无交叉线岔的工作原理精编版

合集下载

京广高速铁路接触网普通无交叉线岔

京广高速铁路接触网普通无交叉线岔
1 3 2 0m m,侧 线 拉 出值 1 5 0 m m) ,受 电 弓工 作 面 最 外 端最 大 尺 寸 限界 1 1 2 5 m m< 1 1 7 0 m m; B柱 处 侧 线 接 触 线 距 正 线 线 路 中心 的 距 离 为 1 1 0 0 + 1 2 0 =
3 5 0 m m) ,动态最 大抬升量按 1 5 0 mm考虑 。
受电弓最外端允许工作部分的半宽为 1 4 5 0 / 2= 7 2 5( 1 / i a) r ,故受 电 弓工作 面最外端 最大尺 寸限界 为 7 2 5 + 2 5 0 + 1 5 0 = l 1 2 5( m m) 。受 电 弓沿 正 线高 速通 过
2 普通 无 交 叉线 岔 工作 原 理
京 广 高速 铁 路 无 交叉 线 岔设 计 参 考 国际 铁 路 联盟 ( U I C) 6 0 8 A n n e x 4 a 受 电弓标 准 。受 电弓宽 度
间距 1 2 0 m m处 ; 转换柱 c需满足道岔最小跨距要 求 ,安装形式与锚段关节转换柱相同。 定 位柱 A,道 岔柱 B和转 换柱 C均采 用 双腕臂 悬挂形式 ,即正线与侧线接触悬挂相互独立 ,确保 温度变化时两悬挂可独立纵向移动。为使受电弓由 侧线 驶入 正线 时 能带 动正 线接触 线 同时抬 高 ,线岔 始触 区外 5 5 0 mm ~ 6 0 0m m处 布置交 叉 吊弦 ,即在正
t  ̄

I I
5 1 / ; < 0 线 接 触 悬 挂
正线塑壁 壁
— — — — —
高2 0 a r m - 4 0 m m 。侧 线 比 正 线 接 触线 抬 高 4 0 0 i n / n 5 0 0 m l n后
铁 道技 术监 督

非标准无交叉线岔工作原理及检调方法

非标准无交叉线岔工作原理及检调方法

非标准无交叉线岔工作原理及检调方法程磊(中国铁路武汉局集团有限公司安全监察室,湖北武汉430000)摘要:高速站场内存在部分非标准无交叉线岔,结合受电弓通过无交叉线岔工作原理和运行特性,指出常规检调方法存在的问题,根据非标准无交叉线岔的工作特性和标准无交叉线岔的检调原理,提出非标准无交叉线岔检调步骤及方法,便于对高速铁路站场无交叉线岔的监测维护。

关键词:非标准无交叉线岔;运行特性;检调方法中图分类号:U225文献标识码:A文章编号:1672-061X(2020)02-0107-06DOI:10.19550/j.issn.1672-061x.2020.02.107在各高速站场内现场测量复核发现,前期建设施工时一些无交叉线岔道岔定位柱未按照设计标准定位安装,造成一些竣工站场存在部分道岔柱定位不标准的无交叉线岔,非标准无交叉线岔在日常检修中缺少规范标准及技术支持。

对非标准无交叉线岔日常检修提出调整方法,作为高速铁路站场无交叉线岔监测维护的技术支持。

1无交叉线岔概述(1)1/18道岔。

目前高速站场内正、侧线股道的道岔一般采用1/18道岔(见图1)。

道岔全长L=69.000m,前端长度A=31.729m,后端长度B=37.271m,导曲线半径R=1099.282m[1]。

(2)动车组受电弓。

高速铁路动车组受电弓标准宽度为1950mm[2],弓头工作宽度为1450mm(见图2),受电弓动态包络线直线区段动态量为250mm,最大限位抬升量150mm[3];由参数计算得出:受电弓半弓动态限界值=(1950÷2)+250=1225mm。

(3)标准无交叉线岔。

为满足铁路正线高速行车,在1/18道岔上方需沿正、侧线股道架设两支无交叉接触悬挂[4-5]。

以武广高铁为例,车站两端1/18道岔处接触网正、侧线接触悬挂采用无交叉式布置,共设有道岔定位柱A(简称A柱)、道岔定位柱B(简称B柱)、道图1常见1/18道岔平面示意图作者简介:程磊(1988—),男,助理工程师。

接触网工程课程设计——高速电气化铁路接触网无交叉线岔设计

接触网工程课程设计——高速电气化铁路接触网无交叉线岔设计

1 基本题目1.1 题目高速电气化铁路接触网无交叉线岔设计。

1.2 题目内容根据高速电气化铁路道岔的要求,进行高速接触网无交叉线岔设计,并说明其工作原理,计算始触区位置。

2 高速线岔的基本要求(1) 保证行车安全、无硬点、接触网弹性满足受电弓高速通过;(2) 无论是正线行车或侧线行车,工作支接触线均应在受电弓的工作范围之内;(3) 高速列车受电弓的横向摆动量、侧向偏转和垂直抬升量比普速有所加大所以应保证无论受电弓从正线高速进渡线或从渡线高速进正线两支接触线在动态条件下均保证受电弓平稳过渡;(4) 道岔处接触网的布置应满足列车最高通过速度的要求;(5) 线岔结构简单,便于检调,维护工作量小。

3 方案设计3.1 无交叉线岔的平面布置标准定位时接触网支柱位于两线间距600mm处,正线支拉出值为400mm,站线支拉出值为350mm,站线接触线距正线线路中心为950mm,两接触线水平距为550mm。

交叉线岔与无交叉线岔平面布置上的一个明显区别便是两支接触悬挂是否相交。

由于交叉线岔两支接触悬挂相互交叉,平面布置相对复杂,施工难度大,事故状态下不易恢复,但无明显效果。

无交叉线的布置规则:(1) 侧线接触悬挂应尽量远离正线线路中心,使其处于从正线高速通过的受电弓的动态包络线之外,保证受电弓以最大允许抬升量和最大允许摆动量高速通过正线接触线时碰触不到侧线接触线。

(2) 正线接触悬挂应尽量靠近侧线线路中心,使受电弓能顺利地在正线接触线与侧线接触线间相互转换。

(3) 道岔区域上空的正线接触悬挂的技术参数和结构形式尽量与道岔区域外的悬挂一致,以保证受电弓在正线上的受流环境不产生变化。

(4) 为便于受电弓在正线接触线与侧线接触线间相互转换,侧线接触悬挂应按一定坡度布置,使侧线悬挂在道岔前端高于正线接触线,道岔后端低于正线接触线,保证受电弓无论从正线进侧线或从侧线进正线都是由低向高运行。

(5) 为降低外界因素对无交叉线岔的影响,正线接触悬挂和侧线接触悬挂的悬挂类型、线索和零部件型号、技术参数应尽量一致。

接触交叉线岔【浅谈接触无交叉式线岔的工作机理及调整方法】

接触交叉线岔【浅谈接触无交叉式线岔的工作机理及调整方法】
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
接触交叉线岔【浅谈接触无交叉式线岔的工作机理及 调整方法】
1、交叉线岔 目前,我国电气化铁道的接触网在站场轨道道岔上方普遍接受限制管 将汇交于此的 2 支接触悬挂予以固定,这是现阶段主要的方式。这一固定
装置称为线岔(并称之为有交分线岔)。交分式道岔布置方式对侧向通过速
摘要:高速铁路进展越来越受到国家的重视,要想快速的进展必需实 度有限制,经过多年的实际讨论发觉,这种方式能使之产生接触压力峰值,
施有效的建设方案,接触网无交叉式线岔的应用特别重要。本文在分析接 会导致严峻的后果,比方易发生拉弧现象,全部这种方式,不太适合在较
触网无交叉式线岔的工作机理的基础上,针对高速铁路的建设提出几点建 高速度(160km/h 以上)的线路上接受。
最大,现实其优势。
100nun(对正线)。
无交叉式线岔就是在道岔悬挂处,正线和侧线 2 支接触悬挂在平面上
2、工作原理的相关问题
不相交,由于这种方式的使用特别适用于高速铁路,其优点是正线和侧线
1〕正线通过工作原理。机车从正线通过时,机车高速通过正线道俞
2 支接触线不交叉、不接触、没有线岔设施。把正线在道岔处简化成一个 时,受电弓在与正线接触线接触的同时,还要与侧线接触线接触,在定位
设性意见。
2、三线关节式道岔定位
关键词:高速铁路;接触网;无交叉式线岔;工作原理
帮助三线关节式道岔定位在国外客运专线的实际运营效果令人中意,
无交叉线岔调整作为一项新技术,其开发是国际领先的技术水平,要 对于高速铁路上的使用并不是常见的一种方式。由于该方式实质上接近锚
想提高铁路的效率必需加强这一项技术的利用。接触网道岔定位是关系行 段关节式的过渡原理,故弓网取流的质量和安全性最简单得到保证。但是,

地铁接触网无交叉线岔工程实践与研究

地铁接触网无交叉线岔工程实践与研究

地铁接触网无交叉线岔工程实践与研究发布时间:2022-06-07T02:56:32.813Z 来源:《中国科技信息》2022年4期作者:张龙飞[导读] 无交叉线岔是地铁接触网较为复杂、技术要求较高的单元,张龙飞济南轨道交通集团第一运营有限公司山东济南 250000摘要:无交叉线岔是地铁接触网较为复杂、技术要求较高的单元,其设计的基本理念是通过接触网的拉出值、高度布置,正线通过线岔的受电弓只接触正线接触线,不与侧线接触线接触,从而使高速通过的轨道车辆组受电弓在线岔处获得与区间正线一致的弓网关系,满足高速运行要求。

同时,地铁无交叉线岔还应满足轨道车辆组受电弓以较低速度从正线到侧线以及从侧线到正线安全通过的要求。

关键词:地铁接触网;无交叉线岔工程21世纪初我国开始大规模地铁建设,为消除交叉线岔自身结构缺陷,满足正线通过的受电弓高质量、安全可靠通过,无交叉线岔在我国高铁正线开始广泛采用。

在开始大规模地铁建设伊始,国内没有相关通用设计图,且由于国内各设计单位设计理念的差异,国内高铁无交叉线岔定位存在大拉出值布置和小拉出值布置两种方式。

十余年高铁运行实践证明,这两种方式均满足高铁安全运行要求,但在安全可靠性方面存在差异。

本文收集和分析了国内外地铁无交叉线岔理论研究和工程实践成果,为我国高铁无交叉线岔设计的优化完善提供参考。

1 国外无交叉线岔应用情况法国采用的无交叉线岔接触网布置见图1。

图中,WM为理论岔心,P为支柱B可以偏离理论岔心的距离,定位支柱一般位于道岔区两股道线间距500~600 mm处,其具体位置与道岔号大小有关,18号道岔P为4 m左右。

图1 法国无交叉线岔设计接触网布置在邻近岔心的支柱处,如果直股设计速度小于或等于100 km/h,则侧股与直股的导线高度相同,更高速时则需增加侧股导线的高度。

该形式是世界上最早的接触网两支式无交叉线岔形式。

当侧股允许速度超过一定值时,法国采用了带辅助悬挂的无交叉线岔。

高速铁路无交叉线岔检调原理及方法

高速铁路无交叉线岔检调原理及方法

高速铁路无交叉线岔检调原理及方法发表时间:2019-01-08T10:20:45.280Z 来源:《建筑学研究前沿》2018年第30期作者:杨殊伦[导读] 本文参照标准18号无交叉线岔检调标准,通过对无交分线岔运行特性进行分析,对非标准无交叉线岔日常检修提出检调方法。

上海铁路局上海高铁维修段宁杭车间摘要:接触网的线岔是关系行车安全的关键设备之一,接触网在道岔区的平面布置,即要做到结构简单、便于检修调整、维护工作量少,又能满足接触网系统硬点、弹性等指标,保证受电弓从正线高速通过,从正线进入侧线、从侧线进入正线等过程中的行车安全和供电质量。

道岔处接触网的平面布置取决于道岔类型、受电弓工作宽度、受电弓的动态运行轨迹(最大摆动量和最大抬升量)。

经对宁杭高铁现场测量复核发现,因线路建设阶段施工原因,宁杭高铁站场存在大量道岔柱定位不标准的无交叉线岔,且非标准无交叉线岔检调在日常检修中缺少规范标准及技术支持,不利于日常检修及设备安全。

本文参照标准18号无交叉线岔检调标准,通过对无交分线岔运行特性进行分析,对非标准无交叉线岔日常检修提出检调方法。

关键词:宁杭高铁;无交叉线岔1 绪论1.1前言在电气化铁道上运行的列车通过道岔时,要进入两组或三组接触悬挂并存的接触网区。

道岔区接触网布置的研究集中在合理布置几组接触悬挂的空间位置,既要做到结构简单、便于检修调整、维护工作量少,又要能够满足接触网系统硬点、弹性等指标,保证受电弓从正线高速通过、从侧线进入正线等过程中的行车安全和供电质量。

1.2道岔区接触网布置类型道岔处接触网的平面布置取决于道岔类型、受电弓工作宽度、受电弓的动态运行轨迹(最大摆动量和最大抬升量)。

随着高速铁路建设的蓬勃发展,列车运营速度不断提高,通过对世界各国道岔区接触网布置的研究和借鉴,不断摸索道岔区接触网布置方式,逐渐形成我国的技术体系。

道岔处接触网布置方式主要分为交叉和无交叉方式,无交叉方式分为两支无交叉和带辅助锚段的三支无交叉布置方式。

接触网无交叉式线岔的工作原理和调整方法

接触网无交叉式线岔的工作原理和调整方法
关键词 : 接 触 网; 无 交叉 式 线 岔 ; 发展前景 ; 工作 原 理 ; 调 整 方 法
随着 现代 科 学技 术 的发展 ,我 们 的科技 水 平也 已经达 到 了一 个 差 的三 分之 一 。 高度, 这使得我们生活的方方面面都发生 了改变 , 特别是我们在 日常 3 接 触 网无 交叉 式线 岔 的调 整方 法 生活的m行 。 在现代的高速公路发展迅速的情况下 , 我们的交通方式 接触网无交叉式的线岔的调整方法有很多种 ,每一种都有着不 也在逐渐趋向于多样化和具体化 ,我们 的交通不再仅仅局限于以往 同的作用 , 都能对工程和机车的行驶过程出到一部分的作用 。首先 , 无交叉式线岔标准定位调整方法有 ,将十二分之一的线岔安装在准 的步行或者马车 , 而我们 的交通方式也不再和过去一样 , 只是陆路和
柱相邻支柱腕臂拉 出值 ,保证非标定位腕臂柱处定位点正线拉出值 不大于某个要求的数值 3 . 2 调整支柱及支柱相邻柱腕臂使承力索高度 、 腕臂偏移符合设计
要求。 合 理 的设 汁需 要实 践 的支持 , 压 力 和承受 力 这些 因素 是在 调 整 的过程中所必须考虑到的问题 ,这也是实际T程中能够得到成功的 保证 。 _ 3 在侧线驶入正线时 , 须保证在始触区内正线上无任何线夹 , 如有 不能满足现在大部分国家的发展需求 , 我们需要有更方便 , 更容易执 3 行的一种方式来满足我们电气化铁路 的发展。 首先 , 我们应该 了解一 则须将 之 移 出始触 区。 好 的 准备 丁作 是实 验进 行 的基 础 。 始 触 区的 正 下什么是无交叉式线岔 , 也就是它的具体涵义是什么。 线是整个T 程建设 的重要之处 ,我们必须保证这方面的安全有效的 1 接触 网无 交 叉式 线岔 的基 本概 述 实行 , 我们 的实际1 . 程建设才能得到最好的开展 , 我们的机车才能得 无又 式线 岔 主要用 于 速度 值高 的线 路或 区段 ,这是 相 对 于 比较 到稳 定 的行驶 , 我 们 的安 全也 才 能得 到充 分 的保 障 , 这是 我 们设 计 T 交 又式线 岔 的结 果 , 交叉式 线 岔是 指 用于 速度 值 较低 的线 路 和 区段 , 程建 设 的根 本 目的 。 . 4 调 整正 线接 触 线高 度 , 在满 足设 计要 求后 , 按 无交 叉式 线 岔实 际 比如说普通铁路的车站 , 高速铁路的站线与站线问 , 编组场 , 动车场 , 3

无交叉线岔

无交叉线岔

武广客运专线接触网无交叉线岔的安装与调整一、武广线无交叉线岔的结构与形式武广客运专线与正线相交的道岔均采18#道岔,道岔全长L=69.00米,前端长度A=31.729米,后端长度B=37.271米。

道岔侧股平面线选用圆曲线与直线相切的连接方式。

接触悬挂采用无交叉线岔,共设两个道岔定位柱,一个转换柱,其原理类似于三跨锚段关节。

道岔柱定位柱A设在道岔开口方向距理论岔心25米左右,即两线间距1400mm处;道岔定位柱B设在道岔开口反方向距离理论岔心15米,即两线间距150mm处。

侧线接触线过道岔柱A、道岔柱B后,由转化柱C抬高下锚。

道岔定位柱A、B和转换柱C均采用双腕臂悬挂形式,即正线与侧线接触网单独悬挂,在温度变化时可纵向自由移动,互不干扰。

在两导线间距550~600mm处采用交叉吊弦悬挂,以保证正线通过或侧线驶入正线时在该点两支接触线等高。

1、平面布置如图1所示2、工作支、非工作支接触线高度走向,如图2所示二、无交叉线岔工作原理道岔处接触网的平面布置取决于道岔种类信息、受电弓工作宽度、受电弓的动态运行轨迹(最大摆动量和最大抬升量)。

武广设计采用UIC 608 Annex 4a 标准宽度为1950mm的受电弓,弓头工作宽度为1450mm;受电弓动态包络线左右晃动量:直线为250mm,曲线为350mm;动态最大抬升量按150mm考虑。

无交叉线岔平面布置时,应使侧线接触线和正线线路中心的距离大于两接触间的距离。

1、电力机车正线高速通过受电弓最外端尺寸的半宽为725mm,摆动量为250mm,升高后的加宽为150mm。

所以受电弓在侧线侧最外端可触及到的尺寸限界为:725+250+150=1125mm。

线岔平面布置如图1所示,其中B柱正线拉出值为-400、侧线拉出值为-1100,支柱位于两线路中心间距150mm 位置,所以受电弓在侧线侧最外端可触及限界1125mm<1100+150=1250mm 。

A柱侧线拉出值150mm、正线拉出值150,支柱位置处两线间距1400mm。

18#无交叉线岔技术标准

18#无交叉线岔技术标准

津秦客专18#无交叉线岔技术标准
高速区段正线道岔一般为18号道岔,接触网均采用无交分道岔布置。

侧线间道岔接触网采用普通交叉形式布置。

一、无交分道岔调整:
1、先复核腕臂偏移,腕臂顺线路偏移应符合设计要求,施工允许偏差为±20mm。

2、支撑、弹吊、吊弦和悬挂等非接触间隙不应小于80mm。

3、拉出值、导高应符合设计要求,拉出值施工允许偏差为±20mm,导高施工允许偏差为10mm。

4、受电弓中心距相邻一支接触线的距离600~1050mm范围和抬升量200毫米立体范围内为始触区,始触区内不安装任何线夹或设备零件。

5、交叉吊弦与一般吊弦间距按正常取值,始触区前安装交叉吊弦,位置在线间距550-600mm(测量方法与始触区相同)范围内,两交叉吊弦间距为2米,受电弓从道岔开口方向驶向岔心时应先接触到侧线承力索和正线接触线之间的交叉吊弦,交叉吊弦采用带载流环的滑动吊弦,载流环位于倾斜吊弦的上方,接触线吊弦线夹螺栓穿向斜上方。

安装如下图
交叉吊弦安装位置
6、当受电弓正线通过时一般只与正线接触线接触,侧线接触线在A,B,C柱处的高度分别抬高20mm,120mm,500mm。

7、弓形定位器支座位于线路上方时,定位支座下沿距工支接触线高度应>250毫米。

8、定位柱A柱在距岔心不小于25m即道岔开口不小于1320mm处,相邻支柱B柱与岔心距离在10-15m之间可调。

二、无交叉线岔安装图
1、支柱位于正线侧
2、支柱位于侧线侧
3、武广无交叉线岔。

接触网无交叉线岔施工工法

接触网无交叉线岔施工工法

接触网无交叉线岔施工工法接触网无交叉线岔施工工法一、前言接触网是供电车辆动力集电的设备,其设计和施工至关重要。

传统的接触网施工中,岔线与主线交叉的位置容易引起事故,加大了维护难度。

为了解决这个问题,接触网无交叉线岔施工工法应运而生。

本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。

二、工法特点接触网无交叉线岔施工工法最大的特点是通过合理设计和精确施工,实现了岔线与主线无交叉。

这种设计减少了交叉处的接触问题,并且降低了事故发生的概率。

此外,该工法还具有施工周期短、施工成本低、使用寿命长等特点。

三、适应范围接触网无交叉线岔施工工法适用于城市轨道交通、高速铁路、普速铁路等各种类型的电气化铁路工程。

尤其对于车流量大、道路交叉密集的城市轨道交通工程,该工法可以更好地改善接触网的性能,提高运行的安全性和稳定性。

四、工艺原理接触网无交叉线岔施工工法的核心原理是通过合理的设计和施工,使岔线与主线无交叉。

具体来说,施工工艺需要结合实际工程,采取合适的技术措施,确保交叉处的接触问题得到解决。

这需要对施工工法与实际工程之间的联系进行分析和解释,以便读者了解该工法的理论依据和实际应用。

五、施工工艺接触网无交叉线岔施工工法涉及多个施工阶段,包括基础施工、主线施工、岔线施工、连接施工等。

在每个施工阶段,都需要严格按照设计要求进行操作,确保施工过程中的每一个细节都得到解决。

详细描述施工过程中的每一个细节,让读者了解施工工艺的具体操作。

六、劳动组织为了保证施工的顺利进行,需要合理的劳动组织。

这包括施工队伍的编组、劳动力的配备、工作任务的分配等。

通过合理的劳动组织,可以提高施工效率,确保施工工期得到控制。

七、机具设备接触网无交叉线岔施工工法需要一系列的机具设备来支持施工工艺的实施。

这些机具设备包括起重机、钻机、焊接设备等。

详细介绍这些机具设备的特点、性能和使用方法,让读者了解其在施工中的作用。

接触网无交叉线岔施工工法(2)

接触网无交叉线岔施工工法(2)

接触网无交叉线岔施工工法接触网无交叉线岔施工工法一、前言接触网无交叉线岔施工工法是一种广泛应用于铁路交通领域的施工工艺,旨在确保接触网无交叉线岔运行正常、安全稳定。

该工法具有许多特点,适用范围广泛,并已经得到了广泛的实际应用和认可。

二、工法特点该施工工法具有以下特点:1. 优化设计:通过细致的设计,减少交叉线岔点,使接触网线路布置更合理,减少了施工难度和时间。

2. 高效施工:采用模块化构件和标准化作业流程,使施工过程更加高效,缩短了施工周期。

3.工艺成熟:经过多年实践和总结,工法成熟可靠,能够确保施工质量和效果。

4. 安全可靠:施工过程中充分考虑安全因素,采取严格的安全措施,确保施工的安全可靠。

5. 经济合理:施工工法经济合理,节约材料和人力资源,降低了施工成本。

三、适应范围接触网无交叉线岔施工工法适用于各种轨道交通线路,特别是高速铁路和城市轨道交通线路。

不仅适用于新线路的建设,也适用于既有线路的改造和维护。

四、工艺原理接触网无交叉线岔施工工法与实际工程之间的联系主要体现在以下几个方面:1. 接触网线路设计:通过优化设计,减少交叉线岔点,使施工过程更加简化和高效。

2. 施工技术措施:采用模块化构件和标准化作业流程,确保施工质量和效果。

3. 施工顺序和进度安排:根据工程实际情况,合理安排施工顺序和进度,确保施工过程的连续性和顺利进行。

五、施工工艺接触网无交叉线岔施工工法的施工过程详细描述如下:1. 前期准备:包括现场勘察、设计方案制定和材料准备等。

2. 施工准备:包括施工人员组织、机具设备调配和安全措施制定等。

3. 输电线路安装:按照设计要求和施工规范,进行托架、导线、绝缘子等线路设备的安装。

4. 接触网安装:按照设计要求和施工规范,进行接触线的安装和接地装置的安装。

5. 联动装置安装:按照设计要求和施工规范,进行联动装置的安装和调试。

6. 轨枕和道床安装:进行轨枕和道床的安装,确保接触网线路的牢固和稳定。

18号道岔-线岔图纸兼说明

18号道岔-线岔图纸兼说明

无交叉线岔(18号道岔)1无交叉线岔,锚段关节式线岔,各吊弦点的双支高度。

2定位柱A1在距岔心不小于25m,即道岔开口不小于1320mm处;相邻支柱B1与岔心距离在10—15m之间可调,接触线拉出值正线40 0mm,侧线1050—1150mm之间可调;支柱C1满足相邻跨距差和抬高要求,接触拉出值正线200mm,侧线600—800mm可调。

正线工作支一般采用弹性链形悬挂,正线非支和侧线采用简单链形悬挂。

3交叉吊弦应安装在正线接触线距侧线线路中心线,侧线接触线距正线线路中心线水平投影550mm-600mm 的范围内,正线与侧线上的两根吊弦的间距一般为2m;交叉吊弦与其他吊弦的间距(始触区反侧)不大于6~8m。

4连接螺栓紧固力矩符合标准,止动垫片应揋到位。

交叉线岔1交叉线岔交叉点的位置,非支的抬高;始触区内是否有线夹;交叉吊弦的位置、距离。

2A、C为悬挂点,B为交叉点,悬挂A点一般位于线间距0~400 mm范围之内,交叉点B位于线间距400~700mm范围之内;在悬挂点A处,正线接触线拉出值为300~400mm,并按正常接触线高度设计,侧线接触线拉出值一般为400~550mm,并抬高约150mm,使得A点处侧线接触线位于受电弓的正常动态抬升量以外;在悬挂点C处,正线接触线按正常高度设计,侧线接触线比正线高30mm。

3在交叉点B处,为了减小接触网的硬点影响,正线接触线相对于正常高度抬高10mm(通过吊弦实现),侧线接触线相对于正线抬高20mm,与悬挂点C处高度一致;侧线在AB段按抛物线抬高,在BC段靠近线岔处(线间距550mm~600mm处)设有一交叉吊弦(正线接触线通过吊弦悬挂于侧线承力索上,侧线接触线通过吊弦悬挂于正线承力索上),正线与侧线上的两组吊弦的间距一般为2m,意在使始触区附近两支接触线在动态作用下能够同步抬升;交叉吊弦与其他吊弦的间距(始触区反侧)不大于6~8m。

4岔区等电位两只悬挂,如果间距较小(小于300mm),应在承力索上并接一段长度为400mm 的35mm2铜绞线,以避免动态放电。

浅谈关于接触网无交分高速线岔的原理及应用

浅谈关于接触网无交分高速线岔的原理及应用

浅谈关于接触网无交分高速线岔的原理及应用基于我国的电气化铁路开始向高速化发展的现状,人们相应的提高了对接触网的性能的要求,而能够对高速电气化铁路产生影响的线岔,作为接触网性能中最为关键的部分,也需要提高其自身的质量。

随着我国电气化铁路的运行速度不断提高,电力机车在行进过程中受电弓动态抬升的作用就越大,这极易导致铁路在运输过程中发生交通安全事故。

标签:接触网;无交分线岔;原理;应用随着我国经济发展的不断加速,人们对交通运输的速度与安全性方面都提出了更高的要求,再加上我国的人口基数大,人群较为密集,做好交通运输工作就显得尤为必要。

我国大交通运输近年来发展取得了一定的成果,而在交通运输业激烈的竞争面前,高速电气化铁路因其具有快速、承载量大、经济和便利等优势成为了国家重点研究与发展的目标。

然而,由于高速铁路在行驶过程中存在打弓的现象,因此,安全性有着一定的欠缺。

1 接触网无交分线岔的工作原理无交分线岔主要是指正线和侧线的接触点在电气化铁路的岔道悬挂处的平面上不相交,这样做能够使铁路的接触悬挂点具有更加均匀的弹性,由于两支线路间没有接触和交叉设施,因此能够有效降低铁路弓网与悬挂物之间的碰撞,降低铁路事故的发生频率。

下面以铁路机车从正线和侧线两种通过方式来介绍接触网无交分线岔的工作原理。

1.1 机车从正线通过的工作原理当电气化铁路机车从正线高速通过时,机车的电弓不仅要和接触网的正线进行接触,与侧线也要进行接触。

在电弓的中心线与侧线之间相距1325毫米时侧线与受电弓之间是不会接触的。

然而,当电气化铁路机车开进始触区的范围之内时,受电弓会与侧线接触,与此同时受电弓由于其自身的弧度问题会致使正线的接触线升高,这时机车的交叉吊弦会相应的将侧线抬高,并逐步滑到受电弓上,达到电气铁路机车的受电弓在同时接触正线和侧线时的平滑过渡[1]。

之后机车正常前行,侧线将逐步脱离受电弓,而只留下正线在接触线上滑行,很好的实现了在岔道时受电弓的完美过渡。

接触网单跨式无交叉线岔施工工法

接触网单跨式无交叉线岔施工工法

接触网单跨式无交叉线岔施工工法一、前言接触网单跨式无交叉线岔施工工法是一种用于铁路接触网建设的先进技术,通过采取合理的施工工艺和有效的控制措施,可以有效提高施工效率和工程质量。

本文将介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。

二、工法特点接触网单跨式无交叉线岔施工工法的特点主要有以下几点:1. 采用单跨式结构,可以减少零件数量和安装工作量,提高施工效率。

2. 无交叉线岔的设计可以减少接触线的复杂性,提高系统的可靠性和安全性。

3. 工法采用模块化设计,可以快速安装和拆卸,节省施工时间和人力成本。

4. 采用新型的连接件和隔离装置,可以提高接触线的稳定性和耐久性。

三、适应范围接触网单跨式无交叉线岔施工工法适用于高速铁路、城市轨道交通等需要接触网的铁路工程。

其优点在于适用范围广,可以满足不同类型铁路工程的需求。

四、工艺原理接触网单跨式无交叉线岔施工工法的工艺原理是基于接触网的结构和原理,通过对施工工法与实际工程之间的联系、采取的技术措施进行具体的分析和解释。

这样可以让读者了解该工法的理论依据和实际应用。

五、施工工艺接触网单跨式无交叉线岔施工工法的施工工艺包括以下几个阶段:1. 前期准备:包括施工方案设计、现场勘测、材料准备等工作。

2. 安装支架:根据设计要求,在铁路上安装接触网的支架,确保稳定性和安全性。

3. 安装接触线杆:根据设计要求,在支架上安装接触线杆,形成基本的接触网结构。

4. 安装接触线:根据设计要求,在接触线杆上安装接触线,确保电气连接正常。

5. 调试和测试:对接触网进行电气连接测试和验收,确保工程质量达标。

6. 保养和维修:定期对接触网进行保养和维修,确保正常运行。

六、劳动组织接触网单跨式无交叉线岔施工工法的劳动组织需要具备专业的技术人员和熟练的施工人员。

根据实际工程的规模和施工进度,确定合理的人员配备和组织结构,确保施工顺利进行。

18号道岔无交分线岔的原理与特征

18号道岔无交分线岔的原理与特征

一、前言合宁线是我国第一条全线设计时速250Km/h的电气化客运专线。

为确保电力机车从正线上高速通过道岔时,受电弓在任何情况下均不与侧线的接触线相接触,避免受电弓通过交叉线岔时较易发生的打弓现象,电力机车从侧线进入正线或从正线进入侧线时,受电弓能从侧线与正线接触线之间实现平稳过渡,不发生刮弓现象,在合宁线的275Km/h试验段与正线相连的1/18号可动心轨高速单开道岔(简称18号道岔)在国内首次采用无交分线岔。

经铁科院网检车和铁道部综合检测车现场检测,受电弓的取流条件不变,速度不受影响。

二、18号道岔无交分线岔的原理与特征(一)18号道岔的结构特征18号道岔用于中间站正线与到发线间的连接。

道岔全长L=69.00m,前端长度a=31.729m,后端长度 b =37.271m。

道岔侧股平面线形选用圆曲线与直线相切的连接方式。

(二)无交叉线岔的布置原理道岔处接触网的平面布置取决于道岔类型、受电弓工作宽度、受电弓的动态运行轨迹(最大摆动量和最大抬升量)。

1.无线夹区的确定。

对于250km/h的正线,接触线的变化坡度为0。

侧线由于速度较低,其坡度的变化应考虑受电弓在正线和侧线转换运行时,任何方向都应满足始触区范围内无线夹。

在距线路中心600~1050mm范围为无线夹区,在此区域内接触线不得安装任何线夹,包括定位线夹、吊弦线夹、电连接线夹等。

在道岔区,当接触网无线夹区内有接触悬挂时,此区域称为道岔始触区。

2.无交叉线岔“三区”的确定。

无交叉线岔有两个始触区和一个等高区。

平面布置时,应使侧线接触线和正线线路中心的距离大于两接触线间的距离。

以合宁线的1/18号可动心轨高速单开道岔,德国DSA350SEK受电弓为例,受电弓最外端尺寸的半宽为625mm,摆动量为250mm(考虑250km/h速度),升高后的加宽为120mm。

所以受电弓在侧线侧最外端可触及到的尺寸限界为:625+250+120=975(mm)。

合宁线18号道岔无交叉线岔考虑到整个渡线的长度及道岔布置的对称性,单边采用一根道岔定位柱和一组硬横梁定位,其中B柱正线拉出值-400mm,侧线拉出值-900mm,支柱位置处道岔导曲线两外轨之间的距离150mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无交叉线岔的最大优点是保证机车能从正线高速通过,在平面布置时,应使侧线接触线位于正线线路中心以外999mm。

因为,机车受电弓一半宽度为673mm,考虑受电弓摆动200mm,富余量100mm,即运行机车受电弓在侧线侧最外端可触及到的尺寸限界为673+200+100=973(mm),其值小于999mm,如果受电弓向侧线反向摆动200mm,则673-200=473(mm),其值大于定位处拉出值333mm,因而机车从正线高速通过岔区时,与区间接触网一样受流,而与侧线接触悬挂无关系,如下图。

由于在悬挂布置时,已充分考虑了受电弓工作长度和摆动量,因此在正线通过时,可以保证侧线接触线与正线线路中心间的距离始终大于受电弓的工作宽度之半加上受电弓的横向摆动量,因而正线高速行车时,受电弓滑板不可能接触到侧线接触线,从而保证了正线高速行车时的绝对安全性,并且在道岔处不存在相对硬点。

当机车从正线进入侧线时,在线间距126~526mm之间为受电弓与侧线接触线的始触,如下图。

此时,因侧线接触悬挂被抬高下锚,侧线接触线高于正线接触线,过岔时,侧线接触线比正线接触线高度以-3/1000坡度降低,因而,受电弓可以顺利过渡到侧线接触悬挂。

在机车由正线向侧线过渡时,由于侧线接触线比正线接触线有较大的抬高,因此,受电弓不会接触侧线接触线而从正线接触线上受流。

随着机车的前进,由于在定位点处受电弓中心与正线接触线之间的距离较小,受电弓经过等高区后逐渐降低至正常高度。

因而,受电弓可以顺利过渡到测线接触悬挂。

当机车从侧线进入正线时,在线间距806~1306mm之间为受电弓与正线接触线的始触区,如下图。

此时,因正线接触线比侧线接触线高4/1000的坡度,过岔后,渡线被抬高下锚,正线接触线高度又低于侧线,因而,受电弓可以顺利过渡到正线接触悬挂。

在机车从侧线向正线开始过渡时,由于侧线低于正线,所以仍由侧线供电,受电弓进入正线接触悬挂的始触区,受电弓滑板的侧面与正线接触线开始接触。

经过等高区以后,由于侧线接触线比正线接触线抬高,随着机车的继续前进,受电弓将逐步脱离侧线接触悬挂而平滑地过渡到正线接触悬挂。

相关文档
最新文档