七年级下册数学期中复习 压轴题专题
七年级数学下册压轴题
AEBDFC七年级数学下册期中压轴题1、如图,一条直线1l ,最多将平面分成两块,两条直线1l 、2l 相交,最多将平面分成4块,三条直线1l 、2l 、3l 最多将平面分成7块,…,则9条直线1l 、2l 、…,9l 最多将平面分成( )块。
A .49 B .48C .47D .462、已知直线AB ∥CD ,交直线EF 于E 、F 两点,点P 为直线EF 右边平面上一点,且∠AEP=160°,∠EPF=45° ,则∠CFP 的度数为 .3、已知如图,△ABC 中,A (m ,n ),B (-4,-1),C (a ,b ),且满足条件22+-=b a ,032=-++n m (本题11分)(1)写出A 、C 的坐标,并画出△ABC. (3分)1l1l2l1l2l3l(2)P为坐标轴上一点,且△PBC的面积等于6,直接写出满足条件的所有P的坐标,并根据所学过的初一、小学知识选一个P点坐标写出求解过程.(5分)(3)将AB平移到A′B′使B′(4,0).现让点C沿x轴负方向运动,点N从点A′出发,沿A′A方向运动,且点N的速度比点C慢.当点C到达点(-3,0)时,点C、N同时停止(自己在坐标系中完成图形).问:点N、C在运动过程中,的值是否变化?如不变,求其值;如变化,说明理由.(3分)NMHG FE D CBA4、学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)),从图中可知,小敏画平行线的依据有( ) ①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④5、如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠MND=50°,则∠GHM 的大小是 .6、如图1,已知AB ∥CD ,点M 、N 分别是AB 、CD 上两点,点G 在AB 、CD 之间(1)求证:∠BMG+∠GND=∠MGN.(2)如图2,点E是AB上方一点,MF平分∠AME,若点G恰好在MF的反向延长线上,且NE平分∠CNG,2∠E和∠G互余,求∠AME的大小(3)如图3,在(2)的条件下,若点P是EM上一动点,PQ平分∠MPN,NH平分∠PNC,交AB于点H,PJ∥NH当点P在线段EM上运动时,∠JPQ的度数是7、在平面直角坐标系中,点B(0,4),C(-5,4),点A是x轴负半轴上一点,S四边形AOBC=24. (1)线段BC的长为,点A的坐标为;(2)如图1,EA平分∠CAO,DA平分∠CAH,CF⊥AE点F,试给出∠ECF和∠DAH之间满足的数量关系式,并说明理由;A B C DACN(3)若点P 是在直线CB 和直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON 于N ,请依题意画出图形,给出BPO ∠和BNO ∠之间满足的数量关系式,并说明理由.8、江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.(1)设原计划租45座客车x 辆,七年级共有学生y 人,则y = (用含x 的式子表示);若租用60座客车,则y = (用含x 的式子表示); (2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?9、如图1,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,2),且221(24)0a b a b ++++-=.(1)求a ,b 的值;(2)①在x 轴的正半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标;②在坐标轴的其它位置是否存在点M ,使△COM 的面积=12△ABC 的面积仍然成立,若存在,请直接写出符合条件的点M 的坐标;(3)如图2,过点C 作CD ⊥y 轴交y 轴于点D ,点P 为线段CD 延长线上一动点,连接OP ,OE 平分∠AOP ,OF ⊥OE .当点P 运动时,的值是否会改变?若不变,求其值;若改变,说明理由.图2F EDCBA10、已知,四边形ABCD 中,AD ∥BC ,∠A =∠BCD =∠ABD ,DE 平分∠ADB ,下列说法:①AB ∥CD ;② ED ⊥CD ;③S △EDF =S △BCF .其中错误的说法有( )A .0个B .1个C .2个D .3个11、如图,直线EF ∥GH ,点B 、A 分别在直线EF 、GH 上,连接AB ,在AB 左侧作三角形ABC ,其中∠ACB = 90°,且∠DAB =∠BAC ,直线BD 平分∠FBC 交直线GH 于D . (1)若点C 恰在EF 上,如图1,则∠DBA =________.(2)将A 点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由.CABDFHEGCBFEGADH图1 图2(3)若将题目条件“∠ACB = 90°”,改为:“∠ACB = 120°”,其它条件不变,那么∠DBA = _________.(直接写出结果,不必证明) (2分)12、如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足02)2(2=-++b a ,过C 作CB ⊥x 轴于B . (1)求三角形ABC 的面积.(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.图1 图2 备用图13、已知∠AOB 和∠BOC 互为邻补角,且∠BOC >∠AOB . OD 平分∠AOB ,射线OE 使12BOE EOC ∠=∠,当∠DOE =72°时,则∠EOC 的度数为( )A .72°B .108°C .72°或108°D .以上都不对14、如图,点E 在直线BH 、DC 之间,点A 为BH 上一点,且AE ⊥CE ,∠DCE-∠HAE=90°.(1)求证:BH ∥CD.(2)如图:直线AF 交DC 于F ,AM 平分∠EAF ,AN 平分∠BAE.试探究∠MAN ,∠AFG 的数量关系.EHA BGC DBAH15、如图,点A(a,6)在第一象限,点B(0,b)在y轴负半轴上,且a,b满足:2a b-++=.(|4|0(1)求△AOB的面积.(2)若线段AB和x轴相交于点C,在点C的右侧,x轴的上是否存在点D,使S△ACD=S△BOC,若存在,求出D点坐标,若不存在,请说明理由.(3)若∠AOx轴=60°,射线OA绕O点以每秒4°的速度顺时针旋转到OA′,射线OB绕B 点以每秒10°的速度顺时针旋转到O′B,当OB转动一周时两者都停止运动. 若两射线同时开始运动,在旋转过程中,经过多长时间,OA′∥O′B?16、如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD , ∠ABO =40°,则下列结论:①OF 平分∠BOD ②∠POE =∠BOF ③∠BOE =70° ④∠POB =2∠DOF ,其中结论正确的序号是( ) A .①②③④ B .只有①③④ C .只有①②③ D .只有①④17、如图:已知在平面直角坐标系中点A (a ,b )点B (a ,0),且满足+=0.(1)求点A 、B 的坐标.(2)已知点C (0,b ),点P 从点B 出发沿x 轴正方向以1个单位每秒的速度移动,同时点Q 从点C 出发沿y 轴负方向以2个单位每秒的速度移动,某一时刻,如 图所示且S 阴=S 四边形OCAB ,求点P 移动的时间.FPEODCBA18、A.64B.49C.100D.81xy1-1-1119 20、21、AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不和B,D点重合).∠ABC=n°,∠ADC=80°.(1)若点B在点A的左侧,求∠BED的度数(用含n的代数式表示);(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.BAEDC22、长方形OABC,O为平面直角坐标系的原点,OA=5,OC=3,点B在第三象限.(1)求点B的坐标;(2)如图1,若过点B的直线BP和长方形OABC的边交于点P,且将长方形OABC的面积分为1:4两部分,求点P的坐标;(3)如图2,M为x轴负半轴上一点,且∠CBM=∠CMB,N是x轴正半轴上一动点,∠MCN的平分线CD交BM的延长线于点D,在点N运动的过程中,D CNM ∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.图1 图223、24、25、26、。
七年级数学下册专题08 期中-几何综合大题必刷(压轴题)(原卷版)
专题08 期中-几何综合大题必刷(压轴题)1.如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.(1)求∠BOD的度数;(2)将三角尺AOB以每秒3°的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).①当t为何值时,直线EF平分∠AOB;②若直线EF平分∠BOD,直接写出t的值.2.如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠CBM、∠NDC,判断BF与DG的位置关系,并说明理由.3.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM 时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过秒后边OC 与边ON互相垂直.(直接写出答案)4.【学科融合】物理学中把经过入射点O并垂直于反射面的直线ON叫做法线,入射光线与法线的夹角i叫做入射角,反射光线与法线的夹角r叫做反射角(如图①).由此可以归纳出如下的规律:在反射现象中,反射光线、入射光线和法线都在同一平面内;反射光线、入射光线分别位于法线两侧;反射角等于入射角.这就是光的反射定律(reflection law).【数学推理】如图1,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.由以上光的反射定律,可知入射角与反射角相等,进而可以推得他们的余角也相等,即:∠1=∠2,∠3=∠4.在这样的条件下,求证:AB∥CD.【尝试探究】两块平面镜OM,ON,且∠MON=α,入射光线AB经过两次反射,得到反射光线CD.(1)如图2,光线AB与CD相交于点E,则∠BEC=;(2)如图3,光线AB与CD所在的直线相交于点E,∠BED=β,则α与β之间满足的等量关系是.5.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.6.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B 射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.7.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.8.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:.9.(1)【问题】如图1,若AB∥CD,∠BEP=25°,∠PFC=150°.求∠EPF的度数;(2)【问题迁移】如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)【联想拓展】如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.10.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ 的度数;若不存在,请说明理由.11.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.12.已知:AB∥CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.13.已知M、N分别为直线AB,直线CD上的点,且AB∥CD,E在AB,CD之间.(1)如图1,求证:∠BME+∠DNE=∠MEN;(2)如图2,P是CD上一点,连PM,作MQ∥EN,若∠QMP=∠BME.试探究∠E与∠AMP的数量关系,并说明理由;(3)在(2)的条件下,作NG⊥CD交PM于G,若MP平分∠QME,NF平分∠ENG,若∠MGN=m°,∠MFN=n°,直接写出m与n的数量关系.14.如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.15.已知:如图,直线PQ∥MN,点C是PQ,MN之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1,∠2之间的数量关系.(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,给出下列两个结论:①的②∠GEN﹣∠BDF的值不变.其中只有一个是正确的,你认为哪个是正确的?并求出不变的值是多少.16.已知AB∥CD,解决下列问题:(1)如图①,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数.(2)如图②,若∠ABP=∠ABE,∠CDP=∠CDE,试写出∠P与∠E的数量关系并说明理由.(3)如图③,若∠ABP=∠ABE,∠CDP=∠CDE,设∠E=m°,求∠P的度数(直接用含n、m的代数式表示,不需说明理由).17.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.18.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,连接PM、PN、PQ,PQ平分∠MPN,如图①.(1)若∠PMA=α、∠PQC=β,求∠NPQ的度数(用含α,β的式子表示);(2)过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F,如图②,请你判断EF与PQ的位置关系,并说明理由;(3)在(2)的条件下,连接EN,如图③,若∠NEF=∠PMA,求证:NE平分∠PNQ.19.如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=∠AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.20.如图1,直线AB∥CD,直线EF交AB于点E,交CD于点F,点G和点H分别是直线AB和CD上的动点,作直线GH,EI平分∠AEF,HI平分∠CHG,EI与HI交于点I.(1)如图1,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠EIH的度数.(2)如图2,点G在点E的右侧,点H也在点F的右侧,若∠AEF=α,∠CHG=β,其他条件不变,求∠EIH的度数.(3)如图3,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG 的平分线EJ于点J.其他条件不变,若∠AEF=α,∠CHG=β,求∠EJH的度数.21.如图1,已知直线EF分别与直线AB,CD相交于点E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN平分∠MFD交EM的延长线于点N,且∠BEN与∠EFN的比为4:3,求∠N的度数.(3)如图3,若点H是射线EA之间一动点,FG平分∠HFE,过点G作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.22.已知直线AB∥CD,直线EF分别交AB、CD于A、C,CM是∠ACD的平分线,CM交AB于H,过A作AG⊥AC交CM于G.(1)如图1,点G在CH的延长线上时,①若∠GAB=36°,则∠MCD=.②猜想:∠GAB与∠MCD之间的数量关系是.(2)如图2,点G在CH上时,(1)②猜想的∠GAB与∠MCD之间的数量关系还成立吗?如果成立,请给出证明;如果不成立,请写出∠GAB与∠MCD之间的数量关系,并说明理由.23.已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E为平面内一点.(1)如图1,∠BME,∠E,∠END的数量关系为;(直接写出答案)(2)如图2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度数.(用含m的式子表示)(3)如图3点G为CD上一点,∠BMN=n•∠EMN,∠GEK=n•∠GEM,EH∥MN交AB于点H,探究∠GEK,∠BMN,∠GEH之间的数量关系(用含n的式子表示)24.如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP=∠BAC,∠DCP=∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ=∠BAP,∠DCQ=∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK的大小是否变化?若不变,求其值;若变化,求其取值范围.25.如图1,AB∥CD.G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2.若∠AEP=∠AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系;并证明你的结论.26.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,此时∠EOC的度数等于(直接写出答案即可);(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,求此时∠OCA度数.27.如图1,AB∥CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且∠EOF =80°.(1)求∠BEO+∠OFD的值;(2)如图2,直线MN分别交∠BEO、∠OFC的角平分线于点M、N,直接写出∠EMN ﹣∠FNM的值(3)如图3,EG在∠AEO内,∠AEG=m∠OEG;FH在∠DFO内,∠DFH=m∠OFH,直线MN分别交EG、FH分别于点M、N,且∠FMN﹣∠ENM=80°,直接写出m的值.28.已知,两直线AB,CD,且AB∥CD,点M,N分别在直线AB,CD上,放置一个足够大的直角三角尺,使得三角尺的两边EP,EQ分别经过点M,N,过点N作射线NF,使得∠ENF=∠ENC.(1)转动三角尺,如图①所示,当射线NF与NM重合,∠FND=45°时,求∠AME的度数;(2)转动三角尺,如图②所示,当射线NF与NM不重合,∠FND=60°时,求∠AME 的度数.(3)转动直角三角尺的过程中,请直接写出∠FND与∠AME之间的数量关系.29.已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.30.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.31.已知:AB∥CD,E、G是AB上的点,F、H是CD上的点,∠1=∠2.(1)如图1,求证:EF∥GH;(2)如图2,过F点作FM⊥GH交GH延长线于点M,作∠BEF、∠DFM的角平分线交于点N,EN交GH于点P,求证:∠N=45°;(3)如图3,在(2)的条件下,作∠AGH的角平分线交CD于点Q,若3∠FEN=4∠HFM,直接写出的值.32.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF 交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=56°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.33.如图1,G,E是直线AB上两点,点G在点E左侧,过点G的直线GP与过点E的直线EP交于点P.直线PE交直线CD于点H,满足点E在线段PH上,∠PGB+∠P=∠PHD.(1)求证:AB∥CD;(2)如图2,点Q在直线AB,CD之间,PH平分∠QHD,GF平分∠PGB,点F,G,Q在同一直线上,且2∠Q+∠P=120°,求∠QHD的度数;(3)在(2)的条件下,若点M是直线PG上一点,直线MH交直线AB于点N,点N 在点B左侧,请直接写出∠MNB和∠PHM的数量关系.(题中所有角都是大于0°且小于180°的角)34.已知,DE平分∠ADB交射线BC于点E,∠BDE=∠BED.(1)如图1,求证:AD∥BC;(2)如图2,点F是射线DA上一点,过点F作FG∥BD交射线BC于点G,点N是FG 上一点,连接NE,求证:∠DEN=∠ADE+∠ENG;(3)如图3,在(2)的条件下,连接DN,点P为BD延长线上一点,DM平分∠BDE 交BE于点M,若DN平分∠PDM,DE⊥EN,∠DBC﹣∠DNE=∠FDN,求∠EDN的度数.35.综合应用题:如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),P A、PB与直线MN重合,且三角板P AC,三角板PBD均可以绕点P逆时针旋转.(1)∠DPC=;(2)如图②,若三角板PBD保持不动,三角板∠P AC绕点P逆时针旋转,转速为10°/秒,转动一周三角板P AC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC ∥DB成立;(3)如图③,在图①基础上,若三角板P AC的边P A从PN.处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?36.已知E,F分别是AB、CD上的动点,P也为一动点.(1)如图1,若AB∥CD,求证:∠P=∠BEP+∠PFD;(2)如图2,若∠P=∠PFD﹣∠BEP,求证:AB∥CD;(3)如图3,AB∥CD,移动E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.37.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2°,灯B转动的速度是每秒1°.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C,且∠ACB=120°,则在灯B射线到达BQ之前,转动的时间为秒.38.已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.(1)【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分)证明:过点G作直线MN∥AB,又∵AB∥CD,∴∥CD∵MN∥AB,∴∠=∠MGA.∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(2)【类比探究】如图2,当点G在线段EF延长线上时,请写出∠AGD、∠A、∠D三者之间的数量关系,并说明理由.(3)【应用拓展】如图3,AH平分∠GAE,DH交AH于点H,且∠GDH=2∠HDF,∠HDF=22°,∠H=32°,直接写出∠DGA的度数为°.39.如图1,直线AB、CD被直线EF截,分别交AB于点G,交CD于点H,∠AGE与∠EHC互补.(1)求证:AB∥CD;(2)如图2,点P在直线AB、CD内部直线EF上,点M、N分别在直线AB、CD上,连接PM、PN,点K在∠PMB的角平分线上,连接KN,若∠MKN=180°∠MPN,求证:∠PNK=∠CNK;(3)如图3,在(2)的条件下,点O为AB上一点,连接ON、MN,MN平分∠PNO,若∠MNK:∠PMK=2:7,2∠MKN﹣∠PNO=180°,求∠NOM的度数.40.已知,AB∥CD,点F、G分别在AB、CD上,且点E为射线FG上一点.(1)如图1:当点E在线段FG上时,连接AE、DE,易得∠AED=∠EAF+∠EDG.小明给出的理由是:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,(平行于同一条直线的两条直线互相平行)∴∠EAF=∠AEH,∠EDG=∠DEH,(依据1)∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(依据2)填空:依据1:.依据2:.(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.41.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠P AC=50°,∠ADC=30°,AE平分∠P AD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠P AC=50°,∠A1D1C=30°,求∠A1EC 的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.42.阅读下面材料:小亮遇到这样问题:如图1,已知AB∥CD,EOF是直线AB、CD间的一条折线.判断∠O、∠BEO、∠DFO三个角之间的数量关系.小亮通过思考发现:过点O作OP∥AB,通过构造内错角,可使问题得到解决.请回答:∠O、∠BEO、∠DFO三个角之间的数量关系是.参考小亮思考问题的方法,解决问题:(2)如图2,将△ABC沿BA方向平移到△DEF(B、D、E共线),∠B=50°,AC与DF相交于点G,GP、EP分别平分∠CGF、∠DEF相交于点P,求∠P的度数;(3)如图3,直线m∥n,点B、F在直线m上,点E、C在直线n上,连接FE并延长至点A,连接BA、BC和CA,作∠CBF和∠CEF的平分线交于点M,若∠ADC=α,则∠M=(直接用含α的式子表示).。
【压轴题】初一数学下期中试题(带答案)
【压轴题】初一数学下期中试题(带答案)一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm2.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°3.不等式x+1≥2的解集在数轴上表示正确的是( ) A . B . C .D .4.在平面直角坐标系xOy 中,对于点(),P a b 和点(),Q a b ',给出下列定义:若()()11b a b b a ⎧≥⎪=<'⎨-⎪⎩,则称点Q 为点P 的限变点,例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--,如果一个点的限变点的坐标是)3,1-,那个这个点的坐标是( ) A .(3-B .()3,1--C .)3,1-D .)3,15.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a (a >1),那么所得的图案与原图案相比( ) A .形状不变,大小扩大到原来的a 倍 B .图案向右平移了a 个单位长度C .图案向左平移了a 个单位长度,并且向下平移了a 个单位长度D .图案向右平移了a 个单位长度,并且向上平移了a 个单位长度6.若10x x y -++=,则xy 的值为( ) A .0 B .1C .-1D .27.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EFD .当BOC 140∠=︒时,BF//DE 8.若x y <,则下列不等式中成立的是( )A .11x y ->-B .22x y -<-C .22x y < D .3232x y -<-9.请你观察、思考下列计算过程:因为112=121,所以121=11:,因为1112=12321所以12321=111…,由此猜想12345678987654321=( )A .111111B .1111111C .11111111D .11111111110.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠811.已知关于x ,y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则n-m 的值是( )A .6B .3C .-2D .1 12.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ 。
期中选择题必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版
选择题必刷常考题【基础题必考】1.(2022•义乌市校级开学)把弯曲的公路改直,就能够缩短路程,这样设计的依据是()A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.连结直线外一点与直线上各点的所有连线中,垂线段最短【答案】B【解答】解:由线段的性质可知,把弯曲的公路改直,能够缩短车辆行驶的路程,这样做根据的道理是:两点之间线段最短,故选:B.2.(2021秋•临汾期末)九曲桥是我国经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光,如图,某两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是()A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.过一点有且只有一条直线与已知直线垂直【答案】C【解答】解:某两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是:两点之间,线段最短,故选:C.3.(2022春•源汇区校级月考)近段时间,以熊猫为原型的2022北京冬奥会吉祥物“冰墩墩”成了全网“顶流”.如图,通过平移如图吉祥物“冰墩墩”可以得到的图形是()A.B.C.D.【答案】B【解答】解:通过平移吉祥物“冰墩墩”可以得到的图形为.故选:B.4.(2022春•牡丹区月考)下面四个图形中,∠1与∠2是对顶角的图形是()A.B.C.D.【答案】C【解答】解:根据对顶角的定义可知:只有C选项中的是对顶角,其它都不是.故选:C.5.(2022春•虞城县月考)如图,在道路附近有一疫情重灾区,现需要紧挨道路选一点建临时防控指挥部,且使此重灾区到临时防控指挥部的距离最短,则此点是()A.A点B.B点C.C点D.D点【答案】A【解答】解:由题意可知,A点到此重灾区到临时防控指挥部的距离最短,故选:A.6.(2022春•虞城县月考)点A,B,C为直线l上三点,点P为直线外一点,若P A=4cm,PB=2cm,PC=3cm,那么点P到直线的距离可能是()A.5cm B.4cm C.3cm D.2cm【答案】D【解答】解:因为垂线段最短,所以点P到直线l的距离为不大于2cm.故选:D.7.(2021秋•鼓楼区校级期末)下列说法正确的是()A.不相交的两条直线叫做平行线B.同一平面内,过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线【答案】B【解答】解:A.应强调在同一平面内,错误;B.同一平面内,过一点有且仅有一条直线与已知直线垂直,正确;C.直线与角是不同的两个概念,错误;D.过同一平面内三点中任意两点,能画出3条直线或1条直线,故错误.故选:B.8.(2022春•鹿邑县月考)如图,两条直线相交于一点,如果∠1+∠3=60°,则∠2的度数是()A.150°B.120°C.60°D.30°【答案】A【解答】解:∵∠1+∠3=60°,∠1=∠3,∴∠1=∠3=30°,又∵∠2+∠3=180°,∴∠2=180°﹣30°=150°,故选:A.9.(2022春•崇川区校级月考)如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是()A.两点确定一条直线B.垂线段最短C.同一平面内,过一点有且只有一条直线与已知直线垂直D.已知直线的垂线只有一条【答案】C【解答】解:在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是:同一平面内,过一点有且只有一条直线与已知直线垂直.故选:C10.(2022春•朔州月考)如图,已知直线EF,CD相交于点O,OA⊥OB,OC平分∠AOF,若∠AOE=40°,则∠BOD的度数为()A.10°B.20°C.25°D.30°【答案】B【解答】解:∵OA⊥OB,∴∠AOB=90°,又∵∠AOE=40°,∴∠AOF=180°﹣40°=140°,又∵OC平分∠AOF,∴∠AOC=×140°=70°,∴∠BOD=180°﹣90°﹣70°=20°.故选:B.11.(2020•运城模拟)如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【答案】C【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选:C.12.(2015•重庆)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵点的横坐标﹣3<0,纵坐标2>0,∴这个点在第二象限.故选:B.13.(2015•宝应县校级模拟)点P(m+3,m﹣1)在x轴上,则点P的坐标为()A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)【答案】C【解答】解:∵点P(m+3,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:C.14.(2015•日照)4的算术平方根是()A.B.±2C.2D.±【答案】C【解答】解:4的算术平方根是2.故选:C.15.(2021•商河县校级模拟)若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣5【答案】B【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.16.(2015•枣庄)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c 【答案】D【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.17.(2016•毕节市)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【答案】B【解答】解:∵2=<=3,∴3<<4,故选:B.18.(2015•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【答案】A【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选:A.19.(2020•徐州模拟)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.20.(2021•商河县校级模拟)若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1B.1C.5D.﹣5【答案】A【解答】解:由题意,得x=2,y=﹣3,x+y=2+(﹣3)=﹣1,故选:A.21.(2019•通辽)的平方根是()A.±4B.4C.±2D.+2【答案】C【解答】解:=4,±=±2,故选:C.22.(2016•毕节市)的算术平方根是()A.2B.±2C.D.【答案】C【解答】解:=2,2的算术平方根是.故选:C.23.(2021•玉州区二模)若0<a<1,则a,,a2从小到大排列正确的是()A.a2<a<B.a<<a2C.<a<a2D.a<a2<【答案】A【解答】解:∵0<a<1,∴设a=,=2,a2=,∵<<2,∴a2<a<.故选:A.24.(2021秋•卫辉市期末)如图,AB∥ED,∠B=115°,∠D=120°,则∠BCD的度数为()A.125°B.135°C.115°D.105°【答案】A【解答】解:如图,过点C作CM∥AB,∵AB∥ED,∴CM∥AB∥ED,∴∠B+∠BCM=180°,∠D+∠DCM=180°,∵∠B=115°,∠D=120°,∴∠BCM=65°,∠DCM=60°,∴∠BCD=∠BCM+∠DCM=125°,故选:A.25.(2022春•定海区校级月考)在下面四个数中,是无理数的是()A.3.1415B.C.D.【答案】B【解答】解:A.3.1415是有限小数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.是分数,属于有理数,故本选项不合题意;D.,是整数,属于有理数,故本选项不合题意.故选:B.26.(2022春•孝义市月考)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的方向可能是()A.第一次右转40°,第二次右转50°B.第一次右转40°,第二次左转50°C.第一次右转40°,第二次左转140°D.第一次右转40°,第二次左转40°【答案】D【解答】解:如图,两次拐弯后,仍在原来的方向上平行行驶,即转弯前与转弯后的道路是平行的,因而右转的角与左转的角应相等,理由是两直线平行,同位角相等.故选:D.27.(2022•淮北模拟)如图,有一个角为30°的直角三角板放置在一个长方形直尺上,若∠1=18°,则∠2的度数为()A.162°B.142°C.138°D.135°【答案】C【解答】解:如图,由题意得:∠E=90°,∠A=30°,DF∥BC,∴∠EDF=∠ECB,∵∠ECB是△ABC的外角,∴∠ECB=∠A+∠1=48°,∴∠EDF=48°,∵∠2是△DEF的外角,∴∠2=∠E+∠EDF=138°.故选:C.28.(2022春•鹿邑县月考)下列语句中是真命题的是()A.对顶角相等吗?B.内错角相等C.直角都是90°D.等角的补角互余【答案】C【解答】解:A、对顶角相等吗?不是命题,不符合题意;B、两直线平行,内错角相等,故本选项说法是假命题,不符合题意;C、直角都是90°,是真命题,本选项符合题意;D、等角的补角相等,故本选项说法是假命题,不符合题意;故选:C.29.(2021秋•开福区校级期末)如图,△ABC沿BC方向平移到△DEF的位置,若BE=3cm,则平移的距离为()A.1cm B.2cm C.3cm D.4cm【答案】C【解答】解:△ABC沿BC方向平移到△DEF的位置,若BE=3cm,则平移的距离为3cm,故选:C.30.(2021秋•浚县期末)如图,下列不能判定DE∥BC的条件是()A.∠B=∠ADE B.∠2=∠4C.∠1=∠3D.∠ACB+∠DEC=180°【答案】C【解答】解:A、∠B=∠ADE,能判定DE∥BC,不符合题意;B、∠2=∠4,能判定DE∥BC,不符合题意;C、∠1=∠3,能判定DF∥EC,符合题意;D、∠ACB+∠DEC=180°,能判定DE∥BC,不符合题意.故选:C.31.(2022春•江油市月考)如图,要使AD∥BC,则需要添加的条件是()A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°【答案】A【解答】解:A、∵∠A=∠CBE,∴AD∥BF,符合题意;B、由∠A=∠C无法得到AD,不符合题意;C、由∠C=∠CBE,只能得到AB∥CD,无法得到AD∥BF,不符合题意;D、由∠A+∠D=180°,只能得到AB∥CD,无法得到AD∥BF,不符合题意;故选:A.32.(2021秋•泌阳县期末)如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②【答案】A【解答】解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.33.(2021春•老河口市期末)点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)【答案】D【解答】解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=±(3a+6)解得a=﹣1或a=﹣4,即点P的坐标为(3,3)或(6,﹣6).故选:D.34.(2020秋•三明期末)在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为()A.(4,﹣6)B.(﹣4,6)C.(﹣6,4)D.(﹣6,﹣4)【答案】A【解答】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,﹣6).故选:A35.(2021•柳南区校级模拟)如果≈1.333,≈2.872,那么约等于()A.28.72B.0.2872C.13.33D.0.1333【答案】C【解答】解:∵≈1.333,∴=≈1.333×10=13.33.故选:C.36.(2021秋•覃塘区期末)如图,已知直线AB与CD相交于点O,OE平分∠AOD,∠EOF =90°.对于下列结论:①∠BOC=2∠AOE;②OF平分∠BOD;③∠AOE是∠BOF的余角;④∠AOE是∠COE的补角.其中正确结论的个数是()A.1B.2C.3D.4【答案】D【解答】解:∵直线AB与CD相交于点O,∴∠AOD=∠BOC,∵OE平分∠AOD,∴∠AOD=2∠AOE=2∠DOE,∴∠BOC=2∠AOE,故①正确;∵∠EOF=90°,∴∠EOD+∠DOF=90°,∠AOE+∠BOF=90°,即∠AOE是∠BOF的余角,故③正确;∴∠FOD=∠BOF,∴OF平分∠BOD,故②∵∠AOE=∠DOE,∠DOE+∠COE=180°,∴∠COE+∠AOE=180°,即∠AOE是∠COE的补角,故④正确,故选:D.。
浙教版七年级数学下册期中选填压轴题专项训练(30道)(学生版)
专题7.2 期中选填压轴题专项训练(30道)【浙教版】一.选择题(共16小题)1.(2021春•余杭区期中)在关于x ,y 的二元一次方程组{x −2y =a +63x +y =2a的下列说法中,正确的是( ) ①当a =3时,方程的两根互为相反数;②当且仅当a =﹣4时,解得x 与y 相等;③x ,y 满足关系式x +5y =﹣12;④若9x •27y =81,则a =10.A .①③B .①②C .①②③D .①②③④2.(2021•宁波校级期中)如图①,现有边长为b 和a +b 的正方形纸片各一张,长和宽分别为b ,a 的长方形纸片一张,其中a <b .把纸片Ⅰ,Ⅲ按图②所示的方式放入纸片Ⅱ内,已知图②中阴影部分的面积满足S 1=6S 2,则a ,b 满足的关系式为( )A .3b =4aB .2b =3aC .3b =5aD .b =2a3.(2021春•下城区期中)如图,长为12,宽为m 的长方形,被7个大小相同的边长分别为a ,b 的小长方形分割成对称的图案(图中每个小于平角的角都为直角),则下列选项正确的是( )①{4a +3b =12,2a +2b =m; ②{b =2m −12,a =12−32m ; ③若m =8,则{b =4,a =0; ④若m 为正整数,则a ,b 不可能同时为正整数.A .①②④B .②③④C .①②③D .①③④ 4.(2021春•拱墅区校级期中)已知a =2﹣55,b =3﹣44,c =4﹣33,d =5﹣22,则这四个数从小到大排列顺序是( ) A .a <b <c <d B .d <a <c <b C .a <d <c <b D .b <c <a <d5.(2021春•奉化区校级期中)如图,已知长方形纸片ABCD,点E,H在AD边上,点F,G在BC边上,分别沿EF,GH折叠,使点B和点C都落在点P处,若∠FEH+∠EHG=118°,则∠FPG的度数为()A.54°B.55°C.56°D.57°6.(2021秋•南昌县期中)已知a,b,c为自然数,且满足2a×3b×4c=192,则a+b+c的取值不可能是()A.5B.6C.7D.87.(2021春•下城区校级期中)如图a∥b,c与a相交,d与b相交,下列说法:①若∠1=∠2,则∠3=∠4;②若∠1+∠4=180°,则c∥d;③∠4﹣∠2=∠3﹣∠1;④∠1+∠2+∠3+∠4=360°,正确的有()A.①③④B.①②③C.①②④D.②③8.(2021•遵义期中)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2cm2B.2acm2C.4acm2D.(a2﹣1)cm29.(2021春•济南期中)如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形AB纸片均无重叠部分)则图3阴影部分面积()A.22B.24C.42D.4410.(2021春•饶平县校级期中)如图,已知AB∥EG,BC∥DE,CD∥EF,则x、y、z三者之间的关系是()A .x +y +z =180°B .x ﹣z =yC .y ﹣x =zD .y ﹣x =x ﹣z11.(2021秋•牡丹区期中)如图,长为y (cm ),宽为x (cm )的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm ,下列说法中正确的是( )①小长方形的较长边为y ﹣12;②阴影A 的较短边和阴影B 的较短边之和为x ﹣y +4;③若x 为定值,则阴影A 和阴影B 的周长和为定值;④当x =20时,阴影A 和阴影B 的面积和为定值.A .①③B .②④C .①③④D .①④12.(2021春•拱墅区期中)用若干个形状,大小完全相同的长方形纸片围成正方形,4个长方形纸片围成如图1所示的正方形,其阴影部分的面积为81;8个长方形纸片围成如图2所示的正方形,其阴影部分的面积为64;12个长方形纸片围成如图3所示的正方形,其阴影部分的面积为( )A .22B .24C .32D .4913.(2021春•奉化区校级期中)已知关于x ,y 的方程组{x +2y =5−2a x −y =4a −1给出下列结论: ①当a =1时,方程组的解也是x +y =2a +1的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 都为自然数的解有4对;④若2x +y =8,则a =2.正确的有几个( )A .1B .2C .3D .414.(2021春•李沧区期中)如图,直线AB ∥CD ,直线AB ,EG 交于点F ,直线CD ,PM 交于点N ,∠FGH =90°,∠CNP =30°,∠EF A =α,∠GHM =β,∠HMN =γ,则下列结论正确的是( )A .β=α+γB .α+β+γ=120°C .α+β﹣γ=60°D .β+γ﹣α=60°15.(2021春•西湖区校级期中)已知关于x ,y 的方程组{x +2y =k 2x +3y =3k −1以下结论:①当k =0时,方程组的解也是方程x ﹣2y =﹣4的解;②存在实数k ,使得x +y =0;③不论k 取什么实数,x +3y 的值始终不变;④若3x +2y =6则k =1.其中正确的是( )A .①②③B .①②④C .①③④D .①④16.(2021春•福山区期中)用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m +n 的值可能是( )A .200B .201C .202D .203二.填空题(共14小题)17.(2021春•奉化区校级期中)将一条两边互相平行的纸带沿EF 折叠,如图(1),AD ∥BC ,ED '∥FC ',设∠AED '=x °(1)∠EFB = .(用含x 的代数式表示)(2)若将图1继续沿BF 折叠成图(2),∠EFC ″= .(用含x 的代数式表示).18.(2021春•龙岗区期中)观察下列图形:已知a ∥b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律,∠1+∠2+∠P 1+…+∠P n = 度.19.(2021春•奉化区校级期中)已知D 是△ABC 的边BC 所在直线上的一点,与B ,C 不重合,过D 分别作DF ∥AC 交AB 所在直线于F ,DE ∥AB 交AC 所在直线于E .若∠B +∠C =105°,则∠FDE 的度数是 .20.(2021春•拱墅区校级期中)我国南宋时期杰出的数学家杨辉是钱塘人,如下是他在《详解九章算术》中记载的“杨辉三角”,此图揭示了(a +b )n (n 为非负整数)的展开式的项数及各项系数的有关规律.由此规律可解决如下问题:假如今天是星期三,再过7天还是星期三,那么再过82021天是星期 .(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 421.(2021春•鹿城区校级期中)在“妙折生平﹣﹣折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC ,∠B =30°,∠C =50°,点D 是AB 边上的固定点(BD <12AB ),请在BC 上找一点E ,将纸片沿DE 折叠(DE 为折痕),点B 落在点F 处,使EF 与三角形ABC 的一边平行,则∠BDE 为 度.22.(2021秋•东西湖区期中)如图,把五个长为b 、宽为a 的小长方形,按图1和图2两种方式放在一个宽为m 的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C 1,图2中阴影部分的周长为C 2,若大长方形的长比宽大(6﹣a ),则C 2﹣C 1的值为 .23.(2020•拱墅区期中)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 . 24.(2021春•宁波期中)如果a ﹣3b ﹣2=0,那么:3a 2+27b 2﹣5a +15b ﹣18ab = .25.(2021春•扶沟县期中)已知关于x ,y 的方程组{ax −by =13cx +dy =30.9的解为{x =8.3y =1.2,则关于x ,y 的方程组{a(x +2)−by +b =13c(x +2)+dy −d =30.9的解为: . 26.(2021春•崇川区校级期中)已知关于x ,y 的二元一次方程(m +1)x +(2m ﹣1)y +2﹣m =0,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是 .27.(2021春•西湖区校级期中)已知关于x ,y 的方程组{x +2y =k 2x +3y =3k −1,给出下列结论:①当k =2时,{x =4y =−1是方程组的解;②当k =12时,x ,y 的值互为相反数;③若2x •8y =2z ,则z =1;④若方程组的解也是方程x +y =2﹣k 的解,则k =1.其中正确的是 (填写正确结论的序号).28.(2021春•奉化区校级期中)如图,直线l 1⊥直线l 2,垂足为O ,Rt △ABC 如图放置,过点B 作BD ∥AC 交直线l 2于点D ,在△ABC 内取一点E ,连接AE ,DE .(1)若∠CAE =15°,∠EDB =25°,则∠AED = .(2)若∠EAC =1n ∠CAB ,∠EDB =1n∠ODB ,则∠AED = °.(用含n 的代数式表示)29.(2021春•奉化区校级期中)定义一种新的运算:a ☆b =2a ﹣b ,例如:3☆(﹣1)=2×3﹣(﹣1)=7,那么(1)若(﹣2)☆b =﹣16,那么b = ;(2)若a ☆b =0,且关于x ,y 的二元一次方程(a ﹣1)x +by +5﹣2a =0,当a ,b 取不同值时,方程都有一个公共解,那么这个公共解为 .30.(2021春•奉化区校级期中)关于x ,y 的方程组{a 2x +b 2y =1+2ab b 2x +a 2y =1−2ab的解为{x =2y =1,则①a 2+b 2= . ②关于x ,y 的方程组{a 2(x −1)+b 2(y −1)=12+ab b 2(x −1)+a 2(y −1)=12−ab 的解为 .。
二元一次方程组压轴题必练七年级数学下学期期中期末满分必刷常考压轴题人教版
专题04 二元一次方程组压轴题必练选择题必练1.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有( )A.3种B.4种C.5种D.6种2.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A.7,6,1,4B.6,4,1,7C.4,6,1,7D.1,6,4,7 3.小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是( )A.37B.27C.23D.204.(2021秋•砚山县期末)已知是二元一次方程组的解,则m﹣n的值是( )A.﹣2B.﹣3C.1D.﹣45.(2021秋•玉门市期末)如果关于x,y的方程组与的解相同,则a+b的值( )A.1B.2C.﹣1D.0填空题必练6.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=.7.由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x名(其中x>5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,且将机器人每天工作时间延长至12小时,并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工 个包裹.8.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.9.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.10.已知方程组的解是,则方程组的解是.11.某旅行社安排一批游客乘坐景区观光车游览,若每辆观光车坐18人,剩余3人,若少安排一辆观光车,通过车辆包座(每辆观光车极限搭载26人),则所有游客正好平分乘坐到各车上.这次旅行共有客人.解答题必练12.已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a、b计算,求原方程组的解.13.某商店从某公司批发部购100件A种商品,80件B种商品,共花去2800元.在商店零售时,每件A种商品加价15%,每件B种商品加价10%,这样全部卖出后共收入3140元,问A、B两种商品买入时的单价各为多少元?14.阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,6)哪个点为“爱心点”,并说明理由;(2)若点C(a,﹣8)也是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.15.阅读以下内容:已知实数m,n满足m+n=5,且求k的值,三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值、乙同学:将原方程组中的两个方程相加,再求k的值丙同学:先解方程组,再求k的值(1)试选择其中一名同学的思路,解答此题(2)试说明在关于x、y的方程组中,不论a取什么实数,x+y的值始终不变.16.已知关于x、y的二元一次方程组.(1)当k=1时,解这个方程组;(2)若﹣1<k≤1,设S=x﹣8y,求S的取值范围.17.为方便市民出行,减轻城市中心交通压力,佛山市掀起新一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁2、3号线,已知修建地铁2号线32千米和3号线66千米共投资581.6亿元;且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3号线外,佛山市政府规划未来五年,还要再建168千米的地铁线网.据预算,这168千米地铁线网每千米的平均造价是3号线每千米的平均造价的1.2倍,则还需投资多少亿元?18.某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省钱的租车方案,并求出最少租金.19.如果关于x、y的二元一次方程组的解是,不求a,b的值,你能否求关于x、y的二元一次方程组的解?如果能,请求出方程组的解.20.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:cm)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材张,B型板材张;②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y个,求x、y的值.21.当a,b都是实数,且满足2a﹣b=6,就称点P(a﹣1,+1)为完美点.(1)判断点A(2,3)是否为完美点.(2)已知关于x,y的方程组,当m为何值时,以方程组的解为坐标的点B(x,y)是完美点,请说明理由.22.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?专题04 二元一次方程组压轴题必练选择题必练1.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有( )A.3种B.4种C.5种D.6种【答案】D【解答】解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得7x+5y≤50,∵x≥3,y≥3,∴当x=3,y=3时,7×3+5×3=36<50,当x=3,y=4时,7×3+5×4=41<50,当x=3,y=5时,7×3+5×5=46<50,当x=3,y=6时,7×3+5×6=51>50舍去,当x=4,y=3时,7×4+5×3=43<50,当x=4,y=4时,7×4+5×4=48<50,当x=4,y=5时,7×4+5×5=53>50舍去,当x=5,y=3时,7×5+5×3=50=50,综上所述,共有6种购买方案.故选:D.2.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A.7,6,1,4B.6,4,1,7C.4,6,1,7D.1,6,4,7【答案】B【解答】解:依题意,得,解得.∴明文为:6,4,1,7.故选:B.3.小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是( )A.37B.27C.23D.20【答案】A【解答】解:由题意得,5a+19b=213,∴a=,∴a+b=+b=,∵a+b是关于b的一次函数且a+b随b的增大而减小,∴当b最小时,a+b取最大值,又∵a,b是正整数,∴当b=2时,a+b的最大值=37.故选:A.4.(2021秋•砚山县期末)已知是二元一次方程组的解,则m﹣n的值是( )A.﹣2B.﹣3C.1D.﹣4【答案】B【解答】解:把方程组的解代入方程组得,解得,∴m﹣n=﹣4+1=﹣3,故选:B.5.(2021秋•玉门市期末)如果关于x,y的方程组与的解相同,则a+b的值( )A.1B.2C.﹣1D.0【答案】A【解答】解:∵方程组与的解相同,∴方程组的解与方程组的解相同,∴方程组,①+②得,b(x+y)+a(x+y)=7,∴7a+7b=7,∴a+b=1,故选:A.填空题必练6.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b= .【答案】109【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.7.由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x名(其中x>5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,且将机器人每天工作时间延长至12小时,并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工 个包裹.【答案】864【解答】解:设工人每小时加工y个包裹,则改造前机器人每小时加工2y个包裹,改造后机器人每小时加工(2y+x)个包裹,依题意,得:12(x+2)(2y+x)=6×8xy,∴x2+4y﹣2xy+2x=0,∴y===+=+=+3+,∵x是大于5的整数,y是整数,∴x=6,y=6,∴该仓库平时一天加工6×6×8+6×12×8=864(个),故答案为864.8.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是cm.【答案】20【解答】解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为55cm,故可列x+y=55,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为30×=20cm.故填20.9.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.【答案】4380【解答】解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580,③由②得,x+z=150④,③+④,得4x+2y+3z==730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故答案为:4380.10.已知方程组的解是,则方程组的解是.【答案】【解答】解:方程组转化为;∴由恒等式意义,得∴x=3,y=9∴方程组的解为故答案为11.某旅行社安排一批游客乘坐景区观光车游览,若每辆观光车坐18人,剩余3人,若少安排一辆观光车,通过车辆包座(每辆观光车极限搭载26人),则所有游客正好平分乘坐到各车上.这次旅行共有客 人.【答案】75或147或399【解答】解:设原计划安排x辆车,根据题意,得为整数,且≤26,==18+,∴x﹣1=1,3,7,21,经检验x﹣1=1,不符合题意,舍去,∴x﹣1=3,7,21,∴x=4,8,22,所以这次的游客人数为:18×4+3=75,或18×8+3=147,或18×22+3=399,经检验可知,游客为75人或147人或399人都符合题意.故答案为75或147或399.解答题必练12.已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a、b计算,求原方程组的解.【解答】解:把代入(2)得:﹣12﹣b=﹣2,解得:b=﹣10,把代入(1)得:a+10=15,解得:a=5,即方程组为:,(1)×2﹣(2)得:6x=32,解得:x=,把x=代入(1)得:+5y=15,解得:y=﹣,即原方程组的解为:13.某商店从某公司批发部购100件A种商品,80件B种商品,共花去2800元.在商店零售时,每件A种商品加价15%,每件B种商品加价10%,这样全部卖出后共收入3140元,问A、B两种商品买入时的单价各为多少元?【解答】解:设A商品买入时的单价为x元,B商品买入时的单价为y元,由题意得,,解得:.答:A商品买入时的单价为12元,B商品买入时的单价为20元.14.阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,6)哪个点为“爱心点”,并说明理由;(2)若点C(a,﹣8)也是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.【解答】解:(1)点A是爱心点,点B不是爱心点,理由如下:∵,∴,∵2×6=8+4,∴点A是爱心点;∵,∴,∵2×5≠8+10,∴点B不是爱心点;(2)∵点C为爱心点,∴,∴n=﹣18,又∵2m=8+n,∴2m=8+(﹣18),解得m=﹣5,∴﹣5﹣1=a,即a=﹣6;(3)解方程组得,又∵点B是爱心点满足:,∴,∵2m=8+n,∴2 p﹣2q+2=8+4q﹣2,整理得:2 p﹣6q=4,∵p,q是有理数,∴p=0,﹣6q=4,∴p=0,q=﹣.15.阅读以下内容:已知实数m,n满足m+n=5,且求k的值,三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值、乙同学:将原方程组中的两个方程相加,再求k的值丙同学:先解方程组,再求k的值(1)试选择其中一名同学的思路,解答此题(2)试说明在关于x、y的方程组中,不论a取什么实数,x+y的值始终不变.【解答】解:(1),①+②得到,17(m+n)=11k﹣3,∵m+n=5,∴17×5=11k﹣3解得k=8.(2)①×3+②得到:4x+4y=12,∴x+y=3,∴不论a取什么实数,x+y的值始终不变.16.已知关于x、y的二元一次方程组.(1)当k=1时,解这个方程组;(2)若﹣1<k≤1,设S=x﹣8y,求S的取值范围.【解答】解:(1)k=1时,方程组为,②×2得,2x+6y=10③,③﹣①得,11y=11,解得y=1,将y=1代入②得,x+3=5,解得x=2,所以,方程组的解是;(2),①﹣②得,x﹣8y=﹣3k﹣3,∵﹣1<k≤1,∴﹣3≤﹣3k<3,﹣6≤﹣3k﹣3<0,∴S的取值范围是﹣6≤S<0.17.为方便市民出行,减轻城市中心交通压力,佛山市掀起新一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁2、3号线,已知修建地铁2号线32千米和3号线66千米共投资581.6亿元;且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3号线外,佛山市政府规划未来五年,还要再建168千米的地铁线网.据预算,这168千米地铁线网每千米的平均造价是3号线每千米的平均造价的1.2倍,则还需投资多少亿元?【解答】解:(1)设2号线每千米的平均造价是x亿元,3号线每千米的平均造价是y 亿元,由题意得出:,解得:,答:2号线每千米的平均造价是5.8亿元,3号线每千米的平均造价是6亿元;(2)由(1)得出:168×6×1.2=1209.6(亿元),答:还需投资1209.6亿元.18.某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省钱的租车方案,并求出最少租金.【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,据题意:,解得:,答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:150×20=3000(元),方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.19.如果关于x、y的二元一次方程组的解是,不求a,b的值,你能否求关于x、y的二元一次方程组的解?如果能,请求出方程组的解.【解答】解:根据题意可得,解得:.20.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:cm)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材张,B型板材张;②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y个,求x、y的值.【解答】解:(1)由题意得:,解得:,答:图甲中a与b的值分别为:60、40;(2)①由图示裁法一产生A型板材为:2×30=60,裁法二产生A型板材为:1×4=4,所以两种裁法共产生A型板材为60+4=64(张),由图示裁法一产生B型板材为:1×30=30,裁法二产生A型板材为,2×4=8,所以两种裁法共产生B型板材为30+8=38(张),故答案为:64,38;②根据题意竖式有盖礼品盒的x个,横式无盖礼品盒的y个,则A型板材需要(4x+3y)个,B型板材需要(2x+2y)个,所以,解得.21.当a,b都是实数,且满足2a﹣b=6,就称点P(a﹣1,+1)为完美点.(1)判断点A(2,3)是否为完美点.(2)已知关于x,y的方程组,当m为何值时,以方程组的解为坐标的点B(x,y)是完美点,请说明理由.【解答】解:(1)a﹣1=2,可得a=3,+1=3,可得b=4,∵2a﹣b≠6,∴A(2,3)不是完美点.(2)∵,∴,3+m=a﹣1,可得a=m+4,3﹣m=+1,可得b=4﹣2m,∵2a﹣b=6,∴2m+8﹣4+2m=6,∴m=,∴当m=时,点B(x,y)是完美点.22.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【解答】解:(1)设每名熟练工每月可以安装x辆电动汽车,新工人每月分别安装y辆电动汽车,根据题意得,解之得.答:每名熟练工每月可以安装4辆电动汽车,新工人每月分别安装2辆电动汽车;(2)设调熟练工m人,由题意得,12(4m+2n)=240,整理得,n=10﹣2m,∵0<n<10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.。
压轴题训练(一)(解析版)-2020-2021学年七年级数学下学期期中考试压轴题专练(北师大版)
2021年七下期中考试金牌压轴题训练(一)(时间:60分钟 总分:100) 班级 姓名 得分 一、单选题1.在矩形ABCD 内将两张边长分别为a 和()b a b >的正方形纸片按图1和图2两种方式放置(图1和图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当4AD AB -=时,21S S -的值为( )A .4aB .4bC .44a b -D .5b【答案】B 【分析】利用面积的和差分别表示出1S 和2S ,然后利用整式的混合运算计算它们的差. 【详解】解:1()()()()()()S AB a a CD b AD a AB a a AB b AD a =-⋅+--=-⋅+--,2()()()S AB AD a a b AB a =-+--,21()()()()()()S S AB AD a a b AB a AB a a AB b AD a b AD a b ABab AD ab b AB ab =⋅--⋅+()b AD AB =-4b =.故选:B . 【点睛】本题考查了整式的混合运算,熟悉相关运算法则是解题的关键.2.一副直角三角尺叠放如图所示,现将30°的三角尺ABC固定不动,将45°的三角尺BDE 绕顶点B逆时针转动,点E始终在直线AB的上方,当两块三角尺至少有一组边互相平行 所有符合条件的度数为()时,则ABEA.45°,75°,120°,165°B.45°,60°,105°,135°C.15°,60°,105°,135°D.30°,60°,90°,120°【答案】A【分析】分DE∥AB,DE∥AC,BE∥AC,AC∥BD,分别画出图形,根据平行线的性质和三角板的特点求解.【详解】解:如图,∥DE∥AB,∥∥D+∥ABD=180°∥∥ABD=90°∥∥ABE=45°;∥DE∥AC,∥∥D=∥C=90°,∥B,C,D共线,∥∥ABE=∥CBE+∥ABC=180°-45°+30°=165°;∥BE∥AC,∥∥C=∥CBE=90°,∥∥ABE=∥ABC+∥CBE=120°;∥AC∥BD,∥∥ABD=180°-∥A=120°,∥∥ABE=∥ABD-∥DBE=75°,综上:∥ABE的度数为:45°或75°或120°或165°.【点睛】本题考查了三角板中的角度计算,平行线的性质,解题的关键是注意分类讨论,做到不重不漏.3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A .B .C .D .【答案】B 【解析】试题分析:观察s 关于t 的函数图象,发现:在图象AB 段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∥可以大致描述蕊蕊妈妈行走的路线是B .故选B . 考点:函数的图象.二、填空题4.观察等式:232222+=-;23422222++=-;2345222222已知按一定规律排列的一组数:502、512、522、⋯、992、1002.若502a =,用含a 的式子表示这组数的和是____. 【答案】22a a - 【分析】由等式:232222+=-;23422222++=-;2345222222+++=-,得出规律:231222222nn,那么505152991002222223100(2222)2349(2222),将规律代入计算即可.【详解】 解:232222;23422222++=-;2345222222+++=-;⋯231222222nn ,5051529910022222231002349(2222)(2222)10150(22)(22)1015022,502a ,10150222(2)22a ,∴原式22a a =-,故答案是:22a a -. 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.已知直线AB∥CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按顺时针方向以每秒4°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按顺时针方向每秒1°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____; (2)若射线QC 先转45秒,射线PB 才开始转动,当射线PB 旋转的时间为_____秒时,PB′∥QC′.【答案】PB′∥QC′ 15秒或63秒或135秒. 【分析】(1)求出旋转30秒时,∥BPB′和∥CQC′的度数,过E 作EF∥AB ,根据平行线的性质求得∥PEF 和∥QEF 的度数,进而得结论;(2)分三种情况:∥当0s<t≤45时,∥当45s<t≤67.5s时,∥当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】(1)如图1,当旋转时间30秒时,由已知得∥BPB′=4°×30=120°,∥CQC′=30°,过E作EF∥AB,则EF∥CD,∥∥PEF=180°﹣∥BPB′=60°,∥QEF=∥CQC′=30°,∥∥PEQ=90°,∥PB′∥QC′,故答案为:PB′∥QC′;(2)∥当0s<t≤45时,如图2,则∥BPB′=4t°,∥CQC′=45°+t°,∥AB∥CD,PB′∥QC′,∥∥BPB′=∥PEC=∥CQC′,即4t=45+t,解得,t=15(s);∥当45s<t≤67.5s时,如图3,则∥APB′=4t﹣180°,∥CQC'=t+45°,∥AB∥CD,PB′∥QC′,∥∥APB′=∥PED=180°﹣∥CQC′,即4t﹣180=180﹣(45+t),解得,t=63(s);∥当67.5s<t<135s时,如图4,则∥BPB′=4t﹣360°,∥CQC′=t+45°,∥AB∥CD,PB′∥QC′,∥∥BPB′=∥PEC=∥CQC′,即4t﹣360=t+45,解得,t=135(s);综上,当射线PB旋转的时间为15秒或63秒或135秒时,PB′∥QC′.故答案为:15秒或63秒或135秒.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.6.甲地宏达物流公司的快递车和货车同时从甲地出发,以各自的速度沿快速通道向乙地匀速行驶,快递车到达乙地后,卸完物资并另装货物共用了45 分钟,然后按原路以另一速度返回,直至与货车相遇.已知货车行驶速度为60 km/h,两车间的距离y(km) 与货车行驶时间x(h) 之间的函数图象如图所示:给出以下四个结论:∥ 快递车从甲地到乙地的速度是 100 km/h ; ∥ 甲、乙两地之间的距离是 80 km ; ∥ 图中点 B 的坐标为 (324, 35);∥ 快递车从乙地返回时的速度为 90 km/h . 其中正确的是_____(填序号). 【答案】∥∥∥ 【解析】(1)设快递车从甲地到乙地的速度为x 千米/时,由题意可得:2(x -60)=80,解得:x=100,即快递车从甲到乙的速度为100km/时,故∥正确; (2)由(1)可知,快递车从甲到乙行驶了2小时,其行驶速度为100km/时, ∥甲地到乙地的距离为:100×2=200(km ),故∥错误;(3)由题意可知,图中B 点的坐标表示快递车开始从乙地返回甲地时的出发时间和此时两车间的距离,∥B 点的横坐标为:2+45÷60=324,B 点的纵坐标为:80-60×4560=35,故∥正确; (4)设快递车返回时的速度为a 千米/时,由图中信息和(3)中结论可得:5945(22)(60)356060a -+=,解得:90a =,故∥正确; 综上所述,正确的结论是∥∥∥, 故答案为:∥∥∥.三、解答题7.找规律:观察算式 13=1 13+23=9 13+23+33=36 13+23+33+43=100…(1)按规律填空)13+23+33+43+…+103=;13+23+33+43+…+n3=.(2)由上面的规律计算:113+123+133+143+…+503(要求:写出计算过程)(3)思维拓展:计算:23+43+63+…+983+1003(要求:写出计算过程)【答案】(1)255;2(1)2nn⎡⎤+⎢⎥⎣⎦;(2)1622600;(3)281275⨯【分析】(1)观察等式右边都是平方数,且底数正好是等式左边各底数的和,依此规律类推可分别解决以上两个问题;(2)由于上面的等式都是从底数是1开始的,所以可以把该式子前面的部分从1开始补上,再把补上的部分减掉即可;(3)该式中的底数并不是题干中所给出的从1开始的连续整数,因此不能直接用上述规律解题,但该式中的底数却都是从1开始的连续整数的2倍,因此提出2后,各项都含有32,逆用乘法分配律即可解决问题.【详解】解:(1)13+23+33+43+…+103=(1+2+3+4+…+10)2=255;13+23+33+43+…+n3=(1+2+3+4+…+n)2=2(1)2nn⎡⎤+⎢⎥⎣⎦;(2)113+123+133+143+...+503=(13+23+33+43+...+503)-(13+23+33+43+ (103)=()()22 5050+11010122+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=1622600;(3)23+43+63+...+983+1003=(2×1)3+(2×2)3+(2×3)2+(2×4)3+...+(2×50)3=23×(13+23+33+43+ (503)=23×()25050+12⎡⎤⎢⎥⎣⎦=281275⨯.【点睛】本题属于数式规律题,考查了学生对数的观察和分析的能力,首先学生应对平方数有一定的认识和感知力,这样才能迈出解决问题的第一步,其次学生要学会对不同的数进行关联,通过它们的和差积商中的一种或多种组合找到它们的联系,才能得出这道题的规律,建议在学习过程中多积累相关经验,发散思维,提高解决该类问题的效率.8.梅溪湖公园某处湖道两岸所在直线(AB∥CD)如图所示,在湖道两岸安装探照灯P和Q,若灯P射线自PA逆时针旋转至PB便立即回转,灯Q射线自QD逆时针旋转至OC便立即回转,每天晚间两灯同时开启不停交叉照射巡视.设灯P转动的速度是10度/秒,灯Q转动的速度是4度/秒,湖面上点M是音乐喷泉的中心.(1)若把灯P自PA转至PB,或者灯Q自QD转至QC称为照射一次,请求出P、Q两灯照射一次各需要的时间;(2)12秒时,两光束恰好在M点汇聚,求∥PMQ;(3)在两灯同时开启后的35秒内,请问开启多长时间后,两灯的光束互相垂直?【答案】(1)P、Q两灯照射一次各需要的时间分别为18秒、45秒;(2)108PMQ;(3)当开启15s或1357s或2257s后,两灯的光束互相垂直.【分析】(1)直接利用180除以两灯的速度即可求得结果;(2)过点M作//FM AB,利用平行线的相关性质求解即可;(3)分三种情况:∥当两灯开启时间小于18秒时,∥当两灯开启时间大于18秒,小于36秒时,PM返回时,第一次与DM相遇,∥当两灯开启时间大于18秒,小于35秒时,PM 返回时,第二次与DM相遇,分别根据两灯的光束互相垂直,利用平行线的相关性质,找准等量关系,列出方程求解即可.【详解】解:(1)∥灯P转动的速度是10度/秒,灯Q转动的速度是4度/秒,∥P灯照射一次需要的时间是:1801810(秒)Q灯照射一次需要的时间是:180454(秒);(2)∥转动12秒时,两光束恰好在M点汇聚,∥1012120APM,41248DQM,如下图示,过点M作//FM AB,则有////FM AB CD∥180APM PMF,48FMQ DQM,∥180********PMF APM,∥6048108 PMQ PMF FMQ;(3)∥当两灯开启时间小于18秒时,如图1所示,过点M作//FM AB,则有////FM AB CD∥10APM t,4FMQ DQM t,∥18018010PMF APM t,∥两灯的光束互相垂直,∥依题意可得:18010490t t解之得:15t ;∥当两灯开启时间大于18秒,小于35秒时,PM返回时,第一次与DM相遇,则如图2所示,过点M作//FM AB,则有////FM AB CD∥10180PMF BPM t,4FMQ DQM t,∥两灯的光束互相垂直,∥依题意可得:10180490t t解之得:1357t;∥当两灯开启时间大于18秒,小于35秒时,PM返回时,第二次与DM相遇,则如图3所示,过点M作//FM AB,则有////FM AB CD∥10180BPM t,4DQM t,∥18036010PMF BPM t,1801804FMQ DQM t∥两灯的光束互相垂直,∥依题意可得:36010180490t t解之得:2257t;综上所述,当开启15s或1357s或2257s后,两灯的光束互相垂直.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,熟悉相关性质是解题的关键.9.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数之和为x.探究一:图中∥—∥的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数之和的对应关系如表:S与x之间的关系式为:________.探究二:图中∥—∥的格点多边形内部都只有2个格点,请你先完善下表格的空格部分(即分别计算出对应格点多边形的面积S):S 与x 之间的关系式为:________.猜想:当格点多边形内部有且只有n 个格点时,S 与x 之间的关系式为:_______. 【答案】探究一:0.5S x =;探究二:完整的表格信息见详解,0.51S x =+;猜想:0.51x n +-.【分析】探究一:通过观察可以看出多边形的面积等于各边上格点个数的一半,即0.5S x =; 探究二:用“切割法”将∥—∥中图形分割成几个三角形或者矩形即可求出其面积, 通过观察可以发现多边形的面积等于各边上格点的个数和的一半加1,即0.51S x =+,猜想:观察可发现∥—∥多边形内部都有2个格点,面积在探究一的基础上加1,结合探究一、二可得出解析式 【详解】探究一:当S=2时,x=4;当S=2.5时,x=5;…..通过观察多边形的面积等于各边上格点个数的一半,即0.5S x =; 探究二:表格填写如下通过观察可以发现多边形的面积等于各边上格点个数的一半再加1,即0.51S x =+; 猜想:比较探究二与探究一,图形面积加1,图形内部格点个数加2,也就是多边形内部格点数每增加n 个,面积就比原来多了n -1,故S 与x 的关系式为0.51S x n =+-. 【点睛】本题主要考查变量之间的关系中的用表格表示变量之间的关系和用关系式表示变量之间的关系,解答本题的关键是要理解原图(表格)的变化规律,然后将它用关系式表示出来.。
七年级下册数学期中好题必刷 专题04解答题压轴题(人教版)(解析版)
专题04解答题压轴题一、解答题1.已知AM CN ∥,点B 为平面内一点,AB BC ⊥于B . (1)如图,直接写出A ∠和C ∠之间的数量关系.(2)如图,过点B 作BD AM ⊥于点D ,求证:ABD C ∠=∠.(3)如图,在(2)问的条件下,点E ,F 在DM 上,连接BE ,BF ,CF ,BF 那平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.【答案】(1)90A C ∠+∠=︒ (2)证明见解析 (3)105︒ 【提示】(1)根据平行线的性质及直角三角形的性质证明即可;(2)过点B 作//BG DM ,根据同角的余角相等得出ABD CBG ∠=∠,再根据平行线的性质得到C CBG ∠=∠,即可得到ABD C ∠=∠;(3)过点B 作//BG DM ,根据角平分线的定义得出ABF GBF ∠=∠,设DBE α∠=,ABF β∠=,可得3=75αβ+︒,再根据AB BC ⊥,得到290ββα++=︒,解方程得到=15ABE ∠︒,继而得出,1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒. (1) 如图1,∵//AM CN , ∴C AOB ∠=∠, ∵AB BC ⊥, ∴90ABC ∠=︒,∴90A AOB ∠+∠=︒,90A C ∠+∠=︒, 故答案为:90A C ∠+∠=︒; (2)如图2,过点B 作//BG DM ,∵BD AM ⊥, ∴DB BG ⊥, ∴90∠=︒DBG , ∴90ABD ABG ∠+∠=︒, ∵AB BC ⊥,∴90CBG ABG ∠+∠=︒, ∴ABD CBG ∠=∠, ∵//AM BG ,∴C CBG ∠=∠,ABD C ∠=∠. (3)如图3,过点B 作//BG DM ,∵BF 平分DBC ∠,BE 平分ABD ∠, ∴DBF CBF ∠=∠,DBE ABE ∠=∠, 由(2)知ABD CBG ∠=∠,∴ABF GBF ∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠=∠=,33BFC DBE α∠=∠=,∴3AFC αβ∠=+∵180AFC NCF ∠+∠=︒,180FCB NCF ∠+∠=︒, ∴3FCB AFC αβ∠=∠=+,BCF △中,由180CBF BFC BCF ∠+∠+∠=︒得 233180αβααβ++++=︒,∵AB BC ⊥, ∴290ββα++=︒, ∴15α=︒, ∴15ABE ∠=︒,∴1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒. 【点睛】本题考查平行线的性质与应用、角平分线的性质、方程思想等知识,学会添加辅助线,掌握相关知识是解题关键.2.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OP A=∠QPB .(1)如图1,若∠OPQ=82°,求∠OP A的度数;(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OP A的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.【答案】(1)49°,(2)44°,(3)∠OPQ=∠ORQ【提示】(1)根据∠OP A=∠QP B.可求出∠OP A的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【解答】解:(1)∵∠OP A=∠QPB,∠OPQ=82°,∴∠OP A=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OP A=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.3.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.【答案】(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【提示】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【解答】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ, ∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°, ∴∠FBE =∠FBG +∠GBE =2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°. 【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答. 4.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ; (2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F . ①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数.②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)【答案】(1)见解析;(2)55°;(3)1118022αβ︒-+【提示】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数. 【解答】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒,55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒; ②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=,1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD ∠的度数为1118022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.5.(1)如图①,若∠B +∠D =∠E ,则直线AB 与CD 有什么位置关系?请证明(不需要注明理由). (2)如图②中,AB //CD ,又能得出什么结论?请直接写出结论 . (3)如图③,已知AB //CD ,则∠1+∠2+…+∠n -1+∠n 的度数为 .【答案】(1)AB //CD ,证明见解析;(2)∠E 1+∠E 2+…∠En =∠B +∠F 1+∠F 2+…∠Fn -1+∠D ;(3)(n -1)•180° 【提示】(1)过点E 作EF //AB ,利用平行线的性质则可得出∠B =∠BEF ,再由已知及平行线的判定即可得出AB ∥CD ;(2)如图,过点E 作EM ∥AB ,过点F 作FN ∥AB ,过点G 作GH ∥AB ,根据探究(1)的证明过程及方法,可推出∠E +∠G =∠B +∠F +∠D ,则可由此得出规律,并得出∠E 1+∠E 2+…∠En =∠B +∠F 1+∠F 2+…∠Fn -1+∠D ;(3)如图,过点M 作EF ∥AB ,过点N 作GH ∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论. 【解答】解:(1)过点E 作EF //AB ,∴∠B =∠BEF . ∵∠BEF +∠FED =∠BED ,∴∠B +∠FED =∠BED .∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D, 即∠E+∠G=∠B+∠F+∠D.由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如图,过点M作EF∥AB,过点N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG =180°×2,依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.故答案为:(n-1)•180°.【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E 点作AB (或CD )的平行线,把复杂的图形化归为基本图形.6.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = . (2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,且∠EAP :∠BAP =l : 2,∠AED =32°,∠P =30°,求∠EKD 的度数.【答案】(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122° 【提示】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠;(3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【解答】解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒, 70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠. 理由如下: 过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒, 180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠=, 设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒,DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒,28226EDK ∴∠=︒-︒=︒, 1802632122EKD ∴∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.7.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数;(2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.【答案】(1)90°;(2)∠PFC =∠PEA +∠P ;(3)∠G =12α 【提示】(1)根据平行线的性质与判定可求解;(2)过P 点作PN ∥AB ,则PN ∥CD ,可得∠FPN =∠PEA +∠FPE ,进而可得∠PFC =∠PEA +∠FPE ,即可求解;(3)令AB 与PF 交点为O ,连接EF ,根据三角形的内角和定理可得∠GEF +∠GFE =12∠PEA +12∠PFC +∠OEF +∠OFE ,由(2)得∠PEA =∠PFC -α,由∠OFE +∠OEF =180°-∠FOE =180°-∠PFC 可求解. 【解答】解:(1)如图1,过点P 作PM ∥AB , ∴∠1=∠AEP . 又∠AEP =40°, ∴∠1=40°. ∵AB ∥CD , ∴PM ∥CD , ∴∠2+∠PFD =180°. ∵∠PFD =130°, ∴∠2=180°-130°=50°. ∴∠1+∠2=40°+50°=90°. 即∠EPF =90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.8.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.(1)求证:AB//CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH//EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数.【答案】(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【提示】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;【解答】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可证:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°, ∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y+z﹣x,∵PQ平分∠EPH,∴Z=y+y+z﹣x,∴x=2y,∴12y =180°, ∴y =15°, ∴x =30°, ∴∠PHQ =30°. 【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键.9.如图,以直角三角形AOC 的直角顶点О为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 满足220a b b -+-=.(1)C 点的坐标为______;A 点的坐标为______.(2)如图1,已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为()0t t >.问:是否存在这样的t ,使ODPODQSS=?若存在,请求出t 的值:若不存在,请说明理由.(3)如图2,过O 作//OG AC ,作AOF AOG ∠=∠交AC 于点F ,点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACEOEC∠+∠∠的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.【答案】(1)()2,0C ,()0,4A ;(2)1;(3)不变,值为2 【提示】(1)根据绝对值和算术平方根的非负性,求得a ,b 的值,再利用中点坐标公式即可得出答案; (2)先得出CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可; (3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACEOEC∠+∠∠进行计算即可.【解答】解:(1)∵2a b -+|b -2|=0, ∴a -2b =0,b -2=0, 解得a =4,b =2, ∴A (0,4),C (2,0).(2)存在, 理由:如图1中,D (1,2),由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒, ∴0<t ≤2时,点Q 在线段AO 上, 即 CP =t ,OP =2-t ,OQ =2t ,AQ =4-2t , ∴S △DOP =12•OP •yD =12(2-t )×2=2-t ,S △DOQ =12•OQ •xD =12×2t ×1=t ,∵S △ODP =S △ODQ , ∴2-t =t , ∴t =1. (3)结论:OHC ACEOEC∠+∠∠的值不变,其值为2.理由如下:如图2中,∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO , ∴∠GOC +∠ACO =180°, ∴OG ∥AC , ∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG , ∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4, ∴124414OHC ACE OEC ∠+∠∠+∠+∠+∠=∠∠+∠=2.【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.10.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由;(2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AENCDG∠∠的值;(3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.【答案】(1)见解析;(2)12;(3)75° 【提示】(1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可. 【解答】解:(1)∠C =∠1+∠2,证明:过C 作l ∥MN ,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等), ∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等), ∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°, ∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°, ∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB =∠AJB -∠JAD =50°-∠JAD =50°-∠CAM , 由(1)可得,∠ACB =∠PBC +∠CAM ,∴∠ACB +∠ADB =∠PBC +∠CAM +50°-∠CAM =25°+50°=75°. 【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系. 11.阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a 代表这个整数分出来的左边数,b 代表的这个整数分出来的中间数,c 代表这个整数分出来的右边数,其中a ,b ,c 数位相同,若b ﹣a =c ﹣b ,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5; 413223分成三个数41,32,23,并且满足:32﹣41=23﹣32; 所以:357和413223都是等差数.(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空) (2)若一个三位数是等差数,试说明它一定能被3整除; (3)若一个三位数T 是等差数,且T 是24的倍数,求该等差数T .【答案】(1)不是,是;(2)见解析;(3)432或456或840或864或888 【提示】(1)根据等差数的定义判定即可;(2)设这个三位数是M ,10010M a b c =++,根据等差数的定义可知2a cb +=,进而得出()3352M ac =+即可.(3)根据等差数的定义以及24的倍数的数的特征可先求出a 的值,再根据是8的倍数可确定c 的值,又因为2a cb +=,所以可确定a 、c 为偶数时b 才可取整数有意义,排除不符合条件的a 、c 值,再将符合条件的a 、c 代入2a cb +=求出b 的值,即可求解. 【解答】解:(1)∵4184-≠- , ∴148不是等差数, ∵435135438-=-=- , ∴514335是等差数;(2)设这个三位数是M ,10010M a b c =++, ∵b a c b -=- ,∴2a cb +=, ∵()10010105633522a cM a c a c a c +=+⨯+=+=+ , ∴这个等差数是3的倍数; (3)由(2)知()3352,2a cT a c b +=+= , ∵T 是24的倍数, ∴352a c + 是8的倍数, ∵2c 是偶数,∴只有当35a 也是偶数时352a c +才有可能是8的倍数, ∴2a =或4或6或8,当2a =时,3570a = ,此时若1c =,则35272a c += ,若5c = ,则35+280a c = ,若9c = ,则35+288a c =,大于70又是8的倍数的最小数是72,之后是80,88当35+296a c =时10c > 不符合题意;当4a =时,35140a =,此时若2c =,则352144a c +=,若6c =,则352152a c +=,(144、152是8的倍数), 当6a =时,35210a =,此时若3c =,则352216a c +=,若7c =,则352224a c +=, (216、244是8的倍数),当8a =时,35280a =,此时若0c ,则352280a c +=,若4c =,则352288a c +=, 若8c =,则352296a c +=,(280,288,296是8的倍数), ∵2a cb +=, ∴若a 是偶数,则c 也是偶数时b 才有意义, ∴2a =和6a =是c 是奇数均不符合题意, 当4,2a c ==时,423,4322b T +=== , 当4,6ac ==时,465,4562b T +===, 当8,0ac ==时,804,8402b T +===, 当8,4ac ==时,846,8642b T +===, 当8,8ac ==时,888,8882b T +===, 综上,T 为432或456或840或864或888. 【点睛】本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键.12.阅读下面的文字,解答问题.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数;用{a }表示a 减去[a ]所得的差. 例如:=1,[2.2]=1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法计算:]= {5= ;(2)若=1,写出所有满足题意的整数x 的值: .(3)已知y 0是一个不大于280的非负数,且满足}=0.我们规定:y 1=],y 2=y 3=],…,以此类推,直到yn 第一次等于1时停止计算.当y 0是符合条件的所有数中的最大数时,此时y 0= ,n = .【答案】(1)2;32)1、2、3;(3)256,4 【提示】(1)依照定义进行计算即可;(2)由题可知,04x <<,则可得满足题意的整数的x 的值为1、2、3;(3)由0=,可知,0y 是某个整数的平方,又0y 是符合条件的所有数中最大的数,则0256y =,再依次进行计算. 【解答】解:(1)由定义可得,2=,[52=,{53∴=故答案为:2;3. (2)[]1x =,2∴<,即04x <<,∴整数x 的值为1、2、3. 故答案为:1、2、3.(3)0{}0y =,即0==,∴2t =,且t 是自然数,0y 是符合条件的所有数中的最大数, 0256y ∴=,1[16]16y ∴===,2[4]4y ===,3[2]2y ===,41y ===,即4n =. 故答案为:256,4. 【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.13.对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K (n ),例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以()1236K =.(1)计算:()342K 和()658K ;(2)若x 是“梦幻数”,说明:()K x 等于x 的各数位上的数字之和;(3)若x ,y 都是“梦幻数”,且1000x y +=,猜想:()()K x K y +=________,并说明你猜想的正确性. 【答案】(1)(342)9,(658)19K K ==;(2)见解析;(3)28 【提示】(1)根据K 的定义,可以直接计算得出;(2)设x abc =,得到新的三个数分别是:acb cba bac ,,,这三个新三位数的和为100()10()()111()a b c a b c a b c a b c ++++++++=++,可以得到:()K x a b c =++;(3)根据(2)中的结论,猜想:()()28K x K y +=. 【解答】解:(1)已知342n =,所以新的三个数分别是:324,243,432, 这三个新三位数的和为324243342999++=, (342)9K ∴=;同样658n =,所以新的三个数分别是:685,568,856, 这三个新三位数的和为6855688562109++=, (658)19K ∴=.(2)设x abc =,得到新的三个数分别是:acb cba bac ,,,这三个新三位数的和为100()10()()111()a b c a b c a b c a b c ++++++++=++, 可得到:()K x a b c =++,即()K x 等于x 的各数位上的数字之和. (3)设,x abc y mnp ==,由(2)的结论可以得到: ()()()()K x K y a b c m n P +=+++++, 1000x y +=,100()10()()1000a m b n c p ∴+++++=,根据三位数的特点,可知必然有: 10,9,9c p b n a m +=+=+=,()()()()28K x K y a b c m n p ∴+=+++++=,故答案是:28. 【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同.14.数学中有很多的可逆的推理.如果10b n =,那么利用可逆推理,已知n 可求b 的运算,记为()b f n =,如210100=,则42(100);1010000f ==,则4(10000)f =.①根据定义,填空:(10)f =_________,()310f =__________.②若有如下运算性质:()()(),()()n f mn f m f n f f n f m m⎛⎫=+=- ⎪⎝⎭.根据运算性质填空,填空:若(2)0.3010f =,则(4)f =__________;(5)f =___________; ③下表中与数x 对应的()f x 有且只有两个是错误的,请直接找出错误并改正.错误的式子是__________,_____________;分别改为__________,_____________.【答案】①1,3;②0.6020;0.6990;③f (1.5),f (12);f (1.5)=3a -b +c -1,f (12)=2-b -2c . 【提示】①根据定义可得:f (10b )=b ,即可求得结论; ②根据运算性质:f (mn )=f (m )+f (n ),f (nm)=f (n )-f (m )进行计算;③通过9=32,27=33,可以判断f (3)是否正确,同样依据5=102,假设f (5)正确,可以求得f (2)的值,即可通过f (8),f (12)作出判断. 【解答】解:①根据定义知:f (10b )=b , ∴f (10)=1, f (103)=3. 故答案为:1,3.②根据运算性质,得:f (4)=f (2×2)=f (2)+f (2)=2f (2)=0.3010×2=0.6020, f (5)=f (102)=f (10)-f (2)=1-0.3010=0.6990. 故答案为:0.6020;0.6990.③若f (3)≠2a -b ,则f (9)=2f (3)≠4a -2b , f (27)=3f (3)≠6a -3b ,从而表中有三个对应的f (x )是错误的,与题设矛盾, ∴f (3)=2a -b ;若f (5)≠a +c ,则f (2)=1-f (5)≠1-a -c , ∴f (8)=3f (2)≠3-3a -3c , f (6)=f (3)+f (2)≠1+a -b -c ,表中也有三个对应的f (x )是错误的,与题设矛盾, ∴f (5)=a +c ,∴表中只有f (1.5)和f (12)的对应值是错误的,应改正为: f (1.5)=f (32)=f (3)-f (2)=(2a -b )-(1-a -c )=3a -b +c -1,f (12)=f (663⨯)=2f (6)-f (3)=2(1+a -b -c )-(2a -b )=2-b -2c . ∵9=32,27=33,∴f (9)=2f (3)=2(2a -b )=4a -2b ,f (27)=3f (3)=3(2a -b )=6a -3b . 【点睛】本题考查了幂的应用,新定义运算等,解题的关键是深刻理解所给出的定义或规则,将它们转化为我们所熟悉的运算.15.阅读理解题:定义:如果一个数的平方等于-1,记为2i 1=-①,这个数i 叫做虚数单位,那么和我们所学的实数对应起来就叫做复数,复数一般表示为i a b +(a ,b 为实数),a 叫做这个复数的实部,b 叫做这个复数的虚部,它与整式的加法,减法,乘法运算类似.例如:解方程21x =-,解得:1i x =,2i x =-.同2i ==.读完这段文字,请你解答以下问题: (1)填空:3i =______,4i =______,2342021i i i i +++⋅⋅⋅+=______. (2)已知()()i i 13i a b ++=-,写出一个以a ,b 的值为解的一元二次方程. (3)在复数范围内解方程:2480x x -+=.【答案】(1)-i ,1,0;(2)2320x x ++=;(3)122i x =+,222i x =-. 【提示】(1)根据题意21i =-,则32i i i =⋅,422()i i =,然后计算即可;(2)利用()()i i 13i a b ++=-,得到11ab -=,2ab =,3a b +=-,即可求解 (3)利用配方法求解即可. 【解答】 (1)32i i ii ,4222()(1)1i i ==-=,∵2345110i i i i i i +++=--++=,∴6789423452345()1()100i i i i i i i i i i i i i +++=+++=⨯+++=⨯=, 同理:101112130i i i i +++=, 每四个为一组,和为0, 共有(20211)4505-÷=组, ∴23452021...0i i i i i +++++=, (2)∵()()i i 13i a b ++=-,∴2i i i 13i ab a b +++=-,()1i 13i ab a b -++=-, ∴11ab -=,2ab =,3a b +=-,∴以a ,b 的值为解的一元二次方程可以为:2320x x ++=. (3)2480x x -+=, 2444x x -+=-, 22(2)4x i -=,22x i -=±,∴122i x =+,222i x =-. 【点睛】本题考查了实数的运算,解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.16.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网a___________.(注:小正方形边长都为1,拼接不重叠格中画出拼成的大正方形,该正方形的边长=也无空隙)a-.(图中标出必要线段②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及3的长)【答案】(1)222)①图见解析5②见解析【提示】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可;(3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N.【解答】(1)由图1知,2∴图2中点A表示的数是2-点B2故答案是:2-2(2)①长方形的面积是5,拼成的正方形的面积也应该是5, ∴正方形的边长是5, 如图所示:故答案是:5; ②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解. 17.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(1310001031000000100,那么,请你猜想:59319的立方根是_______位数 (2)在自然数1到9这九个数字中,33311,327,5===________,37=________,39=________. 猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后面的三位“319”得到数59,而3327=,3464=,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________.(4)现在换一个数103823,你能按这种方法得出它的立方根吗? 【答案】(1)两;(2)125,343,729,9;(3)3,39;(4)47 【提示】(1)根据夹逼法和立方根的定义进行解答;(2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可; (3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可;(4)利用(3)中的方法确定出个位数字和十位数字即可. 【解答】(1)∵1000<59319<1000000, ∴59319的立方根是两位数;(2)∵3311,327,==35=125,37=343,39=729,∴59319的个位数字是9,则59319的立方根的个位数字是9; (3)∵3327=59<<3464=,且59319的立方根是两位数, ∴59319的立方根的十位数字是3, 又∵59319的立方根的个位数字是9, ∴59319的立方根是39; (4)∵1000<103823<1000000, ∴103823的立方根是两位数;∵3311,327,==35=125,37=343,39=729,∴103823的个位数字是3,则103823的立方根的个位数字是7; ∵3464=3195552<<=,且103823的立方根是两位数, ∴103823的立方根的十位数字是4, 又∵103823的立方根的个位数字是7, ∴103823的立方根是47. 【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.18.阅读材料:求2320192020122222++++++的值.解:设2320192020122222S =++++++①,将等式①的两边同乘以2, 得234202020212222222S =++++++②,用②-①得,2021221S S -=- 即202121S =-. 即2320192020202112222221++++++=-.请仿照此法计算:(1)请直接填写231222+++的值为______; (2)求231015555+++++值;(3)请直接写出20212345201920201011010101010101011-+-+-+-+-的值. 【答案】(1)15;(2)11514-;(3)111.【提示】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案; (3)根据题目中的运算法则进行计算,即可求出答案; 【解答】解:(1)231248125122=++++=++; 故答案为:15; (2)设231015555T =+++++①,把等式①两边同时乘以5,得112310555555T =+++++②,由②-①,得:11451T =-, ∴11514T -=,∴31121015551455++=+++-;(3)设234520192020110101010101010M =-+-+-+-+①,把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=,∴23245201920002211101010101011001111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+- 20212021101101111+=-111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.19.观察下列各式,并用所得出的规律解决问题:(11.414≈14.14141.4≈,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873≈ 1.225≈,≈_____≈______.(31=10=100=,…… 小数点的变化规律是_______________________.(4 2.154≈0.2154≈-,则y =______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01 【提示】(1)观察已知等式,得到一般性规律,写出即可; (2)利用得出的规律计算即可得到结果; (3)归纳总结得到规律,写出即可; (4)利用得出的规律计算即可得到结果. 【解答】解:(11.414≈14.14≈141.4,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一;(2 3.873≈ 1.225≈,12.250.3873≈; 故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4) 2.154≈0.2154≈-,0.2154≈,0.2154-, ∴y=-0.01. 【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.20.思考与探究:(1)在如图所示的计算程序中,若开始输入的数值是4,则最后输出的结果是___________.(2)在如图所示的计算程序中,若最后输出的结果是58,则开始输入的数值是___________.(3)按下面的程序计算,若开始输入的值x为正数,最后输出的结果为1621,则满足条件的x的不同值最多有多少个?【答案】(1)17;(2)6或-10;(3)6个【提示】(1)根据程序运算图可得算式4×3+5,按运算顺序进行求解即可;(2)设输入的数字为m,根据题意可得关于x的方程,解方程即可求得答案;(3)根据最后输出的结果,可计算出它前面的那个数,依此类推,可将符合题意的正数求出.【解答】(1)由题意得:4×3+5=17,故答案为:17;(2)设输入的数字为m,则有(m+2)2-6=58,解得:m=6或m=-10,故答案为:6或--10;(3)∵最后输出的数为1621,∴4[(x+5)-(-2)2]-3=1621,解得:x=405>0,又∵4[(x+5)-(-2)2]-3=405,解得:x=101>0,又∵4[(x+5)-(-2)2]-3=101,解得:x=25>0,又∵4[(x+5)-(-2)2]-3=25,解得:x=6>0,又∵4[(x+5)-(-2)2]-3=6,解得:x=54>0,又∵4[(x+5)-(-2)2]-3=5 4 ,解得:x=116>0,又∵4[(x+5)-(-2)2]-3=1 16,解得:x=1564-<0,(不符合题意)∴符合题意的正数最多有6个.【点睛】本题考查了程序运算,涉及了一元一次方程,利用平方根的解方程等知识,正确审题,弄清程序运算中的运算顺序,熟练掌握相关和运算法则和解题方法是解此类问题的关键.21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n=∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)nn =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031nn=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________.(2)1+12+13+…+110用求和符号可表示为_________.(3)计算6211nn=-∑()=_________.(填写最后的计算结果)【答案】(1)5012nn =∑;(2)1011nn =∑;(3)50【提示】(1)根据题中的新定义得出结果即可;(2)根据题中的新定义得出结果即可;(3)利用题中的新定义将原式变形,计算即可得到结果.【解答】解:解:(1)根据题意得:2+4+6+8+10+ (100)5012nn =∑;(2)1+12+13+…+110=1011n n=∑; (3)原式=1-1+4-1+9-1+16-1+25-1+36-1=85. 故答案为:(1)5012n n =∑;(2)1011n n=∑;(3)85.【点睛】此题考查了有理数的加法和减法运算,弄清题中的新定义是解本题的关键. 22.如图,已知点()0,0O ,()2,0A ,()1,2B -.(1)求OAB 的面积;(2)点C 是在坐标轴上异于点A 的一点,且OBC 的面积等于OAB 的面积,求满足条件的点C 的坐标;(3)若点D 的坐标为()m,2,且1m <-,连接AD 交OB 于点E ,在x 轴上有一点F ,使BDE 的面积等于BEF 的面积,请直接写出点F 的坐标__________(用含m 的式子表示).【答案】(1)2;(2)(0,4),(0,4),(2,0)--;(3)1(1,0)F m +或2(1,0)F m -- 【提示】(1)直接利用以OA 为底,进行求面积;(2)OBC 的面积等于OAB 的面积,需要分三种情况进行分类讨论; (3)根据BDEBEFSS=推导出OBDOBFSS=,然后分两种情况进行讨论,即当F 位于x 轴负半轴上时与F 位于x 轴正半轴上时.【解答】 解:(1)1122222OABB SOA y =⋅⋅=⨯⨯=. (2)作如下图形,进行分类讨论:。
期中模拟测试卷(一)七年级数学下学期期中期末满分必刷常考压轴题人教版
七年级下册期中模拟测试(一)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.36的平方根是()A.±6 B.6 C.﹣6 D.±【答案】A【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:A.2.如图,小手盖住的点的坐标可能为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)【答案】D【解答】解:小手盖住的点的坐标在第三象限,点横坐标与纵坐标都是负数,只有(﹣4,﹣3)符合.故选:D.3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=150°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【答案】B【解答】解:∵∠AOE=150°,∴∠BOE=180°﹣150°=30°,∵OE平分∠BOD,∴∠BOD=2∠BOE=60°,∴∠AOC=∠BOD=60°,故选:B.4.如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不可能是()A.2 B.3 C.4 D.5【答案】A【解答】解:∵AC⊥BC,∴AP≥AC,即AP≥3.故选:A.5.下列各数3.1415926,﹣,0.202202220…,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:3.1415926,﹣是分数,属于有理数;,是整数,属于有理数;无理数有﹣,0.202202220…,π,共3个.故选:C.6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【答案】B【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.下列命题是真命题的有()①过直线外一点有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④在同一平面内,同垂直于一条直线的两条直线平行.A.1个B.2个C.3个D.4个【答案】C【解答】解:①过直线外一点有且只有一条直线平行于已知直线,正确,为真命题;②同位角相等,两直线平行,正确,为真命题;③两直线平行,内错角相等,故原命题为假命题;④在同一平面内,同垂直于一条直线的两条直线平行,正确,为真命题;故真命题的个数为3个,故选:C.8.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【答案】A【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.9.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【答案】D【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【答案】C【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.11.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【答案】C【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.故选:C.12.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3…,P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标为()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)【答案】D【解答】解:根据图形可得,正方形旋转4次为一个周期,即P→P4为一周期,且相差3﹣(﹣1)=4,∴一个周期P向右移动4个单位长度.∵2021÷4=505…1,∴到P2021有505个周期再旋转一次,505×4﹣1=2019,∴P2020(2019,1),由P2020→P2021与P→P1类似,∴P2021(2021,1).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.【答案】如果两个角是对顶角,那么这两个角相等【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为.【答案】110°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣70°=110°,故答案为:110°.15.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是.【答案】3【解答】解:根据平移的性质,平移的距离=BE=4﹣1=3,故答案为:3.16.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.【答案】35°【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.17.若第三象限内的点P(x,y)、满足|x|=3,y2=25.则P点的坐标是.【答案】(﹣3,﹣5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵P在第三象限,∴点P的坐标是(﹣3,﹣5).故答案为:(﹣3,﹣5).18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.【答案】45【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的横坐标为45.故答案为:45.三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算下列各式的值:【答案】6【解答】解:=+(﹣5)+9﹣(﹣2)=+(﹣5)+9﹣+2=6.20.求满足下列各式x的值(1)2x2﹣8=0;(2)(x﹣1)3=﹣4.【答案】(1)x=±2;(2)x=﹣1【解答】解:(1)2x2﹣8=0,2x2=8,x2=4,x=±2;(2)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.21.一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.【答案】9【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9.22.如图,已知单位长度为1的方格中有个三角形ABC.(1)将三角形ABC向上平移3格再向右平移2格所得三角形A'B'C',在所给的网格中画出三角形A'B'C'的位置;(2)求出三角形A'B'C'的面积;(3)如果点C的坐标为(3,﹣1),请在所给的网格中建立平面直角坐标系.填空:①BC与B'C'的关系是;②BB'与CC'的关系是.【答案】(1)略(2)(3)平行且相等,平行且相等.【解答】解:(1)如图所示,三角形A'B'C'即为所求;(2)S△A'B'C'=3×3﹣=;(3)坐标系如图所示,①BC与B'C'的关系是:平行且相等,②BB'与CC'的关系是:平行且相等,故答案为:平行且相等,平行且相等.23.如图,AB,CD相交于点O,OM平分∠BOD.(1)若∠AOC=50°,求∠AOM的度数;(2)若2∠AOD=3∠AOC,求∠COM的度数.【答案】(1)160°(2)144°【解答】解:(1)由题意可得∠BOD=∠AOC=50°,∠AOD=180°﹣∠AOC=130°,∵OM平分∠BOD,∴∠DOM==25°,∴∠AOM=∠AOD+∠DOM=135°+25°=160°;(2)∵2∠AOD=3∠AOC,∠AOD+∠AOC=180°,∴∠AOD+∠AOD=180°,解得∠AOD=108°,∴∠BOD=180°﹣108°=72°,∠COB=∠AOD=108°,∵OM平分∠BOD,∴∠BOM==36°,∴∠COM=∠COB+∠BOM=108°+36°=144°.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)略(2)25°【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.我们知道:无理数是无限不循环的小数.下面是探究无理数的大小过程:因为12=1,22=4,所以1<<2;因为1.42=1.96,1.52=2.25,所以1.4<<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415;……如此进行下去,可以得到的更加精确的近似值.(1)请仿照上面的思考过程,请直接写出无理数的大致范围?(精确到0.01)(2)填空:①比较大小:32(填“>、<或=”);②若a、b均为正整数,a>,b<,则a+b的最小值是.(3)现有一块长4.1dm,宽为3dm的长方形木板,要想在这块木板上截出两个面积分别为2dm2和5dm2的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?【答案】(1)2.23<<2.24(2)>,4(3)可行【解答】解:(1)∵2.232<5<2.242,∴2.23<<2.24;(2)①∵(3)2=18,(2)2=12,∴3>2;故答案为:>;②∵a、b均为正整数,a>,b<,∴a最小为3,b=1,∴a+b最小为4;故答案为:4;(3)他的方法可行,理由如下:∵面积分别为2dm2的正方形边长是dm,面积分别为5dm2的正方形是dm,≈2,236<3,+≈3.65<4.1,∴他的方法可行.26.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b),且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.【答案】(1)A(26,0),B(0,8)(2)t=(3)不变【解答】解:(1)∵|a﹣26|+=0,∴a﹣26=0,且8﹣b=0,∴a=26,b=8,∴A(26,0),B(0,8);(2)∵BC∥x轴,BC=24,∴C(24,8),由题意得:BC∥OA,BP=2t,AQ=4t,则PC=24﹣2t,OQ=26﹣4t,BO=8,∴S梯形AOBC=×(24+26)×8=200,当PQ恰好平分四边形BOAC时,S梯形OBPQ=×200=100,∴:×(2t+26﹣4t)×8=100,解得:t=;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图1,当点D在线段CA的延长线上或AC的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDC=,∠QDA,∠MDC=∠CDE,∴∠MDN=∠NDC+∠MDC=(∠QDA+∠CDE)=∠QDE=60°;如图2,当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=∠ADQ,∠MDC=∠CDE,设∠CDE=α,∴∠QDC=120°﹣α,∠ADQ=180°﹣(120°﹣α)=60°+α,∴∠MDN=∠MDC+∠QDC+∠NDC=α+120°﹣α+(60°+α)=150°;综上所述,∠MDN的度数为150°或60°,∴当点Q运动时,∠MDN的度数不变化.。
7年级下 数学 期中压轴题训练
期中满分计划之大题压轴重难点题型总结姓名:.【题型1 平行线的判定与性质综合】【例1】(2020春•石泉县期末)已知直线AB∥CD,直线EF分别交AB、CD于点A、C,CM是∠ACD的平分线,CM交AB于点H,过点A作AG⊥AC交CM于点G.(1)如图1,点G在CH的延长线上时,若∠GAB=36°,求∠MCD的度数;(2)如图2,点G在CH上时,试说明2∠MCD+∠GAB=90°.【变式1-1】(2020春•中山市期末)如图,已知AB∥CD,直线EF与AB、CD分别交于点EF,点P是射线EB上一点(与点E不重合).FM、FN分别平分∠PFE和∠PFD,FM、FN交直线AB于点M、N,过点N 作NH⊥FM于点H.(1)若∠BEF=64°,求∠FNH的度数;(2)猜想∠BEF和∠FNH之间有怎样的数量关系,并加以证明.【变式1-2】(2020春•邳州市期末)已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC.(2)如图2,若BD⊥BC,BD与CE交于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠DFE=8∠DAE,∠BAC=∠BAD时,直接写出∠BAD的度数为°.【变式1-3】(2020秋•福州期末)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM 交CD于点M,AB∥CD,且∠FEM=∠FME.(1)当∠AEF=70°时,∠FME=°;(2)判断EM是否平分∠AEF,并说明理由;(3)如图2,点G是射线FD上一动点(不与点F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EGF=α.探究当点G在运动过程中,∠MHN﹣∠FEH和α之间有怎样的数量关系?请写出你的猜想,并加以证明.【题型2 平行线的判定与性质综合(作平行线)】【例2】(2020秋•朝阳区期末)【感知】如图①,AB∥CD,∠P AB=130°,∠PCD=120°,求∠APC的度数.(提示:过点P作直线PQ∥AB)【探究】如图②,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β,(1)当点P在线段AB上运动时,∠CPD,∠α,∠β之间的数量关系为.(2)当点P在线段A,B两点外侧运动时(点P与点A,B,O三点不重合),直接写出∠CPD,∠α,∠β之间的数量关系为.【变式2-1】(2020秋•内江期末)小明同学在完成七年级上册数学的学习后,遇到了一些问题,请你帮他解决下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠F AD=60°,∠ABC=40°,求∠BED的度数;(3)将图2中的点B移到点A的右侧,得到图3,其他条件不变,若∠F AD=α°,∠ABC=β°,请你求出∠BED的度数(用含α,β的式子表示).【变式2-2】(2020春•武昌区期末)如图1,AB∥CD,点E在AB上,点H在CD上,点F在直线AB,CD之间,连接EF,FH,∠AEF+∠CHF=73∠EFH.(1)直接写出∠EFH的度数为;(2)如图2,HM平分∠CHF,交FE的延长线于点M,证明:∠FHD﹣2∠FMH=36°;(3)如图3,点P在FE的延长线上,点K在AB上,点N在∠PEB内,连NE,NK,NK∥FH,∠PEN=2∠NEB,则2∠FHD﹣3∠ENK的值为.【变式2-3】(2020秋•道里区期末)已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.(1)如图1,求证:HG⊥HE;(2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME;(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.【题型3 平行线的判定与性质综合(含旋转)】【例3】(2020秋•金川区校级期末)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.【变式3-1】(2020秋•郑州期末)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角∠CAE=60°时,BC∥DE.求其它所有可能符合条件的角∠CAE(0°<∠CAE<180°)的度数,画出对应的图形并证明.【变式3-2】(2020秋•苏州期末)数学实践课上,小明同学将直角三角板AOB的直角顶点O放在直尺EF的边缘,将直角三角板绕着顶点O旋转.(1)若三角板AOB在EF的上方,如图1所示.在旋转过程中,小明发现∠AOE、∠BOF的大小发生了变化,但它们的和不变,即∠AOE+∠BOF=°.(2)若OA、OB分别位于EF的上方和下方,如图2所示,则∠AOE、∠BOF之间的上述关系还成立吗?若不成立,则它们之间有怎样的数量关系?请说明你的理由;(3)射线OM、ON分别是∠AOE、∠BOE的角平分线,若三角板AOB始终在EF的上方,则旋转过程中,∠MON的度数是一个定值吗?若是,请求出这个定值;若不是,请说明理由.【变式3-3】(2020春•义乌市期末)如图,已知AB∥CD,P是直线AB,CD间的一点,PF⊥CD于点F,PE 交AB于点E,∠FPE=120°.(1)求∠AEP的度数;(2)如图2,射线PN从PF出发,以每秒40°的速度绕P点按逆时针方向旋转,当PN垂直AB时,立刻按原速返回至PF后停止运动;射线EM从EA出发,以每秒15°的速度绕E点按逆时针方向旋转至EB后停止运动.若射线PN,射线EM同时开始运动,设运动时间为t秒.①当∠MEP=20°时,求∠EPN的度数;②当EM∥PN时,求t的值.【题型4 坐标与平移变换】【例4】(2020春•金乡县期末)在平面直角坐标系中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为3,若存在,请直接写出点P的坐标;若不存在,请说明理由.【变式4-1】(2020春•通山县期末)如图,在平面直角坐标系中,点A(2,6),B(4,3),将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为A',B',连接AA'交y轴于点C,BB'交x轴于点D.(1)线段A'B'可以由线段AB经过怎样的平移得到?并写出A',B'的坐标;(2)求四边形AA'B'B的面积;(3)P为y轴上的一动点(不与点C重合),请探究∠PCA′与∠A'DB'的数量关系,给出结论并说明理由.【题型5 坐标与图形的性质综合】【例5】(2020春•鞍山期末)如图,在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(4,0),现将线段AB向右平移一个单位,向上平移4个单位,得到线段CD,点P是y轴上的动点,连接BP;(1)当点P在线段OC上时(如图一),判断∠CPB与∠PBA的数量关系;(2)当点P在OC所在的直线上时,连接DP(如图二),试判断∠DPB与∠CDP,∠PBA之间的数量关系,请直接写出结论.【变式5-1】(2020春•三门峡期末)如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠P AD=y°,∠BP A=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.【变式5-2】(2020春•兴国县期末)如图,在平面直角坐标系xOy中,点A(a,0),B(b,b),C(0,b),且满足(a+8)2+√b+4=0,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点A的坐标,点B的坐标,AO和BC位置关系是;(2)在P、Q的运动过程中,连接PB,QB,使S△P AB=4S△QBC,求出点P的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.【变式5-3】(2020春•新乡期末)在平面直角坐标系中,D(0,﹣3),M(4,﹣3),直角三角形ABC的边与x轴分别相交于O、G两点,与直线DM分别交于E、F点,∠ACB=90°.(1)将直角三角形如图1位置摆放,如果∠AOG=46°,则∠CEF=;(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NED+∠CEF=180°,请写出∠NEF与∠AOG之间的等量关系,并说明理由.(3)将直角三角形ABC如图3位置摆放,若∠GOC=140°,延长AC交DM于点Q,点P是射线GF上一动点,探究∠POQ,∠OPQ与∠PQF的数量关系,请直接写出结论(题中的所有角都大于0°小于180°).。
期中解答题压轴必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版
解答题压轴必刷常考题【压轴题题必考】1.(安溪)如图,将一条数轴在原点O和点B处各折一下,AO∥BC,得到一条“折线数轴”.图中点A表示﹣20,点B表示20,点C表示36.动点M从点A出发,以2个单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点N从点C出发,以1个单位/秒的速度沿着“折线数轴”的负方向运动,从点B运动到点O期间的速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)填空:点A和点C在数轴上相距56个单位长度;(2)当t为何值时,点M与点N相遇?(3)当t为何值时,M、O两点在数轴上相距的长度与N、B两点在数轴上相距的长度相等.【答案】(1)56 (2)t=(3)t的值为4或13或22或34【解答】解:(1)∵点A表示﹣20,点C表示36,∴点A和点C在数轴上相距36﹣(﹣20)=56(个单位长度),故答案为:56;(2)由题意知,N从C到B需16s,M从A到O需10s,∴M、N在OB段相遇,根据题意得:20+(t﹣10)+16+2(t﹣16)=56,解得t=,答:t为时,点M与点N相遇;(3)分四种情况:①当点M在AO上,点N在CB上时,OM=20﹣2t,BN=16﹣t,∴20﹣2t=16﹣t,解得t=4,②当M在OB上,N在CB上时,OM=t﹣10,BN=16﹣t,∴t﹣10=16﹣t,解得t=13,③当M在OB上,N在OB上时,OM=t﹣10,BN=2(t﹣16),∴t﹣10=2(t﹣16),解得t=22,④当M在BC上,N在OA上时,20+2(t﹣30)=20+(t﹣26),解得t=34,综上所述,t的值为4或13或22或34时,M、O两点在数轴上相距的长度与N、B两点在数轴上相距的长度相等.2.(朝阳)将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中∠A=60°,∠D=30°,∠E=∠B=45°.(1)若∠1=25°,则∠2的度数为;(2)直接写出∠1与∠3的数量关系:;(3)直接写出∠2与∠ACB的数量关系:;(4)如图2,当∠ACE<180°且点E在直线AC的上方时,将三角尺ACD固定不动,改变三角尺BCE的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出∠ACE角度所有可能的值.【答案】(1)65°(2)∠1=∠3;(3)∠2+∠ACB=180°(4)30°或45°或120°或135°或165°.【解答】解:(1)∵∠1=25°,∠ACD=90°,∴∠2=∠ACD﹣∠1=65°,故答案为:65°;(2)∵∠1+∠2=∠ACD=90°,∠2+∠3=∠BCE=90°,∴∠1+∠2=∠2+∠3,∴∠1=∠3,故答案为:∠1=∠3;(3)∵∠ACD=∠BCE=90°,∴∠ACB+∠2=∠1+∠2+∠3+∠2=∠ACD+∠BCE=180°,即∠2+∠ACB=180°,故答案为:∠2+∠ACB=180°;(4)存在,①当BC∥AD时,∵BC∥AD,∴∠BCD=∠D=30°,∴∠ACB=90°+30°=120°,∴∠ACE=∠ACB﹣∠BCE=120°﹣90°=30°;②当BE∥AC时,如图,∵BE∥AC,∴∠ACE=∠E=45°;③当AD∥CE时,如图,∵AD∥CE,∴∠DCE=∠D=30°,∴∠ACE=90°+30°=120°;④当BE∥CD时,如图,∵BE∥CD,∴∠DCE=∠E=45°,∴∠ACE=∠ACD+∠DCE=135°;⑤当BE∥AD时,如图,过点C作CF∥AD,∵BE∥AD,CF∥AD,∴BE∥AD∥CF,∴∠ECF=∠E=45°,∠DCF=∠D=30°,∴∠DCE=30°+45°=75°,∴∠ACE=90°+75°=165°.综上所述:当∠ACE=30°或45°或120°或135°或165°时,有一组边互相平行.故答案为:30°或45°或120°或135°或165°.3.(淇县)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【答案】(1)∠BPD=∠B+∠D(2)∠BPD=∠B﹣∠D.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.4.(西乡塘)如图,已知DC∥FP,∠1=∠2,∠DEF=30°,∠AGF=70°,FH平分∠EFG.(1)求证:DC∥AB;(2)求∠PFH的度数.【答案】(1)略(2)∠PFH的度数为20°【解答】解:(1)∵DC∥FP,∴∠C=∠2,又∵∠1=∠2,∴∠C=∠1,∴DC∥AB;(2)∵DC∥FP,DC∥AB,∠DEF=30°,∴∠DEF=∠EFP=30°,AB∥FP,又∵∠AGF=70°,∴∠AGF=∠GFP=70°,∴∠GFE=∠GFP+∠EFP=70°+30°=100°,又∵FH平分∠EFG,∴∠GFH=∠GFE=50°,∴∠PFH=∠GFP﹣∠GFH=70°﹣50°=20°.答:∠PFH的度数为20°.5.(海勃湾)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN 上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ 平分∠EPK,求∠HPQ的度数.【答案】(1)AB∥CD(2)PF∥GH(3)∠HPQ的度数为45°【解答】解:(1)AB∥CD,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°﹣∠PKG=90°﹣2∠HPK.∴∠EPK=180°﹣∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴.∴∠HPQ=∠QPK﹣∠HPK=45°.答:∠HPQ的度数为45°.6.(黔江)(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=60°,∠ABC=40°,求∠BED的度数;(3)如图3,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=α,∠ABC=β,请你求出∠BED的度数(用含α,β的式子表示).【答案】(1)成立(2)∠BED=50°(3)【解答】解:(1)成立,理由:如图1中,作EF//AB,则有EF//CD,∴∠1=∠BAE,∠2=∠DCE∴∠AEC=∠1+∠2=∠BAE+∠DCE;(2)如图2,过点E作EH//AB,∵AB//CD,∠F AD=60°,∴∠F AD=∠ADC=60°,∵DE平分∠ADC,∠ADC=60°,∴,∵BE平分∠ABC,∠ABC=40°,∴,∵AB//CD,∴AB//CD//EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=30°,∴∠BED=∠BEH+∠DEH=50°.(3)如图3,过点E作EG//AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=β,∠ADC=∠F AD=α,∴,,∵AB//CD,∴AB//CD//EG,∴,,∴.7.(拱墅)小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.【答案】(1)∠AEC=∠BAE+∠DCE.(2)∠BED=45°【解答】解:(1)∠AEC=∠BAE+∠DCE成立,理由:过点E作EF∥AB,如图,∵EF∥AB,∴∠A=∠AEF.∵EF∥AB,AB∥CD,∴FE∥CD.∴∠C=∠CEF.∵∠AEC=∠AEF+∠CEF,∴∠AEC=∠BAE+∠DCE.(2)过点E作EH∥AB,如图,由(1)的结论可得:∠BED=∠ABE+∠EDC,∵BE平分∠ABC,∠ABC=40°,∴∠ABE=∠ABC=20°.∵∠F AD=50°,AB∥CD,∴∠ADC=∠F AD=50°.∵DE平分∠ADC,∴∠EDC=∠ADC=25°.∴∠BED=20°+25°=45°.8.(宜兴)如图①,已知PQ∥MN,且∠BAM=2∠BAN.(1)填空:∠PBA=°;(2)如图(1)所示,射线AM绕点A开始顺时针旋转至AN便立即按原速度回转至AM 位置,射线BP绕点B开始顺时针旋转至BQ便立即按原速度回转至BP位置.若AM转动的速度是每秒2度,BP转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动几秒,两射线互相平行?(3)如图(2),若两射线分别绕点A,B顺时针方向同时转动,速度同题(2),在射线AM到达AN之前,若两射线交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【答案】(1)120(2)AM转动30秒或110秒(3)∠BAC=2∠BCD【解答】解:(1)∵∠BAM=2∠BAN,∠BAM+∠BAN=180°,∴∠BAM=120°.∵PQ∥MN,∴∠PBA=∠BAM=120°.故答案为:120;(2)设射线AM转动t秒,两射线互相平行,当0<t<90时,如图,AM′和BP′为经过t秒后AM,BP旋转的位置,则∠MAM′=2t°,∠PBP′=(t+30)°,∵PQ∥MN,∴∠BM′A=∠MAM′=2t°,∵AM′∥BP′,∴∠AM′B=∠PBP′.∴2t=t+30.解得:t=30;当90<t<150时,如图,AM′和BP′为经过t秒后AM,BP旋转的位置,则∠MAM′=(360﹣2t)°,∠PBP′=(t+30)°,∵PQ∥MN,∴∠BM′A=∠MAM′=2t°,∵AM′∥BP′,∴∠AM′B=∠PBP′.∴360﹣2t=t+30.解得:t=110.综上所述,当射线AM转动30秒或110秒时,两射线互相平行.(3)∠BAC与∠BCD的数量关系不会发生变化,∠BAC=2∠BCD.理由:设射线AM,BP转动时间为m秒,∴∠BAC=(2m﹣120)°,∠ABC=(120﹣t)°,∴∠ACB=180°﹣(2m﹣120)°﹣(120﹣m)°=(180﹣m)°.∵∠ACD=120°,∴∠BCD=120°﹣(180﹣m)°=(m﹣60)°.∵2m﹣120=2(m﹣60),∴∠BAC=2∠BCD.∴∠BAC与∠BCD的数量关系不会发生变化,∠BAC=2∠BCD.9.(仁寿)如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.10.(邵东)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B 两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA =|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和﹣4A和B之间的距离AB=.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=| ,如果AB=2,则x的值为.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为.【答案】(1)AB=|a﹣b|(2)6 (3)0或﹣4 (4)5【解答】解:(1)综上所述,数轴上A、B两点之间的距离AB=|a﹣b|;(2)数轴上表示2和﹣4的两点A和B之间的距离AB=2﹣(﹣4)=2+4=6;(3)数轴上表示x和﹣2的两点A和B之间的距离AB=|x+2|,如果AB=2,则x的值为0或﹣4;(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为5.故答案为:(1)|a﹣b|;(2)6;(3)|x+2|;0或﹣4;(4)511.(广安)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.12.(兴宁)如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是3个单位长度,长方形ABCD的长AD是6个单位长度,长方形EFGH的长EH是10个单位长度,点E在数轴上表示的数是5.且E、D两点之间的距离为14.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,原点为O.当OM=2ON时,求x的值.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,当S=12时,求此时t的值.【答案】(1)15;﹣15(2)或.(3)t的值为9或13.【解答】解:(1)由题意可得,点H在数轴上表示的数为:5+10=15;点A在数轴上表示的数为:5﹣14﹣6=﹣15.故答案为:15;﹣15.(2)∵点M是线段AD的中点,∴点M表示的数为5﹣14﹣=﹣12,又∵EN=EH,∴点N在数轴上表示的数为:5+(15﹣5)=,由题意可得,x秒时,点M在数轴上表示的数为:﹣12+4x,点N在数轴上表示的数为:﹣3x,∴OM=|4x﹣12|,ON=|3x﹣|,∵OM=2ON,∴|4x﹣12|=2|3x﹣|∴4x﹣12=2(3x﹣)或4x﹣12=﹣2(3x﹣),解得x=或x=.故答案为:或.(3)当CD与EF重合时,所用时间为=7秒,由题意得:AD与EH重合的部分为=4,如图1所示,设长方形ABCD从EF运动到AD与EH重叠部分为4时,所用的时间为t1秒,∴t1==2,∴第一次重叠面积为12时,时间t为2+7=9(秒);当AD与EH重叠部分为4时,如图2所示,设长方形ABCD从EF运动到AD与EH重叠部分为4时,所用的时间为t2秒,∴t2==6,∴第二次重叠面积S=12时,时间t为6+7=13(秒);∴当长方形ABCD与长方形EFGH重叠部分的面积为12时,t的值为9或13.13.(宣化)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示﹣,设点B所表示的数为m.(1)实数m的值是;(2)求|m+1|+|m﹣1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+d|与互为相反数,求2c﹣3d的平方根.【答案】(1)2﹣(2)2 (3)±4.【解答】解:(1)m=﹣+2=2﹣;(2)∵m=2﹣,则m+1>0,m﹣1<0,∴|m+1|+|m﹣1|=m+1+1﹣m=2;答:|m+1|+|m﹣1|的值为2.(3)∵|2c+d|与互为相反数,∴|2c+d|+=0,∴|2c+d|=0,且=0,解得:c=﹣2,d=4,或c=2,d=﹣4,①当c=﹣2,d=4时,所以2c﹣3d=﹣16,无平方根.②当c=2,d=﹣4时,∴2c﹣3d=16,∴2c﹣3d的平方根为±4,答:2c﹣3d的平方根为±4.14.(锦江)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,当点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,当点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|.回答下列问题:(1)数轴上表示1和6的两点之间的距离是数轴上表示2和﹣3的两点之间的距离是.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是,若|AB|=3,那么x为.(3)当x是时,代数式|x+2|+|x﹣1|=7.(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q 同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点?(请写出必要的求解过程).【答案】(1)5,5(2)﹣1或﹣7 (3)﹣4或3 (4)运动或或5秒【解答】解:(1)数轴上表示1和6的两点之间的距离是|6﹣1|=5,数轴上表示2和﹣3的两点之间的距离是|2﹣(﹣3)|=5.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是|x+4|,若|AB|=3,则|x+4|=3,解得x=﹣1或﹣7.(3)当x>1时,|x+2|+|x﹣1|=x+2+x﹣1=7,2x=6,x=3,当x<﹣2时,|x+2|+|x﹣1|=﹣x﹣2+1﹣x=7,﹣2x=8,x=﹣4,当﹣2≤x≤1时,|x+2|+|x﹣1|=x+2+1﹣x=3≠7,∴当x=﹣4或3时,代数式|x+2|+|x﹣1|=7.(4)设运动t秒后,有一点恰好是另两点所连线段的中点,由题意,得①点B为线段PQ中点时,,解得,②点P为线段BQ中点时,,解得,③点Q为线段BP中点时,,解得t=5.答:运动或或5秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点.15.(宣化)阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能完全地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答下列问题:(1)求出+2的整数部分和小数部分;(2)已知:10+=x+y,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数.【答案】(1)3,﹣1 (2)﹣14【解答】解:(1)∵1<<2,∴3<+2<4,∴+2的整数部分是1+2=3,+2的小数部分是﹣1;(2)∵2<<3,∴12<10+<13,∴10+的整数部分是12,10+的小数部分是10+﹣12=﹣2,即x=12,y=﹣2,∴x﹣y=12﹣(﹣2)=12﹣+2=14﹣,则x﹣y的相反数是﹣14.16.(靖江)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a阶派生点”(其中a为常数,且a≠0).例如:点P(1,4)的“2阶派生点”为点Q(2×1+4,1+2×4),即点Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3阶派生点”的坐标为;(2)若点P的“5阶派生点”的坐标为(﹣9,3),求点P的坐标;(3)若点P(c+1,2c﹣1)先向左平移2个单位长度,再向上平移1个单位长度后得到了点P1.点P1的“﹣4阶派生点”P2位于坐标轴上,求点P2的坐标.【答案】(1)(2,14)(2)(﹣2,1);(3)(0,﹣15)或(,0).【解答】解:(1)3×(﹣1)+5=2;﹣1+3×5=14,∴点P的坐标为(﹣1,5),则它的“3级派生点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知,解得:,∴点P的坐标为(﹣2,1);(3)由题意,P1(c﹣1,2c),∴P1的“﹣4阶派生点“P2为:(﹣4(c﹣1)+2c,c﹣1﹣8c),即(﹣2c+4,﹣7c﹣1),∵P2在坐标轴上,∴﹣2c+4=0或﹣7c﹣1=0,∴c=2或c=﹣,∴P2(0,﹣15)或(,0).17.(黄山)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.【答案】(1)①E、F;②(﹣3,3);(2)1或2【解答】解:(1)①∵点A(﹣3,1)到x、y轴的距离中最大值为3,∴与A点是“等距点”的点是E、F.②当点B坐标中到x、y轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A符合“等距点”的是(﹣3,3).故答案为①E、F;②(﹣3,3);(2)T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,①若|4k﹣3|≤4时,则4=﹣k﹣3或﹣4=﹣k﹣3解得k=﹣7(舍去)或k=1.②若|4k﹣3|>4时,则|4k﹣3|=|﹣k﹣3|解得k=2或k=0(舍去).根据“等距点”的定义知,k=1或k=2符合题意.即k的值是1或2.18.(延长)在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD=S,若存在,请求出t值,若不存在,请说明理由.四边形ABOC【答案】(1)0、6,8、0 (2)AP=8﹣2t(0≤t<4);AP=2t﹣8(4≤t≤7).(3)当t为3秒和5秒时S△APD=S四边形ABOC【解答】解:(1)B(0,6),C(8,0),故答案为:0、6,8、0;(2)当点P在线段BA上时,由A(8,6),B(0,6),C(8,0)可得:AB=8,AC=6∵AP=AB﹣BP,BP=2t,∴AP=8﹣2t(0≤t<4);当点P在线段AC上时,∵AP=点P走过的路程﹣AB=2t﹣8(4≤t≤7).(3)存在两个符合条件的t值,当点P在线段BA上时∵S△APD=AP•AC S四边形ABOC=AB•AC∴(8﹣2t)×6=×8×6,解得:t=3<4,当点P在线段AC上时,∵S△APD=AP•CD CD=8﹣2=6∴(2t﹣8)×6=×8×6,解得:t=5<7,综上所述:当t为3秒和5秒时S△APD=S四边形ABOC,19.(齐齐哈尔)如图①,在平面直角坐标系中,点A、B在x轴上,AB⊥BC,AO=OB=2,BC=3(1)写出点A、B、C的坐标.(2)如图②,过点B作BD∥AC交y轴于点D,求∠CAB+∠BDO的大小.(3)如图③,在图②中,作AE、DE分别平分∠CAB、∠ODB,求∠AED的度数.【答案】(1)A(﹣2,0),B(2,0),C(2,3);(2)90°(3)45°【解答】解:(1)依题意得:A(﹣2,0),B(2,0),C(2,3);(2)∵BD∥AC,∴∠ABD=∠BAC,∴CAB+∠BDO=∠ABD+∠BDO=90°;(3):∵BD∥AC,∴∠ABD=∠BAC,∵AE,DE分别平分∠CAB,∠ODB,∴∠CAE+∠BDE=(∠BAC+∠BDO)=(∠ABD+∠BDO)=×90°=45°,过点E作EF∥AC,则∠CAE=∠AEF,∠BDE=∠DEF,∴∠AED=∠AEF+∠DEF=∠CAE+∠BDE=45°.20.(随县)如图,在平面直角坐标系中,已知点A(0,2),B(4,0),C(4,3)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点坐标.【答案】(1)6(2)P(﹣8,1)【解答】解:(1)∵B(4,0),C(4,3),∴BC=3,∴S△ABC=×3×4=6;(2)∵A(0,2)(4,0),∴OA=2,OB=4,∴S四边形ABOP=S△AOB+S△AOP=×4×2+×2(﹣m)=4﹣m,又∵S四边形ABOP=2S△ABC=12,∴4﹣m=12,解得:m=﹣8,∴P(﹣8,1).。
【压轴题】七年级数学下期中试题(及答案)
故选B.
【点睛】
本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
9.C
解析:C
【解析】
【分析】
根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.
【详解】
解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,
天天同学看过图形后立即想出: ,请你补全他的推理过程.
解:(1)如图1,过点 作 ,∴ , .
又∵ ,∴ .
解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将 , , “凑”在一起,得出角之间的关系,使问题得以解决.
(2)问题迁移:如图2, ,求 的度数.
(3)方法运用:如图3, ,点 在 的右侧, ,点 在 的左侧, , 平分 , 平分 , 、 所在的直线交于点 ,点 在 与 两条平行线之间,求 的度数.
A.(1)、(2)、(3)B.(2)、(3)、(4)
C.(3)、(4)、(5)D.(1)、(2)、(5)
6.不等式组 的解集,在数轴上表示正确的是( )
A. B. C. D.
7.下列生活中的运动,属于平移的是()
A.电梯的升降 B.夏天电风扇中运动的扇叶
C.汽车挡风玻璃上运动的刮雨器 D.跳绳时摇动的绳子
17.比较大小: _____________ .
18. 的整数部分是_____.
19.知 , 为两个连续的整数,且 ,则 ______.
20.已知方程组 的解满足方程x+2y=k,则k的值是__________.
三、解答题
21.某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:
2020年初一数学(下)期中压轴题汇编(含解析)
初一数学(下)期中压轴题汇编一.选择题(共22小题)1.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x,y,z,则++的值为()A.1 B.C.D.2.一艘轮船从A港到B港顺水航行,需6小时,从B港到A港逆水航行,需8小时,若在静水条件下,从A港到B港需()A.7小时B.7小时C.6小时D.6小时3.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO =98°,则∠C的度数为()A.40°B.41°C.42°D.43°4.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在射线DB、DC、BC上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=()A.30°B.35°C.15°D.25°5.春节前夕,唐狮服装专卖店按标价打折销售.茗茗去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给茗茗40元,则这两件衣服的原标价各是()A.100元,300元B.100元,200元C.200元,300元D.150元,200元6.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC 于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B=()度.A.78°B.52°C.68°D.75°7.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ABC=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠ADC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个8.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.99.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°10.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.正确结论有()A.1个B.2个C.3个D.4个11.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如记,n k=1+2+3…+(n﹣1)+n,=(x+3)+(x+4)+…+(x+n),=(x+3)+(x+4)+(x+5),已知:(x﹣k+1)=4x2+4x+m,则m的值为()A.﹣20 B.﹣40 C.﹣60 D.﹣7012.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=118°,则∠A的度数为()A.65°B.66°C.70°D.78°13.已知:a=﹣2017x+2018,b=﹣2017x+2019,c=﹣2017x+2020,请你巧妙的求出代数式a2+b2+c2﹣ab ﹣bc﹣ca的值()A.0 B.1 C.2 D.314.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A 的度数为()A.34°B.40°C.42°D.46°15.如图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=24°,则图2中∠AEF的度数为()A.120°B.108°C.112°D.114°16.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020,因此2S﹣S =22020﹣1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019﹣1 B.52020﹣1 C.D.17.如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC =120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.318.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG =2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是()A.1 B.2 C.3 D.419.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399 B.401 C.405 D.40720.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③21.如图所示,把一个三角形纸片ABC的三个顶角向内折叠之后(3个顶点不重合),那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是()A.180°B.270°C.360°D.540°22.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.二.填空题(共20小题)23.将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3……+S2019=.24.如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为S n,则S2018﹣S2017的值为.25.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,ED′的延长线与BC相交于点G,若∠EFG=60°,则∠1=°.26.如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=,△APE的面积等于6.27.如图,在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点将此三角形纸片按下列方式折叠,若EF的长度为5cm,则△DEF的周长为.28.请看杨辉三角.根据前面各式的规律,则(a+b)6=.29.已知m、n满足,则m2﹣n2的值是.30.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是.31.如图,线段AB、AC是两条绕点A可以自由旋转的线段(但点A、B、C始终不在同一条直线上),已知AB=5,AC=7,点D、E分别是AB、BC的中点,则四边形BEFD面积的最大值是.32.如图,将四边形纸片ABCD的右下角向内折出△PC′R,其中∠B=120°,∠D=40°,恰使C′P∥AB,RC′∥AD,则∠C=.33.如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是.34.如图,△ABC的中线BD、CE相交于点O,OF⊥BC,且AB=6,BC=5,AC=3,OF=2,则四边形ADOE的面积是.35.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=AB,B1C=BC,C1A=CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去.第n次操作得到△A n B n∁n,则S1=,△A n B n∁n的面积S n=.36.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若S四边形AEOH=4,S四边形BFOE =5,S四边形CGOF=6,则S四边形DHOG=.37.已知21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,A=(2+1)(22+1)(24+1)(28+1)(216+1)…(2256+1),则A的个位数字为.38.如图,已知∠1=70°,∠C+∠D+∠E+∠F+∠A+∠B=.39.如图,△ABC的面积为40cm2,AE=ED,BD=3DC,则图中△AEF的面积等于cm2.40.如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD 的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2018=.41.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD 恰好与边AB平行,则t的值为.42.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是.三.解答题(共13小题)43.已知在四边形ABCD中,∠A=∠C=90°.(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角(即∠CDE=∠CDN,∠CBE=∠CBM),则∠E=.44.已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C 不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是;②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);(2)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)45.已知:∠MON=36°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C 不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.46.如图,已知OM⊥ON,垂足为O,点A、B分别是射线OM、ON上的一点(O点除外).(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,则∠ACB=;(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE位置关系.47.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.48.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O 点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.49.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.50.如图,已知△ABC中,AB=AC=16厘米,BC=10厘米,点D为AB的中点.(1)如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?51.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,将一直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O逆时针旋转,设旋转的角度为α,(0°<α<360°)(1)当直角三角板旋转到如图2的位置时,OB恰好平分∠COE,此时,∠AOC与∠AOD之间有何数量关系?并说明理由;(2)若射线OC的位置保持不变,且∠COE=50°①在旋转的过程中,是否存在某个旋转角度α,使得射线OB,OC与OE中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的α的取值,若不存在,请说明理由.②在旋转的过程中,当边AB与射线OE相交时(如图3),求∠BOE﹣∠AOC的值;③在旋转的过程中,当边AB与射线OD相交时(如图4),判断∠BOC与∠AOD之间又有什么数量关系?请直接写出表示这个数量关系的等式.52.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON内部作射线OC.(1)如图1,三角板的一边ON与射线OB重合,且∠AOC=150°.若以点O为观察中心,射线OM表示正北方向,求射线OC表示的方向;(2)如图2,将三角板放置到如图位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度数;(3)若仍将三角板按照如图2的方式放置,仅满足OC平分∠MOB,试猜想∠AOM与∠NOC之间的数量关系,并说明理由.53.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=2:1,将直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)在图1中,∠AOC=°,∠MOC=°;(2)将图1中的三角板按图2的位置放置,使得OM在射线OA上,求∠CON的度数;(3)将上述直角三角板按图3的位置放置,OM在∠BOC的内部,说明∠BON﹣∠COM的值固定不变.54.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.55.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°.将一个含45°角的直角三角板OMN的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边ON,MN都在直线AB的下方.(1)将图1中的三角板OMN绕着点O逆时针旋转90°,如图2所示,请问OM是否平分∠CON?请说明理由;(2)将图2中的三角板OMN绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板OMN绕点O按每秒2.5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直角边ON所在直线恰好平分锐角∠AOC,则t的值为(直接写出结果).参考答案与试题解析一.选择题(共22小题)1.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x,y,z,则++的值为()A.1 B.C.D.【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为:++=360,两边都除以180得:1﹣+1﹣+1﹣=2,两边都除以2得,++=.故选:C.2.一艘轮船从A港到B港顺水航行,需6小时,从B港到A港逆水航行,需8小时,若在静水条件下,从A港到B港需()A.7小时B.7小时C.6小时D.6小时【分析】此题要注意,顺水速度=静水速度+水速,逆水速度=静水速度﹣水速,若设静水行完全程需t小时,把整个路程看做单位1,则可知道:从A港到B港顺水航行时水速为﹣,从B港到A港逆水航行时水速为﹣,列方程即可解得.【解答】解:设静水行完全程需t小时.则﹣=﹣解得:t=.故选:C.3.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO =98°,则∠C的度数为()A.40°B.41°C.42°D.43°【分析】如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO =DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=98°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.【解答】解:如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=98°,∴2∠DAO+2∠FBO=98°,∴∠DAO+∠FBO=49°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=139°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣139°=41°,故选:B.4.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在射线DB、DC、BC上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=()A.30°B.35°C.15°D.25°【分析】先由BD、CD分别平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC 中根据三角形内角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=60°,则根据平角定理得到∠MBC+∠NCB=300°;再由BE、CE分别平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,两式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根据三角形内角和定理可计算出∠E=30°;再由BF、CF分别平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根据三角形外角性质得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代换得到∠2=∠5+∠F,2∠2=2∠5+∠E,再进行等量代换可得到∠F=∠E.【解答】解:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=×(180°﹣60°)=60°,∴∠MBC+∠NCB=360°﹣60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°﹣(∠5+∠6+∠1)=180°﹣150°=30°,∵BF、CF分别平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故选:C.5.春节前夕,唐狮服装专卖店按标价打折销售.茗茗去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给茗茗40元,则这两件衣服的原标价各是()A.100元,300元B.100元,200元C.200元,300元D.150元,200元【分析】设这两件衣服的原标价各是x元,y元,根据题意可得:第一件打七折,第二件打五折,共计260元,第二件打七折,第一件打五折,共计260﹣40元,据此列方程组求解.【解答】解:设第二件衣服是x元,第一件衣服是y元,由题意得,,解得:,即这两件衣服的原标价各是300元,100元.故选:A.6.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC 于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B=()度.A.78°B.52°C.68°D.75°【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【解答】解:在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°﹣82°,即:∠B+∠C=98°…②;①﹣②,得:∠B=52°,解得∠B=78°.故选:A.7.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ABC=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠ADC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.【解答】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠EAC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)=180°﹣(180°﹣∠ABC)=90°﹣∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°﹣∠ABC,∴∠ADB不等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∵∠ADC>∠BDC,∴⑤错误;即正确的有3个,故选:B.8.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.9【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.9.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°【分析】先根据三角形内角和定理得出∠E+∠F=∠OAD+∠ODA,再根据四边形内角和是360°进行解答即可.【解答】解:如图所示,连接AD,设DE,AF交于点O,则∠AOD=∠EOF,∴∠E+∠F=∠OAD+∠ODA,又∵四边形ABCD中,∠DAB+∠B+∠C+∠ADC=360°,∴∠OAB+∠B+∠C+∠CDE+∠ODA+∠OAD=360°,即∠OAB+∠B+∠C+∠CDE+∠E+∠F=360°,故选:B.10.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.正确结论有()A.1个B.2个C.3个D.4个【分析】根据同角的余角相等求出∠BAD=∠C,再根据等角的余角相等可以求出∠AEF=∠AFE;根据等腰三角形三线合一的性质求出AG⊥EF.【解答】解:∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选:C.11.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如记,n k=1+2+3…+(n﹣1)+n,=(x+3)+(x+4)+…+(x+n),=(x+3)+(x+4)+(x+5),已知:(x﹣k+1)=4x2+4x+m,则m的值为()A.﹣20 B.﹣40 C.﹣60 D.﹣70【分析】利用题中的新定义化简已知等式左边,确定出m的值即可.【解答】解:根据题中的新定义得:(x+2)(x﹣1)+(x+3)(x﹣2)+(x+4)(x﹣3)+(x+5)(x﹣4)=4x2+4x﹣40=4x2+4x+m,则m=﹣40,故选:B.12.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=118°,则∠A的度数为()A.65°B.66°C.70°D.78°【分析】先根据三等份角得出结论,再利用三角形的内角和列出方程,两方程相加即可求出∠ABC+∠ACB即可.【解答】解:∵∠ABC、∠ACB的三等分线交于点E、D,∴∠CBG=∠EBG=∠ABE=∠ABC,∠BCF=∠ECF=∠ACE=∠ACB,在△BCG中,∠BGC=118°,∴∠CBG+∠BCE=180°﹣∠BGC,∴∠CBG+∠2∠BCF=62°①在△BCF中,∠BFC=132°,∴∠BCF+∠CBF=180°﹣∠BFC,∴∠BCF+2∠CBG=48°②,①+②得,3∠BCF+3∠CBG=110°,∴∠A=180°﹣(∠BCF+∠CBG)=70°,故选:C.13.已知:a=﹣2017x+2018,b=﹣2017x+2019,c=﹣2017x+2020,请你巧妙的求出代数式a2+b2+c2﹣ab ﹣bc﹣ca的值()A.0 B.1 C.2 D.3【分析】把已知的式子化成[(a﹣b)2+(a﹣c)2+(b﹣c)2]的形式,然后代入求解.【解答】解:∵a=﹣2017x+2018,b=﹣2017x+2019,c=﹣2017x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故选:D.14.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A 的度数为()A.34°B.40°C.42°D.46°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求得∠A的度数.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.15.如图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=24°,则图2中∠AEF的度数为()A.120°B.108°C.112°D.114°【分析】根据各角的关系可求出∠BFE的度数,由AE∥BF,利用“两直线平行,同旁内角互补”可求出∠AEF的度数.【解答】解:∵2∠BFE+∠BFC=180°,∠BFE﹣∠BFC=∠CFE=24°,∴∠BFE=(180°+24°)=68°.∵AE∥BF,∴∠AEF=180°﹣∠BFE=112°.故选:C.16.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020,因此2S﹣S =22020﹣1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019﹣1 B.52020﹣1 C.D.【分析】仿照题目中的例子,对所求式子变形即可求得所求式子的值.【解答】解:设S=1+5+52+53+ (52019)则5S=5+52+53+…+52019+52020,5S﹣S=52020﹣1,∴4S=52020﹣1,∴S=,即1+5+52+53+…+52019的值为,故选:C.17.如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC =120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3【分析】根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF 和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.【解答】解:∵∠BAC=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵BE、CE分别为∠ABC、∠ACB的平分线,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣60°=120°,故①正确;如图,过点D作DF⊥AB于F,DG⊥AC的延长线于G,∵BE、CE分别为∠ABC、∠ACB的平分线,∴AD为∠BAC的平分线,∴DF=DG,∴∠FDG=360°﹣90°×2﹣60°=120°,又∵∠BDC=120°,∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°,∴∠BDF=∠CDG,∵在△BDF和△CDG中,,∴△BDF≌△CDG(ASA),∴DB=CD,∴∠DBC=(180°﹣120°)=30°,∴∠DBE=∠DBC+∠CBE=30°+∠CBE,∵BE平分∠ABC,AE平分∠BAC,∴∠ABE=∠CBE,∠BAE=∠BAC=30°,根据三角形的外角性质,∠DEB=∠ABE+∠BAE=∠ABE+30°,∴∠DBE=∠DEB,∴DB=DE,故②正确;∵DB=DE=DC,∴B,C,E三点在以D为圆心,以BD为半径的圆上,∴∠BDE=2∠BCE,故③正确;综上所述,正确的结论有①②③共3个.故选:D.18.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG =2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【解答】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.∴正确的为:①②③,故选:C.19.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399 B.401 C.405 D.407【分析】根据题意可以得到当三角形纸片内有1个点时,有3个小三角形;当有2个点时,有5个小三角形;当n=3时,有7个三角形,因而若有n个点时,一定是有2n+1个三角形.【解答】解:根据题意有这样的三角形的个数为:2n+1=2×200+1=401,故选:B.20.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③【分析】根据新定义可以计算出各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选:C.21.如图所示,把一个三角形纸片ABC的三个顶角向内折叠之后(3个顶点不重合),那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是()A.180°B.270°C.360°D.540°【分析】由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'FG+∠B'GF)以及(∠C'HI+∠C'IH)和(∠A'DE+∠A'ED),再利用三角形的内角和定理即可求解.【解答】解:由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°﹣(∠B'FG+∠B'GF)﹣(∠C'HI+∠C'IH)﹣(∠A'DE+∠A'ED)=720°﹣(180°﹣∠B')﹣(180°﹣C')﹣(180°﹣A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.故选:C.22.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100;根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲商品原来的单价是x元,乙商品原来的单价是y元.根据题意列方程组:.故选:C.二.填空题(共20小题)23.将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3……+S2019=1﹣.【分析】根据图形的变化面积随之变化,再根据各部分图形的面积之和等于正方形的面积减去剩下部分的面积进行计算即可求解.【解答】解:观察图形的变化可知:S1=,S2=,S3=,…S2019=,第2019次对折后,剩下部分的面积为.所以S1+S2+S3……+S2019=1﹣.故答案为1﹣.24.如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为S n,则S2018﹣S2017的值为2017.5.【分析】作辅助线,构建同底等高三角形,根据等腰直角三角形面积公式可得结论.【解答】解:连接EC,∵正方形ACDE和正方形CBFG,∴∠ACE=∠ABG=45°,∴EC∥BG,∴△BCG和△BEG是同底(BG)等高的三角形,即S△BCG=S△BEG,∴当BC=n时,S n=,∴S2018﹣S2017==(2018+2017)(2018﹣2017)=2017.5;故答案为:2017.5.25.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,ED′的延长线与BC相交于点G,若∠EFG=60°,则∠1=120°.【分析】先根据平行线的性质得∠DEF=∠EFG=60°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=60°,则∠GED=120°,所以∠1=120°.【解答】解:∵DE∥GC,∴∠DEF=∠EFG=60°,∠1=∠GED,∵长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,∴∠DEF=∠GEF=60°,即∠GED=120°,∴∠1=∠GED=120°.故答案为:120.26.如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t= 1.5s或5s或9s,△APE的面积等于6.【分析】分为3种情况讨论:当点P在AC上时:当点P在BC上时,根据三角形的面积公式建立方程求出其解即可.。
【压轴题】七年级数学下期中试题(含答案)
解:A、1600名学生的体重是总体,故A正确;
B、1600名学生的体重是总体,故B错误;
C、每个学生的体重是个体,故C错误;
D、从中抽取了100名学生的体重是一个样本,故D错误;
故选:A.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
A. B. C. D.
7.把一张50元的人民币换成10元或5元的人民币,共有
A.4种换法B.5种换法C.6种换法D.7种换法
8.已知关于 的不等式组 恰有3个整数解,则 的取值范围为( )
A. B. C. D.
9.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()
A.形状不变,大小扩大到原来的a倍
B.图案向右平移了a个单位长度
C.图案向左平移了a个单位长度,并且向下平移了a个单位长度
D.图案向右平移了a个单位长度,并且向上平移了a个单位长度
6.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
二、填空题
13.2【解析】【分析】根据无理数平方根和立方根的概念两直线的位置关系邻补角的概念分别判断后即可得到答案【详解】解::①无理数是无限不循环小数本说法正确;②平方根与立方根相等的数是0本说法错误;③若ab
期中模拟测试卷(二)七年级数学下学期期中期末满分必刷常考压轴题人教版
七年级下册期中模拟测试(二)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.的算术平方根为()A.B.C.D.﹣【答案】C【解答】解:的算术平方根为.故选:C.2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.3.下列坐标中,是第二象限的坐标是()A.(1,﹣5)B.(﹣2,4)C.(﹣1,﹣5)D.(5,7)【答案】B【解答】解:A、(1,﹣5)在第四象限,故本选项不合题意;B、(﹣2,4)在第二象限,故本选项符合题意;C、(﹣1,﹣5)在第三象限,故本选项不合题意;D、(5,7)在第一象限,故本选项不合题意;故选:B.4.下列图形中,∠1与∠2是同位角的是()A.B.C.D.【答案】B【解答】解:A选项,∠1与∠2是对顶角,不是同位角,故该选项不符合题意;B选项,∠1与∠2是同位角,故该选项符合题意;C选项,∠1与∠2是内错角,不是同位角,故该选项不符合题意;D选项,∠1与∠2是同旁内角,不是同位角,故该选项不符合题意;故选:B.5.若点P在x轴的下方,y轴的左方,且到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)【答案】C【解答】解:∵点P在x轴的下方y轴的左方,∴点P在第三象限,∵点P到每条坐标轴的距离都是4,∴点P的坐标为(﹣4,﹣4).故选:C.6.如图,把河AB中的水引到C,拟修水渠中最短的是()A.CM B.CN C.CP D.CQ【答案】C【解答】解:如图,CP⊥AB,垂足为P,在P处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.故选:C.7.如图,下列条件:①∠1=∠3;②∠DAB=∠BCD;③∠ADC+∠BCD=180°;④∠2=∠4,其中能判定AB∥CD的有()A.1个B.2个C.4个D.3个【答案】A【解答】解:①由∠1=∠3可判定AD∥BC,不符合题意;②由∠DAB=∠BCD不能判定AB∥CD,不符合题意;③由∠ADC+∠BCD=180°可判定AD∥BC,不符合题意;④由∠2=∠4可判定AB∥CD,符合题意.故选:A.8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【答案】B【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.9.下列说法中,正确的是()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A.①②B.①③C.①④D.②③【答案】B【解答】解:①两点之间的所有连线中,线段最短,说法正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;③平行于同一直线的两条直线互相平行,说法正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.10.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠ABC+∠ACB=120°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【答案】D【解答】解:在△ABC中,∠ABC+∠ACB=120°,在△DBC中,∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=120°﹣90°=30°.故选:D.11.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①、②的边线都平行C.纸带①的边线不平行,纸带②的边线平行D.纸带①、②的边线都不平行【答案】C【解答】解:如图①所示:∵∠1=∠2=50°,∴∠3=∠2=50°,∴∠4=∠5=180°﹣50°﹣50°=80°,∴∠2≠∠4,∴纸带①的边线不平行;如图②所示:∵GD与GC重合,HF与HE重合,∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,∴∠CGH+∠EHG=180°,∴纸带②的边线平行.故选:C.12.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是()A.(50,51)B.(51,50)C.(49,50)D.(50,49)【答案】B【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选:B二、填空题(本大题共6小题,每小题3分,共18分)13.5的平方根是.【答案】±【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.14.如图,AB、CD相交于点O,OE是∠AOC的平分线,∠BOD=70°,∠EOF=65°,则∠AOF的度数为°.【答案】30【解答】解:∵∠BOD=70°,∴∠AOC=∠BOD=70°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=70°=35°,∵∠EOF=65°,∴∠AOF=65°﹣35°=30°,故答案为:30.15.已知≈4.496,≈14.22,则≈.【答案】44.96【解答】解:==10≈10×4.496=44.96,故答案为:44.96.16.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2=.【答案】45°【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+∠2=∠3+∠4=45°.故答案是:45°.17.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.【答案】540【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=20﹣2=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.18.在平面直角坐标系中,点P位于原点,第1秒钟向右移动1个单位,第2秒钟向上移动2个单位,第3秒钟向左移动3个单位,第4秒钟向下移动4个单位,第5秒钟向右移动5个单位,…依此类推,经过2021秒钟后,点P的坐标是.【答案】(1011,﹣1010)【解答】解:观察图形可知经过2017秒钟后,点P在第四象限的直线y=﹣x+1上,∵2021÷4=505余1,∴P2021的横坐标为1+2×505=1011,∴y=﹣1011+1=﹣1010,∴P(1011,﹣1010).故答案为(1011,﹣1010)三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算:+﹣(﹣1).【答案】1﹣【解答】解:+﹣(﹣1)=3﹣3﹣+1=1﹣20.已知正数m的两个不同平方根分别是2a﹣7和a+4,又b﹣7的立方根为﹣2.(1)求a和正数m及b的值;(2)求3a+2b的算术平方根.【答案】(1)a=1,m=25,b=﹣1 (2)1【解答】解:(1)∵正数m的两个不同平方根分别是2a﹣7和a+4,∴(2a﹣7)+(a+4)=0,∴a=1,2a﹣7=﹣5,∴m=25,∵b﹣7的立方根为﹣2,∴b﹣7=﹣8,∴b=﹣1,∴a=1,m=25,b=﹣1;(2)由(1)有a=1,b=﹣1,∴3a+2b=3×1+2×(﹣1)=1,∴3a+2b的算术平方根为1.21.补全下列题目的解题过程.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(),∴∠3=∠4(等量代换),∴DB∥(),∴∠C=∠ABD(),∵∠C=∠D(已知),∴∠D=∠ABD(),∴DF∥AC().【答案】对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【解答】证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(对顶角相等),∴∠3=∠4(等量代换),∴DB∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴DF∥A C(内错角相等,两直线平行),故答案为:对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.22.如图,在平面直角坐标系中,三角形ABC的顶点都在网格点上,其中点C的坐标为(1,2).(1)点A的坐标是点B的坐标是.(2)画出将三角形ABC先向左平移2个单位长度,再向上平移1个单位长度所得到的三角形A'B'C'.请写出三角形A'B'C'的三个顶点坐标;(3)求三角形ABC的面积.【答案】(1)(2,﹣1);(4,3)(2)略(3)5【解答】解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1);(4,3);(2)如图,三角形A'B'C'为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)三角形ABC的面积=3×4﹣×3×1﹣×3×1﹣×2×4=5.23.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2) (﹣2,5)(3)8【解答】解:(1)令2m﹣4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)令m+4﹣(2m﹣4)=7,解得m=1,所以P点的坐标为(﹣2,5);(3)∵点P在过A(2,3)点且与x轴平行的直线上,∴m+4=3,解得m=﹣1.∴P点的坐标为(﹣6,3),∴AP=2+6=8.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.25如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.26.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写出点C,D的坐标并求出四边形ABDC的面积.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.【答案】(1) 12(2)存在(3)当点F在线段BD上,∠OFC=∠FOB+∠FCD;;当点F在线段BD的延长线上,∠OFC=∠FOB﹣∠FCD.【解答】解:(1)∵点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4﹣x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC﹣∠NFO=∠FCD﹣∠FOB;同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB﹣∠FCD.。
一元一次不等式组七年级数学下学期期中期末满分必刷常考压轴题人教版
专题07 一元一次不等式组(知识点梳理+典例剖析+变式训练)考点1 解一元一次不等式组【典例1】(2022春•介休市期中)解下列不等式组,并在数轴上表示出不等式组的解集:(1);(2).【解答】解:(1)由1﹣3x>﹣5,得:x<2,由x﹣1≤﹣2(x+2),得:x≤﹣1,则不等式组的解集为x≤﹣1,将不等式组的解集表示在数轴上如下:(2)由4(x+1)≤7x+13,得:x≥﹣3,由x﹣4<,得:x<2,则不等式组的解集为﹣3≤x<2,将不等式组的解集表示在数轴上如下:【变式1-1】(2022•雁塔区校级模拟)解不等式组:,并把它的解集表示在数轴上.【解答】解:由2x+5>5x+2,得:x<1,由3(x﹣1)<4x,得:x>﹣3,则不等式组的解集为﹣3<x<1,将解集表示在数轴上如下:【变式1-2】(2022春•定陶区期中)(1)解不等式3(x﹣2)﹣4≤1﹣2(x﹣2),并求出它的正整数解.(2)解不等式组:.【解答】解:(1)去括号,得:3x﹣6﹣4≤1﹣2x+4,移项,得:3x+2x≤1+4+6+4,合并同类项,得:5x≤15,系数化为1,得:x≤3,∴不等式的正整数解为1、2、3;(2)解不等式1﹣3(x﹣1)<8﹣x,得:x>﹣2,解不等式≥x﹣3,得:x≤3,则不等式组的解集为﹣2<x≤3.【变式1-3】(2022•南京一模)解不等式组并将解集在数轴上表示出来.【解答】解:解不等式x+1≥0,得x≥﹣1,解不等式﹣1<,得x<3,∴原不等式组的解集为﹣1≤x<3,∴将不等式组的解集在数轴上表示出来:【变式1-4】(2022•长安区二模)解不等式组:.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<2,则不等式组的解集为1≤x<2.【变式1-5】(2022•长兴县模拟)解不等式组.【解答】解:解不等式5+3x<3得x<﹣,解不等式﹣<2得x>﹣5,∴不等式组的解集为﹣5<x<﹣.考点2 根据实际问题列一元一次不等式组【典例2】(2021春•重庆期末)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式组为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【答案】C【解答】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.【变式2-1】(2021春•饶平县校级期末)八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.【答案】D【解答】解:(x﹣1)位同学植树棵数为9(x﹣1),∵有1位同学植树的棵数不到8棵.植树的总棵数为(7x+9)棵,∴可列不等式组为:.故选:D.【变式2-2】(2020春•集贤县期末)八年级某班部分学生去植树,若每人平均植树4棵,还剩9棵,若每人平均植树5棵,则最后一名学生有但棵数不足2棵.若设同学人数x人,则下列列式正确的是()A.B.C.D.【答案】C【解答】解:设同学人数x人,则树有(4x+9)棵,由题意得:,故选:C.【变式2-3】(2019春•磁县期末)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.【答案】D【解答】解:∵若每间住4人,则还有19人无宿舍住,∴学生总人数为(4x+19)人,∵一间宿舍不空也不满,∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,∴列的不等式组为:故选:D.【变式2-4】(2015春•深圳校级期中)用甲乙两种原料配制成某种饮料,已知每千克的这两种原料的维生素C含量及购买这两种原料的价格如表所示:现配制这种饮料10kg,要求至少含有4200单位的维生素C,且购买原料的费用不超过72元.设所需甲种原料x(kg),则可列不等式组为()原料甲乙维生素600单位100单位原料价格8元4元A.B.C.D.【答案】B【解答】解:设所需甲种原料的质量为xkg,则需乙种原料(10﹣x)kg.根据题意,得:,故选:B考点2 一元一次不等式组的应用-最值问题【典例3】(2022春•西城区校级期中)为降低空气污染,919公交公司决定全部更换节能环保的燃气公交车,计划购买A型和B型两种公交车共10辆,其中每台的价格,年载客量如表:A型B型价格(万元/台)a b年载客量(万人/年)60100若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次.请你利用方程组或不等式组设计一个总费用最少的方案,并说明总费用最少的理由.【解答】解:(1)依题意得:,解得:.答:a的值为100,b的值为150.(2)总费用最少的购买方案为:购买A型公交车8辆,B型公交车2辆,理由如下:设购买A型公交车m辆,则购买B型公交车(10﹣m)辆,依题意得:,解得:6≤m≤8.又∵m为整数,∴m可以为6,7,8.当m=6时,10﹣m=10﹣6=4,购买总费用为100×6+150×4=1200(万元);当m=7时,10﹣m=10﹣7=3,购买总费用为100×7+150×3=1150(万元);当m=8时,10﹣m=10﹣8=2,购买总费用为100×8+150×2=1100(万元).答:总费用最少的购买方案为:购买A型公交车8辆,B型公交车2辆.【变式3-1】“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向某市捐赠A型医疗物资290件和B型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A型医疗物资40件和B型医疗物资10件,乙种汽车每辆最多能载A型医疗物资30件和B型医疗物资20件.(1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是600元,乙种汽车每辆的运费是500元,这次运送的费用最少需要多少钱?【解答】解:(1)设租用甲种型号的汽车x辆,则租用乙种型号的汽车(8﹣x)辆,依题意得:,解得:5≤x≤6.又∵x为整数,∴x可以为5,6,∴共有2种租车方案,方案1:租用甲种型号的汽车5辆,乙种型号的汽车3辆;方案2:租用甲种型号的汽车6辆,乙种型号的汽车2辆.(2)选择租车方案1所需运送费用为600×5+500×3=4500(元);选择租车方案2所需运送费用为600×6+500×2=4600(元).∵4500<4600,∴这次运送的费用最少需要4500元钱.【变式3-2】(2021春•江都区校级期末)现计划把甲种货物306吨和乙种货物230吨运往某地,已知有A、B两种不同规格的货车共50辆,如果每辆A型货车最多可装甲种货物7吨和乙种货物3吨,每辆B型货车最多可装甲种货物5吨和乙种货物7吨.(1)装货时如何安排A、B两种货车的辆数,共有哪些方案?(2)使用A型车每辆费用为600元,使用B型车每辆费用800元,上述方案中,哪个方案运费最省?最省的运费是多少元?【解答】解:(1)设安排A种货车x辆,则安排B种货车(50﹣x)辆,依题意得:,解得:28≤x≤30,又∵x为整数,∴x=28或29或30,∴共有3种安排方案,方案1:安排A种货车28辆,B种货车22辆;方案2:安排A种货车29辆,B种货车21辆;方案3:安排A种货车30辆,B种货车20辆.(2)选择方案1所需运费为600×28+800×22=34400(元),选择方案2所需运费为600×29+800×21=34200(元),选择方案3所需运费为600×30+800×20=34000(元).∵34400>34200>34000,∴选择方案3运费最省,最省的运费是34000元.【变式3-3】(2021秋•海曙区期末)为坚决阻断新冠肺炎疫情传播途径,有效遏制疫情扩散和蔓延,宁波全市自12月7日起启动Ⅰ级应急响应,同时对镇海区临时实施封闭管理.某地红十字会计划将一批物资打包成箱捐赠给疫情严重的蛟川街道,其中口罩200箱,防护服120箱.(1)现计划租用甲、乙两种货车共8辆,一次性将这批口罩和防护服全部运往蛟川街道.已知甲种货车最多可装口罩40箱和防护服10箱,乙种货车最多可装口罩和防护服各20箱.安排甲、乙两种货车时有几种方案?请你帮助设计出来;(2)在第(1)问的条件下,如果甲种货车每辆需付运输费2000元,乙种货车每辆需付运输费1800元,应选择哪种方案可使运输费最少?最少运输费是多少元?【解答】解:(1)设租用甲种货车x辆,则租用乙种货车(8﹣x)辆,依题意得:,解得:2≤x≤4.又∵x为正整数,∴x的值可以为2,3,4,∴共有3种租车方案,方案1:租用2辆甲种货车,6辆乙种货车;方案2:租用3辆甲种货车,5辆乙种货车;方案3:租用4辆甲种货车,4辆乙种货车.(2)选择方案1所需总运输费为2000×2+1800×6=14800(元);选择方案2所需总运算费为2000×3+1800×5=15000(元);选择方案3所需总运输费为2000×4+1800×4=15200(元).∵14800<15000<15200,∴选择方案1:租用2辆甲种货车,6辆乙种货车时,总运算费最少,最少总运输费是14800元考点3 元一次不等式组的应用-方案问题【典例4】(2022春•湖口县期中)某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食品11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?【解答】解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得:,解得:5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)方案一所付的费用为:5×1500+11×1200=20700(元);方案一所付的费用为:6×1500+10×1200=21000(元);方案一所付的费用为:7×1500+9×1200=21300(元);∵20700<21000<21300,∴选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【变式4-1】(2021秋•临湘市期末)列不等式(组)解应用题:一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.【解答】解:设租用甲型汽车x辆,则租用乙型汽车(6﹣x)辆,依题意得:,解得2≤x≤4,∵x的值是整数∴x的值是2,3,4.∴该公司有三种租车方案:①租用甲型汽车2辆,租用乙型汽车4辆,费用为5000元;②租用甲型汽车3辆,租用乙型汽车3辆,费用为4950元;③租用甲型汽车4辆,租用乙型汽车2辆,费用为4900元.∴最低的租车费用为4900元.【变式4-2】(2022春•雨花区校级期中)2021年12月31日,财政部、工信部、科技部和发改委联合发布2022年新能源汽车补贴方案,明确了2022年新能源汽车购置补贴政策将于2022年12月31日终止.目前,新能源汽车销售形势越发见好.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为39万元,本周已售出3辆A型车和2辆B型车,销售额为66万元.(1)求每辆A型车和B型车的售价各为多少万元;(2)某公司拟向该店购买A,B两种型号的新能源汽车共22辆,且A型号车不超过13辆,购车费不超过300万元,则该公司有哪几种购车方案?【解答】解:(1)设每辆A型车的售价为x万元,每辆B型车的售价为y万元,依题意得:,解得:.答:每辆A型车的售价为12万元,每辆B型车的售价为15万元.(2)设购进m辆A型号车,则购进(22﹣m)辆B型号车,依题意得:,解得:10≤m≤13.又∵m为正整数,∴m可以为10,11,12,13,∴该公司共有4种购车方案,方案1:购进10辆A型号车,12辆B型号车;方案2:购进11辆A型号车,11辆B型号车;方案3:购进12辆A型号车,10辆B型号车;方案4:购进13辆A型号车,9辆B型号车.【典例5】(2022•凤山县模拟)某文具店准备购进甲、乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元;若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲、乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部来购进这两种钢笔,考虑客户需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过160支,那么该文具店共有几种进货方案?【解答】解:(1)设购进甲种钢笔每支需x元,购进乙种钢笔每支需y元,根据题意得:解得.答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元;(2)设购进甲种钢笔m支,则购进乙种钢笔=(100﹣m)支,依题意得,解得:150≤m≤160.又∵m,(100﹣m)均为正整数,∴m可以为150,152,154,156,158,160,∴该文具店共有6种购进方案.【变式5-1】(2022•任城区一模)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共30件.其中甲种奖品每件50元,乙种奖品每件32元.(1)如果购买甲、乙两种奖品共花费了1284元,求甲、乙两种奖品各购买了多少件?(2)如果购买甲种奖品的件数超过乙种奖品件数的一半,总花费又不超过1200元,那么该公司共有几种不同的购买方案?哪种方案花费最少?最少花费是多少元?【解答】解:(1)设购买甲种奖品x件,乙种奖品y件,依题意得:,解得:.答:购买甲种奖品18件,乙种奖品12件.(2)设购买甲种奖品m件,则购买乙种奖品(30﹣m)件,依题意得:,解得:10<m≤.又∵m为正整数,∴m可以为11,12,13,∴该公司共有3种购买方案,方案1:购买甲种奖品11件,乙种奖品19件,总花费为50×11+32×19=1158(元);方案2:购买甲种奖品12件,乙种奖品18件,总花费为50×12+32×18=1176(元);方案3:购买甲种奖品13件,乙种奖品17件,总花费为50×13+32×17=1194(元).∵1158<1176<1194,∴方案1花费最少,最少花费是1158元.【变式5-2】(2021秋•鸡冠区校级期末)在今年的新冠疫情期间,政府紧急组织一批物资送往武汉.现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱?(2)现计划租用A、B两种货车共10辆,一次性将所有物资送到群众手中,已知A种货车最多可装食品40箱和矿泉水10箱,B种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案?(3)在(2)条件下,A种货车每辆需付运费600元,B种货车每辆需付运费450元,政府应该选择哪种方案,才能使运费最少?最少运费是多少?【解答】解:(1)设食品有x箱,矿泉水有y箱,依题意,得:,解得:.答:食品有260箱,矿泉水有150箱.(2)设租用A种货车m辆,则租用B种货车(10﹣m)辆,依题意,得:,解得:3≤m≤5,又∵m为正整数,∴m可以为3,4,5,∴共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆.(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元).∵4950<5100<5250,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.【典例6】(2022•长垣市一模)书法是中华民族的文化瑰宝,是人类文明的宝贵财富,是我国基础教育的重要内容.某学校准备为学生的书法课购买一批毛笔和宣纸,已知购买40支毛笔和100张宣纸需要280元;购买30支毛笔和200张宣纸需要260元.(1)求毛笔和宣纸的单价;(2)某超市给出以下两种优惠方案:方案A:购买一支毛笔,赠送一张宣纸;方案B:购买200张宣纸以上,超出的部分按原价打八折,毛笔不打折.学校准备购买毛笔50支,宣纸若干张(超过200张).选择哪种方案更划算?请说明理由.【解答】解:(1)设毛笔的单价为x元,宣纸的单价为y元,依题意得:,解得:.答:毛笔的单价为6元,宣纸的单价为0.4元.(2)设购买宣纸m(m>200)张.选择方案A所需费用为50×6+0.4×(m﹣50)=0.4m+280(元);选择方案B所需费用为50×6+0.4×200+0.4×0.8×(m﹣200)=0.32m+316.当0.4m+280<0.32m+316时,解得:m<450,∴当200<m<450时,选择方案A更划算;当0.4m+280=0.32m+316时,解得:m=450,∴当m=450时,选择方案A和方案B所需费用一样;当0.4m+280>0.32m+316时,解得:m>450,∴当m>450时,选择方案B更划算.答:当购买的宣纸数量超过200张不足450张时,选择方案A更划算;当购买的宣纸数量等于450张时,选择两方案所需费用相同;当购买的宣纸数量超过450张时,选择方案B更划算.【变式6-1】(2021秋•温州校级期中)某商店对A型号笔记本电脑举行促销活动,有两种优惠方案可供选择.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.已知A型号笔记本电脑的原售价是5000元/台,某公司一次性从该商店购买A型号笔记本电脑x台.(1)若方案二比方案一更便宜,根据题意列出关于x的不等式.(2)若公司买12台笔记本,你会选择哪个方案?请说明理由.【解答】解:(1)根据题意得,5000×5+5000×80%(x﹣5)<5000×90%x;(2)选择方案二,理由:方案一:5000×12×90%=54000(元),方案二:5000×5+5000×80%×(12﹣5)=53000(元),∵54000>53000,∴选择方案二.【变式6-2】(2021春•祁阳县期末)为了庆祝中国共产党建党100周年,某校举行了一系列活动,其中共青团开展了“学党史、强信念、跟党走”教育活动.为奖励优秀学生,该校准备购买一批文具袋和圆规作为奖品,已知购买3个文具袋和2个圆规需46元,购买5个文具袋和10个圆规需110元.(1)求文具袋和圆规的单价.(2)学校准备购买文具袋20个,圆规100个,文具店给出两种优惠方案:方案一:每购买一个文具袋赠送1个圆规.方案二:购买10个以上圆规时,超出10个的部分按原价的八折优惠,文具袋不打折.学校选择哪种方案更划算?请说明理由.【解答】解:(1)设文具袋的单价为x元,圆规的单价为y元.依题意,得,解得.答:文具袋的单价为12元,圆规的单价为5元.(2)方案一:总费用为20×12+5×(100﹣20)=640(元),方案二:总费用为20×12+10×5+5×80%×(100﹣10)=650(元),∵640<650,∴选择方案一更划算.【变式6-3】(2021春•和平区月考)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠,现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)顾客到哪个厂家购买更划算?【解答】解:(1)到甲厂家购买所需费用为800×3+80(x﹣3×3)=(80x+1680)元;到乙厂家购买所需费用为(800×3+80x)×0.8=(64x+1920)元.(2)当到甲厂家购买划算时,80x+1680<64x+1920,解得:x<15;当到甲、乙两厂家购买费用相同时,80x+1680=64x+1920,解得:x=15;当到乙厂家购买划算时,80x+1680>64x+1920,解得:x>15.答:当9≤x<15时,到甲厂家购买更划算;当x=15时,到两个厂家购买费用相同;当x>15时,到乙厂家购买更划算.。
期中选择、填空题压轴题必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版
选择、填空题压轴题必刷常考题【压轴题题必考】一、选择题1.(红谷滩)如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为()A.20°B.30°C.40°D.50°【答案】A【解答】解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.2.(奉化)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°【答案】B【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠F AE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.3.(泰兴)如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°,则下列结论:①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的有()A.①②③④B.①②③C.①③④D.①②④【答案】B【解答】解:∵AB∥CD,∠ABO=a°,∴∠ABO=∠BOD=a°,∵OE平分∠BOC,∠BOC+∠BOD=180°,∴∠BOE=(180﹣a)°,故①正确;∵OF⊥OE,OP⊥CD,OE平分∠BOC,∴∠BOE+∠BOF=90°,∠EOC+∠EOP=90°,∠EOC=∠EOB,∠EOC+∠DOF=90°,∴∠POE=∠BOF,∠BOF=∠DOF,故③正确;∴OF平分∠BOD,故②正确;∵AB∥CD,∴∠ABO=∠BOD,∴∠ABO=2∠DOF,而题目中不能得到∠ABO=∠POB,故④错误;故选:B.4.(碑林)如图,AB∥CD∥EF,若∠CEF=105°,∠BCE=55°,则∠ABC的度数为()A.110°B.115°C.130°D.135°【答案】C【解答】解:∵CD∥EF,∴∠ECD+∠CEF=180°,∵∠CEF=105°,∴∠ECD=180°﹣∠CEF=180°﹣105°=75°,∵∠BCE=55°,∴∠BCD=∠BCE+∠ECD=55°+75°=130°,∵AB∥CD,∴∠ABC=∠BCD=130°,故选:C.5.(济南)如图,直线l1∥l2被直线l3所截,∠1=∠2=36°,∠P=90°,则∠3=()A.36°B.54°C.46°D.44°【答案】B【解答】解:如图:∵直线l1∥l2被直线l3所截,∠1=∠2=36°,∴∠CAB=180°﹣∠1﹣∠2=180°﹣36°﹣36°=108°,∵△ABP中,∠2=36°,∠P=90°,∴∠P AB=90°﹣36°=54°,∴∠3=∠CAB﹣∠P AB=108°﹣54°=54°.故选:B.6.(巴南)如图,点E在长方形ABCD的内部,点F在BC上且不与B、C重合,点G在CD上且不与C、D重合.如果三角形GCF沿直线GF折叠后能与三角形GEF重合,且FH平分∠BFE,那么()A.∠GFH是钝角B.∠GFH是锐角C.∠GFH是直角D.∠GFH的大小不能确定【答案】C【解答】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH∴∠GFH=∠EFG+∠EFH=∠EFC+∠EFB=(∠EFC+∠EFB)=×180°=90°,即∠GFH为直角.故选:C.7.(武汉)如图,已知AB∥CD,EF⊥AB于点E,∠AEH=∠FGH=20°,∠H=50°,则∠EFG的度数是()A.120°B.130°C.140°D.150°【答案】C【解答】解:过点H作HM∥AB,延长EF交CD于点N,如图所示:∵AB∥CD,EF⊥AB,∴AB∥HM∥CD,EN⊥CD,∴∠EHM=∠AEH=20°,∠ENG=90°,∠CGH=∠GHM,∴∠GHM=∠EHG﹣∠EHM=30°,∴∠CGH=30°,∴∠CGF=∠CGH+∠FGH=50°,∵∠EFG是△FGN的外角,∴∠EFG=∠ENG+∠CGF=140°.故选:C.8.(端州)将一副三角板按如图放置,有下列结论:①若∠2=30°,则AC∥DE;②∠BAE+∠CAD=180°;③若BC∥AD,则∠2=30°;④若∠CAD=150°,则∠4=∠C.其中正确的是()A.①②④B.①③④C.②③④D.①②③④【答案】A【解答】解:∵∠1+∠2=90°,∠2=30°,∴∠1=60°.∴∠CAD=∠1+∠EAD=150°.∵∠D=30°,∴∠CAD+∠D=180°.∴AC∥DE,∴①的结论正确;∵∠BAE=90°﹣∠1,∠CAD=90°+∠1,∴∠BAE+∠CAD=180°.∴②的结论正确;∵BC∥AD,∴∠3=∠B=45°.∴∠2=90°﹣∠3=45°.∴③的结论错误;∵∠CAD=150°,∠D=30°,∴∠CAD+∠D=180°.∴AC∥DE.∴∠4=∠C.∴④的结论正确.综上所述,正确的结论有:①②④,故选:A.9.(嵊州)如图,将长方形纸片沿EB,CF折叠成图1,使AB,CD在同一直线上,再沿BF折叠成图2,使点D落在点D'处,BD'交CF于点P,若∠CEB=37°,则∠CPB的度数为()A.110°B.111°C.112°D.113°【答案】B【解答】解:如图所示由题意得:EG∥HF,∴∠BCG=∠CBH,∠HBE=∠CEB=37°,∠FCG=∠BFC,由折叠性质得:∠HBE=∠CBE=∠CBH,∠FCG=∠BCF=∠BCG,∴∠CBE=∠BCF=∠BFC=∠CEB=37°,∠CBH=74°,∴∠DBF=∠CBH=74°,在图2中,由折叠的性质得:∠BFP=∠BFC=37°,∠FBD'=∠DBF=74°,∴∠CPB=∠FBD'+∠BFP=111°.故选:B.10.(诸暨)已知数a,b,c的大小关系如图,下列说法:①ab+ac>0;②﹣a﹣b+c<0;③;④|a﹣b|+|c+b|﹣|a﹣c|=﹣2b;⑤若x为数轴上任意一点,则|x ﹣b|+|x﹣a|的最小值为a﹣b.其中正确结论的个数是()A.1B.2C.3D.4【答案】B【解答】解:由题意b<0,c>a>0,|c|>|b|>|a|,则①ab+ac>0,故原结论正确;②﹣a﹣b+c>0,故原结论错误;③++=1﹣1+1=1,故原结论错误;④|a﹣b|+|c+b|﹣|a﹣c|=a﹣b+c+b﹣(﹣a+c)=2a,故原结论错误;⑤当b≤x≤a时,|x﹣b|+|x﹣a|a﹣b,故原结论正确.故正确结论有2个.故选:B.11.(天心)设S1=1,S2=1,S3=1,…,S n=1,则的值为()A.B.C.D.【答案】A【解答】解:,,,=,…,,∴=1+1…+1+﹣=24+1﹣=.故选:A.12.﹣2014=()A.20142B.20142﹣1C.2015D.20152﹣1【答案】B【解答】解:﹣2014=﹣2014=(2014.52﹣1.25)﹣2014=2014.52﹣2014.5+0.25﹣1=(2014.5﹣0.5)2﹣1=20142﹣1.故选:B.13.(沙坪坝)如图,在平面直角坐标系中,已知A1(﹣,0),以OA1为直角边构造等腰Rt△OA1A2,再以OA2为直角边构造等腰Rt△OA2A3,再以OA3为直角边构造等腰Rt△OA3A4,…,按此规律进行下去,则点A1033的坐标为()A.(﹣2515,0)B.(﹣2515,2515)C.(﹣2514,2514)D.(﹣2514,0)【答案】A【解答】解:∵等腰直角三角形OA1A2的直角边OA1在x轴的负半轴上,且OA1=A1A2=,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=,OA2=,OA3=×()2,…,OA1033=()1032,∵A1、A2、A3、…,每8个一循环,再回到x轴的负半轴,1.33=8×129+1,∴点A1033在x轴负半轴上,∵OA1033=()1032=2515,∴点A1033的坐标为:(﹣2515,0).故选:A.14.(固始)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…照此规律,点P第2020次跳动至点P2020的坐标是()A.(﹣506,1010)B.(﹣505,1010)C.(506,1010)D.(505,1010)【答案】C【解答】解:设第n次跳动至点P n,观察发现:P(1,0),P1(1,1),P2(﹣1,1),P3(﹣1,2),P4(2,2),P5(2,3),P6(﹣2,3),P7(﹣2,4),P8(3,4),P9(3,5),…,∴P4n(n+1,2n),P4n+1(n+1,2n+1),P4n+2(﹣n﹣1,2n+1),P4n+3(﹣n﹣1,2n+2)(n为自然数).∵2020=505×4,∴P2020(505+1,505×2),即(506,1010).故选:C.15.(重庆)如图,在平面直角坐标系上有点A(1,﹣1),点A第一次向左跳动至A1(﹣1,0),第二次向右跳动至A2(2,0),第三次向左跳动至A3(﹣2,1),第四次向右跳动至A4(3,1)…依照此规律跳动下去,点A第9次跳动至A9的坐标()A.(﹣5,4)B.(﹣5,3)C.(6,4)D.(6,3)【答案】A【解答】解:通过坐标可以发现A1、A3、A5、A7都位于y轴左侧,由题干发现:第一次跳动A1(﹣1,0)即(﹣,),第三次跳动A3(﹣2,1)即(﹣,),第五次跳动A5(﹣3,2)即(﹣,),……第九次跳动A9(﹣,)即(﹣5,4),故选:A.16.(阜南)如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为()A.(4,44)B.(5,44)C.(44,4)D.(44,5)【答案】A【解答】解:由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a n﹣a n﹣1=2n,a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,a n﹣a n﹣1=2n,相加得:a n﹣a1=2(2+3+4+…+n)=n2+n﹣2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).故选:A.17.(许昌)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)【答案】D【解答】解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019 (673,0)则点P2019的坐标是(673,0).故选:D.二、填空题18.(公安)如图(1)是长方形纸片,∠DEF=21°,将纸片沿EF折叠成图(2)的形状,则图(2)中的∠CFG的度数是.【答案】138°【解答】解:∵AD∥BC,∴∠DEF=∠EFB=21°,由折叠可得:∠EFC=180°﹣21°=159°,∴∠CFG=159°﹣21°=138°,故答案为:138°19.(皇姑)在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…,A n,…,若点A2的坐标为(1,3),则点A2015的坐标为.【答案】(﹣2,2)【解答】解:由已知:点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…∵点A2的坐标为(1,3),∴﹣y+1=1,x+1=3,∴y=0,x=2,∴A1(2,0),∵A2(1,3),∴A3(﹣2,2),A4(﹣1,﹣1),A5(﹣2,2),…发现规律:每4个点为一个循环,∴2015÷4=503 (3)则点A2015的坐标为(﹣2,2).故答案为:(﹣2,2).20.(富拉尔基)在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5…按此方法进行下去,则A2021点坐标为.【答案】(1011,﹣1010)【解答】解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•,可以看出,3=,5=,7=,各个点的纵坐标等于横坐标的相反数+1,故=1011,∴A2021(1011,﹣1010),故答案为:(1011,﹣1010).21.(江岸)如图第一象限内有两点P(m﹣4,n),Q(m,n﹣3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是.【答案】(0,3)或(﹣4,0)【解答】解:设平移后点P、Q的对应点分别是P′、Q′.分两种情况:①P′在y轴上,Q′在x轴上,则P′横坐标为0,Q′纵坐标为0,∵0﹣(n﹣3)=﹣n+3,∴n﹣n+3=3,∴点P平移后的对应点的坐标是(0,3);②P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);综上可知,点P平移后的对应点的坐标是(0,3)或(﹣4,0).故答案为:(0,3)或(﹣4,0).22.(重庆)某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,,[a]表示非负实数a的整数部分,例如[2.8]=2,[0.3]=0.按此方案,第2021棵树种植点的坐标为.【答案】(1,405)【解答】解:分别求出横纵坐标的规律,x1=1;y1=1;当k=2时,x2=x1+1﹣5×(0﹣0)=2;y2=y1+0﹣0=1;当k=3时,x3=x2+1﹣5×(0﹣0)=3;y3=y2+0﹣0=1;当k=4时,x4=x3+1﹣5×(0﹣0)=4;y4=y3+0﹣0=1;当k=5时,x5=x4+1﹣5×(0﹣0)=5;y5=y4+0﹣0=1;当k=6时,x6=x5+1﹣5×(1﹣0)=1;y6=y5+1﹣0=2;当k=7时,x7=x6+1﹣5×(1﹣1)=2;y7=y6+1﹣1=2;……由此规律,横坐标的周期为5,2021÷5=404…1,故x2021=1;纵坐标的周期为5,5个数为一组,且同一周期内数相同,组内数等于组数,故y2021=405.故答案为:(1,405).23.(临颍)如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为.【答案】(3,0)或(9,0)【解答】解:如图,设P点坐标为(x,0),根据题意得•4•|6﹣x|=6,解得x=3或9,所以P点坐标为(3,0)或(9,0).故答案为:(3,0)或(9,0).24.(洪山)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P 的“k属派生点”为P′点.且线段PP'的长度为线段OP长度的3倍,则k的值.【答案】±3【解答】解:设P(m,0)(m>0),由题意:P′(m,mk),∵PP′=3OP,∴|mk|=3m,∵m>0,∴|k|=3,∴k=±3.故答案为±325.(鼓楼)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…,如果(1,0)是第一个点,探究规律如下:(1)坐标为(3,0)的是第个点,坐标为(5,0)的是第个点;(2)坐标为(7,0)的是第个点;(3)第74个点的坐标为.【答案】(1)6,15;(2)28;(3)(12,7)【解答】解:(1)由图可知,坐标为(3,0)的点是第1+2+3=6个点,坐标是(5,0)的点是第1+2+3+4+5=15个点,故答案为:6,15;(2)坐标为(7,0)的点是第1+2+3+4+5+6+7=28个点,故答案为:28;(3)∵(11,0)是第1+2+3+…+11=66个点,(12,11)是第1+2+3+…+12=78个点,∴第74个点是(12,7),故答案为:(12,7).26.(沙坪坝)设m=,那么m+的整数部分是.【答案】2【解答】解:m+===.∵2<<2.5,∴12<6<15,∴2<m+=<3,故答案为:2.27.(资中)定义:不超过实数x的最大整数称为x的整数部分,记作[x].例如[3.6]=3,[﹣]=﹣2,按此规定,[1﹣2]=.【答案】﹣4【解答】解:∵<2=<,∴4<2<5,∴﹣4>﹣2>﹣5,∴﹣3>1﹣2>﹣4,故,[1﹣2]=﹣4.故答案为:﹣4.28.(鼓楼)如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=时,AB所在直线与CD所在直线互相垂直.【答案】105°或75°【解答】解:当AB⊥直线CD时,AB,BO分别交DC的延长线于M,N点,如图,∴∠BMN=90°,∵∠B=45°,∴∠CNO=∠BNM=45°,∵∠DCO=60°,∠DCO=∠CNO+∠BOC,∴∠BOC=60°﹣45°=15°,∵∠AOB=90°,∴∠AOC=∠AOB+∠BOC=90°+15°=105°;当AB⊥CD时,AB,AO分别交CD于点E,F,∴∠AEC=90°,∵∠A=45°,∴∠CFO=∠AFE=90°﹣45°=45°,∵∠CFO=∠AOD+∠D,∠D=30°,∴∠AOD=45°﹣30°=15°,∵∠COD=90°,∴∠AOC=∠COD﹣∠AOD=90°﹣15°=75°.综上,∠AOC的度数为105°或75°.29.如图,AB∥CD,P2E平分∠P1EB,P2F平分∠P1FD,若设∠P1EB=x°,∠P1FD=y°则∠P1=度(用x,y的代数式表示),若P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3,P4E平分∠P3EB,P4F平分∠P3FD,可得∠P4…,依次平分下去,则∠P n =度.【答案】(x+y);()n﹣1(x+y)【解答】解:(1)如图,分别过点P1、P2作直线MN∥AB,GH∥AB,∴∠P1EB=∠MP1E=x°.又∵AB∥CD,∴MN∥CD.∴∠P1FD=∠FP1M=y°.∴∠EP1F=∠EP1M+∠FP1M=x°+y°.(2)∵P2E平分∠BEP1,P2F平分∠DFP1,∴=..以此类推:,,...,.故答案为:(x+y),()n﹣1(x+y).30.(青秀)在平面直角坐标系中,点P位于原点,第1秒钟向右移动1个单位,第2秒钟向上移动2个单位,第3秒钟向左移动3个单位,第4秒钟向下移动4个单位,第5秒钟向右移动5个单位,…依此类推,经过2021秒钟后,点P的坐标是.【答案】(1011,﹣1010)【解答】解:观察图形可知经过2017秒钟后,点P在第四象限的直线y=﹣x+1上,∵2021÷4=505余1,∴P2021的横坐标为1+2×505=1011,∴y=﹣1011+1=﹣1010,∴P(1011,﹣1010).故答案为(1011,﹣1010).31.(雨花)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有个.【答案】80【解答】解:从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4﹣4=4×1;2 3×4﹣4=8=4×2;3 4×4﹣4=12=4×3;…………n4(n+1)﹣4=4n.由里向外第20个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.32.(兴宁)观察下列各式:(1)=5;(2)=11;(3)=19;…根据上述规律,若,则a=.【答案】181【解答】解:由题意可知:(1)=1×4+1=5;(2)=2×5+1=11;(3)=3×6+1=19;由上面几个式子的规律可得:=12×15+1=181.故答案为:181.33.(锦江)如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n∁n D n(n>2),则AB n长为.【答案】5n+6【解答】解:每次平移5个单位,n次平移5n个单位,即BN的长为5n,加上AB的长即为AB n的长.AB n=5n+AB=5n+6,故答案为:5n+6.34.(饶平)如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2018的坐标为.【答案】(﹣505,﹣505)【解答】解:由规律可得,2018÷4=504…2,∴点P2018第三象限,∵点P2(﹣1,﹣1),点P6(﹣2,﹣2),点P10(﹣3,﹣3),∴点P2018(﹣505,﹣505),故答案为:(﹣505,﹣505)35.(涪城)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.【答案】3;255.【解答】解:(1)∵[]=9,[]=3,[]=1,∴对81只需进行3次操作后变为1,故答案为:3.(2)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.。
浙教版七年级数学下册 期中解答压轴题专项训练(30道)
专题7.3 期中解答压轴题专项训练(30道)【浙教版】1.(2021春•义乌市期中)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=15,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形图形,则x+y+z=.(4)如图4所示,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接AG和GE,若两正方形的边长满足a+b=12,ab=20,你能求出阴影部分的面积吗?2.(2021春•奉化区校级期中)[感知]如图①,AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:解;(1)如图①,过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠2+∠PFD=180°(两直线平行,同旁内角互补).∵∠PFD=130°(已知),∴∠2=180°﹣130°=50°(等式的性质),∴∠1+∠2=40°+50°=90°(等式的性质).即∠EPF=90°(等量代换).[探究]如图②,AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,∠PEA的平分线和∠PFC的平分线交于点G,则∠G的度数是°.3.(2021春•拱墅区校级期中)已知关于x 、y 的方程组{x +2y =62x −2y +mx =8.(1)请写出方程x +2y =6的所有正整数解. (2)若方程组的解满足x +y =0,求m 的值.(3)当m 每取一个值时,2x ﹣2y +mx =8就对应一个方程,而这些方程有一个公共解,你能求出这个公共解吗? (4)如果方程组有整数解,求整数m 的解.4.(2021春•滨江区期中)已知正方形ABCD 的边长为b ,正方形EFGH 的边长为a (b >a ).(1)如图1,点H 与点A 重合,点E 在边AB 上,点G 在边AD 上,请用两种不同方法求出阴影部分S 1的面积(结果用a ,b 表示).(2)如图2,在图1正方形位置摆放的基础上,在正方形ABCD 的右下角又放了一个和正方形EFGH 一样的正方形,使一个顶点和点C 重合,两条边分别落在BC 和DC 上,若题(1)中S 1=4,图2中S 2=1,求阴影部分S 3的面积.(3)如图3,若正方形EFGH 的边GF 和正方形ABCD 的边CD 在同一直线上,且两个正方形均在直线CD 的同侧,若点D 在线段GF 上,满足DF =14GF ,连接AH ,HF ,AF ,当三角形AHF 的面积为3时,求三角形EFC 的面积,写出求解过程.5.(2021春•拱墅区校级期中)(1)填空:(a﹣b)(a+b)=;(a﹣b)(a2+ab+b2)=;(a﹣b)(a3+a2b+ab2+b3)=;(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:①211+210+29+28+27+…+23+22+2;②﹣511+510﹣59+58﹣57+…﹣53+52﹣5.6.(2021春•奉化区校级期中)如图1,AB,BC被直线AC所截,点D是线段AC上的点,过点D作DE∥AB,连接AE,∠B=∠E=70°.(1)请说明AE∥BC的理由.(2)将线段AE沿着直线AC平移得到线段PQ,连接DQ.①如图2,当DE⊥DQ时,求∠Q的度数;②在整个运动中,当∠Q=2∠EDQ时,则∠Q=.7.(2021春•鹿城区校级期中)某公司后勤部准备去超市采购牛奶和咖啡若干箱,现有两种不同的购买方案,如下表:牛奶(箱)咖啡(箱)金额(元)方案一 20 10 1100方案二3015(1)采购人员不慎将污渍弄到表格上,根据表中的数据,判断污渍盖住地方对应金额是 元; (2)若后勤部购买牛奶25箱,咖啡20箱,则需支付金额1750元; ①求牛奶与咖啡每箱分别为多少元?②超市中该款咖啡和牛奶有部分因保质期临近,进行打六折的促销活动,后勤部根据需要选择原价或打折的咖啡和牛奶,此次采购共花费了1200元,其中购买打折的牛奶箱数是所有牛奶、咖啡的总箱数的14,则此次按原价采购的咖啡有 箱.(直接写出答案)8.(2021春•镇海区期中)如图,AB ∥CD ,定点E ,F 分别在直线AB ,CD 上,在平行线AB ,CD 之间有一个动点P ,满足0°<∠EPF <180°.(1)试问:∠AEP ,∠EPF ,∠PFC 满足怎样的数量关系?解:由于点P 是平行线AB ,CD 之间一动点,因此需对点P 的位置进行分类讨论.如图1,当点P 在EF 的左侧时,易得∠AEP ,∠EPF ,∠PFC 满足的数量关系为∠AEP +∠PFC =∠EPF ; 如图2,当点P 在EF 的右侧时,写出∠AEP ,∠EPF ,∠PFC 满足的数量关系 . (2)如图3,QE ,QF 分别平分∠PEB 和∠PFD ,且点P 在EF 左侧. ①若∠EPF =100°,则∠EQF 的度数为 ; ②猜想∠EPF 与∠EQF 的数量关系,并说明理由;③如图4,若∠BEQ 与∠DFQ 的角平分线交于点Q 1,∠BEQ 1与∠DFQ 1的角平分线交于点Q 2,∠BEQ 2与∠DFQ 2的角平分线交于点Q 3,以此类推,则∠EPF 与∠EQ 2020F 满足怎样的数量关系?(直接写出结果)9.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为正整数),求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.10.(2021春•奉化区校级期中)已知,如图①,点D,E,F,G是△ABC三边上的点,且FG∥AC,(1)若∠EDC=∠FGC,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且MN∥AB,连接GM,若∠A=60°,∠C=55°,∠FGM=4∠MGC,求∠GMN的度数.(3)点M、N分别在射线AC、BC上,且MN∥AB,连接GM.若∠A=α,∠ACB=β,∠FGM=n∠MGC,直接写出∠GMN的度数(用含α,β,n的代数式表示)11.(2021春•北仑区期中)阅读下列材料,解答下面的问题:我们知道方程2x+3y=12有无数个解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12,得:y=12−2x3,根据x、y为正整数,运用尝试法可以知道方程2x+3y=12的正整数解为{x=3y=2.问题:(1)请你直接写出方程3x﹣y=6的一组正整数解.(2)若12x−3为自然数,则满足条件的正整数x的值有个.A.5B.6C.7D.8(3)2020﹣2021学年七年级某班为了奖励学生学习的进步,购买单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有哪几种购买方案?12.(2021春•红谷滩区校级期中)某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x,y台,其中每台的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120(1)购买丙型设备台(用含x,y的代数式表示);(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?13.(2021秋•平阳县期中)如图,直线PQ∥MN,一副三角尺(∠ABC=∠CDE=90°,∠ACB=30°,∠BAC =60°,∠DCE=∠DEC=45°)按如图①放置,其中点E在直线PQ上,点B,C均在直线MN上,且CE平分∠ACN.(1)求∠DEQ的度数.(2)如图②,若将三角形ABC绕点B以每秒3度的速度按逆时针方向旋转(A,C的对应点分别为F,G),设旋转时间为t(s)(0≤t≤60).①在旋转过程中,若边BG∥CD,求t的值.②若在三角形ABC绕点B旋转的同时,三角形CDE绕点E以每秒2度的速度按顺时针方向旋转(C,D的对应点为H,K).请直接写出当边BG∥HK时t的值.14.(2021春•玉州区期中)已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,此时∠EOC的度数等于(直接写出答案即可);(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,求此时∠OCA度数.15.阅读下列范例,按要求解答问题.例:已知实数a,b,c满足:a+b+2c=1,a2+b2+6c+32=0,求a,b,c的值.解:∵a+b+2c=1,∴a+b=1﹣2c,设a=1−2c2+t,b=1−2c2−t①∵a2+b2+6c+32=0②将①代入②得:(1−2c2+t)2+(1−2c2−t)2+6c+32=0整理得:t2+(c2+2c+1)=0,即t2+(c+1)2=0,∴t=0,c=﹣1将t,c的值同时代入①得:a=32,b=32.∴a=b=32,c=−1.以上解法是采用“均值换元”解决问题.一般地,若实数x,y满足x+y=m,则可设x=m2+t,y=m2−t,合理运用这种换元技巧,可顺利解决一些问题.现请你根据上述方法试解决下面问题:已知实数a,b,c满足:a+b+c=6,a2+b2+c2=12,求a,b,c的值.16.(2021春•鄞州区期中)我们通常用作差法比较代数式大小.例如:已知M=2x+3,N=2x+1,比较M和N的大小.先求M﹣N,若M﹣N>0,则M>N;若M﹣N<0,则M<N;若M﹣N=0,则M=N,反之亦成立.本题中因为M﹣N=2x+3﹣(2x+1)=2>0,所以M>N.(1)如图1是边长为a的正方形,将正方形一边不变,另一边增加4,得到如图2所示的新长方形,此长方形的面积为S1;将图1中正方形边长增加2得到如图3所示的新正方形,此正方形的面积为S2.用含a的代数式表示S1=,S2=(需要化简).然后请用作差法比较S1与S2大小;(2)已知A=2a2﹣6a+1,B=a2﹣4a﹣1,请你用作差法比较A与B大小.(3)若M=(a﹣4)2,N=16﹣(a﹣6)2,且M=N,求(a﹣4)(a﹣6)的值.17.(2021春•奉化区校级期中)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)∠ABN=;∠CBD=;(2)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.(3)当点P运动时,求∠BP A和∠CBA满足的数量关系,并说明理由.18.(2021春•奉化区期中)已知EM∥BN.(1)如图1,求∠E+∠A+∠B的大小,并说明理由.(2)如图2,∠AEM与∠ABN的角平分线相交于点F.①若∠A=120°,∠AEM=140°,则∠EFD=.②试探究∠EFD与∠A的数量关系,并说明你的理由.(3)如图3,∠AEM与∠ABN的角平分线相交于点F,过点F作FG⊥BD交BN于点G,若4∠A=3∠EFG,求∠EFB的度数.19.(2021春•拱墅区期中)对于一个图形,通过两种不同的方法计算它们的面积,可得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2.请解答下列问题:(1)类似图1的数学等式,写出图2表示的数学等式:;(2)若a+b+c=10,ab+ac+bc=35.用上面得到的数学等式求a2+b2+c2的值;(3)小明同学用图3中的x张边长为a的正方形,y张边长为b的正方形,z张边长为a、b的长方形拼出一个面积为(a+7b)(9a+4b)的长方形,求x+y+z的值;(4)如图④大正方形的边长为m,小正方形的边长为n,若用x、y表示四个小长方形的两边(x>y),观察图案,以下关系式正确的是(填序号).①xy=m2−n24,②xy=m,③x2﹣y2=m•n,④x2+y2=m2+n2220.(2021春•西湖区校级期中)杭州塘栖白沙枇杷是杭州人心中一种家乡的味道,枇杷种植大户为了能让市民尝到物美价廉的枇杷.对1000斤的枇杷进行打包方式优惠出售.打包方式及售价如下:圆篮每篮4斤,售价100元;方篮每篮9斤,售价180元,用这两种打包方式恰好能全部装完这1000斤枇杷.(1)当销售a篮圆篮和a篮方篮共收入8400元时,求a的值.(2)若1000斤枇杷全部售完,销售总收入恰好为21760元,请问圆篮共包装了多少篮,方篮共包装了多少篮?(3)若枇杷大户留下b(b>0)篮圆篮送人,其余的枇杷全部售出,总收入仍为21760元,求b的所有可能值.21.(2021春•西湖区校级期中)如图1是一个长为4a,宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成如图2的正方形.(1)由图2可以直接写出(a+b)2,(a﹣b)2,ab之间的一个等量关系是.(2)根据(1)中的结论,解决下列问题:3x+4y=10,xy=2,求3x﹣4y的值;(3)两个正方形ABCD,AEFG如图3摆放,边长分别为x,y.若x2+y2=34,BE=2,求图中阴影部分面积和.22.(2021春•于洪区期中)如图,已知AB∥CD,P是直线AB,CD间的一点,PF⊥CD于点F,PE交AB于点E,∠FPE=120°.(1)求∠AEP的度数;(2)如图2,射线PN从PF出发,以每秒30°的速度绕P点按逆时针方向旋转,当PN垂直AB时,立刻按原速返回至PF后停止运动;射线EM从EA出发,以每秒15°的速度绕E点按逆时针方向旋转至EB后停止运动,若射线PN,射线EM同时开始运动,设运动时间为t秒.①当∠MEP=15°时,求∠EPN的度数;②当EM∥PN时,求t的值.23.(2021春•下城区期中)如图,有一条纸带ABCD,现小慧对纸带进行了下列操作:(1)将这条上下两边互相平行的纸带折叠,设∠1为65°,则∠α的度数为.(2)已知这是一条长方形纸带,点E在折线AD﹣DC上运动,点F是AB上的动点,连接EF,将纸带沿着EF 折叠,使点A的对应点A'落在DC边上,若∠CA'F=x°,请用含x的代数式来表示∠EAA'的度数:.24.(2021春•拱墅区校级期中)已知AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P.(1)如图1所示时,试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?并说明理由.(2)除了(1)的结论外,试问∠AEP,∠EPF,∠PFC还可能满足怎样的数量关系?请画图并证明;(3)当∠EPF满足0°<∠EPF<180°,且QE,QF分别平分∠PEB和∠PFD,①若∠EPF=60°,则∠EQF=°.②猜想∠EPF与∠EQF的数量关系.(直接写出结论)25.(2021春•九龙坡区期中)已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.26.(2021春•奉化区校级期中)已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,求∠AED的度数;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明理由;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.27.(2021秋•渑池县期中)阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.图1给出了若干个边长为a和边长为b的小正方形纸片及若干个边长为a、b的长方形纸片.请解答下列问题:(1)图2是由图1提供的几何图形拼接而得,可以得到(a+b)(a+2b)=;(2)请写出图3中所表示的数学等式:;(3)请按要求利用所给的纸片在图4的方框中拼出一个长方形,要求所拼出图形的面积为(2a+b)(a+b),进而可以得到等式:(2a+b)(a+b)=;(4)利用(3)中得到的结论,解决下面的问题:若4a2+6ab+2b2=5,a+b=12,求2a+b的值.28.(2021秋•沙坪坝区校级期中)在重庆南开中学建校85周年之际,学校举行了隆重的庆祝活动.为感谢参与活动的师生,学校定制了水杯和手账两种纪念品,已知定制2个水杯和3本手账共需180元,定制5个水杯和6本手账共需420元.(1)定制一个水杯和一本手账的单价各是多少元?(2)学校最终决定定制水杯和手账的总数量为600件(其中水杯不超过300个),并委托商家进行包装,现有如下两种方案:方案1:一个水杯的包装费为6元,一本手账的包装费为1元,总费用打8折;方案2:定制一个水杯,就赠送一本手账,并将一个水杯和一本手账作为套装进行包装,此种方案中每个套装的包装费为4元,剩下需要单独定制的单品每件包装费为2元.求定制水杯多少个时,两种方案的总费用相同?(总费用=定制物品的总费用+包装总费用)29.(2021•曲阜市期中)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数x 、y 满足3x ﹣y =5①,2x +3y =7②,求x ﹣4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x ﹣4y =﹣2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组{2x +y =7x +2y =8,则x ﹣y = ,x +y = ; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x ,y ,定义新运算x *y =ax +by +c ,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1= .30.(2021春•嘉兴期中)已知直线AB∥CD,M,N分别为直线AB,CD上的两点且∠MND=70°,P为直线CD 上的一个动点.类似于平面镜成像,点N关于镜面MP所成的镜像为点Q,此时∠NMP=∠QMP,∠NPM=∠QPM,∠MNP=∠MQP.(1)当点P在N右侧时:①若镜像Q点刚好落在直线AB上(如图1),判断直线MN与直线PQ的位置关系,并说明理由;②若镜像Q点落在直线AB与CD之间(如图2),直接写出∠BMQ与∠DPQ之间的数量关系;(2)若镜像PQ⊥CD,求∠BMQ的度数.。
平面直角坐标系必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版
专题03 平面直角坐标系必刷常考题选择题必练1.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.54.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)5.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺6.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)7.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣)C.(﹣3,4)D.(3,﹣4)8.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)9.如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)10.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)12.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)13.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°14.如图,点A(﹣2,1)到y轴的距离为()A.﹣2B.1C.2D.15.已知点A(1,0),B(0,2),点P在x轴上,且△P AB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定填空题必练16.剧院里5排2号可以用(5,2)表示,则7排4号用表示.17.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.18.线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标是.19.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.20.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.21.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.22.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.23.如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为.24.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为.25.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=.26.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.27.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.解答题必练28.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.29.在平面直角坐标系中,已知点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)若点M在第二象限内,求m的取值范围;(3)若点M在第一、三象限的角平分线上,求m的值.30.如图,平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积.31.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.专题03 平面直角坐标系必刷常考题选择题必练1.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.2.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:因为点(﹣1,m2+1),横坐标﹣1<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.5【答案】A【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.4.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)【答案】D【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选:D.5.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺【答案】A【解答】解:依题意,OA=OC=400=AE,AB=CD=300,DE=400﹣300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700,再向西直走DE=100公尺.故选:A.6.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【答案】A【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).7.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)【答案】C【解答】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:﹣3,∴P(﹣3,4),故选:C.8.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)【答案】B【解答】解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.9.如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【答案】D【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选:D.10.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.11.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)【答案】B【解答】解:四边形ABCD先向左平移3个单位,再向上平移2个单位,因此点A也先向左平移3个单位,再向上平移2个单位,由图可知,A′坐标为(0,1).故选:B.12.点P的坐标为(2﹣a,3a+6P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)【答案】D【解答】解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=±(3a+6)解得a=﹣1或a=﹣4,即点P的坐标为(3,3)或(6,﹣6).故选:D.13.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°【答案】D【解答】解:在平面内,点的位置是由一对有序实数确定的,只有D能确定一个位置,故选:D.14.如图,点A(﹣2,1)到y轴的距离为()A.﹣2B.1C.2D.【答案】C【解答】解:点A的坐标为(﹣2,1),则点A到y轴的距离为2.故选:C.15.已知点A(1,0),B(0,2),点P在x轴上,且△P AB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定【答案】C【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△P AB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选:C.填空题必练16.剧院里5排2号可以用(5,2)表示,则7排4号用表示.【答案】(7,4)【解答】解:∵5排2号可以表示为(5,2),∴7排4号可以表示为(7,4).故答案填:(7,4).17.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.【答案】第三象限【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限18.线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标是.【答案】(1,2)【解答】解:∵线段CD是由线段AB平移得到的,而点A(﹣1,4)的对应点为C(4,7),∴由A平移到C点的横坐标增加5,纵坐标增加3,则点B(﹣4,﹣1)的对应点D的坐标为(1,2).故答案为:(1,2).19.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.【答案】(﹣1,1)【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).20.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.【答案】(﹣3,5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=﹣3,y=5,∴点P的坐标为(﹣3,5),故答案为:(﹣3,5).21.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.【答案】(5,4)【解答】解:∵两眼间的距离为2,且平行于x轴,∴右图案中右眼的横坐标为(3+2).则右图案中右眼的坐标是(5,4).故答案为:(5,4).22.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.【答案】(﹣2,2)或(8,2)【解答】解:已知AB∥x轴,点B的纵坐标与点A的纵坐标相同,都是2;在直线AB上,过点A向左5单位得(﹣2,2),过点A向右5单位得(8,2).∴满足条件的点有两个:(﹣2,2),(8,2).故答案填:(﹣2,2)或(8,2).23.如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为.【答案】(a+5,﹣2)【解答】解:由图可知,A(﹣4,3),A′(1,﹣1),所以,平移规律为向右5个单位,向下4个单位,∵P(a,2),∴对应点Q的坐标为(a+5,﹣2).故答案为:(a+5,﹣2).24.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为.【答案】(2,0)【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴这点的纵坐标是0,∴m+1=0,解得,m=﹣1,∴横坐标m+3=2,则点P的坐标是(2,0)25.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=.【答案】(3,2)【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).26.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.【答案】(6,5)【解答】解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案为:(6,5).27.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.【答案】(8052,0)【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0).故答案为:(8052,0).解答题必练28.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.【答案】(1)A(2,﹣1)、B(4,3)(2)A′(0,0)、B′(2,4)、C′(﹣1,3).(3)5【解答】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.29.在平面直角坐标系中,已知点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)若点M在第二象限内,求m的取值范围;(3)若点M在第一、三象限的角平分线上,求m的值.【答案】(1)m=﹣1.5;(2)﹣1.5<m<0;(3)m=﹣3.【解答】解:(1)∵点M在x轴上,∴2m+3=0解得:m=﹣1.5;(2)∵点M在第二象限内,∴,解得:﹣1.5<m<0;(3)∵点M在第一、三象限的角平分线上,∴m=2m+3,解得:m=﹣3.30.如图,平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C (3,3),D(2,4),求四边形ABCD的面积.【答案】8.5【解答】解:如图,作CE⊥x轴于点E,DF⊥x轴于点F.则S△ADF=×(2﹣1)×4=2,S梯形DCEF=×(3+4)×(3﹣2)=3.5,S△BCE=×(5﹣3)×3=3,∴S四边形ABCD=2+3.5+3=8.5,答:四边形ABCD的面积是8.5.31.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】(1)(2,0)或(﹣4,0);(2)5 (3)(0,)或(0,﹣).【解答】解:(1)点B在点A的右边时,﹣1+3=2,点B在点A的左边时,﹣1﹣3=﹣4,所以,B的坐标为(2,0)或(﹣4,0);(2)△ABC的面积=×3×4=6;(3)设点P到x轴的距离为h,则×3h=10,解得h=,点P在y轴正半轴时,P(0,),点P在y轴负半轴时,P(0,﹣),综上所述,点P的坐标为(0,)或(0,﹣).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学期中复习压轴题专题
1.(1)如图,点E是AB上方一点,MF平分∠AME,若点G恰好在MF的反向延长线上,且NE平分∠CNG,2∠E与∠G互余,求∠AME的大小。
A
C D
(2)如图,在(1)的条件下,若点P是EM上一动点,PQ平分∠MPN,NH平分∠PNC,交AB于点H,PJ//NH,当点P在线段EM上运动时,∠JPQ的度数是否改变?若不变,求出其值;若改变,请说明你的理由。
D
2.如图,已知MA//NB,CA平分∠BAE,CB平分∠ABN,点D是射线AM上一动点,连DC,当D点在射线AM(不包括A点)上滑动时,∠ADC+∠ACD+∠ABC的度数是否发生变化?若不变,说明理由,并求出度数。
N
3.如图,AB//CD ,PA 平分∠BAC ,PC 平分∠ACD ,过点P 作PM 、PE 交CD 于M ,交AB 于E ,则(1)∠1+∠2+∠3+∠4不变;(2)∠3+∠4-∠1-∠2不变,选择正确的并给予证明。
4.如图,在平面直角坐标系中,已知点A (-5,0),B (
5.0),D (2,7), (1)求C 点的坐标;
(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
设从出发起运动了x 秒。
①请用含x 的代数式分别表示P,Q 两点的坐标;
②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等?若存在,求E 的坐标,若不存在,说明理由?
x
x
5、如图,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+b )²+|a-b+4|=0,过C 作CB
x 轴于B 。
(1)若过B 作BD//AC 交y 轴于D ,且AE 、DE 分别平分∠CAB ,∠ODB ,如图,求∠AED 的度数。
(2)在y 轴上是否存在点P ,使得ABC 和
ACP 的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由。
6、2
a b m b a-+b+3=0=14.
ABC A S 如图,已知(0,),B (0,),C (,)且(4),
o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标
(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。
求证:平分;
(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQ
ECA
∠∠的
大小是否发生变化,若不变,求出其值。
7.如图,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C (0,-2),D (-3,-2)。
(1)求△BCD 的面积;
(2)若AC ⊥BC ,作∠CBA 的平分线交CO 于P ,交CA 于Q ,判断∠CPQ 与∠CQP 的大小关系,并说明你的结论。
(3)若∠ADC=∠DAC ,点B 在x 轴正半轴上任意运动,∠ACB 的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,E
ABC
∠∠的值是否变化?若不变,求出其值;若变化,说明理由。
x
x
8.如图,已知点A(-3,2),B(2,0),点C在x轴上,将△ABC沿x轴折叠,使点A落在点D处。
(1)写出D点的坐标并求AD的长;
(2)EF平分∠AED,若∠ACF-∠AEF=15º,求∠EFB的度数。
x
9.(1)在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD。
已知A(-3,0)、B(-2,-2),点C在y轴的正半轴上,点D 在第一象限内,且=5,求点C、D的坐标;
(2)在平面直角坐标系中,如图,已知一定点M(1,0),两个动点E(a,2a+1)、F(b,-2b+3),请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM。
若存、M、E、F为顶点的四边形的面积,若不存在,请说明理由。
在,求以点O。