5.5 用二次函数解决问题(2)
九年级数学下册 第5章 二次函数 5.5 用二次函数解决问题作业设计 (新版)苏科版-(新版)苏科版
用二次函数解决问题第1课时、第2课时1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件,则商店所获得的利润y(元)与每件商品售价x(元)之间的函数表达式为()A.y=-10x2-560x+7350B.y=-10x2+560x-7350C.y=-10x2+350xD.y=-10x2+350x-73502.某产品的进货单价为每件90元,按100元一件出售时,每周能售出500件.若每件涨价1元,则每周销售量就减少10件,则该产品每周能获得的最大利润为() A.5000元 B.8000元C.9000元 D.10000元3.某商店出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________时,一天出售该种文具盒的总利润y最大.4.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,经市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值X围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出当销售价为多少元/件时,每天的销售利润最大,最大利润是多少.5.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m,则池底的最大面积是()A .600 m 2B .625 m 2C .650 m 2D .675 m 26.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数表达式是________,当边长x 为________米时,花圃有最大面积,最大面积为________平方米.7.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室的一边长为x (m),占地面积为y (m 2).(1)如图5-5-3①,则饲养室的一边长x 为多少时,占地面积y 最大?(2)如图②,现要求在所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室的一边长x 比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.图5-5-38.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动的时间t (秒)之间的函数表达式是h =t -t 2,则小球的最大高度为________米.9.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是______m.10.小明大学毕业后回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,经调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元,每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元).(1)用含x 的代数式表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?11.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫之间的距离为x (单位:千米),乘坐地铁的时间y 1(单位:分)是关于x 的一次函数,其关系如下表:(1)求y 1关于x 的函数表达式;(2)李华骑单车的时间y 2(单位:分)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述,则李华应选择在哪一站出地铁,才能使他从文化宫回到家里所用的时间最短?并求出最短时间.12.某旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x (元)是5的倍数.公司发现每天的营运规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?参考答案1.B[解析] 由题意,得y =(x -21)(350-10x )=-10x 2+560x -7350. 2.C3.3[解析] 由题意可得y =(6-x )x ,即y =-x 2+6x ,当x =3时,y 有最大值. 4.解:(1)设y 与x 之间的函数关系式为y =kx +b ,把(10,30),(16,24)代入,得⎩⎪⎨⎪⎧10k +b =30,16k +b =24,解得⎩⎪⎨⎪⎧k =-1,b =40.∴y 与x 之间的函数关系式为y =-x +40(10≤x ≤16).(2)W =(x -10)(-x +40)=-x 2+50x -400(10≤x ≤16).∵W =-x 2+50x -400=-(x -25)2+225,函数图像的对称轴是直线x =25,在对称轴的左侧,y 随着x 的增大而增大. ∵10≤x ≤16,∴当x =16时,W 最大,为144.即当销售价为16元/件时,每天的销售利润最大,最大利润是144元.5.B[解析] 设矩形的一边长为x m ,则其邻边长为(50-x )m ,设池底面积为S m 2,则S =x (50-x )=-x 2+50x =-(x -25)2+625.∴当x =25时,S 取得最大值,最大值为625.6.S =-2x 2+10x 52252[解析] 由题意知平行于墙的一边长为(10-2x )米,则S =x (10-2x )=-2(x -52)2+252(0<x <5),所以当x =52时,花圃有最大面积,最大面积为252平方米.7.解:(1)∵y =x ·50-x 2=-12(x -25)2+6252(0<x <50),∴当x =25时,占地面积y 最大,即当饲养室的一边长x 为25 m 时,占地面积y 最大. (2)∵y =x ·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积y 最大.∵26-25=1(m)≠2 m ,∴小敏的说法不正确. 8.9.24[解析] ∵y =60t -32t 2=-32(t -20)2+600,∴当t =20时,飞机着陆后滑行到最大距离600 m ,然后停止滑行;当t =16时,y =576,∴最后4 s 滑行的距离是24 m.10.解:(1)W 1=(50+x )(160-2x )=-2x 2+60x +8000,W 2=19(50-x )=-19x +950.(2)W =W 1+W 2=-2x 2+41x +8950(x 为整数). ∵-2<0,抛物线的开口向下,-412×(-2)=414,∴当0≤x <414时,W 随x 的增大而增大;当414<x ≤50时,W 随x 的增大而减小, 又∵x 取整数,故当x =10时,W 最大,W 最大=-2×102+41×10+8950=9160.即当x =10时,第二期培植的盆景与花卉售完后获得的总利润最大,最大总利润是9160元.11.解:(1)设乘坐地铁的时间y 1关于x 的一次函数表达式是y 1=kx +b .把x =8,y 1=18;x =10,y 1=22代入,得⎩⎪⎨⎪⎧18=8k +b ,22=10k +b ,解得⎩⎪⎨⎪⎧k =2,b =2, ∴y 1关于x 的函数表达式是y 1=2x +2.(2)设李华从文化宫回到家里所用的时间为y 分,则y =y 1+y 2, 即y =2x +2+12x 2-11x +78=12x 2-9x +80=12(x -9)2+792,∴当x =9时,y 最小值=792.∴李华选择从B 地铁口出站,才能使他从文化宫回到家里所用的时间最短,最短时间为792分钟. 12.解:(1)由题意,知若观光车能全部租出,则0<x ≤100,由50x -1100>0,解得x >22,∴22<x ≤100.又∵x 是5的倍数,∴每辆车的日租金至少应为25元. (2)设每辆车的净收入为y 元. 当0<x ≤100时,y 1=50x -1100. ∵y 1随x 的增大而增大,∴当x =100时,y 1有最大值为50×100-1100=3900; 当x >100时,y 2=(50-x -1005)x -1100=-15x 2+70x -1100=-15(x -175)2+5025,∴当x =175时,y 2有最大值为5025. ∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多.第3课时1.如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m)与水平距离x (m)之间的关系为y =-112x 2+23x +53,由此可知铅球被推出的距离是() A .10 m B .3 m C .4 m D .2 m 或10 m2.小敏在某次投篮中,球的运动线路是抛物线y =-15x 2+的一部分(如图).若命中篮圈中心,则他与篮底的距离l 是()A .3.5 mB .4 mC .4.5 mD .4.6 m3.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y (单位:m)与飞行时间x (单位:s)之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?4.某某省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数表达式为y =-125x 2,当水面离桥拱顶的高度DO 是4 m 时,这时水面的宽度AB 为()A.-20 m B.10 m C.20 m D.-10 m5.建立如图所示的直角坐标系,某抛物线形桥拱的最大高度为16米,跨度为40米,则它对应的表达式为________________.6.如图是一个横断面为抛物线形的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,当水面下降1米时,水面的宽度为多少米?7.某广场有一个喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米8.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线形,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图所示,以水平方向为x轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷出的水柱的最大高度.9.冬天来了,晒衣服成了头疼的事情,聪明的小华想到一个好办法,他在家后院地面(BD)上立两根等长的立柱AB ,CD(均与地面垂直),并在立柱之间悬挂一根绳子.绳子的形状近似抛物线y =110x 2+bx +c ,如图①,已知BD =8米,绳子最低点离地面的距离为1米.(1)求立柱AB 的长度;(2)由于挂的衣服比较多,为了防止衣服碰到地面,小华用一根垂直于地面的立柱MN 撑起绳子(如图②),MN 的长度为米,通过调整MN 的位置,使左边抛物线F 1对应函数表达式的二次项系数为14,顶点离地面米,求MN 与AB 的距离.10.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5 m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8 s时,离地面的高度为3.5 m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为 2.44 m,如果该运动员正对球门射门时,离球门的水平距离为28 m,他能否将球直接射入球门?参考答案1.A[解析] 令y =0,则-112x 2+23x +53=0,解得x 1=10,x 2=-2,由此可知铅球被推出的距离是10 m. 故选A.2.B[解析] 当y =时,-15x 2+=,解得x 1=-1.5(舍去),x 2=,∴l =+=4(m). 故选B.3.解:(1)令y =15,有-5x 2+20x =15, 化简得x 2-4x +3=0, 解得x 1=1,x 2=3, 即飞行时间是1 s 或3 s.(2)飞出和落地的瞬间,高度都为0,故令y =0, 则有0=-5x 2+20x , 解得x 1=0,x 2=4,所以小球从飞出到落地所用时间是4-0=4(s). (3)y =-5x 2+20x =-5(x -2)2+20, ∴当x =2时,y 取得最大值,此时y =20.故在飞行过程中,当飞行时间为2 s 时,小球的飞行高度最大,最大高度为20 m. 4.C 5.y =-125(x -20)2+16[解析] 由图可知抛物线的对称轴为直线x =20,顶点坐标为(20,16).可设此抛物线的表达式为y =a (x -20)2+16.又此抛物线过点(0,0),代入得(0-20)2a +16=0,解得a =-125,所以此抛物线的表达式为y =-125(x -20)2+16.6.解:建立如图所示的直角坐标系,可知OA 和OB 的长均为AB 的一半,即2米,抛物线顶点C 的坐标为(0,2),通过以上条件可设抛物线的函数表达式为y =ax 2+2.把(-2,0)代入y =ax 2+2,得出a =-, 所以y =-x 2+2.当y =-1时,有-1=-x 2+2, 解得x =±6,所以当水面下降1米时,水面的宽度为2 6米.7.A[解析] 直接根据二次函数的顶点坐标公式计算即可,最大高度为4ac -b24a =4×(-1)×0-424×(-1)=4,或将y =-x 2+4x 化为顶点式也可得出结论.8.解:(1)∵抛物线的顶点坐标为(3,5), ∴设y =a (x -3)2+5,将(8,0)代入,得a =-15,∴y =-15(x -3)2+5,即y =-15x 2+65x +165(0<x <8).(2)当y =时,即=-15x 2+65x +165,解得x 1=7,x 2=-1(舍去).答:王师傅必须站在离水池中心7米以内.(3)由y =-15x 2+65x +165,可得原抛物线与y 轴的交点坐标为(0,165).∵装饰物的高度不变, ∴新抛物线也经过点(0,165).∵喷出水柱的形状不变, ∴a =-15.∵直径扩大到32米, ∴新抛物线过点(16,0).设新抛物线的表达式为y 新=-15x 2+bx +c ,将点(0,165)和(16,0)代入,得b =3,c =165.∴y 新=-15x 2+3x +165=-15(x -152)2+28920,∴当x =152时,y 新的最大值为28920.答:扩建改造后喷出的水柱的最大高度为28920米.9.解:(1)由题意可知抛物线的表达式为y =110(x -4)2+1,即y =110x 2-45x +135.令x =0,得y =135,∴AB =135.答:立柱AB 的长度为135米.(2)由题意可以假设抛物线F 1的表达式为y =14x 2+mx +2.6.∵4×14×-m 24×14=,∴m =±1.∵抛物线F 1的对称轴在y 轴右侧,14>0,∴b <0,∴b =-1,∴抛物线F 1的表达式为y =14x 2-x +2.6.令y =,解得x 1=1,x 2=3, 当x =1时,不合题意,舍去, ∴x =3,∴MN 与AB 的距离为3米.10.解:(1)由题意可知函数y =at 2+5t +c 的图像经过点(0,0.5),,3.5), ∴错误!解得错误!∴抛物线的函数表达式为y =-2516t 2+5t +12=-2516(t -85)2+92,∴当t =85时,y 最大值=92.答:足球飞行的时间是85 s 时,足球离地面最高,最大高度是92 m.(2)把x =28代入x =10t ,得28=10t ,∴t =2.8.25 16×2+5×+12=<,∴他能将球直接射入球门.当t=时,y=-。
苏科版数学九年级下册5.5《用二次函数解决问题》说课稿
苏科版数学九年级下册5.5《用二次函数解决问题》说课稿一. 教材分析苏科版数学九年级下册5.5《用二次函数解决问题》这一节的内容,是在学生已经掌握了二次函数的性质、图象和几何意义的基础上进行讲解的。
本节课的主要内容是利用二次函数解决实际问题,让学生学会将实际问题转化为二次函数模型,并通过求解二次函数的顶点坐标、对称轴等性质来解决问题。
教材通过例题和练习题的形式,引导学生掌握用二次函数解决实际问题的方法。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念、性质和图象有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数模型,对于如何利用二次函数的性质解决实际问题还比较模糊。
因此,在教学过程中,我需要引导学生将实际问题与二次函数知识联系起来,并通过例题和练习题让学生充分理解和掌握用二次函数解决实际问题的方法。
三. 说教学目标1.知识与技能目标:使学生能够将实际问题转化为二次函数模型,并通过求解二次函数的顶点坐标、对称轴等性质来解决问题。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生解决实际问题的能力,提高学生的数学思维水平。
3.情感态度与价值观目标:让学生体验数学在生活中的应用,激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:让学生学会将实际问题转化为二次函数模型,并利用二次函数的性质解决问题。
2.教学难点:如何引导学生将实际问题与二次函数知识有效地联系起来,以及如何让学生灵活运用二次函数的性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合课堂讲解、板书、练习等手段,进行教学。
六. 说教学过程1.导入新课:通过一个实际问题引入本节课的主题,激发学生的学习兴趣。
2.讲解新课:讲解如何将实际问题转化为二次函数模型,并通过例题讲解如何利用二次函数的性质解决问题。
苏科版九年级下册《5.5用二次函数解决问题》强化提优检测(三)
苏科版九年级下《5.5用二次函数解决问题》强化提优检测(三)利用二次函数解决建筑的问题(时间:90分钟满分:120分)一.选择题(共10题;共30分)1. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 m C.160 m D.200 m第1题图第2题图第3题图第4题图2. 三孔桥横截面的三个孔都呈抛物线,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为()A.43米B.52米C.213米D.7米3.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是()A.y=﹣x2+50x B.y=﹣x2+24x C.y=﹣x2+25x D.y=﹣x2+26x4﹒河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y=-1/25x2,当水面离桥拱的高度DO是4m时,这时水面宽度AB为()A.-20m B.10m C.20m D.-10m5﹒如图,假设篱笆(虚线部分)的长度为16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m2第5题图第6题图第7题图第8题图第10题图6﹒某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面40/3m,则水流落地点B离墙的距离OB是()A.2mB.3mC.4mD.5m7.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成()A. 1.5m,1mB. 1m,0.5mC. 2m,1mD. 2m,0.5m8.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A. 2.76米B. 6.76米C. 6米D. 7米9.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为h=30t−5t2,那么水流从喷出至回落到地面所需要的时间是( )A. 6 sB. 4 sC. 3 sD. 2 s10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有()A. 1个B. 2个C. 3个D. 4二、填空题(共10题;共30分)11.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h(单位:m)与水流喷出时间t(单位:s)之间的关系式为h=30t﹣5t2,那么水流从喷出至回落到水池所需要的时间是s.12.一抛物线形拱桥如图所示,当拱顶离水面2m时,水面宽4m.当水面下降1m时,水面的宽为m.第12题图第13题图第14题图13. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.14.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为_____米.15.农贸市场拟建两间长方形储藏室,储藏室的一面靠墙(墙长30m),中间用一面墙隔开,如图所示,已知建筑材料可建墙的长度为42m,则这两间长方形储藏室的总占地面积的最大值为_______m 2.第15题图 第16题图 第17题图16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为28m ,则能建成的饲养室面积最大为 m 2.17.某圆形喷水池的水柱如图①所示,如果曲线APB 表示落点B 离点O 最远的一条水流,如图②所示,其上的水珠的高度y 米关于水平距离x 米的函数解析式为y =-x 2+4x +9/4,那么圆形水池的半径至少为________米时,才能使喷出的水流不落在水池外.18.如图所示的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________.第18题图 第19题图 第20题图19.如图(1)是一座横断面为抛物线形状的拱桥,当水面在直线l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽4 m .如图(2)建立平面直角坐标系,则抛物线的表达式是__________. 20.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.三.解答题(共8题;共60分)21.拱桥的形状是抛物线,其函数关系式为y =﹣x 2,当水面离桥顶的高度为m 时,水面的宽度为多少米?22如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O 点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?23.如图是一座拱桥的示意图,相邻两支柱间的距离为10米(即HF=FG=GM=MP=10米),拱桥顶点D到桥面的距离DG=2米,将其置于如图②所示的平面直角坐标系中,抛物线的表达式为y=ax2+6.(1)求a的值;(2)求支柱EF的高.24.一座拱桥呈抛物线形,它的截面如图所示,现测得,当水面宽AB=1.6 m时,拱桥顶点与水面的距离为2.4 m.这时,离开水面1.5 m处,拱桥宽ED是多少?是否超过1 m?25.“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m ,另外三边由36 m 长的栅栏围成.设矩形ABCD 空地中,垂直于墙的边AB =x m ,面积为y m 2(如图).(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若矩形空地的面积为160 m 2,求x 的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).则丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.26.如图需在一面墙上绘制几个相同的抛物线形图案.按照图中的平面直角坐标系,最左边的抛物线可以用y =ax 2+bx 来表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32 m.(1)求该拋物线的函数表达式,并求图案最高点到地面的距离;(2)若该面墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线形图案?27.如图小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16米,AE =8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)求抛物线的函数表达式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h =-1128(t -19)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?28..如图①,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y =110x 2-45x +3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图②),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长;(3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为14,设MN 离AB 的距离为m 米,抛物线F 2的顶点离地面的距离为k 米,当2≤k ≤2.5时,求m 的取值范围.教师样卷一.选择题(共10题;共30分)1. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50 mB .100 mC .160 mD .200 m【答案】C [解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.第1题图 第2题图 第3题图 第4题图 2. 三孔桥横截面的三个孔都呈抛物线,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为( ) A .43米 B .52米 C .213米 D .7米【答案】B 【解析】如图所示,建立平面直角坐标系.设大孔对应的函数关系式为y =ax 2+c ,过B (5,c -1.5),F (7,0),代入y =ax 2+c ,,解得a=0.06 c=0,94,∴大孔对应的函数关系式为y =-0.06x 2+2.94.当x =10时,y =-0.06×102+2.94=-3.06,∴H (0,-3.06).设右边小孔顶点坐标为D (10,1.44),则右边小孔对应的函数关系式为y =m (x -10)2+1.44,过点G (12,0),则0= m (12-10)2+1.44,解得m =-0.36,∴右边小孔对应的函数关系式为y =-0.36(x -10)2+1.44,当y =-3.06时,-3.06=-0.36(x -10)2+1.44,解得x=10±,52/2∴大孔水面宽度为20米,时单个小孔的水面宽度为52米.故选项B 正确. 3.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m 宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m .设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是( )A .y =﹣x 2+50xB .y =﹣x 2+24xC .y =﹣x 2+25xD .y =﹣x 2+26x【答案】D 解:设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是:y =x •(50+2﹣x )=﹣x 2+26x .故选:D .4﹒河北省赵县的赵州桥的桥拱是近似的抛物线,建立如图所示的平面直角坐标系,其函数关系式为y =-1/25x 2,当水面离桥拱的高度DO 是4m 时,这时水面宽度AB 为( ) A .-20m B .10m C .20m D .-10m【答案】C 解答:根据题意B 的纵坐标为﹣4, 把y =﹣4代入y =﹣1/25x 2,得x =±10,∴A (﹣10,﹣4),B (10,﹣4),∴AB =20m .即水面宽度AB 为20m .故选:C .5﹒如图,假设篱笆(虚线部分)的长度为16m ,则所围成矩形ABCD 的最大面积是( ) A .60m 2 B .63m 2 C .64m 2 D .66m 2【答案】C 解答:设BC =x m ,则AB =(16﹣x )m ,矩形ABCD 面积为y m 2,根据题意得:y =(16﹣x )x =﹣x 2+16x =﹣(x ﹣8)2+64,当x =8m 时,y 最大值=64m 2,则所围成矩形ABCD 的最大面积是64m 2.故选:C .H M F G D C E O N C B A yx第5题图第6题图第7题图第8题图第10题图6﹒某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面40/3m,则水流落地点B离墙的距离OB是()A.2mB.3mC.4mD.5m【答案】B 解答:设抛物线的解析式为y=a(x﹣1)2+40/3,把点A(0,10)代入a(x﹣1)2+40/3,得a(0﹣1)2+ =10,解得a=﹣10/3,因此抛物线解析式为y=﹣10/3(x﹣1)2+40/3,当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);即OB=3米.故选:B.7.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成()A. 1.5m,1mB. 1m,0.5mC. 2m,1mD. 2m,0.5m【答案】A【解析】试题分析:设长为x,则宽为,S=,即S=,要使做成的窗框的透光面积最大,则x=,于是宽为=1m,所以要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成1.5m,1m,故选A.8.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A. 2.76米B. 6.76米C. 6米D. 7米【答案】B【解析】试题解析:设该抛物线的解析式为y=ax2,在正常水位下x=10,代入解析式可得﹣4=a×102⇒a=﹣1/25故此抛物线的解析式为y=﹣1/25x2.因为桥下水面宽度不得小于18米所以令x=9时可得y=﹣3.24米此时水深6+4﹣3.24=6.76米即桥下水深6.76米时正好通过,所以超过6.76米时则不能通过.故选B.9.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为h=30t−5t2,那么水流从喷出至回落到地面所需要的时间是( )A. 6 sB. 4 sC. 3 sD. 2 s【答案】.A 解:水流从抛出至回落到地面时高度h为0,把h=0代入h=30t−5t2得:5t2−30t=0,解得:t1=0(舍去),t2=6.故水流从抛出至回落到地面所需要的时间6s. 故选A.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有()A. 1个B. 2个C. 3个D. 4【答案】C解:当x=0时,y=3,故柱子OA的高度为3m;(1)正确;∵y=-x2+2x+3=-(x-1)2+4,∴顶点是(1,4),故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是4米;故(2)(3)正确;解方程-x2+2x+3=0,得x1=-1,x2=3,故水池的半径至少要3米,才能使喷出的水流不至于落在水池外,(4)正确.故选:C.三、填空题(共10题;共30分)11.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h(单位:m)与水流喷出时间t(单位:s)之间的关系式为h=30t﹣5t2,那么水流从喷出至回落到水池所需要的时间是s.【答案】6 解:∵h=30t﹣5t2,∴当h=0时,t=0或t=6,∴水流从喷出至回落到水池所需要的时间是:6﹣0=6,故答案为:6.12.一抛物线形拱桥如图所示,当拱顶离水面2m时,水面宽4m.当水面下降1m时,水面的宽为m.【答案】2.解:如图:以拱顶到水面的距离为2米时的水面为x轴,拱顶所在直线为y 轴建立平面直角坐标系,根据题意设二次函数解析式为:y=ax2+2把A(2,0)代入,得a=﹣,所以二次函数解析式为:y=﹣x2+2,当y=﹣1时,﹣x2+2=﹣1解得x=±.所以水面的宽度为2.故答案为2.第12题图第13题图第14题图13. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.【答案】48[解析] 建立如图所示的平面直角坐标系,设AB与y轴交于点H.∵AB=36 m,∴AH=BH=18 m.由题可知:OH=7 m,CH=9 m,∴OC=9+7=16(m).设该抛物线的解析式为y=ax2+k.∵抛物线的顶点为C(0,16),∴抛物线的解析式为y=ax2+16.把(18,7)代入解析式,得7=18×18a+16,∴7=324a+16,∴a=-136,∴y=-136x2+16.当y=0时,0=-136x2+16,∴-136x2=-16,解得x=±24,∴E(24,0),D(-24,0),∴OE=OD=24 m,∴DE=OD +OE=24+24=48(m).14.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为_____米.【答案】0.2 【解析】如图,以C坐标系的原点,OC所在直线为y轴建立坐标系,设抛物线解析式为y=ax2,由题知,图象过B(0.6,0.36),代入得:0.36=0.36a∴a=1,即y=x2.∵F 点横坐标为﹣0.4,∴当x=﹣0.4时,y=0.16,∴EF=0.36﹣0.16=0.2米故答案为0.2.15.农贸市场拟建两间长方形储藏室,储藏室的一面靠墙(墙长30m),中间用一面墙隔开,如图所示,已知建筑材料可建墙的长度为42m,则这两间长方形储藏室的总占地面积的最大值为_______m2.【答案】147 解:设中间隔开的墙EF的长为xm,建成的储藏室总占地面积为sm²,根据题意得AD+3x=42,解得AD=42-3x,则S=x(42-3x)= -3x²+42x=-3(x-7)²+147,故这两间长方形储藏室的总占地面积的最大值为:147m²,故答案为:147.点睛:本题考查了二次函数的应用,配方法,矩形的面积,有一定的难度,解答本题的关键是得到建成的储藏室的总占地面积的解析式.第15题图第16题图第17题图16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为28m,则能建成的饲养室面积最大为 m2.【答案】75 【解析】设垂直于墙的材料长为x米,则平行于墙的材料长为28+2-3x=30-3x,则总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75,所以饲养室的最大面积为75平方米,17.某圆形喷水池的水柱如图①所示,如果曲线APB 表示落点B 离点O 最远的一条水流,如图②所示,其上的水珠的高度y 米关于水平距离x 米的函数解析式为y =-x 2+4x +9/4,那么圆形水池的半径至少为________米时,才能使喷出的水流不落在水池外.【答案】.9/2 【解析】当y=0时,即-x 2+4x+9/4=0,解得x 1=9/2,x 2=-1/2(舍去).18.如图所示的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线表达式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线表达式是_________.【答案】y =-19(x +6)2+4第18题图 第19题图 第20题图19.如图(1)是一座横断面为抛物线形状的拱桥,当水面在直线l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽4 m .如图(2)建立平面直角坐标系,则抛物线的表达式是__________.【答案】y =2x 220.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.【答案】1.2【解析】以水面所在水平线为x 轴,过拱桥顶点作水平线的垂线,作为y 轴,建立坐标系,设水平面与拱桥的交点为A (-2,0),B (2,0),C (0,2),利用待定系数法设函数的解析式为y=a (x+2)(x-2)代入点C 坐标,求得a=-1/2,即抛物线的解析式为y=-1/2(x+2)(x-2),令x=1,解得y=1.5,船顶与桥拱之间的间隔应不少于0.3,则木船的最高高度为1.5-0.3=1.2米.故答案为:1.2.三.解答题(共8题;共60分)21.拱桥的形状是抛物线,其函数关系式为y =﹣x 2,当水面离桥顶的高度为m 时,水面的宽度为多少米?解:在y =﹣x 2中,当y =﹣时,x =±,故水面的宽度为=(米).答:水面的宽度为米.22如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD -DC -CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?解:(1)M(12,0),P(6,6); (2)设y =a(x -6)2+6,把(0,0)代入得a =-16,∴y =-16(x -6)2+6; (3)设D(m ,n),则C(12-m ,n),设支架总长为S m ,∴AD =CB =n =-16m 2+2m ,DC =12-2m ,∴S =2AD +DC =-13m 2+2m +12,当m =-b 2a=3时,S 最大=15.答:“支撑架”总长的最大值为15米.23.如图是一座拱桥的示意图,相邻两支柱间的距离为10米(即HF =FG =GM =MP =10米),拱桥顶点D 到桥面的距离DG =2米,将其置于如图②所示的平面直角坐标系中,抛物线的表达式为y =ax 2+6.(1)求a 的值; (2)求支柱EF 的高.解:(1)根据题意可知A(-20,0),将其代入y =ax 2+6,得400a +6=0,解得a =-3200. (2)把x =-10代入y =-3200x 2+6,得y =-3200×(-10)2+6=92,∴EF =6+2-92=72(米).24.一座拱桥呈抛物线形,它的截面如图所示,现测得,当水面宽AB =1.6 m 时,拱桥顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,拱桥宽ED 是多少?是否超过1 m?解:由题意可知,点A(-0.8,-2.4),O C =2.4 m ,OF =0.9 m .设抛物线的表达式为y =ax 2,将点A 的坐标代入,得0.64a =-2.4,解得a =-154,∴y =-154x 2.把y =-0.9代入,得-154x 2=-0.9,解得x =±65,∴DE =2 65 m . ∵2 65=2425<1,∴离开水面1.5 m 处,拱桥宽ED 是2 65 m ,没有超过1 m25.“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m ,另外三边由36 m 长的栅栏围成.设矩形ABCD 空地中,垂直于墙的边AB =x m ,面积为y m 2(如图).(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若矩形空地的面积为160 m 2,求x 的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).则丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.解:(1)y =-2x 2+36x (9≤x <18)(2)由题意得-2x 2+36x =160,解得x 1=10,x 2=8(不符合题意,舍去).∴x 的值为10.(3)∵y =-2x 2+36x =-2(x -9)2+162,∴x =9时,y 有最大值162.设购买乙种绿色植物a 棵,购买丙种绿色植物b 棵,由题意得14(400-a -b )+16a +28b =8600,∴a +7b =1500,∴b 的最大值为214,即丙种植物最多可以购买214棵,此时a =2,需要种植的面积=0.4×(400-214-2)+1×2+0.4×214=161.2(m 2)<162 m 2,∴这批植物可以全部栽种到这块空地上. 26.如图需在一面墙上绘制几个相同的抛物线形图案.按照图中的平面直角坐标系,最左边的抛物线可以用y =ax 2+bx 来表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32 m.(1)求该拋物线的函数表达式,并求图案最高点到地面的距离;(2)若该面墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线形图案?解:(1)根据题意,得B(12,34),C(32,34).把B ,C 两点的坐标分别代入y =ax 2+bx ,得⎩⎨⎧34=14a +12b ,34=94a +32b ,解得⎩⎪⎨⎪⎧a =-1,b =2,∴拋物线的函数表达式为y =-x 2+2x ,∴图案最高点到地面的距离为-224×(-1)=1(m ).(2)令y =0,即-x 2+2x =0,解得x 1=0,x 2=2,∵10÷2=5,∴最多可以连续绘制5个这样的拋物线形图案.27.如图小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16米,AE =8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.(1)求抛物线的函数表达式;(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h =-1128(t -19)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)设抛物线的函数表达式为y =ax 2+11,由题意得B(8,8),则64a +11=8,解得a =-364,即y =-364x 2+11.(2)水面到顶点C 的距离不大于5米时,即水面与河底ED 的距离h 最多为11-5=6(米),那么6=-1128(t -19)2+8,解得t 1=35,t 2=3,∴35-3=32(时).答:需32小时禁止船只通行.28..如图①,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y =110x 2-45x +3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图②),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长;(3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为14,设MN 离AB 的距离为m 米,抛物线F 2的顶点离地面的距离为k 米,当2≤k ≤2.5时,求m 的取值范围.解:(1)∵a =110>0,∴抛物线的顶点为最低点.∵y =110x 2-45x +3=110(x -4)2+75,∴绳子最低点离地面的距离为75米.(2)由(1)可知,BD =8,令x =0,得y =3,∴A(0,3),C(8,3).由题意可得抛物线F 1的顶点坐标为(2,1.8),设F 1的表达式为y =a(x -2)2+1.8.将(0,3)代入,得4a +1.8=3,解得a =0.3,∴抛物线F 1的表达式为y =0.3(x -2)2+1.8.当x =3时,y =0.3×1+1.8=2.1,∴MN 的长度为2.1米.(3)∵MN =CD =3米,∴根据抛物线的对称性可知抛物线F 2的顶点在ND 的垂直平分线上,∴抛物线F 2的顶点坐标为(12m +4,k),∴抛物线F 2的表达式为y =14(x -12m -4)2+k.把C(8,3)代入,得14(8-12m -4)2+k =3,解得k =3-14(8-12m -4)2,即k =-116(m -8)2+3,从而k是关于m 的二次函数.又由已知条件得m <8,则二次函数k =-116(m -8)2+3在对称轴的左侧,k 随m 的增大而增大,∴当k =2时,-116(m -8)2+3=2,解得m 1=4,m 2=12(不符合题意,舍去);当k =2.5时,-116(m -8)2+3=2.5,解得m 1=8-2 2,m 2=8+2 2(不符合题意,舍去).∴m 的取值范围是4≤m ≤8-2 2.。
利用二次函数解决问题步骤
利用二次函数解决问题步骤正文:
二次函数在数学和实际问题中有着广泛的应用。
利用二次函数解决问题的步骤可以帮助我们更好地理解和解决各种实际情况中的数学难题。
下面将介绍利用二次函数解决问题的一般步骤。
1. 确定问题,首先,需要明确问题的背景和要求,明确所要解决的具体问题是什么,例如寻找最大值、最小值,或者确定某个变量的取值范围等。
2. 建立二次函数模型,根据问题的特点,建立二次函数模型。
二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 分别为二次项系数、一次项系数和常数项。
根据问题的特点,确定二次函数的具体形式。
3. 求解问题,利用二次函数的性质和相关知识,对建立的二次函数模型进行分析和求解。
可以通过求导数、配方法、公式法等方式,找到函数的极值点、零点等关键信息。
4. 验证和解释,在求解出结果后,需要对结果进行验证和解释,确保结果符合实际情况,并能够清晰地解释结果的意义和影响。
5. 应用实际问题,最后,将得到的结果应用到实际问题中,解
决实际情况中的数学难题,验证二次函数的有效性和实用性。
通过以上步骤,我们可以利用二次函数解决各种实际问题,提
高数学建模和问题解决能力,为实际生活和工程技术提供有效的数
学支持。
同时也可以更好地理解和掌握二次函数的性质和应用,为
进一步深入学习数学打下坚实的基础。
5.5用二次函数解决问题
无锡金星中学 萧 婷
复习旧知
求下列二次函数的最大值或最小值:
(1) y 1 x 32 8
2 (2) y x2 4x 5
(3) y 2x2 4x 3
探索新知
问题一:每年12月22日左右是冬至节气,在无锡,到了冬至 有吃团子的传统习俗。无锡穆桂英糕点店特在冬至来临前夕, 制作了一批团子礼盒,每盒成本价是20元.店家规定每盒售 价不得少于25元.根据以往销售经验发现:当每盒售价定为 25元时,每天可卖出700盒;若每盒售价每提高1元,则日销 售量减少20盒. (1)若设每盒售价为x元,则日销售量减少_______盒,求日 销售量y(盒)与x的函数关系式. (2)若设每天的销售利润 W元,求W与每盒售价x的函数关 系式.
探索新知
问题一:每年12月22日左右是冬至节气,在无锡,到了冬至 有吃团子的传统习俗。无锡穆桂英糕点店特在冬至来临前夕, 制作了一批团子礼盒,每盒成本价是20元.店家规定每盒售 价不得少于25元.根据以往销售经验发现:当每盒售价定为 25元时,每天可卖出700盒;若每盒售价每提高1元,则日销 售量减少20盒. (3)若该店单从经济角度考虑,当每盒售价定为多少元时, 每天销售的利润 W最大?最大利润是多少?
探索新知
问题一:每年12月22日左右是冬至节气,在无锡,到了冬至 有吃团子的传统习俗。无锡穆桂英糕点店特在冬至来临前夕, 制作了一批团子礼盒,每盒成本价是20元.店家规定每盒售 价不得少于25元.根据以往销售经验发现:当每盒售价定为 25元时,每天可Байду номын сангаас出700盒;若每盒售价每提高1元,则日销 售量减少20盒. (4)物价部门规定:该礼盒每盒的利润不得超过25元.当每 盒售价定为多少元时,每天销售的利润 W最大?最大利润是
利用二次函数解决实际问题
利用二次函数解决实际问题二次函数是数学中重要的一类函数,它具有许多应用于实际问题的能力。
通过解决二次函数相关的实际问题,我们可以更好地理解和应用这一数学工具。
本文将通过几个实际问题的案例,详细介绍如何利用二次函数解决这些问题。
案例一:抛物线的高度与水平距离的关系假设一个小球以一定的初速度从地面上抛出,并以二次函数描述它的高度与水平距离的关系。
首先,我们可以建立抛物线方程:h = ax² + bx + c其中,h为小球的高度,x为水平距离,a、b、c为常数。
当小球达到最高点时,它的速度为零,根据这一条件,可以求得抛物线的顶点坐标为(-b/2a,c-b²/4a)。
通过这一顶点坐标和给定的初速度,可以解得a、b、c的具体值。
有了这些参数,我们就能方便地计算小球在任意水平距离上的高度。
案例二:曲线拟合与数据预测在实际问题中,我们常常需要通过一些已知数据点来拟合出一个曲线,并利用这个曲线对未知数据进行预测。
二次函数是一种常用的曲线模型,因为它能很好地适应一些非线性的数据分布。
具体做法是,通过最小二乘法来求得二次函数的参数,使得拟合曲线与已知数据点之间的误差最小化。
然后,利用这个拟合曲线,我们就可以对未知数据进行预测。
这一方法在经济预测、气象预报等领域有着广泛的应用。
案例三:最优化问题二次函数也可以应用于最优化问题的求解。
以抛物线形式的二次函数为例,假设我们需要在一条直线上选择一个点,使得它到抛物线的距离最小。
这可以被看作是一个最优化问题,即求解抛物线与直线的最短距离。
我们可以通过求解二次函数和直线的交点来解决这个问题。
具体的求解过程利用了二次函数的性质和一些微积分的知识。
总结:通过上述几个案例,可以看出二次函数在实际问题中的广泛应用。
它可以用于描述抛物线的运动、拟合非线性数据以及求解最优化问题等。
通过解决这些实际问题,我们不仅巩固了对二次函数的理解,也提升了数学在实际应用中的能力。
因此,在学习和应用二次函数时,我们应该注重理论知识和实际问题的结合,这样才能更好地掌握和利用二次函数。
(完整版)二次函数解决实际问题归纳,推荐文档
(完整版)⼆次函数解决实际问题归纳,推荐⽂档⼆次函数解决实际问题归纳及练习⼀、应⽤⼆次函数解决实际问题的基本思路和步骤:1、基本思路:理解问题→分析问题中的变量和常量以及它们之间的关系→⽤函数关系式表⽰它们的关系→⽤数学⽅法求解→检验结果的合理性;最⼤(最⼩、最省)”的设问中,“某某”要设为⾃变量,“什么”要设为函数;②问的求解依靠配⽅法或最值公式⽽不是解⽅程。
(1)利⽤⼆次函数解决利润最⼤问题此类问题围绕总利润=单件利润×销售总量,设未知数时,总利润必然是因变量y,⽽⾃变量有两种情况:①⾃变量x是所涨价多少或降价多少;②⾃变量x是最终销售价格。
例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x﹥0)①求M型服装的进价②求促销期间每天销售M型服装所获得的利润W的最⼤值。
(2)利⽤⼆次函数解决⾯积最值例:已知正⽅形ABCD边长为8,E、F、P分别是AB、CD、AD上的点(不与正⽅形顶点重合),且PE⊥PF,PE=PF问当AE为多长时,五边形EBCFP⾯积最⼩,最⼩⾯积多少?2、⽤⼆次函数解抛物线形问题常见情形具体⽅法抛物线形建筑物问题⼏种常见的抛物线形建筑物有拱形桥洞、涵洞、隧道洞⼝、拱形门窗等(1)建⽴适当的平⾯直⾓坐标系,将抛物线形状的图形放到坐标系之中;(2)从已知和图象中获得求⼆次函数表达式所需条件;(3)利⽤待定系数法求出抛物线的表达式;(4)运⽤已求出抛物线的表达式去解决相关问题。
运动路线(轨迹)问题运动员空中跳跃轨迹、球类飞⾏轨迹、喷头喷出⽔的轨迹等牢记(1)解决这类问题的关键⾸先在于建⽴⼆次函数模型,将实际问题转化为数学问题,其次是充分运⽤已知的条件利⽤待定系数法求出抛物线的表达式;(2)把哪⼀点当作原点建⽴坐标系,将会直接关系到解题的难易程度或是否可解;(3)⼀般把抛物线形的顶点作为坐标系的原点建⽴坐标系,这样得出的⼆次函数的表达式最为简单。
5.5++用二次函数解决问题教案
5.5用二次函数解决问题(2)教学目标:1.在解决抛物线型拱桥问题时,通过建立各种直角坐标系解决问题,体会最优化的方案.2.根据函数图像确定函数表达式,解决有关水位和河宽问题.教学重、难点:1.教学重点.建立恰当的平面直角坐标系,将抛物线形问题数学化,根据实际问题中的数量关系,寻找图像特征,揭示点的几何特征和实际意义.2.教学难点.找到题中条件,建立恰当的坐标系,确定二次函数表达式.教学方法与教学手段S1.采取“创设情境一一合作探究一一观察概括一一问题解决”的教学模式.2.独立思考、合作探究、自主创新.3.多媒体辅助教学.教学过程:一、复习回顾1.有一个抛物线型隧道,隧道的最大高度为6m,跨度为8m,把它放在如图的平面直角坐标系中.(1)求这条抛物线型拱桥隧道所对应的函数表达式;(2)一辆高4m的货车要想通过隧道,它的车身的宽度不能超过多少米?二、建构活动1.河上有一座抛物线拱桥,已知桥下的水面离桥孔顶部3m时•,水面宽为6m,当水位上升Im时,水面宽为多少?(1)这个问题与第1题有何不同?(2)解决这个问题的第一步是什么?(3)尝试解决问题.2.总结解决这类问题的一般步骤.三、例题讲解例1一艘装满防汛器材的船,在上题的河流中航行,露出水面部分的高度为0.5m,宽为4m.当水位上升Im时,这艘船能从桥下通过吗?全―且。
例2有一座抛物线形拱桥,桥下面在正常水位时AB宽20m,水位上升3m就达到警戒线CD这时水面宽度为Iom.(1)建立合适的直角坐标系,求抛物线的表达式.(2)洪水到来时,再持续多少小时才能到拱桥顶?(水位以每小时0.2m 的速度上升)四、当堂训练1.某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽A8=4m,顶部C离地面高度为 4.4m.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m,装货宽度为2.4m.请判断这辆汽车能否顺利通过大门.五、总结回顾,提升认识谈谈你的学习感受.六、布置作业,巩固提高课本第32页习题5.5第5~6题.。
二次函数的应用巧妙运用二次函数解决算式问题
二次函数的应用巧妙运用二次函数解决算式问题二次函数的应用:巧妙运用二次函数解决算式问题二次函数是高中数学中的一个重要概念,它的应用广泛而深远。
在解决算式问题的过程中,我们可以巧妙地运用二次函数,提高解题效率。
本文将通过几个具体的例子,来展示如何巧妙地运用二次函数解决不同类型的算式问题。
例子一:求解最大值问题:对于函数y = 2x² - 3x + 1,求其在定义域内的最大值。
解法:为了求解最大值,我们可以利用二次函数的顶点坐标来找到答案。
二次函数的顶点坐标为(h,k),其中h为x的值,k为y的值。
根据二次函数的性质,当x = h 时,二次函数取得最大值k。
首先,我们需要找到二次函数的顶点坐标。
根据二次函数的标准式可知,顶点的横坐标为:h = -b / (2a)。
将函数y = 2x² - 3x + 1的系数代入得到:h = -(-3) / (2 * 2) = 3/4。
接下来,将h的值代入函数中,即可求得最大值k。
代入得:k = 2 * (3/4)² - 3 * (3/4) + 1 = 1/8。
因此,函数y = 2x² - 3x + 1在定义域内的最大值为1/8。
例子二:求解交点问题:已知函数y = 2x² - 3x + 1与直线y = x + 1相交于两个点,请求出这两个交点的坐标。
解法:为了求解交点的坐标,我们可以将二次函数和直线的方程联立,解得交点的横坐标,再代入其中一个方程求得纵坐标。
将函数y = 2x² - 3x + 1与直线y = x + 1联立得到方程:2x² - 3x + 1 = x + 1。
化简方程得到:2x² - 4x = 0。
因此,x * (2x - 4) = 0。
解得x₁ = 0 和 x₂ = 2。
将x₁ = 0代入y = x + 1,得到y₁ = 1。
将x₂ = 2代入y = x + 1,得到y₂ = 3。
5.5.1 用二次函数解决问题 苏科版数学九年级下册教案
主备人用案人授课时间年月日总第课时课题 5.5用二次函数解决问题(1)课型新授教学目标1.体会二次函数是一类最优化问题的数学模型。
2.了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识。
3.求出实际问题的最大值、最小值。
重点求出实际问题的最大值、最小值难点掌握实际问题中变量之间的二次函数关系教法及教具自主学习,合作交流,分组讨论多媒体教学内容个案调整教师主导活动学生主体活动教学过程一.指导先学:1.函数y=2(x-1)2-3,当x= 时,函数y取得最值为。
2.函数y=-(x+2)2-1,当x= 时,函数y取得最值为。
3.函数y=x2-4x, 当x= 时,函数y取得最值为。
4.如果两个数的和是100,那么这两数积的最大值是多少?二.交流展示:某种粮大户去年种植优质水稻360亩,今年计划增加承租x(100≤x≤150)亩,预计,原种植的360亩水稻今年每亩可收益440元,新增地今年每亩的收益为(440-2x)元。
试问:该种粮大户今年要增加承租多少亩稻田,才能使总收益最大?最大收益是多少?分析:根据预测,原360亩稻田今年可收益元,这是个量,所以该种粮大户的今年总收益y(元)随着的变化而变化。
根据题意,可得函数关系式。
将函数的一般式化为顶点式:用二次函数解决实际问题中的最值问题一般需要经过哪些步骤?学生回顾所学知识,先给配成顶点式,写出最值让学生先独立思考,然后小组讨论交流,最后全班展示交流,并让学生自己归纳发现的结论教学内容个案调整教师主导活动学生主体活动教学过程三.释疑拓展:1.去年鱼塘里饲养育苗10千尾,平均每千尾的产量为1000kg,今年计划继续向鱼塘里投放鱼苗,预计每多投放鱼苗1千尾,每千尾鱼的产量将减少50kg,应投放鱼苗多少千尾,才能使总产量最大?最大总产量是多少?2.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t(件)与每件的销售价x(元)之间的函数关系为(1)试写出每天销售这种服装的毛利润y(元)与每件销售价x(元)之间的函数表达式(毛利润=销售价-进货价)(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?3.如图,在△ABC中∠B=90º,AB=12cm,BC=24cm,动点P从A开始沿AB边以2cm/s的速度向B运动,动点Q从B开始沿BC边以4cm/s的速度向C运动,如果P、Q分别从A、B同时出发。
苏科版九年级下册数学:5.5 用二次函数解决问题
闻名中外的赵州桥是我国隋朝建造的一座 近似抛物线状的石拱桥.
赵州桥桥下水面宽约40m,水面到桥底拱顶的高约8m. 由以上信息,你能准确描述这条桥拱所呈的抛物线吗?
“二次函数应用”的思路
回顾 “桥梁建筑” 解决问题的过程,你能总结一下解决 此类问题的基本思路吗?
例题、一座抛物线拱桥,桥下的水面离桥孔顶
如图某隧道横断面由抛物线与矩形的三边组成. 某卡车空车时能通过此隧道,现装载一集装箱箱宽 3m,车与箱共高4.5m,此车能否通过隧道?并说明 理由.
y
O x
如图某隧道横断面由半圆与矩形的三边组成.
某卡车空车时能通过此隧道,现装载一集装箱箱宽 3m,车与箱共高4.5m,此车能否通过隧道?并说明 理由.
实际问题
抽象 转化
运用 数学问题 数学知识 解决问题
解题步骤:
1.分析题意,把实际问题转化为数学问题,画出示意图;
2.根据已知条件建立适当的平面直角坐标系.确定相关点 的坐标;
3.选用适当的解析式求解;
4.根据二次函数的解析式解决具体的实际问题.
(6,0) B x
A (-6,0)
(0,0) B x
(2)当暴雨过后,水位上升1m时,水面宽多少(精确到 0.1m)?
y (0,3)
D
O
A
C(?,1) y 1 x2 3 3
(B3,0) x
(2) 当暴雨过后,水位上升1m时,水面宽 多少(精确到0.1m)?
(3) 一艘装满物资的小船,露出水面的部分 的高为0.5米、宽为4米,暴雨后这艘船能 从这座拱桥下通过吗?
部3m时,水面宽6m. (1)试建立合适的直角坐标系,并求出该抛物 线桥拱对应的二次函数关系式;
苏科版数学九年级下册5.5《用二次函数解决问题(第1课时)》讲教学设计
苏科版数学九年级下册5.5《用二次函数解决问题(第1课时)》讲教学设计一. 教材分析苏科版数学九年级下册5.5《用二次函数解决问题》一课时的内容是在学生已经掌握了二次函数的性质和图象的基础上进行的。
本节课主要让学生学会如何运用二次函数解决实际问题,培养学生的数学应用能力。
教材通过例题和练习题引导学生运用二次函数解决实际问题,从而加深对二次函数的理解和应用。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图象和性质有了初步的了解。
但是,学生对如何将实际问题转化为二次函数问题,以及如何运用二次函数解决实际问题的方法还不够熟练。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,并通过列式、画图等方式寻求解决问题的方法。
三. 教学目标1.理解二次函数在实际问题中的应用,培养学生的数学应用意识。
2.学会将实际问题转化为二次函数问题,掌握运用二次函数解决实际问题的方法。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.教学重点:二次函数在实际问题中的应用,如何将实际问题转化为二次函数问题。
2.教学难点:如何引导学生运用二次函数解决实际问题,培养学生解决问题的能力。
五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生主动探索、思考,培养学生的数学应用能力。
2.案例教学法:通过分析典型案例,使学生掌握运用二次函数解决实际问题的方法。
3.小组合作学习:鼓励学生分组讨论、合作解决问题,提高学生的沟通能力及团队协作能力。
六. 教学准备1.教学课件:制作课件,展示典型案例和实际问题情境。
2.练习题:准备一些相关的练习题,以便学生在课堂上进行操练和巩固。
3.教学道具:准备一些实物道具,以便在课堂上进行直观演示。
七. 教学过程1.导入(5分钟)教师通过展示一个实际问题情境,如抛物线形的跳板问题,引导学生思考如何运用数学知识解决此类问题。
2.呈现(10分钟)教师通过课件呈现典型案例,讲解如何将实际问题转化为二次函数问题,并演示解题过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.5用二次函数解决问题(2)【最大面积问题】
主备人:张艳课型:新授审核人:天王中学九年级备课组
班级:___ ___ 姓名:___________ 执教人签名:
【学习目标】
基本目标:探索由“形(函数图象)”到“数(函数关系式)”的实际问题,并能运用二次函数的知识解决实际问题。
提升目标:准确分析图形中的数量关系,建立二次函数模型并解决之
【重点难点】
重点: 应用二次函数解决图形有关的实际问题.
难点: 由图中找到二次函数表达式,解决实际问题中(最大面积问题)最值.
【预习导航】
某校建学生宿舍时,制作了一个如图所示的铝合金窗框(AB<BC),共用了长12米的铝合金,(1)若窗框面积为4.5平方米,试求AB的长;
(2)设长方形窗框的AB为x米.窗框的面积为S平方米,求窗框的最大面积。
【课堂导学】
例题:例1、如图,一边靠学校院墙,其他三边用12 m长的篱笆围成一个矩
形花圃,设矩形ABCD的边AB=xm,面积为S m2。
(1)写出S与x之间的函数关系式;
(2)当x取何值时,面积S最大,最大值是多少?
例2、某建筑物窗户如图所示,它的上半部是半圆,下半部是矩形.制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户透过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
【课堂检测】
(第2题图)(第3题图)(第4题图)
3. 如图,在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P从点A开始沿AB向B以2cm/s的速度移动,点Q从点B开始沿BC向C点以1cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为
s.
4. 如图,在直角三角形ABC中,∠B=90°,AB=6cm,BC=8cm,在其内作一个长方形DEBF,其中BE和BF分别在两直角边上,设DE=x m,长方形DEBF的面积为y m2,(1)用含x的代数式表示DF;(2)求长方形DEBF的最大面积;
【课后巩固】
一、基础检测
1、如图,用18米长的木方做一个有一条横档的矩形窗子,窗子的宽不能超过2米. 为使透进的光线最多,则窗子的长、宽应各为多少米?
2、如图,在△ABC中∠B=90º,AB=12cm,BC=24cm,动点P从A开始沿AB边以2cm/s的速度向B运动,动点Q从B开始沿BC边以4cm/s的速度向C运动,如果P、Q分别从A、B同时出发。
(1)写出△PBQ的面积S与运动时间t之间的函数关系式,并写出自变量t 的取值范围;
(2)当t为何值时,△PBQ的面积S最大,最大值是多少?
3、如图⑴,在Rt△ABC中,AC=3cm,BC=4cm,四边形CFDE为矩形,其中CF、CE在两直角边上,设矩形的一边CF=xcm.当x取何值时,矩形ECFD的面积最
大?最大是多少?
4、如图⑵,在Rt△ABC中,作一个长方形DEGF,其中FG边在斜边上,AC=3cm,BC=4cm,那么长方形OEGF的面积最大是多少?
二、拓展延伸
5、如图⑶,已知△ABC,矩形GDEF的DE边在BC边上.G、F分别在AB、AC 边上,BC=5cm,S
为30cm2,AH为△ABC在BC边上的高,求△ABC的内接长△ABC
方形的最大面积.
课后反思。