新北师大版初中数学七年级上册月考试卷1

合集下载

新北师大版七年级数学上册第一次月考测试卷及答案【完美版】

新北师大版七年级数学上册第一次月考测试卷及答案【完美版】

新北师大版七年级数学上册第一次月考测试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m ,n 为常数,代数式2x 4y +mx |5-n|y +xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°3.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.已知x 是整数,当30x x 的值是( )A .5B .6C .7D .86.下列二次根式中,最简二次根式的是( )A 15B 0.5C 5D 507.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.在数轴上,a 所表示的点总在b 所表示的点的右边,且|a |=6,|b |=3,则a -b 的值为( )A .-3B .-9C .-3或-9D .3或99.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.已知15x x+=,则221x x +=________________. 525.36 5.036,253.6=15.906253600=__________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:(1)x -12(3x -2)=2(5-x ) (2)24x +-1=236x -2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD上的一个动点。

新北师大版七年级数学上册第一次月考考试题(含答案)

新北师大版七年级数学上册第一次月考考试题(含答案)

新北师大版七年级数学上册第一次月考考试题(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-37.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.分解因式:32x 2x x -+=_________.4.已知15x x+=,则221x x +=________________. 5.若264a =3a =________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程:(1)3x ﹣7(x ﹣1)=3﹣2(x +3) (2)131148x x ---=2.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x 的图象于点P .(1)求反比例函数y=k x的表达式; (2)求点B 的坐标;(3)求△OAP 的面积.4.如图,已知AB ∥CD ,AD ∥BC ,∠DCE =90°,点E 在线段AB 上,∠FCG =90°,点F 在直线AD 上,∠AHG =90°.(1)找出图中与∠D 相等的角,并说明理由;(2)若∠ECF =25°,求∠BCD 的度数;(3)在(2)的条件下,点C(点C 不与B ,H 两点重合)从点B 出发,沿射线BG 的方向运动,其他条件不变,求∠BAF的度数.5.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、D5、A6、B7、A8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、55°3、()2 x x1-.4、235、±26、7三、解答题(本大题共6小题,共72分)1、(1):x=5;(2)x=﹣9.2、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)m的值是50,a的值是10,b的值是20;(2)1150本.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

最新北师大版七年级数学上册第一次月考试卷及完整答案

最新北师大版七年级数学上册第一次月考试卷及完整答案

最新北师大版七年级数学上册第一次月考试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m-m-10m-m-m2=+,则计算:的结果为().A.3B.-3C.5D.-52.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b3.如图,下列能判定AB∥EF的条件有( )①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1个B.2个C.3个D.4个4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)6.2019-的倒数是( )A .2019-B .12019-C .12019D .20197.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.实数a 、b 在数轴上的位置如图所示,则化简|a-b|﹣a 的结果为( )A .-2a+bB .bC .﹣2a ﹣bD .﹣b9.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°10.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( )A .3B .4C .6D .9二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.分解因式:32x 2x x -+=_________.4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解下列方程.(1)910109x x -=- (2)45153x x x +-+=-2.若2a+b=12,其中a ≥0,b ≥0,又P=3a+2b .试确定P 的最小值和最大值.3.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.4.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值;(3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).5.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、B6、B7、A8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、150°3、()2x x 1-.4、205、45435 3x y x y +=⎧⎨-=⎩6、1三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)27x =.2、当a=0时,P 有最大值,最大值为p=24;当a=6时,P 有最小值,最小值为P=18.3、(1)略;(2)3.4、(1)60°;(2)50°;(3)18021n α︒--或18021n α︒-+5、(1)35%,126;(2)见解析;(3)1344人6、略。

北师大版七年级数学上册第一次月考测试卷(附答案)

北师大版七年级数学上册第一次月考测试卷(附答案)

北师大版七年级数学上册第一次月考测试卷(附答案)(满分120分,时间90分钟)题号一二三总分得分合要求的)1.下列几何体中,没有曲面的是( )2.如果+10%表示“增加10%”,那么“减少8%”可以记作( )A.-18%B.-8%C.+2%D.+8%3.下列平面图形不能够围成正方体的是( )4.若一个数的绝对值是2 019,则这个数是( )A.2 019B.-2 019C.±2 019D.以上都不对5.下列说法正确的是( )A.有理数包括正整数、零和负分数B.-a不一定是整数C.-5 和+(-5)互为相反数D.两个有理数的和一定大于每一个加数6.有理数a,b在数轴上的位置如图所示,下面结论正确的是( )A. b-a<0B. ab>0C. a+b>0D.|a|>|b|7.如图所示是由六个相同的小正方体搭成的几何体,从正面看该几何体得到的平面图形是( )8.一个圆柱体削去12立方分米后,正好削成一个与它等底等高的圆锥,这个圆锥体体积是( )立方分米.A.24B.12C.6D.189.如图所示,是一个正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填入适当的数,使得它们折成正方体后相对面上的两个数互为相反数,则填入正方形A,B,C的三个数依次为( )A.1,-2,0B.-2,1,0C.-2,0,1D.0,-2,110.如图所示,用一个平面去截一个圆柱,则截得的形状应为( )二、填空题(本大题共8小题,共32分)11.把下列各数-1.5, 12,0,-0.101,3,--5填在相应集合里.非正数集合:{ } 负分数集合:{ } 整数集合:{ }12.在朱自清的《春》中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”,这里把雨滴看成了点,用数学知识解释这一现象: . 13.若|a-6|+|b+5|=0,则a+b 的值为 .14.在下图的网格中选择一个涂上阴影,使全部阴影图形经折叠后能够形成一个正方体,一共有 种不同的涂法. 15.在(-1)²⁰¹⁹,(-1)²⁰²⁰,-2²,(-3)²中,最大的数与最小的数的和等于 . 16.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则摆出这样的图形至少需要 块正方体木块,至多需要 块正方体木块.17.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有 个.18.观察下列算式:2¹=2,2²=4,2³=8,2⁴=16,2⁵=32,2⁶=64,2⁷=128,2⁸=256,…通过观察,根据所发现的规律可确定2¹⁵个位上的数字是 . 三、解答题(本大题有6个小题,共58分) 19.(8分)计算下列各题:(1)3.587−(−5)+(−512)+(+7)−(+314)−(+1.587); (2)(−1)5×{[−423÷(−2)2+(−1.25)×(−0.4)]÷(−19)−32}.20.(8分)如图,这是一个由一些相同的小立方块塔成的几何体从上面看的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面看和从左面看的形状图.21.(10分)一辆货车从超市出发送货,先向南行驶30km到达A单位,继续向南行驶20km到达B 单位.回到超市后,又给向北15 km处的C单位送了3次货,然后回到超市休息.(1)C单位离A 单位有多远?(2)该货车一共行驶了多少千米?22.(10分)一只蜘蛛在一个正方体的顶点 A 处,一只蚊子在正方体的顶点 B 处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?23.(10分)如图所示,在数轴上的三个点 A、B、C 表示的数分别为−3,−2,2,试回答下列问题.(1)A,C两点间的距离是 ;(2)若E点与B点的距离是8,则 E点表示的数是;(3)若将数轴折叠,使A 点与C 点重合,则B 点与哪个数重合?24.(12 分)下面是按一定规律排列的一列数: 第1个数: 1−(1+−12); 第2个数: 2−(1+−12)[1+(−1)23][1+(−1)34]; 第3个数: 3−(1+−12)(1+(−1)23)(1+(−1)34)(1+(−1)45)[1+(−1)56].…(1)分别计算这三个数的结果(直接写答案);(2)写出第2 017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案1. B2. B3. B4. C5. B6. A7. B8. C9. B 10. B 11.{--1.5,0,-0.101,-5} {-1.5,-0.101} {0,3,-5} 12.点动成线 13.1 14.4 15.5 16.6 16 17.8 18.819.解(1)原式 =3.587+5−512+7−314−1.587 =(3.587−1.587)+(5+7)+(−512−314) =2+12−834 =514.(2)原式 =−1×{[−143÷4+0.5]÷(−19)−9}=−1×[(−23)÷(−19)−9] =−1×(6−9) =−1×(−3) =3. 20.解21.解(1)规定超市为原点,向南为正,向北为负,依题意,得C 单位离A 单位有 30+|15|=45(km ), ∴C 单位离A 单位45 km.(2)该货车一共行驶了 (30+20)×2+|15|×6=190(km).答:该货车一共行驶了190km.22.解所走的最短路线是正方体平面展开图中从点A 到点B 的连线(如图(1)).在正方体上,像这样的最短路线一共有6条,但通过地面的有2条,这2条不符合实际意义,故符合题意的只有4条,如图(2)所示.23.解(1)5(2)6或-10(3)因为A 点与C 点重合,所以折痕与坐标轴的交点表示的数为-0.5,则B 点与表示1的点重合.24.解(1)第1个数: 12 ;第2个数: 32;;第3个数: 52. (2)第2017个数: 2017−(1+−12)[1+(−1)23][1+(−1)34]..[1+(−1)40334034]=40332.。

最新北师大版七年级数学上册第一次月考试卷

最新北师大版七年级数学上册第一次月考试卷

北师大版七年级数学上册第一次月考试题一、选择题(每小题2分,共20分)1.在﹣1,﹣2,0,1四个数中最小的数是()A.﹣1B.﹣2C.0D.12.如图,是一个正方体的表面展开图,则原正方体中“爱”字所对应的面相对的面上标的字是()A.我B.的C.祖D.国3.在下列几何体中,()几何体是将一个三角尺绕它的斜边所在直线旋转一周得到的.A.B.C.D.4.下图中各图形经过折叠后可以围成一个棱柱的是()A.B.C.D.5.正方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形6.下列结论中,正确的是()A.0是最小的正数B.0是最大的负数C.0既是正数,又是负数D.0既不是正数,也不是负数7.①﹣a一定是负数;②若|a|=|b|,则a=b;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.上述说法错误的有()A.1个B.2个C.3个D.4个8.一种巧克力的质量标识为“100±0.25克”,则下列巧克力合格的是()A.100.30克B.100.70克C.100.51克D.99.80克9.某市11月4日至7日天气预报的最高气温与最低气温如表:日期11月4日11月5日11月6日11月7日最高气温(℃)19122019最低气温(℃)4﹣345其中温差最大的一天是()A.11月4日B.11月5日C.11月6日D.11月7日10.有理数a、b在数轴上的位置如图所示,那么a、﹣a、b、﹣b的大小关系是()A.﹣a<a<b<﹣b B.a<﹣a<b<﹣b C.﹣b<a<﹣a<b D.b<﹣b<a<﹣a 二、填空题(每小题3分,共24分)11.﹣2021的相反数是,﹣2021的绝对值是,﹣2021的倒数是.12.一个棱柱共有21条棱,则这个棱柱共有个面.13.用一个平面去截下列几何体,截面可能是圆的是(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体14.由一些大小相同的小正方体搭成的几何体的从正面看和从上面看,如图所示,则搭成该几何体的小正方体最多是个.15.比较大小(填写“>”或“<”号)(1)﹣|﹣|;(2)﹣﹣.16.若|m﹣5|+|n+9|=0,则﹣m+n=.17.下表列出了国外几个市与北京的时差(带正号的数表示同一时刻比北京时间早的点时数)城市纽约伦敦东京巴黎时差/时﹣13﹣8+1﹣7如果现在的东京时间是8:00,那么北京的时间是,伦敦的时间是,纽约的时间是.18.对于有理数a、b,规定一种新运算:a*b=a﹣b﹣2,若a=2,b=﹣3,则a*b=.三、解答题(共5小题,满分56分)19.(16分)计算:(1)﹣10﹣(﹣16)+(﹣24)(2)﹣×3﹣5+2.5(3)(﹣﹣1)×(﹣24)(4)16÷(﹣)÷(﹣)20.(9分)如图①是一个正方体,图②的阴影部分是这个正方体展开图的一部分,请你在图②中再涂黑两个正方形后成图①的表面展开图,请涂3种不同的情况.21.(9分)一个几何体由几个棱长均为1的小正方体搭成,从上面看到的几何体的形状图如图1所示,正方体中的数字表示该位置的小正方体的个数.(1)请在图2的方格纸中画出从正面看和从左面看到的几何体的形状图;(2)根据从三个方向看到的几何体的形状图,请你计算该几何体的表面积为平方单位(包含底面).22.(12分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将最后一名乘客送到目的地时,老王距上午出发点多远?(2)若汽车耗油量为0.4L/km,这天上午老王耗油多少升?23.(10分)小王上周五在股市以收盘价每股20元买进某公司的股票1000股,在接下来的一周交易日内,他记下该股票每日收盘价比前一天的涨跌情况(单位:元):星期一二三四五每股涨跌+2﹣0.5+1.5﹣1.8+0.8(1)星期一收盘时,该股票每股多少元?(2)本周内,该股票收盘时的最高价、最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的0.15%的交易费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?。

最新北师大版七年级数学上册第一次月考试卷

最新北师大版七年级数学上册第一次月考试卷

第一学期七年级数学第一次月考试题 满分:120分 时间:90分钟 一、 选择题(每小题3分,共15分) 1、把一个正方体展开,不可能得到的是( ) 2、如图2,是由几个相同的小正方体组成的几何体,则它的俯视图是:( ) 3、下列各式中,计算结果为正的是( ) A 、(-7)+(+4) B 、2.7+(-3.5) C 、52)31(+- D 、)41(0-+ 4、用一个平面去截圆柱体,则截面形状不可能是( ) A 、梯形 B 、三角形 C 、长方形 D 、圆 5、下列说法中,不正确的是 ( ) A 、 零没有相反数。

B 、最大的负整数是-1。

C 、 互为相反数的两个数到原点的距离相等 D 、没有最小的有理数。

二、 填空题(每小题3分,共24分) 6、长方体是一个立体图形,它有_____个面,_______条棱,_______个顶点。

7、|-5|= ,|2.1|= , |0|= 。

8、某个立体图形的三视图的形状都相同,请你写出一种这样的几何体 。

9、数轴上与-1的距离等于3个单位长度的点所表示的数为 。

10、一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到 个三角形。

班级 姓名 座号11、如果收入2万元记作+2万元,那么-1万元表示 。

12、硬币在桌面上快速地转动时,看上去象球,这说明了_________________。

13、如果-a=2,则a= 。

三、 解答题(共81分)14、(7分)画出数轴,把下列各数:5-、213、0、25- 在数轴上表示出来,并用“<”号从小到大连接。

15、(7分)计算:36-76+(-23)-105; 16、(7分)|-21.76|-7.26+25-3;17、(7分)某矿井下有A 、B 、C 三处的标高为A :-29.3米,B:-120.5米,C:-38.7米。

哪处最高?哪处最低?最高处与最低处相差多少?18、(6分)下图是一个正方体盒子的展开图,要把-8、10、-12、8、-10、12些数字分别填入六个小正方形,使得按虚线折成的正方体相对面上的两个数相加得0。

北师大版七年级上册数学第一次月考试卷及答案【完整】

北师大版七年级上册数学第一次月考试卷及答案【完整】

北师大版七年级上册数学第一次月考试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .02.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定 494) A .32 B .32- C .32± D .81165.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+ 8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( )A .4个B .3个C .2个D .1个 二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc+++结果是________. 2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________. 4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x y x y -=⎧⎨+=⎩(2)25528x y x y -=⎧⎨+=⎩2.化简求值:()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.3.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、A5、B6、C7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、105°3、43 32a≤≤4、50°5、16、54°三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、(1)±3;(2)2a+b﹣1.3、(1)证明见解析;(2)75.4、20°5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。

新北师大版七年级数学上册第一次月考考试卷(带答案)

新北师大版七年级数学上册第一次月考考试卷(带答案)

新北师大版七年级数学上册第一次月考考试卷(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大2.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.若2()(3)6x a x x mx +-=-- 则m等于( )A .-2B .2C .-1D .19.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°10.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是________千米/时.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.若关于x、y的二元一次方程组525744x y ax y a+=⎧⎨+=⎩的解满足不等式组259x yx y+<⎧⎨->-⎩求出整数a的所有值.3.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?6.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、B5、B6、A7、B8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、273、724、40°5、2或2.56、两点确定一条直线.三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、整数a的所有值为-1,0,1,2,3.3、(1)证明见解析;(2)∠FAE=135°;4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)m的值是50,a的值是10,b的值是20;(2)1150本.6、(1)1200万元、1800万元;(2)共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.。

新北师大版七年级数学上册第一次月考试卷及答案【完整版】

新北师大版七年级数学上册第一次月考试卷及答案【完整版】

新北师大版七年级数学上册第一次月考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元2.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°5.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .116.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠1 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.已知有理数a 、b 、c 在数轴上对应的点如图所示,则下列结论正确的是( )A .c+b >a+bB .cb <abC .﹣c+a >﹣b+aD .ac >ab10.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A .1a ≥B .1a >C .1a ≤D .1a <二、填空题(本大题共6小题,每小题3分,共18分)1.若1m +与2-互为相反数,则m 的值为_______.2.如图,点O 是直线AD 上一点,射线OC ,OE 分别平分∠AOB 、∠BOD .若∠AOC =28°,则∠BOE =________.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_________. 5.若264a =,则3a =________.6.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解方程(1)2(1)25(2)x x -=-+ (2)3171124x x ++-=2.已知:关于x 的方程2132x m x +--=m 的解为非正数,求m 的取值范围.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为;(用含x的代数式表示)(2)若设丙地的面积为S平方米,求出S与x的关系式;x 时,求S的值.(3)当2004.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.5.为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a= ,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、C6、D7、B8、D9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、62°3、-2≤m <34、a ≤2.5、±26、10cm三、解答题(本大题共6小题,共72分)1、(1)67x =- ;(2)3x =- 2、34m ≥.3、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、(1)略;(2)MB =MC .略;(3)MB =MC 还成立,略.5、(1)30,补图见解析;(2)扇形B 的圆心角度数为50.4°;(3)估计获得优秀奖的学生有400人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

最新北师大版七年级数学上册第一次月考考试(完整)

最新北师大版七年级数学上册第一次月考考试(完整)

最新北师大版七年级数学上册第一次月考考试(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .43 3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.下列各式中,正确的是( )A .2(3)3-=-B .233-=-C .2(3)3±=±D .23=3±5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元6.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④7.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.实数a 、b 在数轴上的位置如图所示,则化简|a-b|﹣a 的结果为( )A .-2a+bB .bC .﹣2a ﹣bD .﹣b9.已知3,5a b x x ==,则32a b x -=( )A .2725B .910C .35D .5210.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .4.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____.5.364的平方根为________.6.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)321123x x-+-=(2)31322322105x x x+-+-=-2.化简求值:已知:(x﹣3)2+|y+13|=0,求3x2y﹣[2xy2﹣2(xy232x y-)+3xy]+5xy2的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、B5、B6、B7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、12、55°3、484、45、±26、10cm三、解答题(本大题共6小题,共72分)1、(1)17x =-;(2)716x =.2、2.3、(1) C (5,﹣4);(2)90°;(3)略4、20°5、(1)抽取了50个学生进行调查;(2)B 等级的人数20人;(3)B 等级所占圆心角的度数=144°.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。

新北师大版七年级上册数学第一次月考考试试卷以及答案

新北师大版七年级上册数学第一次月考考试试卷以及答案

七年级数学上册第一次月考试卷一、单选题。

1、有理数2021的相反数是()A、2021B、﹣2021C、12021D、﹣120212、如图中的图形绕虚线旋转一周,可得到的几何体是()A、B、C、D、3、下列平面图形不能够围成正方体的是()A、B、C、D、4、在﹣1,0,1,2中,既不是正数也不是负数的是()A、﹣1B、0C、1D、25、下列具有相反意义的量是()A、气温下降5℃和气温为10℃B、收入4万元与亏损2万元C、节约2斤水与浪费5斤油D、转盘逆时针转4圈与顺时针转6圈6、如图所示,将平面图形折成一个正方体,字()所在的面与优字面相对的。

A、的B、你C、是D、很7、在数轴上位于﹣3和3之间(不包括﹣3和3)的整数有()个。

A、7个B、5个C、4个D、3个8、在一个正方体的玻璃容器内装了一些水,把容器按不同方式倾斜一点,容器内水面的形状不可能是()A 、B 、C 、D 、9、下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A 、B 、C 、D 、10、下列计算正确的是( )A 、 ﹣[+(﹣8)]=﹣8B 、﹣|﹣3|=3C 、﹣(﹣9)=9D 、﹣|+6|=611、如果|5a |﹣5a ,则a 一定是( )A 、非正数B 、负数C 、非负数D 、正数12、如果两个数的和是正数,那么( )A 、这两个数都是正数B 、一个数是正,一个数是0C 、两个数一正一负,且正数的绝对值大D 、以上都有可能二、填空题。

13、车轮旋转时看起来像个圆面,这说明 。

14、若|a |=9,则a 是 。

15、比较:﹣45○﹣5616、一个棱柱由12个顶点,所有侧棱长的和是48cm ,则每条侧棱长是 。

17、用一个平面取截取一个几何体,截面形状为圆,则这个几何体可能是 。

(填序号)①正方体;②圆柱;③圆锥;④正三棱柱18、与﹣5相距6个单位长度的数是 。

三、解答题。

19、把下面的数在数轴上表示,并用<号连接。

最新北师大版七年级数学上册第一次月考试卷(完整)

最新北师大版七年级数学上册第一次月考试卷(完整)

最新北师大版七年级数学上册第一次月考试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且PB ⊥l 于点B ,∠APC =90°,则下列结论:①线段AP 是点A 到直线PC 的距离;②线段BP 的长是点P 到直线l 的距离;③PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长是点P 到直线l 的距离,其中,正确的是( )A .②③B .①②③C .③④D .①②③④4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°8.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( )A .1个B .2个C .3个D .4个9.若a <b ,则下列结论不一定成立的是( )A .11a b -<-B .22a b <C .33a b ->-D .22a b <10.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2a <0二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_______.3.若0a <,0b >,0c >,a b c >+,则a b c ++________0.4.已知2a ﹣3b=7,则8+6b ﹣4a=________.5.若一个多边形的内角和等于720度,则这个多边形的边数是________.6.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是________.三、解答题(本大题共6小题,共72分)1.解下列方程.(1)910109x x -=- (2)45153x x x +-+=-2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.5.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查(问卷调查表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.6.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B 之间的距离为3个单位长度时,求点P所对应的数是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、D6、C7、A8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、720°3、<4、-65、66、-1或5三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)27x =.2、35 3、(1)6;(2)略;(3)略.4、证明略.5、(1)100;(2)见解析;(3)72︒;(4)160人.6、(1)点P 对应的数是1;(2)存在x 的值,当x=﹣3或5时,满足点P 到点A 、点B 的距离之和为8;(3)当点A 与点B 之间的距离为3个单位长度时,点P 所对应的数是﹣4或﹣28.。

新北师大版七年级数学上册第一次月考考试题带答案

新北师大版七年级数学上册第一次月考考试题带答案

新北师大版七年级数学上册第一次月考考试题带答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差-( )A .0.2 kgB .0.3 kgC .0.4 kgD .50.4 kg2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .39.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是________千米/时.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.若()2320m n -++=,则m+2n 的值是________.5.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、B6、D7、C8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()2x x y -2、273、724、-15、45435 3x y x y +=⎧⎨-=⎩6、10三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、(1)3a 2-ab +7;(2)12.3、(1)90°;(2)①α+β=180°;②α=β.4、(1)90°;(2)略;(3)∠BMC +∠BNC =180°不变,理由略5、(1)20%;(2)6006、(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时。

最新北师大版七年级数学上册第一次月考试卷(完美版)

最新北师大版七年级数学上册第一次月考试卷(完美版)

最新北师大版七年级数学上册第一次月考试卷(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若单项式a m ﹣1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A .3 B .6 C .8 D .92.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25 的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④6.下列各组数中,两个数相等的是( )A .-22(-2)B .-2与-12C .-23-8D .|-2|与-27.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°8.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.若0a <,0b >,0c >,a b c >+,则a b c ++________0.4.已知2a ﹣3b=7,则8+6b ﹣4a=________.5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为________.三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,在三角形ABC 中,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示: 体积(立方米/件)质量(吨/件)(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、B5、A6、C7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、83、<4、-65、x>3 26、160°三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x2、(x﹣y)2;1.3、(1)35°;(2)36°.4、∠EDC=40°5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、(1)A种型号商品有5件,B种型号商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元。

最新北师大版七年级数学上册第一次月考试卷(及参考答案)

最新北师大版七年级数学上册第一次月考试卷(及参考答案)

最新北师大版七年级数学上册第一次月考试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°4.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .507.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-69.将一副三角板按图中方式叠放,则角α等于( )A .30°B .45°C .60°D .75°10.把代数式244ax ax a -+分解因式,下列结果中正确的是( ).A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc+++结果是________. 2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.分解因式:32x2x x-+=_________.5.若不等式组x a0{12x x2+≥-->有解,则a的取值范围是________.5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第________块。

最新北师大版七年级数学上册第一次月考试卷及答案【完美版】

最新北师大版七年级数学上册第一次月考试卷及答案【完美版】

最新北师大版七年级数学上册第一次月考试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =2.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°3.如图,∠1=68°,直线a 平移后得到直线b ,则∠2﹣∠3的度数为( )A .78°B .132°C .118°D .112°4.下列各式中,正确的是( )A 2(3)3-=-B .233-=-C 2(3)3±=±D 233±5.一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .87aB .87|a|C .127|a|D .127a 6.有理数m ,n 在数轴上分别对应的点为M ,N ,则下列式子结果为负数的个数是( )①m n +;②m n -;③m n -;④22m n -;⑤33m n .A .2个B .3个C .4个D .5个7.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.若a <b ,则下列结论不一定成立的是( )A .11a b -<-B .22a b <C .33a b ->-D .22a b <10.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.已知,|a|=﹣a ,b b =﹣1,|c|=c ,化简|a+b|﹣|a ﹣c|﹣|b ﹣c|=_____.4.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_________. 5.如图,已知C 为线段AB 的中点,D 在线段CB 上.若DA=6,DB=4,则CD=_____.6.若多项式29x mx ++是一个完全平方式,则m =________.三、解答题(本大题共6小题,共72分)1.按要求解下列方程组.(1)124x y x y +=⎧⎨-=-⎩(用代入法解) (2)34225x y x y +=⎧⎨-=⎩(用加减法解)2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图①,已知AD ∥BC ,∠B=∠D=120°.(1)请问:AB 与CD 平行吗?为什么?(2)若点E 、F 在线段CD 上,且满足AC 平分∠BAE ,AF 平分∠DAE ,如图②,求∠FAC 的度数.(3)若点E 在直线CD 上,且满足∠EAC=12∠BAC ,求∠ACD :∠AED 的值(请自己画出正确图形,并解答).4.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、C6、B7、D8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、90°3、﹣2c4、a≤2.5、16、-6或6三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)21xy=⎧⎨=-⎩.2、3 53、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略;(2)MB=MC.略;(3)MB=MC还成立,略.5、(1)作图见解析;(2)120.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。

最新北师大版七年级数学上册第一次月考考试卷及答案【完美版】

最新北师大版七年级数学上册第一次月考考试卷及答案【完美版】

最新北师大版七年级数学上册第一次月考考试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m-m-10m-m-m2=+,则计算:的结果为().A.3B.-3C.5D.-52.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.433.估计6+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.645.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB=6.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是()A.2 B.4 C.6 D.87.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.如图,AB ∥CD ,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为( )A .∠1+∠2﹣∠3B .∠1+∠3﹣∠2C .180°+∠3﹣∠1﹣∠2D .∠2+∠3﹣∠1﹣180°9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5 B .m ≥5 C .m <5 D .m ≤8二、填空题(本大题共6小题,每小题3分,共18分)1. 3-5的相反数为______,|1-2|=_______,绝对值为327的数为________.2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =a °.有下列结论:①∠BOE =12(180-a)°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF.其中正确的结论是________(填序号).5.若实数a 满足1322a -=,则a 对应于图中数轴上的点可以是A 、B 、C 三点中的点__________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分) 1.解下列方程:(1)4935x y x y -+=⎧⎨+=⎩ (2)3224()5()2x y x y x y +=⎧⎨+--=⎩2.解不等式组()31511242x x x x ⎧-<+⎪⎨-≥-⎪⎩,并写出它的所有非负整数解.3.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF 与BE 、CF 之间有怎样的关系.(2)如图②,若AB ≠AC ,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF 与BE 、CF 间的关系还存在吗?(3)如图③,若△ABC 中∠B 的平分线BO 与三角形外角平分线CO 交于O ,过O 点作OE ∥BC 交AB 于E ,交AC 于F .这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.4.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值;(3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200(注:获利=售价-进价)(1) 该商场购进A、B两种商品各多少件?(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、D5、C6、C7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1-1 ±32、150°3、<4、①②③5、B6、②.三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)71xy=⎧⎨=⎩2、非负整数解是:0,1、2.3、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、(1)60°;(2)50°;(3)18021nα︒--或18021nα︒-+5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)该商场购进A、B两种商品分别为200件和120件.(2)B种商品最低售价为每件1080元.。

最新北师大版七年级数学上册第一次月考考试题及完整答案

最新北师大版七年级数学上册第一次月考考试题及完整答案

最新北师大版七年级数学上册第一次月考考试题及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等4.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.下列各式﹣12mn ,m ,8,1a ,x 2+2x +6,25x y -,24x y π+,1y 中,整式有( )A .3 个B .4 个C .6 个D .7 个6.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-37.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A .10℃B .6℃C .﹣6℃D .﹣10℃ 9.一次函数满足,且随的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.若一个多边形的内角和等于720度,则这个多边形的边数是________.6.设4x 2+mx+121是一个完全平方式,则m=________三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5)243x x x ⎡⎤--=+⎢⎥⎣⎦.2.若2a+b=12,其中a ≥0,b ≥0,又P=3a+2b .试确定P 的最小值和最大值.3.如图,已知∠ABC=180°-∠A ,BD ⊥CD 于D ,EF ⊥CD 于E .(1)求证:AD ∥BC ;(2)若∠ADB=36°,求∠EFC 的度数.4.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、A4、B5、C6、B7、A8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、90x y z +-=︒3、0.4、78°5、66、±44三、解答题(本大题共6小题,共72分)1、1x =2、当a=0时,P 有最大值,最大值为p=24;当a=6时,P 有最小值,最小值为P=18.3、(1)略;(2)36°.4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)75,54;(2)补图见解析;(3)600人.6、(1)2400个, 10天;(2)480人.。

新北师大版七年级数学上册第一次月考试卷【及答案】

新北师大版七年级数学上册第一次月考试卷【及答案】

新北师大版七年级数学上册第一次月考试卷【及答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若a ≠0,b ≠0,则代数式||||||a b ab a b ab ++的取值共有( ) A .2个 B .3个 C .4个 D .5个2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm + 4.一5的绝对值是( )A .5B .15C .15-D .-55.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.4的平方根是( )A .±2B .2C .﹣2D .167.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.已知有理数a 、b 、c 在数轴上对应的点如图所示,则下列结论正确的是( )A .c+b >a+bB .cb <abC .﹣c+a >﹣b+aD .ac >ab10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC'=________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=________.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.已知13aa+=,则221+=aa__________;三、解答题(本大题共6小题,共72分)1.解下列方程(组):(1)321126x x-+-=(2)2.先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=1 23.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F (点F与O不重合),然后直接写出∠EOF的度数.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、D6、A7、C8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、53、135°4、2 35、40°6、7三、解答题(本大题共6小题,共72分)1、(1)x=16;(2)13383 xy⎧=⎪⎪⎨⎪=⎪⎩2、4ab,﹣4.3、略4、(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)每辆小客车的乘客座位数是18个,每辆大客车的乘客座位数是35个;(2)租用小客车数量的最大值为3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验中学七年级数学月考试题
一、选择题:(本大题共10小题,每小题3分,共30分;请把正确答案的字母的代号填在下面
的表格内)
1
2、下列图形中,不是轴对称图形的是
( )
A .有两个内角相等的三角形
B. 有一个内角是45°的直角三角形
C. 有一个内角是30°的直角三角形
D. 有两个角分别是30°和120°的三角形 3、已知ΔABC 的三个内角∠A 、∠B 、∠C 满足关系式∠B+∠C=3∠A ,则此三角( ) A 、一定有一个内角为45︒ B .一定有一个内角为60︒ C .一定是直角三角形 D .一定是钝角三角形 4、在下列说法中,正确的有( ).
①两点确定一条直线;②过直线外一点有且只有一条直线与已知直线平行; ③垂直于同一条直线的两条直线垂直;④平行于同一条直线的两条直线平行; ⑤互补的两个角是和为180度;⑥平面内过一点有且只有一条直线与已知直线垂直 A 、2个 B 、3个 C 、4个 D 、5个
5、长方形的周长为24cm ,其中一边为x (其中0>x ),面积为y 2
cm ,则这样的长方形
中y 与x 的关系可以写为( )
A 、y=2
x B 、y=12x 2 C 、y=(12-x)·x D 、y=2·x ·(12-x)
6、在下列长度的四根木棒中,能与3cm 、8cm 长的 两根木棒钉成一个三角形的是 ( ).
A .6cm
B .5cm
C .4cm
D .11cm
7、如图是人字形屋架的设计图,由AB 、AC 、BC 、AD 四根钢条焊接而成,其中A 、B 、C 、D 均为焊接点,且AB=AC ,D 为BC 中点,现在焊接所需的四根钢条已截好,且已标出BC 的中点D ,如果焊接工身边只有可检验直角直尺,那么为了准确快速地焊接,他首先应焊接的两根钢条及焊接点是( ) A.AB 和BC ,焊接点B B. AB 和AC ,焊接点A C.AD 和BC ,焊接点D D. AB 和AD ,焊接点A 8、等腰三角形的一个角为40°,则它的底角为( )
A.100°
B.40°
C.70°或40°
D.不能确定
9、在下列说法中,正确的有 ( ).
①三个角对应相等的两个三角形全等 ②三条边对应相等的两个三角形全等 ③两个角和其中一角的对边对应相等的两个三角形全等;
A B C D
A D
B C
④两条边和其夹角对应相等的两个三角形全等;
(A )1个 (B )2个 (C )3个 (D )4个
10、 如图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立...的是( ) A .∠B=∠C B .AD ∥BC C .∠2+∠B=180°D .AB ∥CD
二、填空题:(本题共6小题,每小题3分,共18分,答案必须填入下表。

) 11、 一个角的补角与它余角的3倍相等,则这个角是 度
12、如图,∠ABC=50°,AD 垂直平分线段BC 于点D ,∠ABC 的平分 线BE 交AD 于点E ,连接EC ,∠AEC 的度数 度 13、如图所示,ABC ∆≌BEF ∆,若∠F=32°,∠E=68°, 则∠A 的度数是 度
14、已知ABC ∆中,∠A:∠B:∠C=1:3:5,则这个三角形 是 三角形
15、如图所示,已知△ABC 中,AB=AC ,∠A=36°,• BD•平分∠ABC ,则图中共有___ __个等腰三角形.
16、如图,已知DE 是AC 的垂直平分线,AB=10cm ,BC=11cm , 则ΔABD 的周长为 cm 。

三.解答题
17.计算(每小题5分 共15分) (1)()2
215105x y xy xy -÷ (2)20222010)2(-+--
(3)解方程:2(25)(2)6x x x x x --+=-
B
E
D
C
A
第16题
12题提
第15题
18.(8分)先化简,再求值:2
3
)1)(1()2(2
-
=-+-+a a a a ,其中.
19、(10分)如图所示:要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.(只作图不写做法)
20、(10分)如图,有一池塘,要测池塘两端A 、B 的距离,
以直接到达A 和B 的点C,连结AC 并延长到D,使CD=CA.连结BC 并延长到E,使EC=CB,连结DE,量出DE 的长,就是A 、B 的距离.写出你的理由.
21、(9分)完成下列的推理过程:
已知:如图,BC//EF ,BE = AD ,BC = EF, 试说明AC = DF 且AC//DF 。

解:∵BC//EF (已知)
∴∠ABC = _______(__________________________________) ∵BE = AD (已知) ∴BE + = AD + ______ 即 DE = AB 在△ABC 与△DEF 中 DE=AB (已证)
A B
C D
E
F
街道
居民区A
O
D
C
B
2
1
∠ABC=∠DEF (已证) BC=EF (已知)
∴△ABC ≌△DEF (____________)
∴AC = ______(_________________________________)
且∠CAB=∠FDE ( )
∴AC//DF (_________________________________________)
22、(共10分)一位旅行者在早晨8时出发到乡村,第一个小时走了5千米,然后他上坡,1个小时只走了3千米,以后就休息30分钟;休息后平均每小时走4千米,在中午12时到达乡村。

根据右图回答问题:
(1) 旅行者11时离开城市的距离为 千米 (2) 他停下来休息时离开城市的距离是 千米 (3) 乡村离城市有 千米路程?
(4) 旅行者离开城市10千米、14千米的时间分别为多少?
(5) 说出11至12时旅行者的速度是多少?
23、如图,已知OA =OC ,OB =OD ,∠1=∠2,试说明∠B =∠D (10分)
24、 如右图,AD 是ABC ∆的中线,DE=2AE.若
ABC S ∆=24。

相关文档
最新文档