能寄存器。
4. 寄存器间接寻址
以寄存器中的内容为地址,该地址中的内容为操作数的寻址方式。能够 用于寄存器间接寻址的寄存器有:R0,R1,DPTR,SP。其中,R0,R1必 须在工作寄存器组之中,SP仅用于堆栈操作。
MCS-51单片机共有111条指令,按功能分类, MCS-51指令系统可分为5大类:
➢ 数据传送类指令(共29条) ➢ 算术操作类指令(共24条) ➢ 逻辑操作类指令(共24条) ➢ 控制转移类指令(共17条) ➢ 布尔变量操作类指令(共17条)
1.数据传送类指令(共29条)
以累加器A为目的操作数类指令(4条)

大学课件MCS51单片机指令系统与汇编语言程序设计

大学课件MCS51单片机指令系统与汇编语言程序设计

ANL C, P ; (C)← (C)∧(P)
其中:P是PSW的第0位,C是PSW的第7位。
(4)字节符号地址(字节名称)加位序号的形式。对于部分特 殊功能寄存器(如状态标志寄存器PSW),还可以用其字节名 称加位序号形式来访问某一位。AC 如:
定义:操作数存放在MCS-51内部的某个工作寄存器Rn (R0~R7)或部分专用寄存器中,这种寻址方式称为 寄存器寻址。
特点:由指令指出某一个寄存器的内容作为操作数。 存放操作数的寄存器在指令代码中不占据单独的一个 字节,而是嵌入(隐含)到操作码字节中。
寻址范围:四组通用寄存器Rn(R0~R7)、部分专用 寄存器( A, B, DPTR, Cy )。
伪指令只出现在汇编前的源程序中,仅提供汇编用的某些控制 信息,不产生可执行的目标代码,是CPU不能执行的指令。
(1)定位伪指令ORG
格式:ORG n
其中:n通常为绝对地址,可以是十六进制数、标号或表达式。
功能:规定编译后的机器代码存放的起始位置。在一个汇编 语言源程序中允许存在多条定位伪指令,但每一个n值都应和前
2.2.2 直接寻址
定义:将操作数的地址直接存放在指令中,这种寻址方式称为 直接寻址。 特点:指令中含有操作数的地址。该地址指出了参与操作的数 据所在的字节单元地址或位地址。计算机执行它们时便可根据 直接地址找到所需要的操作数。
寻址范围:ROM、片内RAM区、SFR和位地址空间。P42
2.2.3 寄存器寻址
定义:指令中给出的操作数是一个可单独寻址的位地址,这种寻址 方式称为位寻址方式。
特点:位寻址是直接寻址方式的一种,其特点是对8位二进制数中 的某一位的地址进行操作。
寻址范围:片内RAM低128B中位寻址区、部分SFR(其中有83位 可以位寻址)。

第4章 MCS-51单片机汇编语言程序设计

第4章 MCS-51单片机汇编语言程序设计
开始
程序清单:
送转移地址序号
A,R3 ;取序号 A ;序号乘2 DPTR, #JTAB ;32个子程序 首地址送DPTR JMP @A+DPTR ;根据序号转移 JTAB: AJMP ROUT00 ;32个子程序首地址 AJMP ROUT01 … MP: MOV RL MOV AJMP ROUT31
第 四 章 MCS-51 单 片 机 汇 编 语 言 程 序 设 计
【例4-1】
双字节二进制数求补。
程序说明:对R3(高8位)、R2(低8位)中的二进制定 点数取反加1即可得到其补码。
开始
程序清单:
BINPL:MOV A,R2 CPL A ADD A,#01H MOV R2,A MOV A,R3 CPL A ADDC A,#00H MOV R3,A RET ;低位字节取反 ;加1 ;低位字节补码送R2 ;高位字节取反 ;加进位 ;高位字节补码送R3
散转生成正确偏移号
置换指令地址表首址
转入R3指示的程序
AJMP
……
AJMP
第 四 章 MCS-51 单 片 机 汇 编 语 言 程 序 设 计
3.循环程序
包括:循环初始化、循环处理、循环控制
开始 置初值 循环体 循环结束? Y 循环修改 N 循环体 循环结束? N Y 结束 循环修改 结束 开始 置初值
;调用查表子程序 ; 暂存R1中 ;调查表子程序 ;平方和存A中 ;等待
取第一个数→A 调查表子程序 结果存入R1 取下一个数→A 调查表子程序 两数平方相加 存结果
子程序清单:
SQR: INC A ;加RET占的一个字节 MOVC A,@A+PC ;查平方表 RET TAB: DB 0,1,4,9,16 DB 25,36,49,64,81 END

51单片机汇编语言教程

51单片机汇编语言教程

51单片机汇编语言教程:1课:单片机简叙1、什么是单片机一台能够工作的计算机要有这样几个部份构成:CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入/输出设备(例如:串行口、并行输出口等)。

在个人计算机上这些部份被分成若干块芯片,安装一个称之为主板的印刷线路板上。

而在单片机中,这些部份,全部被做到一块集成电路芯片中了,所以就称为单片(单芯片)机,而且有一些单片机中除了上述部份外,还集成了其它部份如A/D,D/A等。

单片机是一种控制芯片,一个微型的计算机,而加上晶振,存储器,地址锁存器,逻辑门,七段译码器(显示器),按钮(类似键盘),扩展芯片,接口等那是单片机系统。

天!PC中的CPU一块就要卖几千块钱,这么多东西做在一起,还不得买个天价!再说这块芯片也得非常大了。

不,价格并不高,从几元人民币到几十元人民币,体积也不大,一般用40脚封装,当然功能多一些单片机也有引脚比较多的,如68引脚,功能少的只有10多个或20多个引脚,有的甚至只8只引脚。

为什么会这样呢?功能有强弱,打个比方,市场上面有的组合音响一套才卖几百块钱,可是有的一台功放机就要卖好几千。

另外这种芯片的生产量很大,技术也很成熟,51系列的单片机已经做了十几年,所以价格就低了。

既然如此,单片机的功能肯定不强,干吗要学它呢?话不能这样说,实际工作中并不是任何需要计算机的场合都要求计算机有很高的性能,一个控制电冰箱温度的计算机难道要用PIII?应用的关键是看是否够用,是否有很好的性能价格比。

所以8051出来十多年,依然没有被淘汰,还在不断的发展中。

2、MCS51单片机和8051、8031、89C51等的关系更多单片机学习资料请来我们平常老是讲8051,又有什么8031,现在又有89C51,89s51它们之间究竟是什么关系?MCS51是指由美国INTEL公司(对了,就是大名鼎鼎的INTEL)生产的一系列单片机的总称,这一系列单片机包括了好些品种,如8031,8051,8751,8032,8052,8752等,其中8051是最早最典型的产品,该系列其它单片机都是在8051的基础上进行功能的增、减、改变而来的,所以人们习惯于用8051来称呼MCS51系列单片机,而8031是前些年在我国最流行的单片机,所以很多场合会看到8031的名称。

(完整版)51单片机汇编指令(全)

(完整版)51单片机汇编指令(全)

指令中常用符号说明Rn当前寄存器区的8个工作寄存器R0~R7(n=0~7)Ri当前寄存器区可作为地址寄存器的2个工作寄存器R0和R1(i=0,1)Direct8位内部数据寄存器单元的地址及特殊功能寄存器的地址#data表示8位常数(立即数)#data16表示16位常数Add16表示16位地址Addr11表示11位地址Rel8位代符号的地址偏移量Bit表示位地址@间接寻址寄存器或基址寄存器的前缀( )表示括号中单元的内容(( ))表示间接寻址的内容指令系统数据传送指令(8个助记符)助记符中英文注释MOV Move 移动MOV A , Rn;Rn→A,寄存器Rn的内容送到累加器AMOV A , Direct;(direct)→A,直接地址的内容送AMOV A ,@ Ri;(Ri)→A,RI间址的内容送AMOV A , #data;data→A,立即数送AMOV Rn , A;A→Rn,累加器A的内容送寄存器RnMOV Rn ,direct;(direct)→Rn,直接地址中的内容送RnMOV Rn , #data;data→Rn,立即数送RnMOV direct , A;A→(direct),累加器A中的内容送直接地址中MOV direct , Rn;(Rn)→direct,寄存器的内容送到直接地址MOV direct , direct;(direct)→direct,直接地址的内容送到直接地址MOV direct , @Ri;((Ri))→direct,间址的内容送到直接地址MOV direct , #data;8位立即数送到直接地址中MOV @Ri , A;(A)→@Ri,累加器的内容送到间址中MOV @Ri , direct;direct→@Ri,直接地址中的内容送到间址中MOV @Ri , #data; data→@Ri ,8位立即数送到间址中MOV DPTR , #data16;data16→DPTR,16位常数送入数据指针寄存器,高8位送入DPH,低8位送入DPL中(单片机中唯一一条16位数据传送指令)(MOV类指令共16条)MOVC Move Cod 查表指令MOVC A , @A+PC;PC+1→PC,(A+PC)→AMOVC A , @A+DPTR;(A+DPTR) →A(MOVC类指令共两条)MOVX Move External 与外部数据寄存区传送数据MOVX A , @DPTR;(DPTR)→A,DPTR间址单元内容送AMOVX @DPTR , A;A→(DPTR),A中内容送入DPTR间址单元MOVX A , @Ri;(Ri)→A,Ri间址单元内容送AMOVX @Ri , A;A→(Ri),A中内容送Ri间址单元(MOVX类指令4条)XCH Exchange 交换指令XCH A , Rn;Rn←→A , Rn的内容与A的内容交换XCH A , Direct; Direct ←→A ,直接地址的内容与A的内容交换XCH A , @Ri;(Ri)←→A ,间址的内容与A的内容交换XCHD Exchange Decimal十进制交换XCHD A , @Ri;(Ri.3~Ri.0) ←→A.3~A.0,间址内容低四位与A中内容低四位交换SWAP Swap 交换SWAP A;A.3~A.0←→ A.7~A.4 , A中低四位与高四位内容交换PUSH Push 入栈PUSH direct;SP+1→SP , (direct)→(SP);直接地址内容压入堆栈顶POP Pop 出栈POP direct;(SP)→(direct) , SP-1→SP;堆栈内容弹出到直接地址●算术运算类指令(7个助记符)ADD Add 加法运算ADD A , Rn;A + Rn→A , A与Rn的内容相加,结果送到A中ADD A , direct;(direct)+A→A,A与直接地址的内容相加,结果送到A中ADD A , @Ri;((Ri))+A→A, A与间址中的内容相加,结果送到A中ADD A , #data;data+A→A,A与立即数相加,和送入AADDC ADD with Carry 带进位加法ADDC A , Rn;A + Rn+CY→A , A与Rn的内容、进位状态相加,结果送到A中ADDC A , direct;(direct)+A+CY→A,A与直接地址的内容、进位状态相加,结果送到A中ADDC A , @Ri;((Ri))+A+CY→A, A与间址中的内容、进位状态相加,结果送到A中ADDC A , #data;data+A+CY→A,A与立即数、进位状态相加,和送入ASUBB Subbtract with Borrow 带进位减法SUBB A , Rn;A-Rn-CY→A,A减寄存器Rn的内容及进位标志,结果送ASUBB A , direct; A-(direct)-CY→A,A直接地址的内容及进位标志,结果送ASUBB A , @Ri; A-((Ri))-CY→A,A间址的内容及进位标志,结果送ASUBB A , #data; A-data-CY→A,A立即数及进位标志,结果送AMUL Multiply 乘法指令MUL AB;A x B→B和A,结果16位,高8位存入B,低8位存入A;若结果大于FFH,则将溢出标志OV置1DIV Divide 除法指令DIV AB;A÷B 商→A,余数→B;若除数为0,结果不确定,则将溢出标志OV置1INC Increment 加1指令INC A;A+1→A,A加1,结果放在AINC Rn; Rn +1→ Rn, Rn加1,结果放在RnINC direct; (direct)+1→ direct,直接地址的内容加1,结果放在该地址中INC @Ri;((Ri))+1→( Ri),间址中的内容加1,结果放在该间址中INC DPTR;(DPTR)+1→DPTR,数据指针内容加1,结果放在数据指针寄存器(DPTR)中DEC Decrement 减1指令INC A;A-1→A,A减1,结果放在AINC Rn; Rn -1→ Rn, Rn减1,结果放在RnINC direct; (direct)-1→ direct,直接地址的内容减1,结果放在该地址中INC @Ri;((Ri))-1→( Ri),间址中的内容减1,结果放在该间址中DA Decimal Adjust 十进制加法调整指令DA A;在加法指令后,把A中二进制码自动调整为BCD码;DA A只能更跟在ADD或ADDC加法指令后,不适用于减法●逻辑运算指令(9个助记符)ANL Logical And 逻辑与运算ANL A , Rn; (A)与(Rn)→A, A的内容与Rn中的内容相与,结果放在A中ANL A , direct; (A)与(direct)→A, A的内容与直接地址中的内容相与,结果放在A中ANL A , @Ri; (A)与((Ri))→A, A的内容与间址的内容相与,结果放在A中ANL A , #data; (A)与(data)→A, A的内容与立即数相与,结果放在A中ANL direct , A; (direct)与(A)→direct, 直接地址中的内容相与A的内容相与,结果放在直接地址中ANL direct , #data;(direct)与#data→direct, 直接地址中的内容相与立即数相与,结果放在直接地址中ORL Logical OR 逻辑或运算ORL A , Rn; (A) 或(Rn)→A, A的内容与Rn中的内容相或,结果放在A中ORL A , direct; (A) 或(direct)→A, A的内容与直接地址中的内容相或,结果放在A中ORL A , @Ri; (A) 或((Ri))→A, A的内容与间址的内容相或,结果放在A中ORL A , #data; (A) 或(data)→A, A的内容与立即数相或,结果放在A中ORL direct , A; (direct) 或A)→direct, 直接地址中的内容相与A的内容相或,结果放在直接地址中ORL direct , #data;(direct) 或#data→direct, 直接地址中的内容相与立即数相或,结果放在直接地址中XRL Logical exclusive or 逻辑异或运算ORL A , Rn; (A) 异或(Rn)→A, A的内容与Rn中的内容相异或,结果放在A中ORL A , direct; (A) 异或(direct)→A, A的内容与直接地址中的内容相异或,结果放在A中ORL A , @Ri; (A) 异或((Ri))→A, A的内容与间址的内容相异或,结果放在A中ORL A , #data; (A) 异或(data)→A, A的内容与立即数相异或,结果放在A中ORL direct , A; (direct) 或A)→direct, 直接地址中的内容相与A的内容相异或,结果放在直接地址中ORL direct , #data;(direct) 异或#data→direct, 直接地址中的内容相与立即数相异或,结果放在直接地址RL Rotate Left 循环左移指令RL A;每执行一次,A中的内容左移一位RR Rotate Right 循环右移指令RR A;每执行一次,A中的内容右移一位RLC Rotate Left with the Carry flag 带进位循环左移指令RLC A;每执行一次,CY和A中的内容左移一位RRC Rotate Right with the Carry flag带进位循环又移指令RRC A;每执行一次,CY和A中的内容右移一位注意:循环移位指令只能对A中的内容进行移位操作CPL Complement 取反指令(求补指令)CPL A;累加器内容按位取反,0变1,1变0CLR Clear 清零指令CLR A;累加器清零(A各位全变为0)●控制转移指令(9个助记符)LJMP Long Jump 长跳转指令LJMP add16;add16→PC,无条件跳转到add16地址,可在64KB范围内转移AJMP Absolute Jump 绝对跳转指令AJMP add11;add11→PC,无条件跳转到add11地址,可在2KB范围内转移SJMP Short Jump 短跳转指令SJMP rel;PC+2+rel→PC,rel是偏移量,8位有符号数(-127~127),可向前后跳转±128个地址单元JMP Jump 跳转指令JMP @A+DPTR;A+DPTR→PC,属于散转指令,无条件转向A与DPTR内容相加后形成的新地址JZ Jump if acc is Zero累加器为零转移JZ rel;A=0转向PC+2+rel→PC,A≠0,顺序执行JNZ Jump if acc is Not Zero累加器不为零转移JNZ rel;A≠0转向PC+2+rel→PC,A=0,顺序执行CJNE Compare and Jump if Not Equal比较不相等则转移CJNE A , direct , rel;A≠(direct)转向PC+3+rel→PC,否则顺序执行(PC+3 →PC);(A)>(direct)CY=0, (A)<(direct)CY=1CJNE A , #data , rel;A≠(data)转向PC+3+rel→PC,否则顺序执行(PC+3 →PC);(A)>(data)CY=0,( A)<(data)CY=1CJNE Rn , #data , rel; Rn≠(data)转向PC+3+rel→PC,否则顺序执行(PC+3 →PC); (Rn) >(data)CY=0, (Rn) <(data)CY=1CJNE @Ri , #data , rel;((Ri))≠(data)转向PC+3+rel→PC,否则顺序执行(PC+3 →PC); ((Ri))>(data)CY=0, ((Ri)) <(data)CY=1DJNE Decrement and Jump if Not Zero 减1不为0则转移DJNE Rn , rel;Rn-1→Rn, Rn≠0转向PC+2+rel→PC,否则顺序执行(PC+2→PC)DJNZ direct , rel;(direct-1)→direct, direct≠0转向PC+2+rel→PC,否则顺序执行(PC+2→PC)LCALL Long Call 长条用指令LCALL addr16;调用程序入口地址为addr16的之程序ACALL Absolute Call短调用ACALL addr11;调用程序入口地址为addr11的之程序RET ReturnRET;放在子程序最后,使程序准确返回到主程序断点处RETI Return from InterruptRETI;中断返回指令,能清楚优先级状态NOP No Operation 空操作指令NOP;空操作,产生一个机器周期延时●位操作指令MOV Move 数据传送指令MOV C , bit;(bit)→C,寻址位的状态送入CMOV bit , C;(C)→bit,C的转态送入地址中CLR Clear 清零指令CLR C;0→C,清零累加器CLR bit;清零直接寻址位CPL Complement 取反指令(求补指令)CPL C;c取反CPL bit;直接寻址位取反SETB Set Bit 置位SETB C;C置1SETB bit;直接寻址位置1ANL And Logical 与逻辑运算ANL C , bit;直接寻址位与C相与,结果放在CANL C , /bit; 直接寻址位与非C相与,结果放在CORL OR Logical 或逻辑运算ORL C , bit;直接寻址位与C相或,结果放在CORL C , /bit; 直接寻址位与非C相或,结果放在CJC Jump if Carry is set 进位位为1则转移JC rel;C=1,转向PC+2+rel→PC,否则顺序执行PC+2→PCJNC Jump if Carry is Not set 进位位为不为1则转移JNC rel;C=0,转向PC+2+rel→PC,否则顺序执行PC+2→PCJB Jump if Bit is set 进位位为1则转移JB bit , rel;(bit)=1,转向PC+3+rel→PC,否则顺序执行PC+3→PCJNB Jump if Bit is Not set 进位位为1则转移JNB bit , rel;(bit)=0,转向PC+3+rel→PC,否则顺序执行PC+3→PCJBC Jump if Bit is set and Clear bit指定位等于1转移并清该位JBC bit , rel; (bit)=1,转向PC+3+rel→PC,同时0→bit否则顺序执行PC+3→PC伪指令ORG Origin 代码起始地址指令ORG 0000HMOV A , #0010H;这条指令从0000H这个地址单元开始写起END End 汇编程序结束指令END;汇编指令结束DB字节定义伪指令ORG 1000HDB 01H , 02H;则(1000H)=01H,(1001H)=02HORG 1100HDB ‘01’;则(1100H)=30H,30H是0的ASCII码,(1101H)=31H,31H是1的ASCII码DW双字节定义伪指令ORG 2000HDW 2546H , 0178H; (2000H)=25H, (2001H)=46H, (2002H)=01H, (2003H)=78H,EQU数据赋值伪指令X EQU n;将n的值赋给xBIT位数据赋值伪指令y BIT b;y是用户定义标号,b为0或1MACRO宏指令宏指令名MACRO 形式参数······代码段······ENDM;宏指令定义结束寻址方式及相关的存储空间寻址方式寻址范围寄存器寻址R0~R7A 、B、C(CY)、AB(双字节)、DPTR(双字节)、PC(双字节)直接寻址内部RAM低128字节特殊功能寄存器内部RAM位寻区的128个位特殊功能寄存器中可寻址的位寄存器间接寻址内部数据存储器RAM【@R0,@R1,@SP(仅PUSH,POP)】内部数据存储器单元的低4位(@R0,@R1)外部RAM或I/O口(@R0,@R1,@DPTR)立即寻址程序存储器(常数)程序存储器(@A+PC,@A+DPTR)基寄存器加变址寄存器间接寻址。

51单片机汇编指令总结

51单片机汇编指令总结

51单片机汇编指令总结数据传输指令一.片内RAM数据传输指令1.以累加器A为目的操作数的指令:MOV A , RnMOV A , directMOV A , @RiMOV A , #data2.以寄存器Rn为目的操作数的指令:MOV Rn , AMOV Rn ,directMOV Rn ,data3.以直接地址为目的操作数的指令:MOV direct ,AMOV direct ,RnMOV direct1 ,derect2MOV direct ,@RiMOV direct ,#data4.间接地址为目的操作数的指令:MOV @Ri ,AMOV @Ri ,directMOV @Ri ,#data5.十六位数据传送指令:MOV DPTR , #data16二.累加器A与片外RAM数据传送指令:MOVX A ,@RiMOVX A , @DPTRMOVX @Ri ,AMOVX @DPTR ,A三.查表寻址:MOVC A ,@A+DPTR (先PC←(PC)+1,后A←((A)+(DPTR)))+MOVC A ,@A+PC (先PC←(PC)+1,后A←((A)+(PC)))四.交换指令:1.字节交换指令:XCH A ,RnXCH A ,directXCH A ,@Ri2.半字节交换指令:XCHD A ,@Ri3.累加器半字节交换指令:SWAP A五.栈操作指令:1.PUSH(入栈指令)PUSH direct2.POP(出栈指令)POP direct算术运算指令:一.加法减法指令:1.加法指令:ADD A ,RnADD A ,directADD A ,@RiADD A ,#data2.带进位加法指令:ADDC A ,Rn A←(A)+(Rn)+CYADDC A ,direct A←(A)+(direct)+CYADDC A ,@Ri A←(A)+((Ri))+CYADDC A ,#data A←(A)+(data)+CY3.带借位减法指令:SUBB A ,Rn A←(A)-CY-(Rn)SUBB A ,direct A←(A)-CY-(direct)SUBB A ,@Ri A←(A)-CY-((Ri))SUBB A ,#data A←(A)-CY-#data二.乘法除法指令:1.乘法指令:MUL AB BA←(A) ×(B)高字节放在B中,低字节放在A中2.除法指令:DIV AB A←(A) ÷(B)的商,(B) ←(A) ÷(B)的余数三.加1减1指令:1.加1指令:INC A A←(A)+1INC Rn Rn←(Rn)+1INC direct direct←(direct)+1INC @Ri (Ri) ←((Ri))+1INC DPTR DPTR←(DPTR)+12.减1指令:DEC ADEC RnDEC directDEC @Ri四.十进制调制指令:DA A 调整累加器A的内容为BCD码逻辑操作指令:一.逻辑与、或、异或指令:1.逻辑与指令:ANL A ,RnANL A ,directANL A ,@RiANL A ,#data2.逻辑或这令:ORL A ,RnORL A ,directORL A ,@RiORL A ,#dataORL direct ,AORL direct ,#data3.逻辑异或指令:XRL A ,RnXRL A ,directXRL A ,@RiXRL A ,#dataXRL direct ,AXRL direct ,#data二.清零、取反指令:1.累加器A清零指令:CRL A2.累加器A取反指令:CPL A三.循环位移指令:1.累加器A循环左移指令:RL A2.累加器A循环右移指令:RR A3.累加器A连同进位位循环左移指令:RLC A4. 累加器A连同进位位循环右移指令:RRC A控制转移指令:一.无条件转移指令:1.绝对转移指令:AJMP addr11 (先PC+2,然后将addr11的低十位传给PC,PC的高六位不变)2.长转移指令:LJMP addr16 (用addr16的值替换PC的值)3.相对转移(短转移)指令:SJMP rel(带符号的偏移字节数)(PC+2,再加rel赋值给PC)4.间接转移指令:JMP @A+DPTR (A)+(DPTR) →(PC)二.条件转移指令:1.累加器判零转移指令:JZ rel 先PC+2;后判断,A为0时转移,PC+rel赋值给PC;否则顺序执行JNZ rel 先PC+2,后判断,A不为0时转移,PC+rel赋值给PC;否则顺序执行2.比较转移指令:CJNE 目的操作数,源操作数,relCJNE A,direct,rel 先PC+3传回PC,再比较目的操作数和原操作数CJNE A,#data,rel 目>源时,程序转移,PC+rel传回PC且CY=0CJNE Rn,#data,rel 目=源时,程序顺序执行CJNE @Ri,#data,rel 目<源时,程序转移,PC+rel传回PC且CY=13.减一非0指令:DJNZ Rn,rel 先PC\+2,Rn-1,当Rn为0时程序顺序执行,否则PC+rel传回PCDJNZ direct,rel 先PC+3,direct-1,direct为0时程序顺序执行,否则PC+rel 传回PC二.子程序调用、返回指令:1.绝对调用指令ACALL:ACALL addr11 先PC+2,SP+1将PC的低八位存入SP;SP+1,将PC的高八位存入SP。

C51单片机汇编语言程序设计

C51单片机汇编语言程序设计

C51单片机汇编语言程序设计一、二进制数与十六进制数之间的转换1、数的表达方法为了方便编程时书写,规定在数字后面加一个字母来区别,二进制数后加B十六进制数后加H。

2、二进制数与十六进制数对应表二进制十六进二进制制0000000100100011010001010110011101234567100010011010101111001101 11101111十六进制89ABCDEF3、二进制数转换为十六进制数转换方法为:从右向左每4位二进制数转化为1位十六进制数,不足4位部分用0补齐。

例:将(1010000110110001111)2转化为十六进制数解:把1010000110110001111从右向左每4位分为1组,再写出对应的十六进制数即可。

0101000011011000111150D8F答案:(1010000110110001111)2=(50D8F)16例:将1001101B转化为十六进制数解:把10011110B从右向左每4位分为1组,再写出对应的十六进制数即可。

100111109E答案:10011110B=9EH4、十六进制数转换为二进制数转换方法为:将每1位十六进制数转换为4位二进制数。

例:将(8A)16转化为二进制数解:将每位十六进制数写成4位二进制数即可。

8A10001010答案:(8A)16=(10001010)2例:将6BH转化为二进制数解:将每位十六进制数写成4位二进制数即可。

6B01101011答案:6BH=01101011B二、计算机中常用的基本术语1、位(bit)计算机中最小的数据单位。

由于计算机采用二进制数,所以1位二进制数称作1bit,例如110110B为6bit。

2、字节(Byte,简写为B)8位的二进制数称为一个字节,1B=8bit3、字(Word)和字长两个字节构成一个字,2B=1Word。

字长是指单片机一次能处理的二进制数的位数。

如AT89S51是8位机,就是指它的字长是8位,每次参与运算的二进制数的位数为8位。

51单片机汇编语言

51单片机汇编语言

51单片机汇编语言51单片机汇编语言是一种基于51系列单片机的汇编语言,它是一种直接操作硬件的低级语言。

在嵌入式系统开发中,经常需要使用汇编语言来编写底层驱动程序和实现特定功能。

本文将介绍51单片机汇编语言的基本概念、语法结构以及常用指令集。

一、51单片机简介51单片机是一种基于哈佛结构的8位单片机,由英特尔公司设计,并于1980年发布。

它具有低功耗、高性能和易于编程的特点,广泛应用于家电、汽车电子、工控设备等领域。

二、汇编语言基础1. 数据类型:51单片机汇编语言支持的数据类型包括位(bit)、字节(byte)、字(word)和双字(dword)。

可以通过定义变量来使用这些数据类型。

2. 寄存器:51单片机包含一组通用寄存器和特殊功能寄存器。

通用寄存器用于存储临时数据,特殊功能寄存器用于控制和配置硬件。

常用的通用寄存器有ACC累加器、B寄存器和DPTR数据指针。

3. 指令集:51单片机汇编语言的指令集丰富多样,包括数据传送指令、算术运算指令、逻辑运算指令、跳转指令等。

例如,MOV指令用于数据传送,ADD指令用于加法运算,JMP指令用于无条件跳转。

三、汇编语言示例下面是一个简单的51单片机汇编语言程序示例,实现了一个LED 灯的闪烁效果。

```ORG 0x0000 ; 程序起始地址MOV P1, #0x00 ; 将0x00赋值给P1口,关闭LED灯LOOP:MOV P1, #0xFF ; 将0xFF赋值给P1口,打开LED灯CALL DELAY ; 调用延时子程序MOV P1, #0x00 ; 将0x00赋值给P1口,关闭LED灯CALL DELAY ; 调用延时子程序JMP LOOP ; 无条件跳转到LOOP标签DELAY:MOV R0, #0xFF ; 将0xFF赋值给R0寄存器DELAY_LOOP:DJNZ R0, DELAY_LOOP ; R0减1,如果不等于0则跳转到DELAY_LOOP标签RET ; 返回调用子程序的指令END ; 程序结束标志```四、汇编语言开发工具51单片机汇编语言的开发工具有很多,常用的有Keil C51、SDCC、ASM51等。

51单片机汇编语言指令教程汇集

51单片机汇编语言指令教程汇集

51单片机汇编语言指令教程汇集1.MOV指令:MOV指令用于将一个值从一个寄存器或内存位置复制到另一个寄存器或内存位置。

例如,MOVA,将常数10复制到累加器A中。

2.ADD指令:ADD指令用于将两个操作数相加,并将结果保存在目标操作数中。

例如,ADDA,B将寄存器B的值与累加器A的值相加,并将结果保存在累加器A中。

3.SUB指令:SUB指令用于将源操作数减去目标操作数,并将结果保存在目标操作数中。

例如,SUBA,B将寄存器B的值减去累加器A的值,并将结果保存在累加器A中。

4.INC指令:INC指令用于将指定的操作数加1、例如,INCA将累加器A的值加15.DEC指令:DEC指令用于将指定的操作数减1、例如,DECA将累加器A的值减16.JMP指令:JMP指令用于无条件地跳转到指定的地址。

例如,JMP1000h将跳转到地址1000h处执行指令。

9. ACALL指令:ACALL指令用于调用一个子程序,其地址由指令给出,子程序结束后返回到调用指令的下一条指令。

例如,ACALL Subroutine将调用一个名为Subroutine的子程序。

10.RET指令:RET指令用于从子程序返回到调用指令的下一条指令。

例如,RET将从子程序返回。

11.NOP指令:NOP指令用于空操作,即不执行任何操作。

它通常用于延时或填充空白。

以上是一些常用的51单片机汇编语言指令,这些指令可以用于控制I/O口、进行算术运算、执行跳转和调用子程序等。

学习并熟练掌握这些指令,对于编写高效的51单片机汇编程序非常重要。

希望本文提供的51单片机汇编语言指令教程能够帮助你入门和掌握51单片机汇编语言的基本知识。

如果你想深入学习51单片机汇编语言,建议参考相关的教材或在线资源,进行更加系统和全面的学习。

51单片机汇编程序

51单片机汇编程序

51单片机汇编程序1. 简介51单片机是一种常用的8位单片机芯片,具有广泛的应用领域。

51单片机的编程语言主要有汇编语言、C语言和底层汇编语言。

本文主要介绍51单片机的汇编程序。

2. 汇编程序基础2.1 寄存器51单片机的CPU有4个8位寄存器(A、B、DPTR、PSW)和一个16位寄存器(PC)。

在汇编程序中,我们可以使用这些寄存器来进行各种操作。

•A寄存器(累加器):用于存储数据和进行算术运算。

•B寄存器:辅助寄存器,可用于存储数据和进行算术运算。

•DPTR寄存器:数据指针寄存器,用于存储数据存取的地址。

•PSW寄存器:程序状态字寄存器,用于存储程序运行状态信息。

•PC寄存器:程序计数器,用于存储当前执行指令的地址。

2.2 指令集51单片机的指令集包含了多种汇编指令,可以用来进行数据操作、算术运算、逻辑运算、控制流程等。

常用的汇编指令有:•MOV:数据传送指令。

•ADD、SUB:加法和减法运算指令。

•ANL、ORL、XRL:逻辑运算指令。

•MOVX:外部RAM的读写指令。

•CJNE、DJNZ:条件分支指令。

•LCALL、RET:函数调用和返回指令。

2.3 编写一个简单的汇编程序下面是一个简单的汇编程序示例,用于将A寄存器中的数据加1,并将结果存储到B寄存器中。

ORG 0x0000 ; 程序的起始地址MOV A, #0x01 ; 将A寄存器赋值为1ADD A, #0x01 ; 将A寄存器加1MOV B, A ; 将A寄存器的值传送到B寄存器END ; 程序结束在上面的示例中,ORG指令用于指定程序的起始地址,MOV 指令用于将A寄存器赋值为1,ADD指令用于将A寄存器加1,MOV指令用于将A寄存器的值传送到B寄存器,END指令用于标记程序结束。

3. 汇编语言的应用51单片机的汇编语言广泛应用于各种嵌入式系统中,包括智能家居、工业自动化、仪器仪表等领域。

汇编程序具有以下特点:•程序执行效率高:由于汇编语言直接操作硬件,可以精确控制程序的执行流程,提高程序的执行效率。

51单片机串口变并口汇编程序

51单片机串口变并口汇编程序

51单片机串口变并口汇编程序51单片机是一种常用的微控制器,它具有高性能、低功耗、丰富的外设和广泛的应用领域。

其中,串口和并口是常见的通信接口方式。

本文将详细介绍51单片机串口变并口汇编程序的实现方法。

## 1. 串口和并口介绍### 1.1 串口串行通信接口(Serial Communication Interface),简称串口,是一种将数据以连续位的形式传输的通信方式。

它只需要两根线(发送线和接收线)即可实现数据传输,适用于远距离传输和多设备连接。

### 1.2 并口并行通信接口(Parallel Communication Interface),简称并口,是一种将数据以多个位同时传输的通信方式。

它需要多根线同时传输数据,适用于高速数据传输和短距离连接。

## 2. 串行通信与并行通信转换原理在51单片机中,通过软件编程可以实现串行通信与并行通信之间的转换。

下面是其基本原理:### 2.1 串行转并行在将串行数据转换为并行数据时,需要一个移位寄存器来存储接收到的串行数据,并通过时钟信号按位移出到并行总线上。

具体步骤如下:1. 初始化串口参数,包括波特率、数据位、停止位等。

2. 等待串口接收到数据。

3. 将接收到的串行数据写入移位寄存器。

4. 通过时钟信号依次将移位寄存器中的数据按位移出到并行总线上。

### 2.2 并行转串行在将并行数据转换为串行数据时,需要一个移位寄存器来存储要发送的并行数据,并通过时钟信号按位读取并发送出去。

具体步骤如下:1. 初始化串口参数,包括波特率、数据位、停止位等。

2. 将要发送的并行数据写入移位寄存器。

3. 通过时钟信号依次从移位寄存器中读取数据,并发送出去。

## 3. 51单片机串口变并口汇编程序实现下面是一个示例程序,演示了如何在51单片机中实现串口变并口的功能。

```assembly; 定义串口接收和发送函数USART_Rx: ; 串口接收函数MOV A, SBUF ; 读取SBUF中的接收数据RETUSART_Tx: ; 串口发送函数MOV SBUF, A ; 将A寄存器中的数据写入SBUFRET; 主程序入口MAIN:MOV TMOD, #20H ; 设置定时器1为工作模式2,用于串口通信 MOV TH1, #FDH ; 设置波特率为9600SETB TR1 ; 启动定时器1; 初始化串口参数MOV SCON, #50H ; 设置串口工作模式为8位数据位、1位停止位、可变波特率; 接收数据并转换为并行数据发送CALL USART_Rx ; 调用串口接收函数,将接收到的数据存入A寄存器MOV P0, A ; 将A寄存器中的数据写入P0,并行总线; 并行数据转换为串行数据发送MOV A, P1 ; 从P1并行总线读取要发送的数据,存入A寄存器CALL USART_Tx ; 调用串口发送函数,将A寄存器中的数据发送出去SJMP MAIN ; 无限循环END```上述汇编程序通过调用USART_Rx和USART_Tx函数实现了串口接收和发送功能。

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集一、数据传送类指令(7种助记符)MOV(英文为Move):对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送;MOVC(Move Code)读取程序存储器数据表格的数据传送;MOVX (Move External RAM) 对外部RAM的数据传送;XCH (Exchange) 字节交换;XCHD (Exchange low-order Digit) 低半字节交换;PUSH (Push onto Stack) 入栈;POP (Pop from Stack) 出栈;二、算术运算类指令(8种助记符)ADD(Addition) 加法;ADDC(Add with Carry) 带进位加法;SUBB(Subtract with Borrow) 带借位减法;DA(Decimal Adjust) 十进制调整;INC(Increment) 加1;DEC(Decrement) 减1;MUL(Multiplication、Multiply) 乘法;DIV(Division、Divide) 除法;三、逻辑运算类指令(10种助记符)ANL(AND Logic) 逻辑与;ORL(OR Logic) 逻辑或;XRL(Exclusive-OR Logic) 逻辑异或;CLR(Clear) 清零;CPL(Complement) 取反;RL(Rotate left) 循环左移;RLC(Rotate Left throught the Carry flag) 带进位循环左移;RR(Rotate Right) 循环右移;RRC (Rotate Right throught the Carry flag) 带进位循环右移;SWAP (Swap) 低4位与高4位交换;四、控制转移类指令(17种助记符)ACALL(Absolute subroutine Call)子程序绝对调用;LCALL(Long subroutine Call)子程序长调用;RET(Return from subroutine)子程序返回;RETI(Return from Interruption)中断返回;SJMP(Short Jump)短转移;AJMP(Absolute Jump)绝对转移;LJMP(Long Jump)长转移;CJNE (Compare Jump if Not Equal)比较不相等则转移;DJNZ (Decrement Jump if Not Zero)减1后不为0则转移;JZ (Jump if Zero)结果为0则转移;JNZ (Jump if Not Zero) 结果不为0则转移;JC (Jump if the Carry flag is set)有进位则转移;JNC (Jump if Not Carry)无进位则转移;JB (Jump if the Bit is set)位为1则转移;JNB (Jump if the Bit is Not set) 位为0则转移;JBC(Jump if the Bit is set and Clear the bit) 位为1则转移,并清除该位;NOP (No Operation) 空操作;五、位操作指令(1种助记符)CLR 位清零;SETB(Set Bit) 位置1。

第03章 MCS - 51单片机指令系统

第03章 MCS - 51单片机指令系统
这里源操作数不能进行寄存器间接寻址, 也就是MOV Rn , @Rn 这个指令是不能用 的。
第 二 节 数 据 传 送 指 令
第3章 MCS-51单片机指令系统
(2)将数据传送到工作寄存器Rn的指令(3条) 例:已知累加器A的内容为30H,寄存器R7的内容 为50H,内部RAM30H单元的内容为40H,内部 RAM50H单元的内容为10H,请指出下列每条指令 执行以后相应单元内容的变化.
第 一 节 指 令 格 式 与 寻 址 方 式
第3章 MCS-51单片机指令系统
(6) 相对寻址:
在MCS -51 指令系统中设有转移指令, 分 为直接转移和相对转移指令, 在相对转移 指令中采用相对寻址方式。这种寻址方式 是以PC的内容为基本地址, 加上指令中给 定的偏移量作为转移地址,也就是目的地 址(用来修改PC的值)。指令中给出的偏 移量是一个 8 位带符号的常数, 可正可负, 其范围为-128~+127。
第3章 MCS-51单片机指令系统
(1) 立即寻址:
立即寻址方式是将操作数直接存放在指令字 节中,作为指令的一部分存放在代码段里。 比如:MOV A, #3AH 跟在指令操作码后面的数就是参加运 算的数, 该操作数称为立即数。立即数有一字 节和二字节两种可能, 如指令: MOV DPTR, #0DFFFH 上述两条指令均为立即寻址方式, 第 一条指令的功能是将立即数 3AH送累加器A中, 第二条指令的功能是将立即数 0DFFFH送数据 指针DPTR中(DPH, 0FFH→DPL)。
第 二 节 数 据 传 送 指 令
第3章 MCS-51单片机指令系统
3.2数据传送指令
程序中使用最多的指令,主要用于内部RAM、 寄存器、外部RAM以及程序存储器之间的数据 传送、保存以及交换。 工作原理:将源操作数简单地传给目的 操作数,而源操作数的内容不变,PSW的内容 不改变。 分类:内部数据传送指令、外部传送指 令、查表指令、交换指令和堆栈指令。

第三章MCS-51指令系统及汇编语言程序设计

第三章MCS-51指令系统及汇编语言程序设计

指 令 系 统 的 寻 址 方 式
MCS-51指令系统及一般说明 MCS-51指令系统及一般说明
在介绍指令之前, 在介绍指令之前 , 先对指令中使用的一些符号意义进行简单 的说明。 的说明。 direct---直接地址, ---直接地址 ① direct---直接地址,即8位的内部数据存储器单元或特殊 功能寄存器的地址。 功能寄存器的地址。 #data--包含在指令中的8位常数。 --包含在指令中的 ② #data--包含在指令中的8位常数。 #datal6--包含在指令中的16位常数 包含在指令中的16位常数。 ③ #datal6--包含在指令中的16位常数。 rel-- 位的带符号的偏移量。用于SJMP --8 SJMP及所有的条件转移 ④ rel--8位的带符号的偏移量。用于SJMP及所有的条件转移 指令中。 指令中 。 偏移量按相对于下一条指令的第一个字节地址与跳转 后指令第一个字节地址之差计算, 范围内取值。 后指令第一个字节地址之差计算,在-128~+127范围内取值。 128 +127范围内取值 DPTR--数据指针,可用作16位的地址寄存器。 --数据指针 16位的地址寄存器 ⑤ DPTR--数据指针,可用作16位的地址寄存器。
指 令 系 统 的 寻 址 方 式
寄存器间接寻址
寄存器间接寻址方式可用于访问内部RAM 或外部数据存储器 寄存器间接寻址方式可用于访问内部 RAM或外部数据存储器 。 RAM 或外部数据存储器。 这种寻址方式是由指令指定某一寄存器的内容作为操作数的 地址。 地址。 其中(Ri)=40H (Ri)=40 例如 MOV A,@Ri ;(i=0或1),其中(Ri)=40H 这条指令表示从Ri中找到源操作数所在单元的地址, Ri中找到源操作数所在单元的地址 这条指令表示从Ri中找到源操作数所在单元的地址,把该地 址中的内容传送给A 即把内部RAM 40H单元的内容送到累加器A RAM中 址中的内容传送给A。即把内部RAM中40H单元的内容送到累加器A 中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)主机程序 AT89C51-A
ORG 00H
JMP START
START: MOV SP,#60H ;设置堆栈
MOV TMOD,#00100000B ;TIMER1工作在MODE2
ANL PCON,#01111111B ;SMOD=0
MOV TH1,#0F3H ;波特率为2400
MOV TL1,#0F3H
SETB TR1 ;启动TIMER1
MOV SCON,#11010000B ;UART工作在MODE3
MOV IE,#10010000B ;UART中断使能
SETB SM2 ;设SM2=1
MOV P2,#0FFH ;给P2口赋初值
MOV 32H,0FFH ;两个副CPU地址暂存器
SCAN0: MOV R3,#F7H ;键盘扫描初始值
SCAN: JB RI,UARTI ;是否有接收中断
MOV R1,#00H ;TABLE取码指针
SCAN1: MOV A,R3 ;输出行扫描
MOV P1,A
MOV A,P1
MOV R4,A
SETB C
MOV R5,#03H ;扫描4列
L1: RLC A
JNC KEYIN ;C=0表示有键按下
INC R1 ;C不等于0,未按则取码指针加1
DJNZ R5,L1 ;扫描下一列
MOV A,R3 ;扫描下一行
SETB C
RRC A
MOV R3,A
JC SCAN1 ;4行扫描完
JMP SCAN0
KEYIN: MOV R7,#0D0H ;消除抖动
D2: MOV R6,#19H
DJNZ R6,$
DJNZ R7,D2
D3: MOV A,P1 ;按键放开否?
XRL A,R4
JZ D3
MOV A,R1 ;至TABLE取键盘码
MOV DPTR,#TABLE
MOVC A,@A+DPTR
MOV 30H,A
XRL A,#83H ;“#1”是否按下?
JZ UART1
MOV A,30H
XRL A,#C6H ;“#2”是否按下?
JZ UART2
MOV A,30H
MOV SBUF,A ;载入SBUF发送出去WAIT: JBC TI,SCAN ;发送完毕否?
JMP WAIT
UART1: SETB TB8 ;设TB8=1
MOV SBUF,#01H ;发送AT89C51-B的地址01H WAIT1: JBC TI,L2 ;发送完毕否?
JMP WAIT1
L2: CLR TB8 ;清除TB8=0
JMP SCAN0
UART2: SETB TB8 ;设TB8=1
MOV SBUF,#02H ;发送AT89C51-C的地址02H WAIT2: JBC TI,L3 ;发送完毕否?
JMP WAIT2
L3: CLR TB8 ;清除TB8=0
JMP SCAN0
UARTI: PUSH ACC ;压入堆栈
PUSH PSW
JBC RI,L5 ;是否为接收中断?RI=1?
JMP RETURN
L5: JB SM2,L6 ;SM2=1接收地址,SM2=0接收数据MOV A,SBUF ;接收数据载入累加器
MOV 33H,A ;暂存入(33H)RAM
MOV A,32H ;判断接收到89C51-B或89C51-C的数据?
CJNE A,#01H,L8 ;接收到AT89C51-B的数据?
MOV A,33H ;是则输出至P2显示(低4位)
MOV P2,A
SETB SM2 ;设SM2=1,准备接收下一个地址
MOV 32H,#0FFH ;清除地址(32H)RAM
JMP RETURN
L8: CJNE A,#02H,RETURN ;接收到AT89C51-C的数据?
MOV A,33H ;是则输出至P2显示(高4位)
MOV P2,A
SETB SM2 ;设SM2=1,准备接收下一个地址
MOV 32H,#0FFH
JMP RETURN
L6: MOV A,SBUF ;载入接收到的地址
CJNE A,#01H,L7 ;是AT89C51-B的地址?
MOV 32H,A ;是则将此89C51-B的地址存入(32H)RAM
CLR SM2 ;设SM2=0,准备接收数据
JMP RETURN
L7: CJNE A,#02H,RETURN ;是89C51-C的地址?
MOV 32H,A ;是则将此89C51-C的地址存入(32H)RAM
CLR SM2 ;设SM2=0,准备接收数据RETURN: POP PSW ;取回PSW
POP ACC
RETI
TABLE: DB F9H,A4H,B0H
DB 99H,92H,82H
DB F8H,80H,90H,
DB 83H,C6H,FFH
END
(2)从机程序 AT89C51-B
ORG 00H
JMP START
ORG 23H ;UART中断起始地址
JMP UARTI
START: MOV TMOD,#00100000B ;TIMER1工作在MODE2
ANL PCON,#01111111B ;SMOD=0
MOV TH1,#0F3H ;波特率为2400
MOV TL1,#0F3H
SETB TR1 ;启动TIMER1
MOV SCON,#11010000B ;UART工作在MODE3
MOV IE,#10010000B ;UART中断使能
SETB SM2 ;设SM2=1
MOV 30H,#0FFH ;P1指拨开关的初值
MOV P2,#0FFH ;给P2口赋初值
LOOP: MOV A,P1 ;读入P1指拨开关
CJNE A,30H,UART1 ;判断有否有变化?
JMP LOOP
UART1: ORL A,#0F0H ;有变化则取低4位
MOV 30H,A ;存入P1指拨开关的新值
SETB TB8 ;设TB8=1
MOV SBUF,#01 ;发送本身地址(01H)给89C51-A WAIT1: JBC TI,L1 ;发送完毕否?
JMP WAIT1
L1: CLR TB8 ;是则清除TB8=0
MOV SBUF,30H ;将指拨开关的值发送给89C51-A WAIT2: JBC TI,LOOP ;发送完毕否?
JMP WAIT2
UARTI: PUSH ACC ;压入堆栈
PUSH PSW
JBC RI,L5 ;是否为接收中断?
JMP RETURN
L5: JB SM2,L6 ;SM2=1接收地址,SM2=0接收数据MOV A,SBUF ;SM2=0,则接收数据并输出至P2
MOV P2,A
SETB SM2 ;设SM2=1,准备接收下一个地址
JMP RETURN
L6: MOV A,SBUF ;SM2=1,载入地址
CJNE A,#01H,RETURN ;是否(01H)地址?
CLR SM2 ;是则清除SM2=0,准备接收数据RETURN: POP PSW
POP ACC
RETI
END
(3)从机程序 AT89C51-C
ORG 00H
JMP START
ORG 23H ;UART中断起始地址
JMP UARTI
START: MOV TMOD,#00100000B ;TIMER1工作在MODE2
ANL PCON,#01111111B ;SMOD=0
MOV TH1,#0F3H ;波特率为2400
MOV TL1,#0F3H
SETB TR1 ;启动TIMER1
MOV SCON,#11010000B ;UART工作在MODE3
MOV IE,#10010000B ;UART中断使能
SETB SM2 ;设SM2=1
MOV 30H,#0FFH ;P1指拨开关的初值
MOV P2,#0FFH ;给P2口赋初值
LOOP: MOV A,P1 ;读入P1指拨开关
CJNE A,30H,UART1 ;判断有否有变化?
JMP LOOP
UART1: ORL A,#0F0H ;有变化则取低4位
SWAP A ;高低4位互换
MOV 30H,A ;存入P2指拨开关的新值
SETB TB8 ;设TB8=1
MOV SBUF,#02 ;发送本身地址(02H)给89C51-A WAIT1: JBC TI,L1 ;发送完毕否?
JMP WAIT1
L1: CLR TB8 ;是则清除TB8=0
MOV SBUF,30H ;将指拨开关的值发送给89C51-A WAIT2: JBC TI,LOOP ;发送完毕否?
JMP WAIT2
UARTI: PUSH ACC ;压入堆栈
PUSH PSW
JBC RI,L5 ;是否为接收中断?
JMP RETURN
L5: JB SM2,L6 ;SM2=1接收地址,SM2=0接收数据MOV A,SBUF ;SM2=0,则接收数据并输出至P2
MOV P2,A
SETB SM2 ;设SM2=1,准备接收下一个地址
JMP RETURN
L6: MOV A,SBUF ;SM2=1,载入地址
CJNE A,#02H,RETURN ;是否(02H)地址?
CLR SM2 ;是则清除SM2=0,准备接收数据RETURN: POP PSW
POP ACC
RETI
END。

相关文档
最新文档