材料科学基础重点知识
最全的大学材料科学基础复习要点
第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
(2)特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(3)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷;b 可有无限多种。
2 晶胞(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
(4)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。
材料科学基础考研知识点总结
材料科学基础考研知识点总结第一章原子结构和键合1.原子键合●金属键●离子键●共价键●氢键●范德华力:静电力诱导力色散力第二章固体结构1.晶体学基础●空间点阵和晶胞●七个晶系14种点阵2.金属的晶体结构●晶体结构和空间点阵的区别3.合金的相结构●晶相指数和晶面指数●晶向指数●晶面指数●六方晶系指数●晶带●晶面间距●晶体的对称性●宏观对称元素●极射投影●金属的晶体结构●三种典型的金属的晶体结构●多晶型性●置换固溶体●间隙固溶体●固溶体的围观不均匀性●影响固溶度的主要因素●固溶体的性质●中间相●正常价化合物●电子化合物●与原子尺寸因素相关的化合物●超结构(有序固溶体)4.常见离子晶体结构●离子晶体配位规则(鲍林规则)●负离子配位多面体规则(引入临界离子半径比值)●电价规则(整体不显电性)●负离子多面体共顶,棱和面规则(由于共用顶,棱和面间距下降,导致库仑力上升,稳定性下降)●不同种类正离子配位多面体规则(能量越高区域越分散)●节约规则(【俄罗斯方块原理】)●典型离子晶体结构●AB型化合物【CsCl结构 NaCl结构 ZnS型结构】●AB2型化合物结构【CaF2 萤石 TiO2金红石型结构】●硅酸盐的晶体结构●孤岛状硅酸盐●组群状硅酸盐●链状硅酸盐●层状硅酸盐●架状硅酸盐5.共价晶体结构第三章晶体中的缺陷1.点缺陷●点缺陷形成●点缺陷的平衡浓度2.位错●刃型位错●螺型位错●混合位错●伯氏矢量●位错运动●位错弹性性质(认识)●位错生成与增值●实际位错中伯氏矢量3.面缺陷●外表面与内表面(了解)●晶界和亚晶界●晶界的特性●孪晶界●相界第四章固体中的扩散1.扩散的表象理论●菲克第一定律●菲克第二定律●扩散方程●置换固溶体扩散(柯肯达尔效应)2.扩散热力学●扩散的热力学分析(上坡扩散)3.扩散的微观理论与机制●扩散机制●晶界扩散及表面扩散●扩散系数4.扩散激活能5.影响扩散的因素●温度●晶体结构●晶体缺陷●化学成分●应力作用6.反应扩散7.离子晶体中的扩散第五章材料的变形1.弹性变形●弹性的不完整性●包申格效应●弹性后效●弹性滞后2.黏弹性变形3.塑性变形●单晶体塑性变形●滑移●孪生●扭折●多晶体的塑性变形●晶粒取向的影响●晶界的影响●合金的塑性变形●单相固溶体塑性变形●影响因素●曲服现象●应变实效●多相合金的塑性变形●弥散分布型合金的塑性变形●塑性变形对组织性能影响●显微组织变化●亚结构变化●性能变化●形变织构●残余应力4.回复与再结晶●冷变形金属在加热时组织与性能的变化●回复●再结晶●晶粒的长大5.热加工●动态回复●动态再结晶●蠕变●超塑性第六章凝固1.相平衡和相率●吉布斯相律2.纯晶体的凝固●液态结构●晶体凝固的热力学条件●形核●晶粒长大●结晶动力学及凝固组织●凝固理论应用3.合金的凝固●正常凝固●区域熔炼●合金成分过冷4.铸锭组织与凝固技术●铸锭的宏观组织●铸锭的缺陷第七章相图1.二元相图基础●2.二元相图●匀晶相图●共晶相图●包晶相图●铁碳相图3.三元相图基●基本特点●表示方法●杠杠定律及重心定律第八章材料的亚稳态1.纳米材料2.准晶3.非晶态4.固态相变形成亚稳相●固体相变形成的亚稳相●固溶体脱溶分解产物●脱熔转变●连续脱溶●不连续脱溶●脱溶过程亚稳相●脱溶分解对性能影响●马氏体转变●特征●形态●贝氏体转变●钢中贝氏体转变特征●贝氏体转变的基本特征。
材料科学基础重点知识
第5章 纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。
结晶过程:形核和长大过程交替重叠在一起进行2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学看,没有过冷度结晶就没有趋动力。
根据T R k ∆∝1可知当过冷度T ∆=0时临界晶核半径R *为无穷大,临界形核功(21T G ∆∝∆)也为无穷大,无法形核,所以液态金属不能结晶。
晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。
孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、均匀形核和非均匀形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。
非均匀形核:液态金属原子依附于固态杂质颗粒上形核的方式。
临界晶核半径:ΔG 达到最大值时的晶核半径r *=-2γ/ΔGv 物理意义:r<rc 时, ΔGs 占优势,故ΔG>0,晶核不能自动形成。
r>rc 时, ΔGv 占优势,故ΔG<0,晶核可以自动形成,并可以稳定生长。
临界形核功:ΔGv *=16πγ3/3ΔGv 3 形核率:在单位时间单位体积母相中形成的晶核数目。
受形核功因子和原子扩散机率因子控制。
4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。
在凝固结晶前沿的过冷度随离界面距离的增加而减小。
纯金属结晶平面生长。
负的温度梯度:过冷度随离界面距离的增加而增加。
纯金属结晶树枝状生长。
5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。
粗糙界面即非小平面界面:固液两相间界面微观上看高低不平,存在很薄的过渡层,故从宏观上看界面反而平直,不出现曲折小平面的界面。
材料科学基础复习要点
材料科学基础复习要点第一章工程材料中的原子排列1、晶体中的原子键合方式?各种原子结合键的特点2、原子核外电子的能级排列?遵循的规律3、晶体和非晶体的区别?晶体的各向异性及各向同性4、晶体结构和空间点阵的联系及区别5、晶向指数和晶面指数的确定及表示方法,重点为面心立方晶体和体心立方晶体中密排面和密排方向的指数及其表示6、三种常见的晶体结构的特点,包括晶胞中的原子数、点阵常数与原子半径的关系、致密度、配位数、晶体中的间隙、原子堆垛方式、密堆程度、晶体的多晶型性7、铁的三种同素异构体的晶体结构类型8、空位的类型:肖脱基空位、弗兰克尔空位,空位浓度对晶体物理性能的影响9、位错的类型,刃位错、螺位错位错线与柏氏矢量间的关系,画图表示,位错密度对材料强度的影响10、位错环中位错类型的确定(如课本27页,图1-38,33页,图1-47)11、位错柏氏矢量的确定、柏氏回路与柏氏矢量的关系12、柏氏矢量的表示方法、柏氏矢量的模的计算13、柏氏矢量的守恒性及其推论14、作用在位错上的力的大小及方向15、位错的运动方式?刃、螺位错分别能如何运动,运动方向与位错线、柏氏矢量间的关系16、刃、螺位错应力场的特点?应变能与柏氏矢量的关系,不同类型位错应变的大小比较17、平行同号位错间的相互作用18、常见金属晶体中的位错:全位错、不全位错,位错稳定性的判定19、位错反应的判定20、晶界的类型及其位错模型,界面能与晶界位向差间的关系21、相界面的类型22、课后作业51页习题1、3、11,复习思考题1、2、9、10、12第二章固体中的相结构1、相的定义2、固溶体的晶体结构特点、分类及影响固溶体固溶度的因素3、金属原子间形成无限固溶体的条件4、间隙固溶体和间隙化合物的区别5、固溶体的性能特点6、金属间化合物的结构特点、分类、特性7、课后习题79页1、复习思考题1、2第三章凝固1、金属凝固的微观过程及宏观现象2、过冷现象与过冷度3、金属结晶的热力学条件、驱动力及其与过冷度间的关系4、金属结晶的结构条件5、晶核的形成方式6、均匀形核过程中系统能量的变化、临界晶核半径、形核功、临界晶核表面积、临界晶核体积间的关系推导7、均匀形核的条件8、均匀形核的形核率的受控因数、有效过冷度及其与熔点间的关系9、非均匀形核的形核功与均匀形核功间的比较10、晶体长大的条件、动态过冷度11、液固界面的微观结构及其宏观表象、常见金属的界面结构12、不同界面结构下晶体的长大方式13、液固界面的温度梯度与晶体长大形态间的关系14、铸态晶粒大小的控制措施15、课后习题109页1、6,复习思考题第四章相图1、相平衡及相律,相平衡的热力学条件,相率的表达式及其应用2、杠杆定律的计算3、固溶体非平衡凝固中固相、液相的成分变化规律,晶内偏析及其消除方法4、成分过冷的定义、表达式含义及成分过冷对固溶体生长形态及组织的影响5、典型二元共晶相图的分析,如Pb-Sn相图,包括典型合金的结晶过程分析、室温下组成相及组织组成的分析、相的相对含量、组织相对含量的计算(室温下)、非平衡凝固组织组成的分析6、伪共晶、离异共晶的定义,组织特征7、铁碳合金相图的基本相组成及其结构、性能特点8、铁碳合金相图中重要的点、线的含义、3个典型转变的方程式及其转变产物的相组成、组织名称。
材料科学基础重点知识
《材料科学基础》重要知识点1、在离子晶体中,正、负离子的配位数大小由结构中正、负离子半径的比值决定。
2、聚合物的形成过程是分化和缩聚同时进行的一种动态平衡过程。
3、硅酸盐熔体的结构特点:多种聚合物同时并存,而不是一种独存。
正是由于这个特点,硅酸盐熔体的结构是长程无序的。
但每一个聚合体又是具有晶体结构的,即硅酸盐熔体中存在短程有序的负离子团。
4、影响聚合物聚合程度的因素(1)温度的影响:随温度升高,低聚合物浓度增加,而高聚合物浓度降低。
(2)熔体组成的影响:R为O/Si比的大小。
O/Si比R越大,低聚合物浓度越大,高聚合物浓度越小。
5、影响熔体粘度的主要因素是温度和化学组成。
粘度---温度关系:温度升高,粘度减小。
粘度—组成关系(1) O/Si比:硅酸盐熔体的粘度首先取决于硅氧四面体网络的聚合程度,即随O/Si比的上升而下降。
(2)一价碱金属氧化物①加入碱金属氧化物(Li2O、Na2O、K2O、Rb2O、Cs2O)降低硅酸盐熔体的粘度。
②碱金属氧化物的含量越高,硅酸盐熔体的粘度越小。
③不同的碱金属氧化物对粘度的影响大小也与碱金属氧化物的含量有关。
当R2O含量较低时(O/Si较低),加入的正离子半径越小,降低粘度的作用越大,其次序是:Li+>Na+>K+>Rb+>Cs+。
当熔体中R2O含量较高(O/Si比较高)时,R2O对粘度影响的次序是Li+<Na+<K+。
(3)二价金属氧化物:二价碱土金属氧化物(ⅡA族)一般降低硅酸盐熔体的粘度。
但不同的氧化物降低粘度的程度不同,其降低粘度的次序是:Ba2+>Sr2+>Ca2+>Mg2+,所以粘度大小次序为:Ba2+<Sr2+<Ca2+<Mg2+。
(4)阳离子配位数:阳离子配位数对粘度的影响是通过B2O3的研究而取得的。
①当B2O3含量较少(即Na2O/B2O3>1)时,粘度随含量升高而增加。
这是因为此时“游离”氧充足,故B3+处于[BO4]四面体状态,结构紧密。
材料科学基础知识点
材料科学基础第零章材料概论该课程以金属材料、陶瓷材料、高分子材料及复合材料为对象,从材料的电子、原子尺度入手,介绍了材料科学理论及纳观、微观尺度组织、细观尺度断裂机制及宏观性能。
核心是介绍材料的成分、微观结构、制备工艺及性能之间的关系。
主要内容包括:材料的原子排列、晶体结构与缺陷、相结构和相图、晶体及非晶体的凝固、扩散与固态相变、塑性变形及强韧化、材料概论、复合材料及界面,并简要介绍材料科学理论新发展及高性能材料研究新成果。
材料是指:能够满足指定工作条件下使用要求的,就有一定形态和物理化学性状的物质。
按基本组成分为:金属、陶瓷、高分子、复合材料金属材料是由金属元素或以金属元素为主,通过冶炼方法制成的一类晶体材料,如Fe、Cu、Ni等。
原子之间的键合方式是金属键。
陶瓷材料是由非金属元素或金属元素与非金属元素组成的、经烧结或合成而制成的一类无机非金属材料。
它可以是晶体、非晶体或混合晶体。
原子之间的键合方式是离子键,共价键。
聚合物是用聚合工艺合成的、原子之间以共价键连接的、由长分子链组成的髙分子材料。
它主要是非晶体或晶体与非晶体的混合物。
原子的键合方式通常是共价键。
复合材料是由二种或二种以上不同的材料组成的、通过特殊加工工艺制成的一类面向应用的新材料。
其原子间的键合方式是混合键。
密度弹性模量:材料抵抗变形的能力强度:是指零件承受载荷后抵抗发生破坏的能力。
韧性:表征材料阻止裂纹扩展的能力功能成本结构(Structure)性质(Properties)加工(Processing)使用性能(Performance)在四要素中,基本的是结构和性能的关系,而“材料科学”这门课的主要任务就是研究材料的结构、性能及二者之间的关系。
宏观结构←显微镜下的结构←晶体结构←原子、电子结构重点讨论材料中原子的排列方式(晶体结构)和显微镜下的微观结构(显微组织)的关系。
以及有哪些主要因素能够影响和改变结构,实现控制结构和性能的目的。
材料科学基础知识点
1,晶体。
原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。
2中间相。
两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。
3、亚稳相,亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。
4、配位数。
晶体结构中任一原子周围最近邻且等距离的原子数。
5、再结晶。
冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。
6、伪共晶。
非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。
7、交滑移。
当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。
8、过时效;铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ ”,θ ’,和θ。
在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ ’,这时材料的硬度强度将下降,这种现象称为过时效。
9、形变强化。
金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。
10、固溶强化。
由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。
11、弥散强化。
许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。
12、不全位错。
柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。
13、扩展位错。
通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。
14、螺型位错。
位错线附近的原子按螺旋形排列的位错称为螺型位错。
材料科学基础108个重要知识点
材料科学基础108个重要知识点1.晶体--原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。
2.中间相--两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。
3.亚稳相--亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。
4.配位数--晶体结构中任一原子周围最近邻且等距离的原子数。
5.再结晶--冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。
(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6.伪共晶--非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。
7.交滑移--当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。
8.过时效--铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。
在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种现象称为过时效。
9.形变强化--金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。
10.固溶强化--由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。
11.弥散强化--许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。
12.不全位错--柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。
13.扩展位错--通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。
全的大学材料科学基础复习要点
第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
(2)特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(3)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷; b 可有无限多种。
2 晶胞(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
(4)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。
材料科学基础知识点
材料科学基础知识点
1. 结晶学:研究晶体的形成、结构和性质。
包括晶体生长、晶体结构分析、晶体缺陷等。
2. 材料力学:研究材料的力学性质,包括材料的强度、韧性、塑性、蠕变等。
3. 材料热学:研究材料的热传导、热膨胀、热稳定性等热学性质。
4. 材料电学:研究材料的电导率、介电性质、磁性等电学性质。
5. 材料化学:研究材料的化学成分、结构和化学反应。
包括材料的合成方法、表面改性、材料的腐蚀与防护等。
6. 材料物理学:研究材料的物理性质,包括光学性质、磁性、声学性质等。
7. 材料加工:研究材料的加工方法、工艺和性能改善。
包括材料的铸造、焊接、锻造、热处理等。
8. 材料性能测试:研究材料的各种性能指标的检测和测试方法。
9. 材料选择:根据工程要求和材料性能,选择最合适的材料。
10. 材料应用:研究材料在各种实际应用中的性能和适用范围,包括材料的耐久性、可靠性等。
材料科学基础知识点
材料科学基础知识点材料科学基础重点梳理第一章1.1原子的结合有哪些?1.2工程材料可分为哪几类?1.3晶向指数、晶面指数能画图,给图能写出。
1.4金属常见的晶格类型、配位数、致密度、原子密排面、密排晶向、结构中的间隙。
1.5晶体中缺陷的种类。
1.6位错的种类、位错方向与柏氏矢量的关系、位错的运动方式。
1.7位错反应条件及计算。
1.8晶界的种类,界面能与晶界的关系。
第二章2.1影响置换固溶体溶解度有哪些因素?有何规律?1、原子尺寸因素:溶质和溶剂的尺寸差别越小越容易形成置换固溶体2、晶体结构因素:同一种间隙原子在fcc的固熔度大于bcc的3、负电性因素;负电性相差很大时,即亲和力很大,往往比较容易形成比较稳定的化合物; 负电性差不大时,随负电性值增加,有利于增大固溶度4、电子浓度因素:溶质元素的原子价越高,形成固溶体的极限固溶度越小。
2.2间隙固溶体与间隙相之间的关系。
间隙固熔体式固熔体的一种,间隙相是一种金属间化合物两者的晶体结构也各不相同。
2.3金属间化合物的种类及特点金属间化合物分为正常价化合物,电子价化合物和间隙化合物;正常价化合物:电负性差值越大,稳定性越高;电子价化合物:间隙化合物:主要受组元的原子尺寸因素控制。
通常是由渡族金属与原子半径很小的非金属元素组成,分为简单间隙化合物与复杂间隙化合物,非金属元素处于化合物晶格的间隙中。
第三章3.1金属结晶的热力学条件是什么?热力学第二定律:在等温等压条件下物质系统总是自发地从自由能较高的状态向自由能较低的状态转变,就是说只有伴随着自由能降低的过程才能自发的进行。
3.2金属结晶的能量条件是什么?能量起伏(详细看书P85-86)固态金属自由能低于液态金属自由能。
当温度低于Tm时液态的自由能Gl高于固态的自由能,由液态转为固态时,将释放出那份能量而是系统自由能降低,所以过程才能够自动进行。
凝固过程一定要在低于熔点温度时才能进行。
3.3金属结晶的结构条件是什么?结构起伏 (详细看书P86-87)3.4金属结晶时的形核有哪些方式?均匀形核、非均匀形核3.5根据凝固理论,如何细化晶粒?单位体积中的晶粒数取决于两个因素:形核率N和长大速度V;增加过冷度;小制件:增加冷却速度,大制件:采用形核剂;振动。
材料科学基础重点知识
第5章 纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。
结晶过程:形核和长大过程交替重叠在一起进行2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学看,没有过冷度结晶就没有趋动力。
根据T R k ∆∝1可知当过冷度T ∆=0时临界晶核半径R *为无穷大,临界形核功(21T G ∆∝∆)也为无穷大,无法形核,所以液态金属不能结晶。
晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。
孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、均匀形核和非均匀形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。
非均匀形核:液态金属原子依附于固态杂质颗粒上形核的方式。
临界晶核半径:ΔG 达到最大值时的晶核半径r *=-2γ/ΔGv 物理意义:r<rc 时, ΔGs 占优势,故ΔG>0,晶核不能自动形成。
r>rc 时, ΔGv 占优势,故ΔG<0,晶核可以自动形成,并可以稳定生长。
临界形核功:ΔGv *=16πγ3/3ΔGv 3 形核率:在单位时间单位体积母相中形成的晶核数目。
受形核功因子和原子扩散机率因子控制。
4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。
在凝固结晶前沿的过冷度随离界面距离的增加而减小。
纯金属结晶平面生长。
负的温度梯度:过冷度随离界面距离的增加而增加。
纯金属结晶树枝状生长。
5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。
粗糙界面即非小平面界面:固液两相间界面微观上看高低不平,存在很薄的过渡层,故从宏观上看界面反而平直,不出现曲折小平面的界面。
材料科学基础理论知识
4 杠杆定律
当合金在某一温度下处于两相区时,由相图不 仅可以知道两平衡相的成分,而且还可以用杠 杆定律求出两平衡相的相对重量百分比。 现以Cu-Ni合金为例推导杠杆定律: ⑴ 确定两平衡相的成分: 设合金成分为x,过x做成分 垂线。在成分垂线相当于温 度t 的o点作水平线,其与液 固相线交点a、b所对应的成 分x1、x2即分别为液相和固 相的成分。
贝氏体:钢过冷奥氏体的中温(Ms~550℃)转变产物 ,α-Fe和Fe3C 的复相组织,形状似羽毛。
• 该组织具有较高的强韧性配合,硬度相同的情况下贝氏 体组织的耐磨性明显优于马氏体,可以达到马氏体的 1~3倍,因此在钢铁材料中基体组织获得贝氏体是人们 追求的目标。
• 贝氏体等温淬火:是将钢件奥氏体化,使之快冷到贝氏 体转变温度区间(260~400℃)等温保持,使奥氏体转 变为贝氏体的淬火工艺,有时也叫等温淬火;近十年来 已经开发出了低温贝氏体,也是利用等温淬火技术,不 过等温温度很低,可以低至200℃以下。
平面生长
树枝状生长
平面生长:
•固液界面处液体的过冷度最大,固液界面处 固体结晶时发生突起们就会深入到温度较高 的液体内部,结晶受到抑制,减慢甚至停止 ,液固界面保持稳定的平面形状。
枝状生长
•界面前方遇到温度比它更低的液体,固液界 面上产生的突起深入到温度更低的液体内, 突起快速生长,形成晶轴,在新的晶轴伸出 新的突起,逐渐长大,这样的生长γ -Fe 1394º c
面心立方
α- Fe 912º c
体心立方
室温
T
A4
1538 1394
}-Fe,bcc
912
A3
A
2
材料科学基础知识点
重点与难点
1.点缺陷的形成与平衡浓度;2. 柏氏矢量的确定,物理意义及守恒性;
3. 位错的基本类型和特征;4. 分析归纳位错运动的两种基本形式:滑移和攀移的特点;5. 分析运动位错的交割及其所形成的扭折或割阶不同情况;
在无机非金属材料中,硅酸盐晶体结构尤其复杂,有孤岛状、组群状、链状、层状和骨架状结构等。但它们有一个共同特点,即均具有[SiO4]4-四面体,并遵循由此导出的硅酸盐结构定律。
共价晶体是以共价键结合。共价晶体的共同特点是配位数服从8-N法则(N为原子的价电子数)。
最典型的共价晶体结构是金刚石结构。它属于复杂的fcc结构,可视为两个fcc晶胞沿体对角线相对位移1/4距离穿插而成。
能量最低原理,Pauli不相容原理,Hund规则;
元素,元素周期表,周期,族;
结合键,金属键,离子键,共价键,范德华力,氢键;
高分子链,近程结构,结构单元,线性、支化、交联和三维网络分子结构;
无规、交替、嵌段和接枝共聚物;
全同立构、间同立构、无规立构,顺式、反式构型;
远程结构、数均、重均相对分子质量,聚合度;
晶体中的原子在空间呈有规则的周期性重复排列;而非晶体的原子则是无规则排列的。原子排列在决定固态材料的组织和性能中起着极重要的作用。金属、陶瓷和高分子的一系列特性都和其原子的排列密切相关。
一种物质是否以晶体或以非晶体形式出现,还需视外部环境条件和固态物质可分为晶体和非晶体两大类。晶体的性能是与内部结构密切相关的。
位错的滑移,位错的交滑移,位错的攀移,位错的交割,割阶,扭折;
材料科学基础知识点大全
点缺陷1范围分类1点缺陷.在三维空间各方向上尺寸都很小,在原子尺寸大小的晶体缺陷.2线缺陷在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷.其具体形式就是晶体中的位错3面缺陷在三维空间的两个方向上的尺寸很大,另外一个方向上的尺寸很小的晶体缺陷2点缺陷的类型1空位.在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”2.间隙原子.在晶格非结点位置,往往是晶格的间隙,出现了多余的原子.它们可能是同类原子,也可能是异类原子 3.异类原子.在一种类型的原子组成的晶格中,不同种类的原子替换原有的原子占有其应有的位置3点缺陷的形成弗仑克耳缺陷:原子离开平衡位置进入间隙,形成等量的空位和间隙原子.肖特基缺陷:只形成空位不形成间隙原子.(构成新的晶面)金属:离子晶体:1 负离子不能到间隙2 局部电中性要求4点缺陷的方程缺陷方程三原则: 质量守恒, 电荷平衡, 正负离子格点成比例增减.肖特基缺陷生成:0=V M,,+ V O··弗仑克尔缺陷生成: M M=V M,,+ M i ··非计量氧化物:1/2O2(g)=V M,,+ 2h·+ O O不等价参杂:Li2O=2Li M,+ O O + V O··Li2O+ 1/2O2 (g) =2Li M, + 2O O + 2h· .Nb2O5=2Nb Ti ·+ 2 e, + 4O O + 1/2O2 (g)5过饱和空位.晶体中含点缺陷的数目明显超过平衡值.如高温下停留平衡时晶体中存在一平衡空位,快速冷却到一较低的温度,晶体中的空位来不及移出晶体,就会造成晶体中的空位浓度超过这时的平衡值.过饱和空位的存在是一非平衡状态,有恢复到平衡态的热力学趋势,在动力学上要到达平衡态还要一时间过程.6点缺陷对材料的影响.原因无论那种点缺陷的存在,都会使其附近的原子稍微偏离原结点位置才能平衡即造成小区域的晶格畸变.效果1提高材料的电阻定向流动的电子在点缺陷处受到非平衡力(陷阱),增加了阻力,加速运动提高局部温度(发热)2加快原子的扩散迁移空位可作为原子运动的周转站3形成其他晶体缺陷过饱和的空位可集中形成内部的空洞,集中一片的塌陷形成位错4改变材料的力学性能.空位移动到位错处可造成刃位错的攀移,间隙原子和异类原子的存在会增加位错的运动阻力.会使强度提高,塑性下降.位错7刃型位错若将上半部分向上移动一个原子间距,之间插入半个原子面,再按原子的结合方式连接起来,得到和(b)类似排列方式(转90度),这也是刃型位错.8螺型位错若将晶体的上半部分向后移动一个原子间距,再按原子的结合方式连接起来(c),同样除分界线附近的一管形区域例外,其他部分基本也都是完好的晶体.而在分界线的区域形成一螺旋面,这就是螺型位错9柏氏矢量.确定方法,首先在原子排列基本正常区域作一个包含位错的回路,也称为柏氏回路,这个回路包含了位错发生的畸变.然后将同样大小的回路置于理想晶体中,回路当然不可能封闭,需要一个额外的矢量连接才能封闭,这个矢量就称为该位错的柏氏矢10柏氏矢量与位错类型的关系刃型位错,柏氏矢量与位错线相互垂直.(依方向关系可分正刃和负刃型位错).螺型位错,柏氏矢量与位错线相互平行.(依方向关系可分左螺和右螺型位错).混合位错,柏氏矢量与位错线的夹角非0或90度. 柏氏矢量守恒1同一位错的柏氏矢量与柏氏回路的大小和走向无关.2位错不可能终止于晶体的内部,只能到表面,晶界和其他位错,在位错网的交汇点, 11滑移运动--刃型位错的滑移运动在晶体上施加一切应力,当应力足够大时,有使晶体上部向有发生移动的趋势.假如晶体中有一刃型位错,显然位错在晶体中发生移动比整个晶体移动要容易.因此,①位错的运动在外加切应力的作用下发生;②位错移动的方向和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏矢量大小的台阶.螺型位错的滑移在晶体上施加一切应力,当应力足够大时,有使晶体的左右部分发生上下移动的趋势.假如晶体中有一螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边晶体向下移动一柏氏矢量.因此,①螺位错也是在外加切应力的作用下发生运动;②位错移动的方向总是和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移过部分在表面留下部分台阶,全部移出晶体的表面上产生柏氏矢量大小的完整台阶.这四点同刃型位错.刃,螺型位错滑移的比较.1因为位错线和柏氏矢量平行,所以螺型位错可以有多个滑移面,螺型位错无论在那个方向移动都是滑移2晶体两部分的相对移动量决定于柏氏矢量的大小和方向,与位错线的移动方向无关. 12刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动.刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把半原子面缩短称为正攀移,反之为负攀移.滑移时不涉及单个原子迁移,即扩散.刃型位错发生正攀移将有原子多余,大部分是由于晶体中空位运动到位错线上的结果,从而会造成空位的消失;而负攀移则需要外来原子,无外来原子将在晶体中产生新的空位.空位的迁移速度随温度的升高而加快,因此刃型位错的攀移一般发生在温度较高时;另外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位的变化往往和刃位错的攀移相关.切应力对刃位错的攀移是无效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力有助负攀移),但对攀移的总体作用甚小.13位错点缺陷交互.晶体内同时含由位错和点缺陷时(特别时溶入的异类原子),它们会发生交互作用异类原子在刃位错处会聚集,如小原子到多出半原子面处,大原子到少半原子面处,而异类原子则溶在位错的间隙处. 空位会使刃位错发生攀移运动.界面14表面能的来源.材料表面的原子和内部原子所处的环境不同,内部在均匀的力场中,能量较低,而表面的原子有一个方向没有原子结合,处在与内部相比较高的能量水平.另一种设想为一完整的晶体,按某晶面为界切开成两半,形成两个表面,切开时为破坏原有的结合键单位面积所吸收的能量.由于不同的晶面原子的排列方式不同,切开破坏的化学键的量也不同,故用不同的晶面作表面对应的表面能也不相同,一般以原子的排列面密度愈高,对应的表面能较小15表面能与晶体形状之间的关系.在晶体形成的过程中,为了使系统的自由能最低,尽量降低表面的总能量,即ΣσA最小.一方面尽量让σ最小的晶面为表面,当然也可能是表面能略高但能明显减小表面积的晶面为表面.如fcc结构的晶体自由生长就为14面体粗糙表面与平滑表面晶体的表面在宏观为一能量较低的平面,但表面原子的缺陷,局部表面原子缺少或有多余原子,以表面存在的阵点数与实有原子数的比x来表示,这些缺陷的存在可提高表面的熵,是必然存在的.每种材料有特定的x值下表面能最低,其中x=0.5的表面稳定的称为粗糙表面,大多数的金属材料是属于粗糙表面;x值仅在0或1附近稳定的称为平滑表面,大多是非金属材料. 17晶界与杂质原子的相互作用.少量杂质或合金元素在晶体内部的分布也是不均匀的,它们常偏聚于晶界,称这种现象为晶界内吸附.产生的原因可参见位错与点缺陷的作用,一般杂质原子与晶体的尺寸或性质差别愈大,这种偏聚愈严重.杂质原子在晶界的偏聚对晶体的某些性能产生重要的影响,18相界面.两种不同相的分界面.液体的表面是液相和气相的分界面;晶体的表面是晶体和气相(或液相)的分界面;两个不同的固相之间的分界面也是相界面,在我们的课程中主要是指后者.相界面的特性:相界面的结构和晶界有一定的共性,也有一些明显的差别.非共格界面类似大角度晶界,而完全的共格是困难的,共格面两边微少的差别可以用晶格的畸变来调整,界面两边差别不十分大时,将可以补充一定的位错来协调,组成半共格界面.无论那种情况,界面都存在自己的界面能,都将对材料的结构形貌带来明显的影响.第三章相固溶体分类位置分置换固溶体.溶质原子取代了部分溶剂晶格中某些节点上的溶剂原子而形成的固溶体.间隙固溶体.溶质原子嵌入溶剂晶格的空隙中,不占据晶格结点位置固溶体分类溶解度无限溶解固溶体.溶质可以任意比例溶入溶剂晶格中.这是把含量较高的组元称为溶剂,含量较少的组元称为溶质.有限溶解固溶体.溶质原子在固溶体中的浓度有一定限度,超过这个限度就会有其它相(另一种固溶体或化合物)的形成.间隙固溶体都是有限溶解固溶体.通常是过渡族金属为溶剂,小尺寸的C,N,H,O,B等元素为溶质. 4影响固溶体溶解度的因素在一定条件下,溶质元素在固溶体中的极限浓度叫该元素在固溶体中的溶解度.影响溶解度的因素很多,目前还在研究中,现在公认的有1尺寸因素.在置换固溶体中,溶质原子的尺寸和溶剂相近,溶解度也愈大,Δr小于15%时才有利于形成置换固溶体,要能达到无限互溶,Δr 的值还要小一些.间隙固溶体的形成的基本条件D质/D剂<0.59.在间隙固溶体中,显然D质/D剂愈小,即溶质原子的尺寸愈小,溶解度也大.间隙固溶体只能有限溶解2.晶体结构因素.组元间晶体结构相同时,固溶度一般都较大,而且才有可能形成无限固溶体.若组元间的晶体结构不同,便只能生成有限固溶体3电负性差.电负性为这些元素的原子自其它原子夺取电子而变为负离子的能力.反映两元素的化学性能差别.两元素间电负性差越小,则越容易形成固溶体,且所形成的固溶体的溶解度也就越大;随两元素间电负性差增大,溶解度减小,当其差别很大时,往往形成较稳定的化合物4电子浓度.在金属材料(合金)中,价电子数目(e)与原子数目(a)之比称为电子浓度.由于溶质和溶剂的价电子数可能不同,电子浓度e/a = V A(1-x) + V B x.其中x为溶质的原子百分比浓度(摩尔分数),V A,V B分别为溶剂和溶质的价电子数.一方面,溶质和溶剂的价电子数目相差大,它们的电负性的差别也大,溶解度会下降.另一方面,当e/a 为某些特定值时形成一新的晶体结构,因此它们的溶解度也就受到相应的限制.5固溶体的性能特点.1由于固溶体的晶体结构与溶剂相同,固溶体的性能基本上与原溶剂的性能相近,即固溶体的性能主要决定于溶剂的性能,或在溶剂性能基础上发生一些改变2固溶体的性能与原溶剂性能的差别,或称性能变化的大小,随着溶质的浓度的增加而加大3以金属元素为溶剂的固溶体,随着溶质的溶入,强度将提高,称为固溶强化,溶质的溶入可造成晶格畸变,材料的塑性变形的阻力加大,塑性略有下降,但不明显.是有效提高金属材料力学性能的途径之一6金属化合物类型.1.正常价化合物两组元服从原子价规律而生成的正常化学中所称的化合物.通常是金属元素与非金属元素组成,组元间电负性差起主要作用,两组元间电负性差较大,它们符合一般化合物的原子价规律.例如MnS,Al2O3,TiN,ZrO2等,其结合键为离子键;也有的是共价键,如SiC;少数也有以金属键结合,如Mg2Pb2电子化合物这类化合物大多是以第Ⅰ族或过渡族金属元素与第Ⅱ至第Ⅴ族金属元素结合而成.它们也可以用分子式表示,但大多不符合正常化学价规律.当e/a 为某些特定值时形成一新的晶体结构,并且电子浓度不同,其对应的晶体结构的类型也就不同.常见的电子浓度值有21/14,21/13,21/12.由于这类中间相与电子浓度有关,所以就称为电子化合物,主要出现在金属材料中,它们的结合键为金属键.一些常见的电子化合物可参看教材.例如Cu31Sn8,电子浓度21/13,具有复杂立方晶格3.间隙化合物.主要受组元的原子尺寸因素控制,通常是由过渡族金属原子与原子半径小于0.1nm 的非金属元素碳,氮,氢,氧,硼所组成.由于非金属元素(X)与金属元素(M)原子半径比不同,结构也有所不同.当r X/r M<0.59时,形成具有简单晶体结构的化合物,如fcc,bcc,cph或简单立方,通常称它们为间隙相,相应的分子式也较简单,如M4X,M2X,MX,MX2 .当r X/r M>0.59时,形成的化合物的晶体结构也较复杂,通常称它们为间隙化合物,相应的分子式也较复杂,如钢中常见的Fe3C,Cr7C3,Cr23C6等.7金属化合物的性能特点.大多数化合物,特别是正常价化合物,熔点都较高(结合键强的表现之一),力学性能表现为硬而脆.单一由化合物在金属材料中比较少见,而陶瓷材料则是以化合物为主体.少量硬度高的质点加入到塑性材料中,将明显提高材料的强度,即第二相强化机制.另一方面,化合物往往由特殊的物理,化学(电,磁,光,声等)性能,从而在功能材料中的应用得到迅速发展.相图热力学8克劳修斯-克莱普隆方程.设在一定温度和压力下,某物质处于两相平衡状态,若温度改变为dT,压力相应的改变dp之后,两相仍呈平衡状态.根据等温定压下的平衡条件△G=0,考虑1mol物质吉布斯自由能变化,由于平衡状态△G=G2-G1=0即 d G2=d G1按 d G=-SdT+Vdp因为过程是在恒温恒压的条件下进行的即为克劳修斯-克莱普隆方程,适应于任何物质的两相平衡体系.9公切线法则-两相平衡.在二元的情况,温度一定时,若AB组元可能形成αβ两种相,其自由能与成分的关系曲线.合金成分为X时: 以单一的α相存在,自由能在1点;以单一的β相存在,自由能在2点;作GαGβ的公切线,切点分别为P,Q,延长交坐标轴为a,b.a点为组元A在α和β的化学位b点为组元B在α和β的化学位,显然二者相等,所以P点的α相成分为x1;Q点的β相成分为x2;它们是平衡相.两相的数量满足杠杆定律,以这两相混合的自由能在M点.这时的自由能最低,它们才是这个温度下的平衡相.注意平衡相是以共切点的成分来分配,如果连接两曲线的最低点,以这样的成分的两相混合,尽管每一相的自由能比切点低,但数量按杠杆定律分配后的混合自由能在3点,依然高于M点结论:二元合金两相平衡的条件是能够作出这两相自由能曲线的工切线.公切线在两条曲线上的切点的成分坐标值便是这两个相在给定温度下的平衡成分.推论三个溶体平衡共存的条件是在给定的温度下,公切线能同时切过三条自由能曲线.或曰这三个溶体的自由能曲线有公切线.这三个切点的成分坐标值便是这三个相在给定温度下的平衡成分. 10相律—相律是描述系统的组元数,相数和自由度间关系的法则.相律有多种,其中最基本的是吉布斯相律,其通式f=C-P+2式中,C为系统的组元数,P为平衡共存的相的数目.自由度f不能为负值.对于恒压条件:f = c – p + 1.系统中有p相,c个组元,则成分引起的变数p(c-1)个.系统总的变数为p(c-1)+1.在多相平衡时,任一组元在各相间的化学位相等, 每个组元可写出个p-1等式,平衡条件总数为c(p-1)11几种二元相图.匀晶相图.两组元在液态和固态都能无限互溶.如Cu—Ni,Ag—Au形成二元合金对应的相图就是二元匀晶相图.相图的构成:由两条曲线将相图分为三个区.左右两端点分别为组元的熔点.上面的一条曲线称为液相线,液相线之上为液相的单相区,常用L表示;下面的一条曲线称为固相线,固相线之下为固溶体的单相区,常用α表示;两条曲线之间是双相区,标记L+α表示.二元共晶相图.两组元在液态下无限互溶,固态下有限溶解,一组元溶入另一组元中时都使凝固温度下降,并发生共晶转变.如Pb—Sn,Ag—Cu 等形成二元合金对应的相图就是二元匀晶相图.相图的构成:t A E和t B E为两液相线,与其对应的t A C和t B D为两固相线;CG和DH固溶体α,β的溶解度随温度变化线;CED为水平共晶线.将相图分成三个单相区L,α,β;三个双相区L+α,L+β,α+β和一个三相区L+α+β,即CED为共晶线.二元包晶相图.两组元在液态下无限互溶,固态下有限溶解,并且发生包晶转变.相图的构成:ac和bc 为两液相线,与其对应的ad和bp为两固相线;df和pg固溶体α,β的溶解度随温度变化线;dpc为包晶转变线.它们分隔相图为三个单相区L,α,β;三个双相区L+α,L+β,α+β; 一个三相区L+α+β,即水平线dpc 为包晶线.第四章单组元材料的结晶1凝固状态的影响因素1物质的本质.原子以那种方式结合使系统吉布斯自由能更低.温度高时原子活动能力强排列紊乱能量低,而低温下按特定方式排列结合能高可降低其总能量.这是热力学的基本原则2熔融液体的粘度:粘度表征流体中发生相对运动的阻力,随温度降低,粘度不断增加,在到达结晶转变温度前,粘度增加到能阻止在重力作用物质发生流动时,即可以保持固定的形状,这时物质已经凝固,不能发生结晶.例如玻璃,高分子材料3熔融液体的冷却速度:冷却速度快,到达结晶温度原子来不及重新排列就降到更低温度,最终到室温时难以重组合成晶体,可以将无规则排列固定下来.金属材料需要达到106℃/s才能获得非晶态.2结晶的热力学条件.结晶过程不是在任何情况下都能自动发生.自然界的一切自发转变过程总是向着自由能降低的方向进行.因为液体的熵值恒大于固体的熵,所以液体的曲线下降的趋势更陡,两曲线相交处的温度T m,当温度T= T m时,液相和固相的自由能相等,处于平衡共存,所以称T m为临界点,也就是理论凝固温度.当T< T m时,从液体向固体的转变使吉布斯自由能下降,是自发过程,发生结晶过程;反之,当T> T m时,从固体向液体的转变使吉布斯自由能下降,是自发过程,发生熔化过程.所以结晶过程的热力学条件就是温度在理论熔点以下.3结晶过程.温度变化规律:材料的熔体在熔点以上不断散热,温度不断下降,到理论结晶温度并不是马上变成固态的晶体,继续降温而出现过冷.过冷到某一程度开始结晶,放出结晶潜热,可能会使其温度回升.到略低于熔点的温度时,放出的热量和散热可达到平衡,这时处于固定温度,在冷却曲线上出现平台.结晶过程完成,没有潜热的补充,温度将重新不断下降,直到室温.组织的变化在一定的过冷度下,液态的熔体内首先有细小的晶体生成,称为形核.随后已形成的晶核不断的长大,同时在未转变的液体中伴随新的核心的形成.生长过程到相邻的晶体互相接触,直到液体全部转变完毕.每个成长的晶体就是一个晶粒,它们的接触分界面就形成晶界. 4自发形核1能量变化.在一定的过冷度下,液体中若出现一固态的晶体,该区域的能量将发生变化,一方面一定体积的液体转变为固体,体积自由能会下降,另一方面增加了液-固相界面,增加了表面自由能2临界大小.在一定过冷度下,ΔG V为负值,而σ恒为正值.可见晶体总是希望有最大的体积和最小的界面积.设ΔG V和σ为常数,最有利的形状为球.当细小晶体的半径大于临界尺寸,晶体长大时吉布斯自由能下降,这种可以长大的小晶体称为晶核.如果它的半径小于临界尺寸,晶体长大时吉布斯自由能将上升,自发过程为不断减小到消失3晶核的来源.熔体在熔点附近时,处在液态总体的排列是无序的,但局部的小区域并非静止不动的,原子的运动可造成局部能量在不断变化,其瞬间能量在平均值的上下波动,对应的原子排列在变化,小范围可瞬间为接近晶体的排列,其范围大小对应的能量于平均能量之差ΔG小于临界尺寸的(晶胚)下一步减小到消失,大于临界尺寸的可能不断长大,晶核.等于临界尺寸大小的晶核高出平均能量的那部分称为“形核功”.过冷度愈小,固—液自由能差也小,临界尺寸大,形核功也高,出现的几率也小.太小的过冷度在有限的时空范围内不能形核5非自发形核.如果形核不是在液体内部,如附着在某些已存在的固体(液体中存在的未熔高熔点杂质),例如在固体上形成球冠形,这时可以利用附着区原液体和杂质的界面能,特别是核心和杂质间可能有小的界面能.这种依附在某些已有的固体上形核称之为6晶核的长大一长大条件.从热力学分析可知,要使系统的自由能下降,在液—固界面附近的部分液体转变为固体,依然要求在界面附近要存在过冷度,前面冷却曲线上平台和理论结晶温度之差就是长大所要求的过冷度,也称为“动态过冷度”.金属材料的动态过冷度很小,仅0.01—0.05℃,而非金属材料的动态过冷度就大得多.若液—固界面处于平衡,则界面的温度应该为理论结晶温度.二长大速度.凝固过程中,晶体在不断长大,界面在单位时间向前推移的垂直距离称为长大线速度三正温度梯度下晶体的长大.正温度梯度是指液—固界面前沿的液体温度随到界面的距离的增加而升高,这时结晶过程的潜热只能通过已凝固的固体向外散失.平衡时界面的温度为理论结晶温度,液体的温度高于理论结晶温度.当通过已凝固的固体散失热量时,达到动态过冷的部分液体转变为固体,界面向前推移,到达理论结晶温度处,生长过程将停止.所以这时界面的形状决定于散热,实际上为理论结晶温度的等温面.在小的区域内界面为平面,局部的不平衡带来的小凸起因前沿的温度较高而放慢生长速度,因此可理解为齐步走,称为平面推进方式生长.四负温度梯度下晶体的长大.负温度梯度是指液—固界面前沿的液体温度随到界面的距离的增加而降低,这时结晶过程的潜热不仅可通过已凝固的固体向外散失,而且还可向低温的液体中传递.在小的区域内若为平面,局部的不平衡可带来某些小凸起,因前沿的温度较低而有利生长,因而凸起的生长速度将大于平均速度,凸起迅速向前发展,可理解赛跑的竞争机制,在凸起上可能再有凸起,如此发展而表现为数枝晶的方式长大.枝晶间的空隙最后填充,依然得到完整的晶体. 7树枝晶的生长按树枝方式生长的晶体称为树枝晶,先凝固的称为主干,随后是分支,再分支.①纯净的材料结晶完毕见不到树枝晶,但凝固过程中一般体积收缩,树枝之间若得不到充分的液体补充,树枝晶可保留下来②生长中晶体分支受液体流动,温差,重力等影响,同方向的分支可能出现小的角度差,互相结合时会留下位错③材料中含有杂质,在结晶时固体中的杂质比液体少,最后不同层次的分枝杂质含量不相同,其组织中可见树枝晶8非金属晶体的长大正温度梯度下,等温面和有利的晶体表面不相同时,界面会分解为台阶形.在表面的台阶处有利晶体的生长,这时原子从液体转移到固体中增加的表面积较小,台阶填充完后在表面生长也需要一定的临界尺寸,表现为非金属生长的动态过冷度比金属大,其中特别是螺位错造成的表面台阶对生长有利,并且是永远填不满的台阶. 9界面结构对晶体生长影响-受界面能和表明熵的影响,液-固界面的微观结构有两中类型:平滑型(晶面型)界面上原子排列平整,通常为晶体的某一特定晶面,界面上缺位或单贴原子较少.粗糙型(非晶面型) 界面上缺位或单贴原子较多,粗糙不平,不显示任何晶面特征.大多金属材料时如此.粗糙界面生长时向各个方向无区别.对于平滑界面能低的晶面与等温面不重和,原子将在台阶面处生长.(无台阶时,少量的原子很难吸附在光滑平面上,需要一批原子<二维晶核>,所需的动态过冷度较大.最终的形状与晶体的各向异性相关,对应独特的外形10铸件晶粒大小的控制从液体凝固后,每个晶核生长成一个晶粒,晶核多晶粒的尺寸自然就小.凝固理论分析表明晶粒尺寸决定于N/G,即形核率高晶粒细小,而长大速度快,晶粒尺寸增大.控制原理与方法:生产过程通常希望材料得到细小的尺寸,为此控制晶粒尺寸的方法有:第一,降低浇注温度和加快冷却速度,如金属模,或加快散热,尽管形核率和长大速度都提高,但形核率的提高快得多,所得到的晶粒将细化,可是快冷却速度会增加零件的内应力有时甚至可能造成开裂,有时因生产环境和零件尺寸达不到快速冷却.第二,加变质剂即人为加入帮助形核的其它高熔点细粉末,如在铜中加少量铁粉或铝中加Al2O3粉等,以非均匀方式形核并阻碍长大.第三,铸件凝固中用机械或超声波震动等也可细化晶粒尺寸.若希望晶粒粗大,如用于高温的材料,对这些因素进行相反的操作.。
材料科学基础基础知识点总结
精心整理第一章 材料中的原子排列第一节 原子的结合方式 2 原子结合键 (1)离子键与离子晶体 原子结合:电子转移,结合力大,无方向性和饱和性; 离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体 原子结合:电子共用,结合力大,有方向性和饱和性; 原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(1)――-:构成空间点阵的最基本单元。
(2)选取原则: a 能够充分反映空间点阵的对称性; b 相等的棱和角的数目最多; c 具有尽可能多的直角; d 体积最小。
(3) 形状和大小 有三个棱边的长度a,b,c 及其夹角α,β,γ表示。
(4) 晶胞中点的位置表示(坐标法)。
3 布拉菲点阵 图1-7 14种点阵分属7个晶系。
4 晶向指数与晶面指数 晶向:空间点阵中各阵点列的方向。
晶面:通过空间点阵中任意一组阵点的平面。
国际上通用米勒指数标定晶向和晶面。
(1) 晶向指数的标定 a 建立坐标系。
确定原点(阵点)、坐标轴和度量单位(棱边)。
b 求坐标。
u’,v’,w’。
c 化整数。
u,v,w. d 加[ ]。
[uvw]。
说明: a 指数意义:代表相互平行、方向一致的所有晶向。
b 负值:标于数字上方,表示同一晶向的相反方向。
b 性质:晶带用晶带轴的晶向指数表示;晶带面//晶带轴; hu+kv+lw=0c 晶带定律 凡满足上式的晶面都属于以[uvw]为晶带轴的晶带。
推论: (a) 由两晶面(h 1k 1l 1) (h 2k 2l 2)求其晶带轴[uvw]: u=k 1l 2-k 2l 1; v=l 1h 2-l 2h 1; w=h 1k 2-h 2k 1。
(b) 由两晶向[u 1v 1w 1][u 2v 2w 2]求其决定的晶面(hkl)。
H=v 1w 1-v 2w 2; k=w 1u 2-w 2u 1; l=u 1v 2-u 2v 1。
材料科学基础知识点整理
材料科学与基础第一章晶体结构第一节晶体学基础一、空间点阵晶体中原子或分子的空间规则排列,阵点周围环境相同,在空间的位置一定。
(一)晶胞点阵中取出的一个反映点阵对称性的代表性基本单元。
通过晶胞角上的某一阵点,沿其三个棱边作坐标轴X、Y、Z(称为晶轴),则此晶胞就可由其三个棱边的边长a、b、c(称为点阵常数)及晶轴之间的夹角α、β、γ六个参数表达出来。
事实上,采用三个点阵矢量a、b、c来描述晶胞更方便。
(二)晶系(三)布拉菲点阵只能有14种空间点阵,归属于7个晶系。
(四)晶体结构与空间点阵最简单的空间格子,又叫原始格子,以P表示。
对称性高的为高级晶族。
二、晶向指数和晶面指数(一)晶向指数1.以晶胞的晶轴为坐标轴X、Y、Z,以晶胞边长作为坐标轴的长度单位。
2.从晶轴系的原点O沿所指方向的直线取最近一个阵点的坐标u、v、w。
3.将此数化为最小整数并加上方括号,即为晶向指数。
[100],[110],[111̅]晶向指数表示所有相互平行、方向一致的晶向。
晶体中因对称关系而等同的各组晶向可并为一个晶向族,用<uvw>表示。
(二)晶面指数1.对晶胞作晶轴X、Y、Z以晶胞的边长作为晶轴上的单位长度。
2.求出待定晶面在三个晶轴上的截距(如该晶面与某轴平行,则截距为∞)。
3.取这些截距数的倒数。
4.将上述倒数化为最小的简单整数,并加上圆括号,即表示该晶面的指数,记为(hkl )晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。
(化简相等)在晶体中,具有等同条件而只是空间位向不同的各组晶面,可归并为一个晶面族,用{hkl }表示。
在立方晶系中,具有相同指数的晶向和晶面必定是相垂直的。
即[hkl ]⊥{hkl} (三)六方晶系指数晶面指数以(hkil )四个指数来表示,有h +k +i =0; 晶向指数以[uvtw]表示,有u +v +t =0。
六方晶系按两种晶轴系所得的晶面指数和晶向指数可相互转换如下:对晶面指数来说,从(hkil )转换成(hkl )只需去掉i ;对晶向指数,[UVW]与[uvtw]的关系为:U =u −t; V =v −t; W =w 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。
结晶过程:形核和长大过程交替重叠在一起进行2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学看,没有过冷度结晶就没有趋动力。
根据T R k ∆∝1可知当过冷度T ∆=0时临界晶核半径R *为无穷大,临界形核功(21T G ∆∝∆)也为无穷大,无法形核,所以液态金属不能结晶。
晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。
孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、均匀形核和非均匀形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。
非均匀形核:液态金属原子依附于固态杂质颗粒上形核的方式。
临界晶核半径:ΔG 达到最大值时的晶核半径r *=-2γ/ΔGv 物理意义:r<rc 时, ΔGs 占优势,故ΔG>0,晶核不能自动形成。
r>rc 时, ΔGv 占优势,故ΔG<0,晶核可以自动形成,并可以稳定生长。
临界形核功:ΔGv *=16πγ3/3ΔGv 3 形核率:在单位时间单位体积母相中形成的晶核数目。
受形核功因子和原子扩散机率因子控制。
4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。
在凝固结晶前沿的过冷度随离界面距离的增加而减小。
纯金属结晶平面生长。
负的温度梯度:过冷度随离界面距离的增加而增加。
纯金属结晶树枝状生长。
5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。
粗糙界面即非小平面界面:固液两相间界面微观上看高低不平,存在很薄的过渡层,故从宏观上看界面反而平直,不出现曲折小平面的界面。
6、凝固理论的应用:细化晶粒、定向凝固技术、单晶体的制备、非晶态合晶的制备7、晶粒细化的方法和原理晶粒度:实际金属结晶后,获得由大量晶粒组成的多晶体的晶粒的大小细晶强化:通过细化晶粒来提高材料强度的方法细化晶粒的方法:增加过冷度:提高冷却速度和过冷能力;变质处理:往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法;振动与搅拌:使正在生长的枝晶破碎,提供能量促使自发晶核的形成。
机理:晶粒越细小,位错塞集群中位错个数n 越小,根据τ=n τ0应力集中越小,故材料的强度越高。
第6章 固体中的扩散1、扩散固体中原子或分子的迁移,是固体中物质迁移的唯一方式。
本质:原子每个平衡位置都对应一个势能谷,在相邻平衡位置之间都隔着一个势垒,由于原子的热振动存在能量起伏,总会有部分原子具有足够高的能量,能够跨越势垒,从原来的平衡位置跃迁到相邻的平衡位置上去。
故固态扩散是原子热激活的过程。
2、固态金属扩散条件:①温度要足够高,温度越高原子热振动越激烈原子被激活而进行迁移的几率越大②时间要足够长,只有经过相当长的时间才能造成物质的宏观迁移③扩散原子要固溶,扩散原子能够溶入基体晶格形成固溶体才能进行固态扩散④扩散要有驱动力,没有动力扩散无法进行,扩散的驱动力为化学位梯度。
3、扩散的分类:1按是否出现新相:原子扩散、反应扩散 2按浓度的均匀程度分:有浓度差的空间扩散叫互扩散;无浓度差的扩散叫自扩散; 3按扩散方向分:由高浓度向低浓度扩散叫顺扩散即下坡扩散;由低浓度向高浓度扩散叫逆扩散即上坡扩散;4按原子的扩散路径分:在晶粒内部的扩散称体扩散;在表面进行的扩散称为表面扩散;沿晶界进行的扩散称为晶界扩散。
4、扩散第一定律表达式: dx dC D J -= J 为扩散流量;D 扩散系数;dx dC为浓度梯度。
扩散系数()RT Q D D -=ex p 0 D 0为扩散常数,Q 为扩散激活能,R 为气体常数,T 为热力学温度。
扩散系数D 与温度呈指数关系,温度升高,扩散系数急剧增大。
; 扩散的驱动力为化学位梯度,阻力为扩散激活能 5、扩散机制:间隙扩散机制、空位扩散机制、换位扩散机制 间隙原子扩散比置换原子扩散容易的原因:间隙固溶体中原子扩散仅涉及到原子迁移能,而置换固溶体中原子的扩散机制不仅需要迁移能而且还需要空位形成能,因此导致间隙原子扩散速率比置换固溶体中的原子扩散速率高得多。
柯肯达尔效应:由置换互溶原子因相对扩散速度不同而引起标记移动的不均衡扩散现象。
原因:低熔点组元扩散快,高熔点组元扩散慢,正是这种不等量原子交换造成的 6、影响扩散的因素:1温度:温度是影响扩散的主要因素,随着T 的升高,扩散系数D 成指数升高2固溶体类型:间隙固溶体中溶质原子的扩散激活能比置换固溶体的小,扩散速度快 3晶体结构:致密度小易迁移;体心结构的扩散系数大于面心结构的;固溶度不同引起浓度梯度差别;晶体的各向异性; 4晶体缺陷:增加缺陷密度会加速金属原子和置换原子的扩散,对间隙原子则不然5浓度 6合金元素 相变扩散和反应扩散:通过扩散而产生新相的现象。
第8章 三元相图1直线法则:二元系统两相平衡共存时,合金成分点与两平衡相的必须位于一条直线上2杠杆定律:Wa/W β=o β/oa=cb/ca 3重心定律:当三元合金在一定温度下处于三相平衡时合金的成分点为3个平衡相成分点组成的三角形的质量重心。
蝴蝶形规律:反映两相平衡相对应关系的共轭连线是非固定长度的水平线,随温度下降,它们一方面下移,另一方面绕成分轴转动。
4固态互不溶解三元共晶:四相平衡共晶平面:三元共晶点E 与该温度下3个固态的成分mnp 组成的四相平衡平面WA=oq/Aq*100% WL=Ao/Aq W(A+C)/Wo=Eq/Ef*WL W(A+B+C)/Wo=qf/Ef*WL四相平衡包共晶反应:L+a→β+γ包晶反应:L+a+β→γ5根据液相成分变温线投影的温度走向(降温)判别四相平衡反应类型:三根液相成分变温线温度走向均指向中心属共晶反应;两根液相成分变温线的温度走向指向中心,一根背离中心属包共晶反应;一根温度走向指向中心,两根背离中心,属包晶反应。
6说出图中各点(M、N、P、E)室温下的显微组织。
M:B+(B+C)+(A+B+C);N:(A+B)+(A+B+C);P:C+(A+B+C);E:(A+B+C)。
b求出E点合金室温下组织组成物的相对量和相组成物的相对量。
E点合金室温下组织组成物的相对量(A+B+C)为100%相组成物的相对量为:W A=Ea/Aa×100% W B=Eb/Bb×100% W C=Ec/Cc×100%c分析M点合金的结晶过程。
先从液相中结晶出B组元,当液相成分为K时,发生二元共晶转变,转变产物为(B+C),当液相成分为E时,发生三元共晶转变,转变产物为(A+B+C)。
室温下的显微组织为:B+(B+C)+(A+B+C)。
第7章1、建立方法:热分析法、金相分析方法、硬度测定方法、X射线衍射分析法、膨胀试验法、电阻试验法。
2、二元相图中有哪些几何规律:相区接触法则;三相区是一条水平线…;三相区中间是由它们中相同的相组成的两相区;单相区边界线的延长线进入相邻的两相区。
3、匀晶合金相图:两组元在液态、固态均无限互溶的合金状态图。
4、平衡凝固:冷却极为缓慢组元成分充分互相扩散每个阶段都达到平衡。
5、非平衡凝固:合金溶液冷却速度较快,在每一温度下不能保持足够的扩散时间,凝固过程偏离平衡条件的凝固。
6、固溶体结晶与纯金属结晶的比较①相同点:基本过程:形核-长大;热力学条件:⊿T>0;能量条件:能量起伏;结构条件:结构起伏。
②不同点:合金在一个温度范围内结晶(可能性:相率分析,必要性:成分均匀化。
)合金结晶是选分结晶:需成分起伏。
7、一个晶粒内或一个枝晶间化学成分不同的现象,叫枝晶偏析或晶内偏析。
各晶粒之间化学成分不均匀的现象叫晶间偏析。
消除方法:扩散退火(在固相线以下较高温度经过长时间的保温,使原子扩散充分,使之转变为平衡组织)。
8、两组元在液态时无限互溶,固态时有限固溶或完全不溶,且发生共晶转变,形成共晶组织的二元系相图。
9、由一种液相在恒温下同时结晶出两种固相的反应称为共晶反应。
所生成的两种混合物称为共晶体,成分确定。
成分位于E点以左,M 点以右的合金称为亚共晶合金。
成分位于E点以右,N点以左的合金成为过共晶合金。
10、伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。
离异共晶:两相分离的共晶组织。
形成原因:平衡条件下,成分位于共晶线上两端点附近。
消除:扩散退火。
11、室温组织及其计算:计算室温下亚共析钢(含碳量为)的组织组成物的相对量。
组织组成物为α、P ,P P W x W -=⨯--=1W , %1000218.077.00218.0α计算室温下过共析钢(含碳量为x )的组织组成物的相对量。
组织组成物为P 、Fe3C Ⅱ:PCFe PW xW -=⨯--=∏1W , %10077.069.669.63 1. 分析共析钢的结晶过程,并画出结晶示意图。
①点之上为液相L ;①点开始L →γ;②点结晶完毕;②~③点之间为单相γ;③点γ→ P 共析转变;室温下显微组织为P 。
2. 计算室温下含碳量为x 合金相组成物的相对量。
相组成物为α、Fe3C ,相对量为:C Fe C Fe W x W 331 W , %10069.6-=⨯=α Fe3C І的相对量:%1003.469.63.43⨯--=I x W C Fe 当x=6.69时Fe3C І最高百分量为:%100%10069.669.63=⨯=I C Fe W过共析钢中Fe3C Ⅱ 的相对量:%6.2277.069.677.03=--=∏x W C Fe当x=2.11时Fe3C Ⅱ含量最高,最高百分量为:%6.2277.069.677.011.23=--=∏C Fe WFe3C Ⅲ 的相对量计算:%10069.63⨯=I ∏xW C Fex=0.0218时Fe3C Ⅲ含量最高为:%33.0%10069.60218.03=⨯=I ∏C Fe W共析渗碳体的相对百分量为:%2.11%1000218.069.60218.077.03=⨯--=C Fe W共晶渗碳体的相对百分量为:%8.47%11.269.611.230.43=⨯--=C Fe W12、在一定温度下,一定成分液相和一固体相反应形成另一种固相结晶过程称包晶转变。
铁素体:碳在α-Fe 中形成的间隙固溶体。