6.5一次函数的应用(1)
一次函数在生活中的具体应用
一次函数在生活中的具体应用1. 引言1.1 一次函数的定义一次函数是指形式为y=ax+b的函数,其中a和b为常数,且a不等于0。
简单来说,一次函数就是一个斜率不为零的直线函数。
在数学中,一次函数是最简单的函数之一,但却有着广泛的应用。
在一次函数中,变量之间是线性关系,可以用来描述很多现实生活中的问题。
一次函数的斜率代表了变量之间的变化率,而常数项则代表了起始值。
通过一次函数,我们可以快速地了解变量之间的关系,并进行预测和分析。
一次函数还有很多重要性质,比如通过两点确定一条直线、平行直线具有相同的斜率等。
这些性质使一次函数成为解决实际问题的有效工具。
在接下来的内容中,我们将探讨一次函数在各个领域的具体应用,包括经济学、市场营销、工程、金融学和医学。
通过这些具体案例,我们可以更好地理解一次函数在生活中的重要性和广泛应用性。
1.2 一次函数在生活中的重要性在经济学中,一次函数常常被用来描述供需关系和价格变化的规律。
通过分析一次函数的图像和方程,经济学家可以更好地预测市场走势和制定合理的政策措施,从而促进经济的稳定发展。
在市场营销领域,一次函数可以帮助企业分析销售数据、制定定价策略和评估市场需求。
借助一次函数的模型,市场营销人员可以更加准确地了解消费者的行为和喜好,从而提高产品的市场竞争力。
在工程领域,一次函数常被用来描述物体的运动轨迹和能量转化过程。
工程师利用一次函数的性质来设计各种设备和结构,确保其在实际应用中具有良好的性能和稳定性。
在金融学领域,一次函数被广泛应用于风险分析、投资组合管理和资产定价等方面。
通过构建一次函数的模型,金融学家可以更好地评估资产的价值和波动性,从而降低投资风险并获取更高的收益。
在医学领域,一次函数可以用来描述人体各个器官的生理变化和疾病进程。
医生通过对一次函数的分析和建模,可以更好地诊断疾病、制定治疗方案和预测患者的康复情况。
一次函数在生活中的重要性不可忽视,它为各个领域提供了重要的数学工具和理论基础,促进了社会的进步和发展。
一次函数的应用
一次函数的应用一次函数(也叫线性函数)是指形如y = kx + b的函数,其中k和b 是常数,x和y分别表示自变量和因变量。
一次函数在数学中有广泛的应用,可以用来描述线性关系,解决实际问题以及进行数据分析。
本文将探讨一次函数在不同领域中的应用。
一、经济学领域的应用一次函数在经济学领域有着重要的应用。
以供求关系为例,假设某商品的市场需求量和价格之间存在一次函数的关系,即D = kP +b,其中D表示需求量,P表示价格,k和b为常数。
通过研究这个一次函数,我们可以了解价格上涨/下跌对需求量的影响,从而指导市场调控和经济决策。
二、物理学领域的应用在物理学中,一次函数同样具有重要的应用。
例如,描述匀速直线运动的位移和时间之间的关系就可以用一次函数来表示。
假设一个物体沿直线轨迹匀速运动,其位移与时间之间存在一次函数的关系,即S = Vt + S0,其中S表示位移,t表示时间,V和S0为常数。
通过研究这个一次函数,可以揭示速度和位移的关系,进而预测物体的运动轨迹。
三、生物学领域的应用一次函数在生物学中也有广泛的应用。
例如,研究生长过程中身高与年龄之间的关系,可以使用一次函数来描述。
假设一个人的身高与年龄之间存在一次函数的关系,即H = kA + H0,其中H表示身高,A表示年龄,k和H0为常数。
通过研究这个一次函数,可以了解人体生长的规律,为儿童生长发育提供科学依据。
四、工程学领域的应用在工程学领域,一次函数同样有着重要的应用。
例如,研究电阻和电流之间的关系,可以使用一次函数来描述。
假设电阻与电流之间存在一次函数的关系,即R = kI + R0,其中R表示电阻,I表示电流,k 和R0为常数。
通过研究这个一次函数,可以了解电路中电阻的特性,为电路设计和优化提供依据。
综上所述,一次函数在经济学、物理学、生物学和工程学等领域中都有着广泛的应用。
通过研究一次函数的特性和关系,可以深入探索相关问题,并为实际应用提供科学依据。
鲁教版数学七年级上册6.5《一次函数的应用》教学设计1
鲁教版数学七年级上册6.5《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第六章第五节的内容。
本节内容是在学生已经掌握了函数概念和一次函数的基础上,进一步探讨一次函数在实际生活中的应用。
通过本节内容的学习,使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的函数知识,对一次函数的概念和性质有一定的了解。
但是,对于一次函数在实际生活中的应用,可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生将理论知识与实际生活相结合,通过实际问题,引导学生理解和运用一次函数。
三. 教学目标1.知识与技能:使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题。
2.过程与方法:通过实际问题的解决,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:一次函数在实际生活中的应用。
2.难点:如何将实际问题转化为一次函数问题,如何运用一次函数解决实际问题。
五. 教学方法采用问题驱动法,通过实际问题的提出,引导学生思考和探索,从而理解和掌握一次函数在实际生活中的应用。
同时,采用小组合作学习法,鼓励学生之间的交流和合作,提高学生的学习效果。
六. 教学准备教师准备一些实际问题,用于引导学生思考和探索。
同时,准备一次函数的图像,用于帮助学生理解和掌握一次函数的性质。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾一次函数的知识,如一次函数的定义、图像等。
然后,教师提出一个问题:“你们认为一次函数在实际生活中有什么应用呢?”让学生思考和讨论。
2.呈现(10分钟)教师呈现一些实际问题,如“小明每天骑自行车上学,他每小时行驶6公里,问小明从家到学校需要多少时间?”让学生尝试解决。
在学生解决过程中,教师引导学生将实际问题转化为一次函数问题。
一次函数在生活中的具体应用
一次函数在生活中的具体应用1. 引言1.1 什么是一次函数一次函数是指数学中的一种特殊函数形式,通常表示为f(x) = ax + b的形式。
a和b是常数,且a不等于0。
一次函数也被称为一次多项式函数,因为它的最高次数为1。
在一次函数中,变量x的最高次数为1,这使得函数的图像呈现为一条直线。
一次函数的特点是其图像是一条直线,具有线性的特性。
这种简单的函数形式在数学建模和实际问题求解中具有重要意义。
一次函数可以描述很多实际生活中的问题,比如描述两个变量之间的线性关系,预测未来的变化趋势,进行经济预测和规划等。
在实际应用中,一次函数可以帮助我们分析经济学、物理学、工程学、社会科学和医学领域中的各种现象和问题。
通过一次函数的建模和分析,我们可以更好地理解和解决复杂的实际问题,为社会发展和个人发展提供有力的支持和指导。
了解一次函数的基本概念和应用是非常重要的。
1.2 为什么一次函数在生活中具有重要意义一次函数在生活中的重要意义在于其简单性和直观性。
一次函数是最基本的一种函数形式,具有线性关系的特点,易于理解和应用。
通过一次函数,我们可以轻松地描述许多实际问题的规律和模式,比如物体的运动轨迹、经济的增长趋势、工程中的力学关系等,为我们理解和解决问题提供了重要的工具和方法。
一次函数在生活中的重要意义还体现在其广泛应用的范围。
一次函数几乎涉及到生活的各个领域,包括经济学、物理学、工程学、社会科学、医学等,可以用来分析和描述各种不同的现象和问题。
掌握一次函数的知识和技能对我们了解世界、改善生活具有重要的意义。
一次函数在生活中的重要意义在于其简单性、直观性和广泛应用性。
通过学习和应用一次函数,我们可以更好地理解世界、解决问题,促进社会的发展和进步。
深入理解和掌握一次函数的知识对我们每个人来说都是非常重要的。
2. 正文2.1 一次函数在经济学中的应用一次函数在经济学中的应用非常广泛,经济学家们经常使用一次函数来描述和分析各种经济现象和关系。
6、5一次函数的应用 同步练习题 -鲁教版(五四制)七年级数学上册
2021-2022学年鲁教版七年级数学上册《6.5一次函数的应用》同步练习题(附答案)1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m22.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2B.x=0C.x=﹣1D.x=﹣33.下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x﹣1=2x+5,其中正确的是()A.B.C.D.4.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3B.C.4D.5.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.6.已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y=k1x+b1,直线CD的表达式为y=k2x+b2,则k1•k2=.7.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.8.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.9.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围成的三角形面积为4,那么b1﹣b2等于.10.如图,直线l:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为.11.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a 的值.12.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页)5102030…甲复印店收费(元)0.52…乙复印店收费(元)0.6 2.4…(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x 的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.13.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.14.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C 处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?15.在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?16.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?14.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?18.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)102030y(单位:万元∕台)605550(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)19.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时a超过150千瓦时但不超过300千瓦时的部b分超过300千瓦时的部分a+0.35月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?20.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.参考答案1.解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.2.解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故选:D.3.解:5x﹣1=2x+5,∴实际上求出直线y=5x﹣1和y=2x+5的交点坐标,把x=0分别代入解析式得:y1=﹣1,y2=5,∴直线y=5x﹣1与y轴的交点是(0,﹣1),y=2x+5与y轴的交点是(0,5),选项A、B、C、D都符合,∴直线y=5x﹣1中y随x的增大而增大,故选项D错误;∵直线y=2x+5中y随x的增大而增大,故选项C错误;当x=2时,y=5x﹣1=9,故选项B错误;选项A正确;故选:A.4.解:由直线y=x+b(b>0),可知∠1=45°,∵∠α=75°,∴∠ABO=180°﹣45°﹣75°=60°,∴OB=OA÷tan∠ABO=.∴点B的坐标为(0,),∴b=.故选:B.5.解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.6.解:设点A(0,a)、B(b,0),∴OA=a,OB=﹣b,∵△AOB≌△COD,∴OC=a,OD=﹣b,∴C(a,0),D(0,b),∴k1==,k2==,∴k1•k2=1,故答案为:1.7.解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×(180﹣30)=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.8.解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.9.解:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.故答案为:4.10.解:过点C作CE⊥x轴于点E由直线AB的解析式可知当x=0时,y=,即OB=当y=0时,x=1,即OA=1∵∠AOB=∠C=90°,tan∠3=OB:OA=∴∠3=60°∵△AOB与△ACB关于直线l对称∴∠2=∠3=60°,AC=OA=1∴∠1=180°﹣∠2﹣∠3=60°在RT△ACE中AE=CE=∴OE=1+=∴点C的坐标是(,).11.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.12.解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;故答案为1,3;1.2,3.3;(2)y1=0.1x(x≥0);y2=;(3)顾客在乙复印店复印花费少;当x>70时,y1=0.1x,y2=0.09x+0.6,设y=y1﹣y2,∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,设y=0.01x﹣0.6,由0.01>0,则y随x的增大而增大,当x=70时,y=0.1∴x>70时,y>0.1,∴y1>y2,∴当x>70时,顾客在乙复印店复印花费少.13.解:(1)由图象可知A、B两城之间距离是300千米.(2)设乙车出发x小时追上甲车.由图象可知,甲的速度==60千米/小时.乙的速度==100千米/小时.由题意60(x+1)=100x解得x=1.5小时.(3)设y甲=kt+b,则解得,∴y甲=60t﹣300,设y乙=k′t+b′,则,解得,∴y乙=100t﹣600,∵两车相距20千米,∴y甲﹣y乙=20或y乙﹣y甲=20或y甲=20或y甲=280,即60t﹣300﹣(100t﹣600)=20或100t﹣600﹣(60t﹣300)=20或60t﹣300=20或60t ﹣300=280解得t=7或8或或,∵7﹣5=2,8﹣5=3,﹣5=,﹣5=∴甲车出发2小时或3小时或小时或小时,两车相距20千米.14.解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t<1时,d2+d1>10,即﹣60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.15.解:(1)若购买120张票时,方案一购票总价:y=8000+50x=14000元,方案二购票总价:y=13200元.(2)当0≤x≤100时,设y=kx,代入(100,12000)得12000=100k,解得k=120,∴y=120x;当x>100时,设y=kx+b,代入(100,12000)、(120,13200)得,解得,∴y=60x+6000.(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得8000+50x<60x+6000,解得x>200,所以至少买201张票时选择方案一比较合算.16.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,商场的获利为y 元,由题意,得y=(30﹣25)a+(60﹣45)(1200﹣a),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45(1200﹣a)]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.17.解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴25≤x≤100,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.18.解:(1)设y与x之间的关系式为y=kx+b,由题意,得,解得:,∴y=﹣x+65.∵该机器生产数量至少为10台,但不超过70台,∴10≤x≤70;(2)由题意,得xy=2000,﹣x2+65x=2000,﹣x2+130x﹣4000=0,解得:x1=50,x2=80>70(舍去).答:该机器的生产数量为50台;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ma+n,由函数图象,得,解得:,∴z=﹣a+90.当z=25时,a=65,由(2)知:成本每台为2000÷50=40(万元).总利润为:25×(65﹣40)=625(万元).答:该厂第一个月销售这种机器的利润为625万元.19.解:(1)根据5月份,该市居民甲用电100千瓦时,交电费60元;得出:a=60÷100=0.6,居民乙用电200千瓦时,交电费122.5元.则(122.5﹣0.6×150)÷(200﹣150)=0.65,故:a=0.6;b=0.65.(2)当x≤150时,y=0.6x.当150<x≤300时,y=0.65(x﹣150)+0.6×150=0.65x﹣7.5,当x>300时,y=0.9(x﹣300)+0.6×150+0.65×150=0.9x﹣82.5;(3)当居民月用电量x≤150时,0.6x≤0.62x,故x≥0,当居民月用电量x满足150<x≤300时,0.65x﹣7.5≤0.62x,解得:x≤250,当居民月用电量x满足x>300时,0.9x﹣82.5≤0.62x,解得:x≤294,综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过250千瓦时时,其月平均电价每千瓦时不超过0.62元.20.解:(1)小明骑车速度:在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=﹣80∴y=60x﹣80…∴解得∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.(3)方法一:设从家到乙地的路程为m(km)则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n(km),由题意得:∴n=5∴从家到乙地的路程为5+25=30(km).方法三:设从家到乙地的路程为n(km),由题意得:(n/20+0.5)﹣(n/60+4/3)=10/60∴n=30∴从家到乙地的路程为30(km).方法四:设小明离家a小时到达乙地,则妈妈到达乙地时,小明离家(a﹣)小时,则60(a﹣﹣)=20(a﹣),解得,a=2,20×(2﹣)=30,∴从家到乙地的路程为30(km).。
6.5一次函数的应用同步测试含解析鲁教版七年级上册数学
知能提升作业(三十五)5 一次函数的应用(30分钟 50分)一、选择题(每小题4分,共12分)1.两个物体A、B所受压强分别为P A帕与P B帕(P A、P B为常数),它们所受压力F(牛)与受力面积S(m2)的函数关系图象分别是射线l A、l B.如图所示,则( )(A)P A<P B(B)P A=P B(C)P A>P B(D)P A≤P B2.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是( )(A)汽车在高速公路上行驶速度为100km/h(B)乡村公路总长为90km(C)汽车在乡村公路上行驶速度为60km/h(D)该记者在出发后4.5h到达采访地3.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是( )(A)①②(B)②③④(C)②③(D)①②③二、填空题(每小题4分,共12分)4.甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合作,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比甲单独完成这项工程所需时间少______天.5.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=4的解为________.6.拖拉机工作时,油箱中有24L油,如果每小时耗油4L,那么油箱中的剩余油量y(L)与工作时间x(h)之间的函数关系为________,当油箱中剩余油量为12L 时,拖拉机工作了______小时.三、解答题(共26分)7.(12分) 2011年11月16日召开的国务院常务会议,会议决定建立三江源国家生态保护综合实验区.现要把228t物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为ω元,求出ω与a的函数关系式(写出自变量的取值范围).【拓展延伸】8.(14分)某气象研究中心观测到一场沙尘暴从发生到结束的全过程,开始时风速平均每小时增加2km ,4小时后沙尘暴经过开阔的荒漠地,风速平均每小时增加4km ,一段时间,风速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减少1km ,最终停止,结合图象回答下列问题. (1)y 轴左侧括号内依次应填入多少? (2)沙尘暴从发生到结束,共经历多长时间?(3)求出当x ≥25时,风速y(km/h)与时间x(h)之间的函数关系式.1.【解析】选A.由压强的公式:P=F S ,得S=1PF , 所以1P A >1P B ,P A <P B .2.【解析】选C.汽车在高速公路上行驶速度为180÷2=90km/h ,A 错误; 由图象知高速公路长180km ,且总长为360km ,故乡村公路长180km ,B 错误; 汽车在乡村公路上行驶速度为90÷1.5=60km/h ,C 正确;该记者从出发到到达采访地的时间为2+(360-180)÷60=5h ,D 错误.3.【解析】选D.由图象可得甲、乙的交点为(2,4),所以售2件时,两家售价都是4元,所以①正确.当x=1时乙所对应的函数值比甲所对应的函数值小,所以②正确;当x=3时甲对应的函数值比乙对应的函数值小,所以③正确;乙家1件的售价小于3元.4.【解析】甲的工作效率是14÷10=140, 所以甲完成总工程需要1÷140=40(天), 甲乙合作的工作效率是(12-14)÷(14-10)=116,所以实际完成这项工程所用的时间是10+(1-14)÷116=22(天),40-22=18(天).答案:185.【解析】根据图象可把(2,3),(0,1)代入表达式求得k=1,b=1; 所以kx+b=4即为x+1=4,故x=3. 答案:x=36.【解析】已知每小时耗油4L ,则xh 可耗油4x L ,则油箱中余油量为:y=24-4x(0≤x ≤6).当y=12L 时,12=24-4x ,解得:x=3. 答案:y=-4x+24(0≤x ≤6) 37.【解析】(1)设大货车用x 辆,则小货车用(18-x)辆,根据题意得 16x+10(18-x)=228,解得x=8,所以18-x=18-8=10(辆).答:大货车用8辆,小货车用10辆.(2)ω=720a+800(8-a)+500(9-a)+650[10-(9-a)]=70a+11550,所以ω=70a+11550(0≤a≤8且为整数).(3)若运往甲地的物资正好为120t,则16a+10(9-a)=120,解得a=5.又运往甲地的物资不少于120t,所以a≥5.又因为0≤a≤8,所以5≤a≤8且为整数.因为ω=70a+11550,k=70>0,ω随a的增大而增大,所以当a=5时,ω最小.最小值为ω=70×5+11550=11900(元).答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少总运费为11900元.8.【解析】(1)当x=4时,y=2×4=8;当x=10时,y=8+4×(10-4)=32.(2)由题意得,32÷1=32(h),25+32=57(h),即沙尘暴从发生到结束共经历57小时.(3)设所求函数的关系式为y=kx+b(k≠0)由图象知该函数图象经过点(25,32)和(57,0),所以得25k+b=32,57k+b=0,解得k=-1,b=57.所以函数的关系式为y=-x+57(25≤x≤57).。
鲁教版(五四制)七年级上册数学课件第六章5一次函数的应用(鲁教版七年级上·五四制)
2.三个注意 (1)实际问题中要注意使实际问题有意义,同时要注意自变量 的取值范围; (2)当问题涉及多种情况时,要注意分类讨论; (3)利用图象解题时,要弄清横坐标和纵坐标各自的实际意义.
灿若寒星
【跟踪训练】 4.某校举行趣味运动会,甲、乙两名学生同时从A地到B地,甲 先骑自行车到B地后跑步回A地,乙则是先跑步到B地后骑自行 车回A地(骑自行车的速度快于跑步的速度),最后两人恰好同 时回到A地.已知甲骑自行车比乙骑自行车的速度快.若学生离A 地的距离s与所用时间t的函数关系用图象表示如下(实线表示 甲的图象,虚线表示乙的图象),则正确的是( )
灿若寒星
1.(2012·广安中考)时钟在正常运行时,时针和分针的夹角会 随着时间的变化而变化.设时针与分针的夹角为y(度),运行时 间为t(min),当时间从3:00开始到3:30止,下图中能大致表 示y与t之间的函数关系的图象是( )
灿若寒星
灿若寒星
【解析】选D.因为时针与分针的夹角为y度,运行时间为tmin, 时间从3:00开始到3:30止,所以当3:00时,y=90°,当3: 30时,时针在3和4中间位置,故时针与分针夹角为y=75°. 又因为分针从3:00开始到3:30过程中,时针与分针夹角先减 小,一直到重合,再增大到75°,所以只有D符合要求.
初中数学课件
金戈铁骑整理制作
5 一次函数的应用
灿若寒星
1.通过函数图象获取信息 从_函__数__图__象__分析并获取有用信息,根据实际问题建立适当的 _函__数__模__型__,利用该函数图象的特征解决问题,体现了数形结合, _____方与程_____函的数结合的思想方法.
灿若寒星
【点拨】观察分析图象,明确坐标轴的含义,可以得到一些具 体信息,又由于图象是不过原点的一条直线,可以判断是一次 函数,用待定系数法求一次函数关系式,进而解决其他问题.
一次函数在生活中的具体应用
一次函数在生活中的具体应用一次函数是一种简单且广泛应用于生活实践的数学函数。
它描述了两个变量之间的线性关系,其中一个变量(因变量)随着另一个变量(自变量)的变化而变化。
下面是一些一次函数在生活中的具体应用:1. 财务分析:在财务领域,一次函数被广泛应用于分析销售,收入和成本的关系。
例如,一个公司可以使用一次函数来预测其收入如何随着广告支出的增加而增加。
一次函数也可以用来计算产品的成本与其销量的关系等。
2. 物理学:一次函数也可以被用来描述许多物理量之间的关系。
例如,物体的速度随着时间的变化可以用一次函数来解释。
通过测量物体在一定时间内移动的距离,可以计算出其速度。
另外,一次函数还可以用来分析物体的加速度与时间或距离的关系。
3. 建筑工程:在建筑领域,一次函数可以被用来计算结构件的导线长度,尺寸以及重量之间的关系。
例如,钢梁的重量可以用一次函数来计算,该函数可以用支持的长度和横截面积作为变量。
4. 统计学:在统计学中,一次函数可以被用来分析两个数值变量之间的关系。
例如,一个调查可能会问参与者他们每周在社交媒体上花费的时间以及他们对自己幸福感的评分。
使用一次函数,研究人员可以分析时间和幸福感之间的线性关系。
5. 经济学:在经济学领域,一次函数可以被用来描述市场供给和需求之间的关系。
例如,在一个市场中,商品的价格可以用一次函数来描述,该函数可以使用销售量作为自变量,而价格作为因变量。
综上所述,一次函数是生活实践中非常广泛的一种数学工具,它可以被应用于财务、物理、建筑、统计和经济等领域。
掌握一次函数的应用场景可以使我们更好地理解和分析各种现象,为生活提供更高级的工具和技能。
6.5 一次函数的应用
5000 4000 3000 2000 y/元
y1
y2
y1=1 000x y1对应的函数表达式是____________
y2=500x+2 000 y2对应的函数表达式是____________
1000 0 1 2 3 4 5 6 7 8
x
/t
1. (莱芜·中考)如图,过点Q(0,3.5)
s 1 1 0 0 1 1 0 ( t 5 0 ),即线段CD所在直线的函数关系式是
s 110t 6 600 ( 0 t 60 ) .
通过本课时的学习,需要我们: 1.通过函数图象获取信息,发展形象思维. 2.利用函数图象解决简单的实际问题,发展数学的 应用能力.
天才=1%的灵感+99%的血汗. ——爱迪生
肥料240 t,D乡需要肥料260 t.怎样调运总运费最
少? 分析:可以发现:A──C,A──D,B──C,
B──D运肥料共涉及4个变量.它们都是影响总运费的
变量.•然而它们之间又有一定的必然联系,只要确定其 中一个量,其余三个量也就随之确定.
【解析】设A──Cx t,则: 由于A城有肥料200 t:A─D,(200-x) t.
2.(安徽·中考)甲、乙两人准备在一段长为1 200 m的笔 直公路上进行跑步,甲、乙跑步的速度分别为4 m/s和 6 m/s,起跑前乙在起点,甲在乙前面100 m处,若同时起 跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙 两人之间的距离y(m)与时间t(s)的函数图象是( )
【解析】选C.设乙追上甲用x s,则6x-4x=100,x=50,乙跑完
4.(衢州·中考)小刚上午7:30从家里出发步行上学,途 经少年宫时走了1 200步,用时10 min,到达学校的时间是 7:55.为了估测路程等有关数据,小刚特意在学校的田径
一次函数在生活中的具体应用
一次函数在生活中的具体应用【摘要】一次函数在生活中具有广泛的应用,在经济学领域,需求函数可以用一次函数来描述商品需求的变化规律;而在物理学中,运动学问题中的速度、位移等参数也可以用一次函数表示;工程学中常常使用一次函数描述线性关系,如电阻、弹簧等的特性;市场营销中的定价策略也可以通过一次函数来制定;在数据分析领域,一次函数被广泛用于趋势预测。
一次函数的应用不仅局限于特定领域,其在各个领域都有着重要作用。
未来,随着科学技术的不断发展,一次函数在生活中的应用将得到更广泛的拓展,为解决实际问题提供更多可能性。
我们应该充分认识一次函数在生活中的价值,并积极探索其未来的发展前景。
【关键词】一次函数、生活中的具体应用、经济学、需求函数、物理学、运动学问题、工程学、线性关系、市场营销、定价策略、数据分析、趋势预测、广泛应用、发展前景1. 引言1.1 一次函数在生活中的具体应用一次函数是数学中的一个基本概念,它在生活中有着广泛的应用。
一次函数的图像是一条直线,具有简单的线性关系,因此在各个领域中都有着实际的应用价值。
本文将探讨一次函数在经济学、物理学、工程学、市场营销和数据分析中的具体应用,展示一次函数在生活中的重要作用。
在经济学中,需求函数是描述产品需求与价格之间关系的一次函数。
需求量随着价格的变化而变化,通过需求函数可以分析市场的需求趋势,帮助企业制定合理的定价策略。
物理学中的运动学问题也常常涉及到一次函数,如描述物体的位置随时间变化的关系。
工程学中的线性关系则可以通过一次函数来描述,例如材料的强度与温度之间的关系。
市场营销中的定价策略和数据分析中的趋势预测也离不开一次函数的应用,通过对数据进行分析和建模,可以帮助企业做出更加准确的决策。
一次函数在生活中有着广泛的应用,不仅可以帮助我们更好地理解各个领域中的问题,还可以指导我们做出更加科学合理的决策。
未来随着科技的发展,一次函数在生活中的应用还将继续扩大,为我们带来更多的便利和可能性。
一次函数的应用
一次函数的应用
一次函数可以应用于很多实际问题中,以下是一些常见的
应用示例:
1. 经济学:一次函数可以用来表示成本、收入、利润等经
济指标与产量或销量之间的关系。
特别是在线性需求模型中,一次函数可以用来表示价格和数量之间的关系。
2. 工程学:一次函数可以用来表示物理量之间的线性关系,比如运动的速度和时间的关系、电阻和电流之间的关系等。
在工程设计和控制中,一次函数可以用来建立系统输入和
输出之间的关系。
3. 计划和预测:一次函数可以用来预测未来的趋势或变化。
通过拟合历史数据,可以使用一次函数来预测未来的趋势,并进行计划和决策。
4. 统计分析:一次函数可以用来描述两个变量之间的关系,并进行回归分析。
通过最小二乘法可以得到一次函数的最
佳拟合线,从而可以用来解释和预测变量之间的关系。
5. 材料科学:一次函数可以用来描述材料的线性弹性特性。
材料的应力和应变之间的关系可以通过一次函数来表示,
并用来研究材料的应力-应变性能。
总之,一次函数在很多领域中都有着广泛的应用。
通过建
立变量之间的线性关系,可以帮助我们分析和理解问题,
并进行预测和决策。
一次函数的应用
一次函数的应用
一次函数的应用通常包含三种类型:文字型、图像型和图表型。
文字型通常与分段函数有关,分别表示出不同情况下的关系式;图像型的一般与行程相关,但并非固定,分析各段线段的关系及特征是解题的关键;图表型的需要先读懂表格,从中获取信息,进行分析和解答。
函数的实际应用的题目在中考中难度不大,关键在于函数关系式的建立,主要考查的是理解和分析能力,从文字、图像和图表中获取信息,建立函数关系式是解题的关键。
这类题目的考查方式相对固定,完全可以在短时间内通过强化训练得以提升和突破,如果在这一块还存在问题,建议做专题训练。
6.5一次函数的应用(1)
应
用
与
图1
图2
延
伸
观察图象变化,你看出了些什么? 设想一下此时又发生了什么情况?
1.某植物t天后的高度为ycm,图中反映了y 与t之间的关系,根据图象回答下列问题:
y cm
(1)植物刚栽的时候多高?
24
l (2)3天后该植物高为多少?
21
18
15
(3)几天后该植物高度可
12 9
达21cm?
6
3 2 4 6 8 1012 14 t/天(再4)计先算写长出到y与10t的0c关m系需式几,
由于持续高温和无雨,某水库的蓄水量随着时间 的增加而减少。干旱持续时间t(天)与蓄水量V(万 米3 )的关系如图所示,回答下列问题:
V/万米3 A 1200 1000 800 600 400
(1)干旱持续10天,蓄 水量为多少
连续干旱23天呢?
200
B
0 10 20 30 40 50 60 70 t/天
天?
2.某手机的电板剩余 电量y毫安是使用天 数x的一次函数x和y 关系如图 :
y/毫安
x/天
此种手机的电板最大带电量是多少?
3.某地长途汽车客运公司规定旅客可随身携 带一定质量的行李,如果超过规定,则需要 购买行李票,行李票费用y元与行李质量的关 系如图:
⑴想一想紫红色那段 图象表示什么意思? 旅客最多可免费携带 多少千克行李?
(2)蓄水量小于400万米3时,将发出严重干 旱警报,干旱多少天后发出严重警报?
V/万米3 A 1200 1000
800
600 400
200
B
0 10 20 30 40 50 60 70 t/天
(3)按照这个规律,预计持续干旱多
6.5一次函数的应用
6.5一次函数的应用导学案1一、学习目标:1.使学生能够将实际问题转化为一次函数的问题.2.能够根据实际意义准确地列出解析式并画出函数图像.3.体验到数学与生活的联系,进一步发展学生解决问题的能力.二、自主学习、合作探究1.预习课本198页的引例,并解答;2.合作探究,分小组展示预习成果;3.独立完成引例。
上面我们通过观察函数图象,从函数图象上获取信息,应用待定系数法解决了这道题,想一想解决这一类型的题目的一般步骤是什么?独立完成:某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱的余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟?(2)求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式;(3)求运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由.现有小组讨论再进行个人解决问题.四、课堂检测1.汽车由南京驶往相距300千米的上海,当它的平均速度是100千米/时,下面哪个图形表示汽车距上海的路程s(千米)与行驶时间t(小时)的函数关系?()2.某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式。
(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。
《一次函数的应用》一次函数课件(第1课时)
1 若直线l与直线y=2x-3关于x轴对称,则直线l
的表达式为( B )
A. y=-12x-3
2
C. y= x+3
B. y=-2x+1 3
2
D. y=- x-3
知2-练
2 如图,把直线l向上平移2个单位得到直线l′,则l′ 的表达式为( D )
A. y= 1 x+1
2
B. y= 1x-1 C. y=-2 x-1 D. y=- 12x+1
知1-练
1 已知正比例函数y=kx(k≠0)的图象经过点(1,-2), 则这个正比例函数的表达式为( B )
A. y=2x
B. y=-2x
C. y= 1 x
2
D. y=- 1x
2
知1-练
2 已知正比例函数y=kx(k≠0)的图象如图所示,则 在下列选项中k值可能是( B ) A. 1 B. 2 C. 3 D. 4
知4-讲
知识点 4 由数量关系求一次函数的表达式
例5 为了提高身体素质,有些人选择到专业的健身中心锻炼身体,
某健身中心的消费方式如下: 普通消费: 35元/次;白金卡消费: 购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费: 购 卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限 均为一年,每位顾客只能购买一张卡,且只限本人使用.
与t之间是一次函数关系,可用描点法在直角坐标系内 画出其图象,但要注意t≥0;(2)是要求方程12-6t=0 和12-6t=-9的解,观察(1)中所画的图象即可求出.
知2-讲
解: (知1)依识题点意,得T与t之间的函数关系式为T=12-6t(t≥0),用描
点法画出图象,如图所示.
(2)观察图象发现,方程12-6t=0的解是T=12-6t(t≥0)的图象
一次函数在生活中的具体应用
一次函数在生活中的具体应用【摘要】一次函数是数学中的基本概念,其在生活中有着广泛的应用。
在经济学中,一次函数被用来分析市场供求关系,帮助决策者制定价格策略。
在物理学中,一次函数可以描述物体的运动状态,如速度与时间的关系。
在工程学中,一次函数被用来设计桥梁和建筑物的结构,保证其稳定性。
在社会学中,一次函数可以分析人口增长和社会趋势,帮助政府调整政策。
在医学中,一次函数被用来研究药物的代谢过程,优化治疗方案。
结合以上应用领域,可以看出一次函数在生活中扮演着重要的角色,拥有广泛的应用价值。
通过深入理解和应用一次函数,我们可以更好地解决实际问题,提高生活质量和工作效率。
【关键词】一次函数,生活应用,经济学,物理学,工程学,社会学,医学,广泛应用1. 引言1.1 一次函数的定义一次函数,也称为线性函数,是数学中最简单的一种函数类型之一。
一次函数的一般形式可以表示为f(x) = ax + b,其中a和b为常数,且a不等于0。
在这个函数中,变量x的最高次数为1,因此称为一次函数。
一次函数的特点包括斜率和截距。
斜率a表示函数图像的倾斜程度,正斜率表示函数图像向上倾斜,负斜率表示函数图像向下倾斜,斜率的绝对值表示倾斜的程度。
截距b表示函数图像与y轴的交点,即当x 等于0时,函数值为b。
一次函数在生活中有着广泛的应用,可以用来描述各种实际情况和问题。
在经济学中,一次函数常常用来描述成本、收入、利润等与数量的关系。
在物理学中,一次函数可以用来描述速度、加速度等物理量随时间的变化。
在工程学中,一次函数可以用来建立模型、优化设计等。
在社会学中,一次函数可以用来分析人口增长、社会变化等。
在医学中,一次函数可以用来研究疾病传播、药物代谢等。
一次函数在生活中具有非常重要的作用,深刻影响着我们的生活和工作。
1.2 一次函数的特点一次函数是一种最简单的线性函数,其特点主要有以下几点:1. 一次函数的图像是一条直线。
这是因为一次函数的图像是以常数速率变化的,因此在坐标系中表现为一条倾斜的直线。
一次函数的应用
一次函数的应用一次函数,也叫一次方程,是代数中一种最简单的方程形式。
它的一般形式可以表示为y = ax + b,其中a和b是常数,x为自变量,y为因变量。
一次函数可以用来描述一些简单的现实问题,并有着广泛的应用。
本文将以几个具体案例为例,来探讨一次函数的应用。
案例一:物品价格与销量的关系假设一个小店出售某种商品,每件商品的售价为50元。
假设销量与商品价格之间存在如下线性关系:销量 = -2x + 100,其中x表示商品价格。
那么我们可以通过一次函数来描述这种关系。
当商品价格为0时,销量为100;当商品价格为50时,销量为0。
我们可以通过一次函数的图像,分析商品价格与销量之间的关系,并预测在其他价格下的销量情况。
案例二:汽车行驶里程与剩余油量的关系假设一辆汽车在加满油后,行驶一定里程,剩余油量与行驶里程之间存在如下线性关系:剩余油量 = -0.1x + 50,其中x表示行驶里程。
通过一次函数来描述这种关系,我们可以分析行驶一定里程后剩余油量的变化情况,进而根据剩余油量来决定是否需要再次加油。
案例三:银行贷款利息的计算假设银行对贷款采用线性利息计算方式,即每年的利息率为5%。
那么在一年内,贷款利息与贷款金额之间存在如下线性关系:贷款利息 = 0.05x,其中x表示贷款金额。
通过一次函数来描述利息与贷款金额之间的关系,我们可以根据贷款金额来计算贷款利息,进而为客户提供相应的贷款服务。
案例四:温度与时间的关系假设某地方的温度按照每小时上升2℃的速率增长。
那么在一天内,温度与时间之间存在如下线性关系:温度 = 2x,其中x表示时间。
通过一次函数来描述温度与时间之间的关系,我们可以根据时间来预测当天的最高温度,有助于人们合理安排活动和穿着衣物。
结论以上仅是一次函数在日常生活中的几个应用案例,实际上,一次函数在各个领域都有着广泛的应用。
通过一次函数的分析和预测,我们能够更好地理解问题的本质和规律,做出合理的决策。
《一次函数图像的应用》第一课时教学课件
一箱汽油可供摩托车行驶多少千米?
(1)当 y=0时, x=500,因此一箱汽油可 供摩托车行驶ห้องสมุดไป่ตู้00千米.
(2). 摩托车每行驶100千米消耗多少升?
(2).x从100增加到200时, y从8减少到6,减少了2, 因此摩托车每行驶100千米消耗2升汽油.
(100,8) (200,6)
(3). 油箱中的剩余油量小于1升时将自 动报警.行驶多少千米后,摩托车将自动报警?
答:够
理由:由图象上观察的:
400千米处设加油站,
图1
到700米处油用完,说 明所加油最多可供行驶
300千米。
应用与延伸(2)
若加油之后变为图 2呢的情况?观察图 象变化,你看出了 些什么?设想一下 此时又发生了什么 情况?
图2 加油之后
议一议
一元一次方程0.5x+1=0与一次函数 y=0.5x+1有什么联系?
• (2)直线对应的函数表达式是 ________________ .
试一试
1、某地长途汽车客运公司规定旅客可随身携带一 定质量的行李,如果超过规定,则需要购买行李 票,行李票费用y元与行李质量的关系如图:
(1)旅客最多可免费携 带多少千克行李?
30千克 ⑵超过30千克后,每 千克需付多少元?
0.2元
(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么 到第几年底,该地区的沙漠面积能减少到176万千米2.
解:(1)如果不采取任何措施,那么到第5年底, 该地区沙漠面积将新增加10万千米2.
(2)从图象可知,每年的土地面积减少2万千 米2,现有土地面积100万千米2,100÷2=50, 故从现在开始,第50年底后,该地区将丧失 土地资源. (3)如果从现在开始采取植树造林等措施, 每年改造4万千米2沙漠,每年沙化2万千 米2,实际每年改造面积2万千米2,由于 (200-176)÷2=12,故到第12年底,该地 区的沙漠面积能减少到176万千米2.
一次函数在生活中的具体应用
一次函数在生活中的具体应用1. 引言1.1 一次函数的定义一次函数,又称为线性函数,是指形式为y=ax+b的函数,其中a 和b为常数,且a不为零。
在一次函数中,x的最高次数为1,因此表现为直线的图像。
一次函数具有简单的特征:斜率为a,截距为b。
一次函数在数学中的地位十分重要,它是初等数学中最基本的函数之一。
通过一次函数,我们可以描述简单的线性关系,例如时间和距离之间的关系、价格和数量之间的关系等。
一次函数在解决实际问题中具有广泛的应用。
除了在数学中应用广泛之外,一次函数在生活中也有着重要的作用。
它被广泛运用在经济学、物理学、工程学等领域中,帮助人们分析问题、预测趋势、优化方案等。
通过一次函数的建模方法,人们可以更好地理解现实世界中的复杂现象,并做出科学的决策。
一次函数在生活中扮演着重要的角色,是现代社会中不可或缺的数学工具之一。
通过深入研究一次函数的应用,我们可以更好地理解世界,解决问题,推动社会的发展和进步。
1.2 一次函数在生活中的重要性一次函数在生活中的重要性体现在许多方面。
一次函数在生活中的具体应用非常广泛,涉及到经济学、物理学、工程学等多个领域。
通过一次函数的应用,可以更好地解决实际问题,提高生活质量和工作效率。
一次函数能够帮助我们更好地理解和分析各种现象,为决策和规划提供重要参考。
一次函数在生活中的重要性不可忽视,它为我们提供了丰富的思维工具和解决问题的方法。
在日常生活中,无论是计算开支、预测销量,还是设计建筑、分析运动,都离不开一次函数的运用。
了解和掌握一次函数的知识,对我们发展个人能力和解决各种实际问题都有着重要的意义。
通过对一次函数的深入研究和应用,我们可以更好地理解世界的运行规律,提高自身的分析能力和解决问题的能力,从而更好地适应社会的发展需求。
2. 正文2.1 经济学中的应用在经济学中,一次函数也被广泛运用于各种实际问题的建模和分析中。
经济学家常常使用一次函数来描述市场需求、供给和成本等关键概念,从而帮助他们预测市场走势、制定政策和做出决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
忆一忆
1、有哪些方法可以反映两个变 量之间的关系? 2、已知两点的坐标如何确定一 次函数的表达式 3、已知一次函数的表达式,如 何画出它的图象
由于持续高温和连日无雨,某水库的蓄水量 随着时间的增加而减少.干旱持续时间T(天) 与蓄水量V(万米 )的关系如图所示,回答 下列问题:
(1)水库干旱 前的蓄水量是 多少? (2)干旱持续10 天,蓄水量为多 少? 连续干旱23天呢?
(3)蓄水量小于400万米3时,将 发生严重干旱警报.干旱多少 天后将发出严重干旱警报?
(4)按照这个规律,预计持续干旱多少天水库 将干涸?
例 1 某种摩托车的邮箱加满油后,邮箱中 剩余油量y(L)与摩托车行驶路程x(km) 之间的关系如图所示。 根据图象回答下列 问题: (1)油箱最多可储 油多少升? (2)一箱汽油可供 摩托车行驶多少千米?
(3)摩托车每行驶100km消耗多少升汽油? (4)油箱中的剩余油量小于1L时,摩托车 将自动报警。 问: 行驶多少千 米后,摩托 车将自动报 警?
练一练
1、看图填空:
y
3 2 1 -3 -2 -1 0 -1 -2 -3 1
x=____ (1)当y=0时, -2 1 (2)当x=0时,y=____
2、从“形”的方面看,函数 y=0.5x+1与x轴交点的横坐标,即为 方程0.5x+1=0的解.
练一练
某植物t天后的高度为ycm,图中的l 反映了y与t 之间的关系,根据图象回答下列问题:
y/cm
(1)植物刚栽的时候多高?
l
24 21 18 15 12 9 6 3
2)3天后该植物高度为多少?
2 4 6
3)几天后该植物高度可达 21cm? (4)先写出y与t的关系式, 8 10 12 14 t/天 再计算长到100cm需几天?
小 结
1、经过本节课的学习,你 有哪些收获?
Hale Waihona Puke 2、本节课主要运用什么方 法来解决一些简单的实际 问题?
2 3
x
(3)直线的函数表达式是
议一议
一元一次方程0.5x+1=0与一次函数y=0.5x+1 有什么联系?
从上面的例题和练习不难得出下面的答案:
y
3 2 1 -3 -2 -1
0
-1 -2 -3
1
2
1、从“数”的方面看,当一次函 数y=0.5x+1的因变量的值为0时, 相应的自变量的值即为方程 0.5x+1=0的解. 3x