初中八年级数学函数与图象第一单元练习题

合集下载

(完整版)北师大版本八年级数学上一次函数的图像练习题

(完整版)北师大版本八年级数学上一次函数的图像练习题

(完整版)北师大版本八年级数学上一次函数的图像练习题北师大版本八年级数学上一次函数的图像练习题一、选择题:(每小题3分,共24分)1.下列函数中,y 是x 的一次函数的是( )A.y=2x 2+1;B.y=x -1+1C.y=-2(x+1)D.y=2(x+1)22.下列关于函数的说法中,正确的是( )A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数3.若函数y=(3m-2)x 2+(1-2m)x(m 为常数)是正比例函数,则( )A.m=23; B.m=12; C.m>23; D.m<124.下列函数:①y=-8x;②y=8x;③y=8x 2;④y=8x+1;⑤y= .其中是一次函数的有( )A.1个B.2个C.3个D.4个 5.若函数y=(m-3)1m x-+x+3是一次函数(x≠0),则m 的值为( )A.3B.1C.26.过点A(0,-2),且与直线y=5x 平行的直线是( ) A.y=5x+2 B.y=5x-2 C.y=-5x+2 D.y=-5x-27.将直线y=3x-2平移后,得到直线y=3x+6,则原直线 ( )A.沿y 轴向上平移了8个单位B.沿y 轴向下平移了8个单位C.沿x 轴向左平移了8个单位D.沿x 轴向右平移了8个单位8.汽车由天津开往相距120km 的北京,若它的平均速度是60km/h, 则汽车距北京的路程s(km)与行驶时间t(h)之间的函数关系式是 ( )A.s=60t;B.s=120-60tC.s=(120-60)tD.s=120+60t 二、填空题:(每小题3分,共27分) 1.若y=(n-2)21n n x--是正比例函数,则n 的值是________.2.函数y=x+4中,若自变量x 的取值范围是-3<x< -="" 1,="" p="" 则函数值y="" 的取值范围是_____.<="">3.当a=_____时,函数y=(a-1)x 2+ax-2是一次函数.4.长方形的长为3cm,宽为2cm,若长增加xcm,则它的面积S(cm 2)与x(cm) 之间的函数关系式是_____,它是______函数,它的图象是_______. 5.已知函数y=2121m m mxm --+-,当m=______时, 它是正比例函数, 这个正比例函数的关系式为_______;当m=________时,它是一次函数,这个一次函数的关系式为_______. 6.把函数y=2x 的图象沿着y 轴向下平移3个单位,得到的直线的解析式为_____. 7.两条直线1213:,:425a l y x+=-中,当a________,b______时,L 1∥L 2.9.一棵树现在高50cm,若每月长高2cm,x 月后这棵树的高度为ycm,则y 与x 之间的函数关系式是________.三、基础训练:(共10分)求小球速度v(米/秒)与时间t(秒)之间的函数关系式: (1)小球由静止开始从斜坡上向下滚动,速度每秒增加2米; (2)小球以3米/秒的初速度向下滚动,速度每秒增加2米;(3)小球以10米/秒的初速度从斜坡下向上滚动,若速度每秒减小2米,则2秒后速度变为多少?何时速度为零?四、提高训练:(每小题9分,共27分) 1.m 为何值时,函数y=(m+3)21m x +4x-5(x≠0)是一次函数?2.已知一次函数y=(k-2)x+1-24k : (1)k 为何值时,函数图象经过原点? (2)k 为何值时,函数图象过点A(0,3)? (3)k 为何值时,函数图象平行于直线y=2x?3.甲每小时走3千米,走了1.5小时后,乙以每小时4.5千米的速度追甲,设乙行走的时间为t(时),写出甲、乙两人所走的路程s(千米)与时间t(时)之间的关系式, 并在同一坐标系内画出函数的图象.五、中考题与竞赛题:(共12分)某机动车出发前油箱内有油42升,行驶若干小时后,途中在加油站加油若干升, 油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示,回答下列问题.(1)机动车行驶几小时后加油?(2)求加油前油箱余油量Q与行驶时间t的函数关系,并求自变量t 的取值范围;(3)中途加油多少升?(4)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用?请说明理由.时)答案:一、1.C 2.B 3.A 4.C 5.D 6.B 7.A8.B二、1.-1 2.1<y一次一条直线5.-1 y=-x 2或- 1 y=2x+3或y=-x6.y=2x-37.=2 ≠-358.不平行9.y=50+2x三、(1)v=2t (2)v=3+2t.(3)解:v=10-2t,当t=2时,v=10-2t=6(米/秒),∴2秒后速度为6米/秒;当v=0时,10-2t=0,∴t=5,∴5秒后速度为零.四、1.解:当m+3=0,即m=-3时,y=4x-5是一次函数;当m+3≠0时,由2m+1=1,得m= 0,∴当m=0时,y=7x-5是一次函数;由2m+1=0,得m=-12.∴当m=-12时,y=4x-52是一次函数,综上所述,m=-3或0或-12.2.解:(1)∵原点(0,0)的坐标满足函数解析式,即1-24k=0,∴k=±2,又∵k-2≠0, ∴k=-2(2)把A(0,-3)代入解析式,得-3=1- 24k,∴k=±4.(3)∵该直线与y=2x平行,∴k-2=2,∴k=4.五、提示:(1)t=5.(2)Q=42-6t(0≤t≤5).(3)Q=24(4) ∵加油后油箱里的油可供行驶11-5=6(小时), ∴剩下的油可行驶6×40=240(千米), ∵240>230,∴油箱中的油够用.</y</x<>。

初二函数图像画图练习题

初二函数图像画图练习题

初二函数图像画图练习题函数是数学中的重要概念,它描述了数值之间的关系。

而函数图像则是将函数的数值关系以图形的方式展示出来,使我们更直观地理解函数的性质和特点。

在初二阶段学习函数图像的过程中,我们需要通过实际的练习来提高自己的画图能力。

本文将提供一些初二函数图像画图练习题,帮助读者巩固所学知识。

1. 线性函数 y = 2x - 1线性函数的图像是一条直线,可以通过绘制两个点再将它们连线来描绘这条直线。

例如,我们可以选择 x = 0 和 x = 1 作为两个点,计算对应的 y 值,并将它们标在坐标系中,再将它们用直线连起来。

2. 平方函数 y = x^2 - 4平方函数的图像是一个开口朝上或朝下的抛物线。

为了画出这个图像,我们可以首先找到其顶点,然后确定对称轴和焦点的位置。

例如,我们可以将 x 值取为 -2、-1、0、1、2,并计算对应的 y 值,再将它们标在坐标系中,最后用平滑的曲线将这些点连起来。

3. 立方函数 y = x^3立方函数的图像是一条从第三象限经过原点到第一象限的递增曲线。

为了画出这个图像,我们可以选择不同的 x 值,计算对应的 y 值,并将它们标在坐标系中,再将它们用平滑的曲线连接起来。

4. 绝对值函数 y = |x - 2|绝对值函数的图像是一个 V 形,在 x = 2 处有一个顶点。

为了画出这个图像,我们可以选择 x 值为 0、1、2、3、4,计算对应的 y 值,并将它们标在坐标系中,再将它们用两条直线连接起来,形成一个V 形。

5. 正弦函数 y = sin(x)正弦函数的图像是一个周期性的波形。

为了画出这个图像,我们可以选择不同的 x 值,计算对应的 y 值,并将它们标在坐标系中。

由于正弦函数是周期性的,我们可以通过这个周期性来描绘出整个图像。

通过以上的练习题,我们可以巩固对初二函数图像的理解,并提高我们的画图能力。

在实际的学习中,我们还可以尝试更复杂的函数图像,并通过使用计算机软件或在线图形绘制工具来绘制函数的图像,提高我们的效率和准确性。

初二数学函数及其图象单元测试卷

初二数学函数及其图象单元测试卷

初二数学函数及其图象单元测试卷姓名: 班级: 分数一、填空题:1、点A (2,—3)关于y 轴对称的点的坐标是 。

2、若点(m ,m+2)在x 轴上,则P 点的坐标是 。

3、函数23+-=x xy 中自变量x 的取值范畴是 4、若P 点的坐标为(m ,n ),且mn<0,m>0,则P 点在第 象限 5、如图,是其双曲线的一个分支,则其解析式为 。

6、已知直线y=3x-5,则其图象不通过第 象限, 它与坐标轴围成的三角形的面积是 。

7、已知点(1,11)和(—2,7)是函数b ax y -=2图象上的点,则a= ,b= , 8、已知点P (x 1,y 1)和点Q (x 2,y 2)在函数b x y +=2的图象上,若x 1>x 2,比较大小y 1 y 2。

(填“>”、“=”、“<” )9、写出一个自变量的取值范畴是1≥x 的函数 。

10、写出一个通过二、三、四象限的一次函数的解析式: 。

11、已知函数16+-=x y ,当x= 时,函数的值为012、把直线22--=x y 向上平移3个单位的直线是 。

13、弹簧挂上物体会伸长,测得一弹簧的长度当所挂物体的质量有下面的关系那么弹簧总长y 与所挂物体质量x (千克)之间的函数关系式为二、选择题1、若直线b kx y +=通过第一、二、四象限,则k ,b 的取值范畴是( ) A 、k>0,b>0 B 、k>0,b<0 C 、k<0,b>0 D 、k<0,b<02、下列语句叙述正确的有( )个①横坐标与纵坐标互为相反数的点在直线y= —x 上; ②点P (2,0)在y 轴上;③若点P 的坐标为(a ,b ),且ab=0,则P 点是坐标原点;④函数xy 3-=中y 随x 的增大而增大;A 、1个B 、2个C 、3个D 、4个 3、若一次函数1)1(2-+-=m x m y 的图象通过原点,则m 的值为( )A 、--1B 、1±C 、1D 、任意实数 4、当k<0,反比例函数xky =和一次函数k kx y +=的图象大致是( )ABCD5、若92)3(--=m xm y 是正比例函数,则m 的值为( )。

八年级数学函数及其图象练习题

八年级数学函数及其图象练习题

(图)[A组]1、已知AB两地相距90千米.某人骑自行车由A地去B地,他平均时速为15千米。

(1)求骑车人与终点B之间的距离y(千米)与出发时间x(小时)之间的函数关系;(2)画图象2、假设甲、乙两人在一次赛跑中,路程S与时间t的关系如图,则可知道:(1)这是一次___米赛跑。

(2)甲、乙两人中先到达终点的是__。

(3)乙在这次赛跑中的速度是___。

3、某公司印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙厂提出:每份材料收2.5元印制费,不收制版费。

(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;(2)在同一直角坐标系中作出它们的图象;(3)根据图象回答:印制800份宣传材料时,选择哪家印刷厂比较合算?该公司拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些?[B组]4:A市和B市各有机床12台和6台,现运往C 市10台,D市8台.若从A市运1台到C市、D 市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?(总费用y是从A市、B市运往C市和D市的费用和,现将A市、B市运往C市和D 市的费用分别表示成为含x的代数式,再求费用和)初二()班姓名:_________ 学号:____ 时间:2005年4月4日[教学目标]使学生通过画函数图象,获取变量关系信息,进一步让学生体会函数图象上点与坐标的对应关系,体会方程和函数的联系,强化数形结合的思想[教学重点]理解函数图象上点与坐标的对应关系,体会二元一次方程方程和一次函数的联系[教学过程]环节一:看看函数与方程的关系问题1:(1)小张已存有60元,从现在起每个月节存12元.试写出小张的存款数与从现在开始的月份数之间的函数关系式:(2)小王以前没有存过零用钱,听到小张在存零用钱,表示从小张存款当月起每个月存18元,争取超过小张.,试写出小张的存款数与从现在开始的月份数之间的函数关系式:(3)请你在同一平面直角坐标系中分别画出小张和小王存款和月份之间的函数关系的图象,(4)在图上找一找,小王存多少个月,他的存款与小张的存款一样多?问题2:(1)你能说出二元一次方程组y=12x+60 的解吗?跟你的组员说说你的办法?y=18x第二课时[A组] (方程)2、k取什么整数值时,直线5x+4y=2k+1和2x+3y=k的交点在第四象限内?3、已知二元一次方程4x+y=5和x-2y=8(1)把这两个方程改写成关于x的一次函数;(2)在同一坐标系中作出它们的图象;(3)利用图象,写出两条直线交点的坐标;(5)说明方程组的解与两直线交点的坐标的关系。

初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案函数是数学中非常重要的概念,在初二数学中也是学习的重点之一。

理解函数的概念以及掌握函数图像的绘制对于学习数学非常关键。

下面将为大家提供一些初二数学函数概念与图像的练习题及答案,以帮助大家更好地掌握这一知识点。

练习题一:给出以下函数,判断它们是否为函数,并画出它们的图像。

1. 函数f(x) = 2x + 12. 函数g(x) = √x3. 函数h(x) = x^2 + 14. 函数k(x) = |x|答案一:1. 函数f(x) = 2x + 1 是函数。

它的图像为一条直线,斜率为2,截距为1.2. 函数g(x) = √x 是函数。

它的图像为一条抛物线,开口向上,过点(0,0).3. 函数h(x) = x^2 + 1 是函数。

它的图像为一条抛物线,开口向上,顶点为(0,1).4. 函数k(x) = |x| 是函数。

它的图像为以原点为对称中心的一条直线段.练习题二:给出以下函数的图像,写出它们的解析式。

1.图像描述:一条斜率为1,截距为2的直线段。

解析式:f(x) = x + 22.图像描述:一条横纵坐标均为正的对数曲线。

解析式:g(x) = ln(x)3.图像描述:一个顶点在坐标原点的开口向下的抛物线。

解析式:h(x) = -x^24.图像描述:一条横坐标为负的直线段。

解析式:k(x) = -2答案二:1. 图像描述所给出的直线的斜率为1,截距为2,因此解析式为f(x) = x +2.2. 图像描述所给出的曲线是对数曲线,横纵坐标均为正,因此解析式为g(x) = ln(x).3. 图像描述所给出的抛物线是一个顶点在坐标原点的开口向下的抛物线,因此解析式为h(x) = -x^2.4. 图像描述所给出的直线段横坐标为负,因此解析式为k(x) = -2.练习题三:根据函数的图像,判断它们的性质。

1. 以下函数图像是否为奇函数?图像描述:一条关于y轴对称的曲线。

答案:是奇函数。

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。

八年级数学一次函数图像基础练习题(含答案)

八年级数学一次函数图像基础练习题(含答案)

八年级数学一次函数图像练习题一、选择题; ③y=−2x2; ④y=2; ⑤y=2x−1.下列函数关系式: ①y=−2x; ②y=2x1,其中是一次函数的是()A. ① ⑤B. ① ④ ⑤C. ② ⑤D. ② ④ ⑤2.在y=(k+1)x+k2−1中,若y是x的正比例函数,则k值为()A. 1B. −1C. ±1D. 无法确定3.图是一次函数的图象,则该函数的解析式是()A. y=2x+2B. y=−2x−2C. y=−2x+2D. y=2x−24.函数y=(m−2)x n−1+3是关于x的一次函数,则m,n的值为()A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=15.下列函数中,y随x的增大而增大的是()A. y=−2x+1B. y=−x−2C. y=x+1D. y=−2x−16.一次函数y=kx+3中,当x=2时,y=−3,则当x=−2时,y的值为()A. −1B. −3C. 7D. 97.下列曲线中,表示y是x的函数的是()A. B.C. D.8.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=−kx+k的图象大致是()A. B. C. D.9.将直线y=−2x−1向上平移2个单位长度,平移后的直线所对应的函数关系式为()A. y=−2x−5B. y=−2x−3C. y=−2x+1D. y=−2x+310.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<011.数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A. x=20B. x=5C. x=25D. x=1512.点P(a,b)在函数y=3x+2的图象上,则代数式6a−2b+1的值等于()A. 5B. 3C. −3D. −113.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A. x≤−2B. x≤−4C. x≥−2D. x≥−414.两个一次函数y=ax+b和y=bx+a在同一平面直角坐标系中的图象可能是()A. B.C. D.15.2020年年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该公司在生产能力不变的情况下,消毒液一度脱销,下面表示2020年年初到脱销期间,该公司消毒液库存量y(吨)与时间t(天)之间的函数关系的大致图象是()A. B.C. D.16.如图,三个正比例函数的图象分别对应表达式: ①y=ax, ②y=bx, ③y=cx,将a,b,c从小到大排列为()A. a<b<cB. a<c<bC. b<a<cD. c<b<a17.已知点(−2,y1),(−1,y2),(1,y3)都在直线y=−3x+b上,则y1,y2,y3的值的大小关系是().A. y3<y2<y1B. y1<y2<y3C. y2<y1<y3D. y3<y1<y218.已知y=kx+2,当x<−1时,其图象在x轴下方;当x>−1时,其图象在x轴上方,则k的值为()A. −2B. 2C. −3D. 319.若一次函数y=kx+b(k≠0)的图象与直线y=−x+1平行,且过点(8,2),则此一次函数的解析式为()A. y=−x−2B. y=−x−6C. y=−x−1D. y=−x+1020.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自离学校的路程s(米)与用去的时间t(分)的关系如图所示,根据图象提供的有关信息,下列说法中错误的是()A. 兄弟俩的家离学校1000米B. 他们同时到家,用时30分钟C. 小明的速度为50米/分D. 小亮中间停留了一段时间后,再以80米/分的速度骑回家21.一元一次方程ax−b=0的解是x=5,则函数y=ax−b的图象与x轴的交点坐标是()A. (−5,0)B. (5,0)C. (a,0)D. (−b,0)二、填空题22.已知函数y=(k+1)x+k2−1.若它是一次函数,则k;若它是正比例函数,则k.23.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为________.24.如图,分别表示A步行与B骑车在同一道路上行驶的路程s与时间t的关系。

【练习题】初中八年级数学函数与图象第一单元练习题

【练习题】初中八年级数学函数与图象第一单元练习题

【关键字】练习题初中八年级数学《函数与图象》第一单元练习题一、填空题1.平面直角坐标系中的点和一一对应;2.平面直角坐标系中的P(3,-5),关于x轴对称的点的坐标为;关于y轴对称的点的坐标为关于原点对称的点的坐标为;3.点Q(-4,5)到x轴的距离是,到y 轴的距离是;4.描点法法画函数图象的一般步骤是;5.若点在函数的图象上,则= ;6.函数的三种表示方法分别是;7.某种灯的使用寿命为1000小时,它的可用天数y与平均每天使用的小时x之间的关系式为;8、若点H在轴上,则点H的坐标是;9.等腰三角形的周长是,底边长是xcm,一腰长为ycm,则y与x之间的函数关系式是______;自变量x的取值范围是______.10.若直线过点(2,1),则= .11、当时,点P关于轴对称的点在第四象限12、假定甲、乙两人在一次赛跑中,路程S与时间T的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题:(1)这是一次米赛跑;(2)甲、乙两人中先到达终点的是;(3)乙在这次赛跑中的速度为;(4)甲到达终点时,乙离终点还有米。

2、选择题1.已知点(1-a,a+2)在第二象限,则a的取值范围是()A.a>-2 B. -2<a < a<-2 D a>12.函数中自变量x的取值范围是()A.全体实数 B. C D3.在平面直角坐标系中,点在第四象限内,则点在()A.第一象限B第二象限C第三象限D第四象限4.点p(-3,2)关于y轴对称点的坐标是()A.(―3,―2)B.(3,2)C.(3,—2)D.(2,—3)5.一个矩形的周长为30,则矩形的面积y与矩形一边长x的函数关系为()A.y﹦x(15-x)B.y﹦x(30-x)C.y﹦x(30-2x)D.y﹦x(15+x)6.若点p在第二象限,且p点到x轴的距离为,到y轴的距离为1,则p点的坐标是()A.(-1,) B.(-,1) C.(,-1) D.(1,-)7.下列函数中,自变量取值范围选取错误的是()A.中,x取全体实数 B.中,C.中, D.中,8.如果每盒圆珠笔有12支,售价18元,那么圆珠笔的售价y(元)与圆珠笔的支数x 之间的函数关系式是()A. B. C. D.9.函数的自变量x的取值范围是 ( )A. B.x≠一.x取任意实数 D.10.函数的自变量x的取值范围是 ( )A.x<2 B.x≤. x≥2 D.x>2三、解答题1.图17—4是北京市某日的气温变化图,从图中我们可以获得信息,例如:(1)这天2时的气温是;(2)这天的最高气温为;(3)这天的最低气温是;(4)这一天中,从凌晨4时到14时气温在逐渐升高.除以上4条信息外,请你从图中再写出4条信息来.答:①_______________________________________________________②___________________________________________________________③___________________________________________________________④___________________________________________________________2等腰△ABC的周长为,底边BC的长为ycm,腰AB的长为xcm.(1)写出y关于x的函数关系式(2)求x的取值范围(3)求y的取值范围(4)画出函数的图象此文档是由网络收集并进行重新排版整理.word可编辑版本!。

一次函数重点题型函数图像信息题(解析版) 八年级数学下册专题训练

一次函数重点题型函数图像信息题(解析版) 八年级数学下册专题训练

专题20一次函数重点题型函数图像信息题(解析版)第一部分题组训练类型一根据信息判断函数图象1.(2022•邹城市一模)如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【思路引领】根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.【解答】解:根据题意,设小正方形运动的速度为v,由于v分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2﹣vt×1=4﹣vt(vt≤1);②小正方形穿入大正方形但未穿出大正方形,S=2×2﹣1×1=3;③小正方形穿出大正方形,S=2×2﹣(1×1﹣vt)=3+vt(vt≤1).分析选项可得,A符合,C中面积减少太多,不符合.故选:A.【总结提升】考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.2.(2023春•丰台区期末)如图所示,一个实心铁球静止在长方体水槽的底部,现向水槽匀速注水,下列图象中能大致反映水槽中水的深度y与注水时间x关系的是()A.B.C.D.【思路引领】根据题意可分两段进行分析:当水的深度未超过球顶时;当水的深度超过球顶时.分别分析出水槽中装水部分的宽度变化情况,进而判断出水的深度变化快慢,以此得出答案.【解答】解:当水的深度未超过球顶时,水槽中能装水的部分的宽度由下到上由宽逐渐变窄,再变宽,所以在匀速注水过程中,水的深度变化先从上升较慢变为较快,再变为较慢;当水的深度超过球顶时,水槽中能装水的部分宽度不再变化,所以在匀速注水过程中,水的深度的上升速度不会发生变化.综上,水的深度先上升较慢,再变快,然后变慢,最后匀速上升.故选:C.【总结提升】本题主要考查函数的图象,利用分类讨论思想,根据不同时间段能装水部分的宽度的变化情况分析水的深度变化情况是解题关键.3.(2023•湖北)如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为t,y1(细实线)表示铁桶中水面高度,y2(粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则y1,y2随时间t变化的函数图象大致为()A.B.C.D.【思路引领】本题考查函数的图象,圆柱体和长方体的灌水时间与容积之间的关系,底面面积越大,注水相同时间,水面上升的高度越慢.【解答】解:根据题意,先用水管往铁桶中持续匀速注水,∴y1中从0开始,高度与注水时间成正比,当到达t1时,铁桶中水满,所以高度不变,y2表示水池中水面高度,从0到t1,长方体水池中没有水,所以高度为0,t1到t2时注水从0开始,又∵铁桶底面积小于水池底面积的一半,∴注水高度y2比y1增长的慢,即倾斜程度低,t2到t3时注水底面积为长方体的底面积,∴注水高度y2增长的更慢,即倾斜程度更低,长方体水池有水溢出一会儿为止,∴t3到t4,注水高度y2不变.故选:C.【总结提升】本题考查函数的图象,圆柱体和长方体的灌水时间与容积之间的关系,底面面积越大,注水相同时间,水面上升的高度越慢.解题的关键是倾斜程度的意义的理解.4.(2022春•高新区期末)一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶,如图的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况()A.B.C.D.【思路引领】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速﹣匀速﹣减速到站﹣加速﹣匀速.加速:速度增加;匀速:速度保持不变;减速:速度下降;到站速度为0.故选:D.【总结提升】此题考查的知识点是函数的图象,图象分析题一定要注意图象的横、纵坐标表示的物理量,分析出图象蕴含的物理信息,考查学生的图象分析和归纳能力.类型二根据函数图象判断物体形状5.(2022•武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A.B.C.D.【思路引领】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是平缓,稍陡,陡;即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.则相应的排列顺序就为选项A.故选:A.【总结提升】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.类型三获取函数图象信息6.(2023•河西区模拟)甲、乙两车分别从A城出发前往B城,在整个行程中,甲车离开A城的距离y1(单位:km)与甲车离开A城的时间x(单位:h)的对应关系如图所示.(Ⅰ)填空:①A,B两城相距360km;②当甲车出发2.5h时,距离A城120km;③当0<x<2时,甲车的速度为60km/h;④当83<<173时,甲车的速度为80km/h;⑤若乙车比甲车晚出发12ℎ,以60km/h的速度匀速行驶,则两车相遇时,甲车离开A城的时间为52或196h.(Ⅱ)当0≤≤173时,请直接写出y1关于x的函数解析式.【思路引领】(Ⅰ)根据图表信息,即可求出相应结果.(Ⅱ)根据图象可知0≤≤173时,被分为三部分,分别是0≤x≤2、2<x≤83、83<x≤173,找到对应点求出解析式即可.【解答】解:(Ⅰ)①根据图象可得A,B两城相距为360km;故答案为:360;②当甲车出发2.5h时,距离A城120km;故答案为:120;③当0<x<2时,甲车的速度为:120÷2=60(km/h);故答案为:60;④当83<<173时,甲车的速度为:360−120173−83=80(km/h);故答案为:80;⑤第一次相遇:120÷60+12=52;第二次相遇|:360−1203+2803=60(x−12),解得x=196.即若乙车比甲车晚出发12ℎ,以60km/h的速度匀速行驶,则两车相遇时,甲车离开A城的时间为52或196h;故答案为:52或196;(II)当0≤x≤2时,y1=60x;当2<x≤83时,y1=120;当83<x≤173时,设y1关于x的函数解析式为y1=kx+b,代入(83,120),(173,360),得:+=120+=360,解得=80=−2803所以y1=80x−2803.【总结提升】本题考查了一次函数图形解决实际问题相关知识,理解数据的实际意义,并能灵活运用是解决问题的关键.7.(2023•宁津县一模)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是甲.【思路引领】当时间一样的时候,分别比较甲、乙和丙、丁的平均速度;当路程都是3千米的时候,比较甲、丁的平均速度即可得出答案.【解答】解:∵10分钟甲比乙步行的路程多,25分钟丁比丙步行的路程多,∴甲的平均速度>乙的平均速度,丁的平均速度>丙的平均速度,∵步行3千米时,乙比丙用的时间少,∴乙的平均速度>丙的平均速度,∴走得最快的是甲,故答案为:甲.【总结提升】本题考查了函数的图象,通过控制变量法比较平均速度的大小是解题的关键.8.甲乙两地相距a千米,小亮8:00乘慢车从甲地去乙地,10分钟后小莹乘快车从乙地赶往甲地.两人分别距甲地的距离y(千米)与两人行驶时刻t(×时×分)的函数图象如图所示,则小亮与小莹相遇的时刻为()A.8:28B.8:30C.8:32D.8:35【思路引领】设小亮与小莹相遇时,小亮乘车行驶了x小时,因为小亮、小莹乘车行驶的速度分别是67a 千米/时,2a千米/时,即可得到方程:67ax+2a(x−16)=a,求出x的值,即可解决问题.【解答】解:设小亮与小莹相遇时,小亮乘车行驶了x小时,∵小亮、小莹乘车行驶完全程用的时间分别是76小时,12小时,∴小亮、小莹乘车行驶的速度分别是67a千米/时,2a千米/时,由题意得:67ax+2a(x−16)=a,∴x=715,715小时=28分钟,∴小亮与小莹相遇的时刻为8:28.故选:A.【总结提升】本题考查一元一次方程的应用,关键是由题意列出方程:67ax+2a(x−16)=a.9.(2023秋•道里区校级月考)如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为17.【思路引领】根据图象可知t=0时,点P与点A重合,得到AB=15,进而求出点P从点A运动到点所需的时间,进而得到点P从点B运动到点C的时间,求出BC的长,再利用勾股定理求出AC即可.【解答】解:由图象可知:t=0时,点P与点A重合,∴AB=15,∴点P从点A运动到点B所需的时间为15÷2=7.5(s);∴点P从点B运动到点C的时间为11.5﹣7.5=4(s),∴BC=2×4=8;在Rt△ABC中,由勾股定理可得AC=17;故答案为:17.【总结提升】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出AB,BC的长是解题的关键.10.(2021•宿迁)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为100km/h,C点的坐标为(8,480).(2)慢车出发多少小时后,两车相距200km.【思路引领】(1)由图象信息先求出慢车速度,再根据相遇时慢车走的路程,从而求出快车走的路程,再根据速度=路程÷时间,求出快车速度,然后根据快车修好比慢车先到达终点可知C点是慢车到达终点时所用时间即可;(2)分两车相遇前和相遇后两种情况讨论即可.【解答】解:(1)由图象可知:慢车的速度为:60÷(4﹣3)=60(km/h),∵两车3小时相遇,此时慢车走的路程为:60×3=180(km),∴快车的速度为:(480﹣180)÷3=300÷3=100(km/h),通过图象和快车、慢车两车速度可知快车比慢车先到达终点,∴慢车到达终点时所用时间为:480÷60=8(h),∴C点坐标为:(8,480),故答案为:100,(8,480);(2)设慢车出发t小时后两车相距200km,①相遇前两车相距200km,则:60t+100t+200=480,解得:t=74,②相遇后两车相距200km,则:60t+100(t﹣1)﹣480=200,解得:t=398,∴慢车出发74h或398h时两车相距200km,答:慢车出发74h或398h时两车相距200km.【总结提升】本题考查了一次函数和一元一次方程的应用,关键是弄清图象拐点处的意义,根据题意进行运算.第二部分专题提优训练1.(2023•无为市四模)“百日长跑”是一项非常有益身心的体育活动,体育老师一声令下,小雅立即开始慢慢加速,途中一直保持匀速,最后150米时奋力冲刺跑完全程,下列最符合小雅跑步时的速度y(单位:米/分)与时间x(单位:分)之间的大致图象的是()A.B.C.D.【思路引领】根据小雅的速度的变化判断即可.【解答】解:由小雅立即开始慢慢加速,此时速度随时间的增大而增加;途中一直保持匀速,此时速度不变,图象与x轴平行;最后150米时奋力冲刺跑完全程,此时速度随时间的增大而增加,且图象比开始一段更陡.故选项B符合题意.故选:B.【总结提升】本题考查了函数图象,发现速度的变化关系是解题关键.2.(2023春•井冈山市期末)小明观看了《中国诗词大会》第三期,主题为“人生自有诗意”,受此启发根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,如图用y轴表示父亲与儿子行进中离家的距离,用x轴表示父亲离家的时间,那么下面图象与上述诗的含义大致相吻合的是()A.B.C.D.【思路引领】开始时,父亲离家的距离越来越远,而儿子离家的距离越来越近,车站在两人出发点之间,而父亲早到,两人停一段时间以后,两人一起回家,则离家的距离与离家时间的关系相同.【解答】解:开始时,父亲离家的距离越来越远,而儿子离家的距离越来越近,车站在两人出发点之间,而父亲早到,故A,B,C不符合题意;两人停一段时间以后,两人一起回家,则离家的距离与离家时间的关系相同,则选项D符合题意.故选:D.【总结提升】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.3.如图,因水桶中的水由图①的位置下降到图②的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象是()A.B.C.D.【思路引领】根据水减少的体积是y,水位下降的高度是x,而且y与x之间函数关系成正比例得出图象即可.【解答】解:∵水减少的体积是y,水位下降的高度是x,∴y越大,x越大,而且它们成正比例关系,∴图象中只有C是正比例关系,故选:C.【总结提升】此题主要考查了函数图象与实际问题,利用实际问题得出函数关系是解决问题的关键.4.(中考真题•漳州)均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.【思路引领】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选:A.【总结提升】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.(2021春•七星关区期末)某列高铁从起点站出发,加速一段时间后开始匀速行驶,在快到下一站时减速并停下,等乘客上下车后开始加速,一段时间后开始匀速行驶.下面的图中哪一个能近似地刻画这一段时间内高铁的速度随时间变化情况()A.B.C.D.【思路引领】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:高铁经历:加速﹣匀速﹣减速到站﹣加速﹣匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象,只有A选项符合.故选:A.【总结提升】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.(2021春•织金县期末)妈妈从家里出发去平远古镇锻炼,她连续匀速走了60分钟后回到家,如图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离S(km)与行走时间t(min)之间的关系,则下列图形中可以大致描述妈妈行走的路线的是()A.B.C.D.【思路引领】根据给定s关于t的函数图象,分析AB段可得出该段时间妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选:B.【总结提升】本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.7.(2022春•惠州期末)如图,点P从正方形ABCD的顶点C出发,沿着正方形的边运动,依次经过点D 和点A到达点B后停止运动.当运动路程为x时,△PBC的面积为y,则y随x变化的图象可能是()A.B.C.D.【思路引领】根据运动可以发现△PBC的面积,从增大到不变,再到不断减小,结合图象可选出答案.【解答】解:y与x的函数关系的图象大致可分三段来分析:当点P从C运动到D时,因为底BC不变,高PC逐渐增大,所以△PBC的面积随着CP的增大而增大;当点P从D运动到A时时,△PBC的底和高都不变,所以面积也不变;当点P从A运动到B的时候,因为底BC不变,高PB逐渐减小,所以△PBC的面积随着PB的减小而减小.所以选项B符合题意.故选:B.【总结提升】本题考查了动点问题的函数图象,弄清点P分别在三条边上运动时,面积的变化情况是解题关键.8.(2023春•平原县期中)一艘轮船和一艘快艇沿相同路线从甲港出发匀速行驶至乙港,行驶路程随时间变化的图象如图,则快艇比轮船每小时多行20千米.【思路引领】观察图象,根据图象中的路程和时间的关系,求出各自的速度,从而计算速度差.【解答】解:由函数图象,得:轮船的速度为:160÷8=20(km/h),快艇的速度为:160÷(6﹣2)=40(km/h),∴快艇比轮船每小时多行40﹣20=20(千米),故答案为:20.【总结提升】本题考查了函图象的运用,行程问题的数量关系的运用,解答时分析清楚函数图象提供的信息是关键.9.(2023春•青海月考)已知小明家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法中:①体育场离家2.5km;②小明在体育场锻炼了20分钟;③小明从体育场出发到文具店的平均速度为4km/h,其中正确的有①③(填序号).【思路引领】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,体育场离小明家2.5km,故①正确;小明在体育场锻炼了:30﹣15=15(分钟),故②错误;③小明从体育场出发到文具店的平均速度为:(2.5﹣1.5)÷45−3060=4(km/h),故③正确.故答案为:①③.【总结提升】本题考查了函数图象,解题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.10.(2021春•思明区校级期中)如图,某个函数的图象由线段AB和线段BC组成,其中A(0,2),B(32,1),C(4,3),则此函数的最大值是3.【思路引领】直接利用函数图象上点的坐标,进而得出函数最值即可.【解答】解:∵函数的图象由线段AB和BC组成,其中点A(0,2),B(32,1),C(4,3),∴当x=4时,函数值最大为3.故答案为:3.【总结提升】此题主要考查了函数的图象以及函数值,正确利用点的坐标是解题关键.11.汽车的速度随时间变化的情况如图所示:(1)这辆汽车的最高时速是多少?(2)汽车在行驶了多长时间后停了下来,停了多长时间?(3)汽车在第一次匀速行驶(速度不变)时共用了几分钟?速度是多少?在这段时间内,它走了多远?【思路引领】(1)结合图形速度轴可以找出最高时速;(2)当速度为0时,汽车停止下来;(3)结合图形,可得出第一次匀速行驶(速度不变)时共用了几分钟,速度是多少,再利用路程=速度×时间,即可得出结论.【解答】解:(1)由汽车的速度随时间变化的情况图可看出:汽车的最高时速是120千米/时.(2)结合图形,可得知,汽车在行驶了10分钟后停了下来,停了12﹣10=2分钟.(3)由图形可知,第一次匀速行驶的速度为90千米/时,行驶的时间为6﹣2=4分钟,∵4分钟=115小时,∴行驶的路程=90×115=6(千米).答:汽车在第一次匀速行驶(速度不变)时共用了4分钟,速度是90千米/时,在这段时间内,它走了6千米.【总结提升】本题考查了一次函数的应用,解题的关键是:能熟练的运用图形解决问题.12.(2023春•尤溪县期中)周末,小明骑自行车从家出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若追上小明后,再过5分钟妈妈到达乙地,求从家到乙地的路程.【思路引领】(1)根据函数图象中的数据,可以计算出小明骑车的速度和在甲地游玩的时间;(2)根据函数图象中的数据,可以写出小明从家出发多少小时后被妈妈追上,并计算出此时离家多远;(3)根据小明的速度,求出妈妈的速度,然后即可计算出从家到乙地的路程.【解答】解:(1)由图象可得,小明骑车的速度是:10÷0.5=20(km/h),在甲地游玩的时间为:1﹣0.5=0.5(h),即小明骑车的速度是20km/h,在甲地游玩的时间是0.5h;(2)由图象可得,小明从家出发74小时后被妈妈追上,此时离家:20×(74−0.5)=25(km),即小明从家出发74小时后被妈妈追上,此时离家25km;(3)∵妈妈驾车的速度是小明骑车速度的3倍,小明骑车的速度是20km/h,∴妈妈驾车速度为20×3﹣60(km/h),∴从家到乙地的路程是:60×(74−43+560)=60×74−60×43+60×560=105﹣80+5=30(km),即从家到乙地的路程是30km.【总结提升】本题考查一次函数的应用,利用数形结合的思想解答是解答本题的关键.。

初二关于函数图像练习题

初二关于函数图像练习题

初二关于函数图像练习题函数图像是初中数学中的一个重要内容。

通过练习题,我们可以进一步巩固对函数图像的理解。

下面是一些初二关于函数图像的练习题。

请你认真思考每个问题,并给出详细的解答。

习题一:已知函数y=f(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数f(x)的定义域是什么?2. 根据图像分析,函数f(x)的值域是什么?3. 根据图像分析,函数f(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。

4. 根据图像分析,函数f(x)在哪些区间上是增函数?在哪些区间上是减函数?习题二:已知函数y=g(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数g(x)的定义域是什么?2. 根据图像分析,函数g(x)的值域是什么?3. 根据图像分析,函数g(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。

4. 根据图像分析,函数g(x)在哪些区间上是增函数?在哪些区间上是减函数?习题三:已知函数y=h(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数h(x)的定义域是什么?2. 根据图像分析,函数h(x)的值域是什么?3. 根据图像分析,函数h(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。

4. 根据图像分析,函数h(x)在哪些区间上是增函数?在哪些区间上是减函数?通过以上练习题,我们能够进一步加深对函数图像的理解。

希望你通过认真思考和分析,能够正确回答以上问题,并在解答过程中巩固对函数图像的知识掌握。

同时,也希望你能够掌握函数图像的绘制方法,通过练习更多的题目,进一步提高自己的能力。

祝你在数学学习中取得更好的成绩!。

初二数学函数图像练习题

初二数学函数图像练习题

初二数学函数图像练习题随着学习的深入,初二的数学课程逐渐涉及到更加复杂的内容。

其中,函数图像是一个重要的学习内容之一。

通过练习题的方式,可以加深对函数图像的理解与掌握。

本文将为大家提供一些初二数学函数图像练习题,并详细解答,希望对同学们加深对这一知识点的学习有所帮助。

1. 下列函数中,哪一个函数的图像是平行于x轴的直线?A. f(x) = 2x + 3B. f(x) = x^2 + 1C. f(x) = 3D. f(x) = √x解析:平行于x轴的直线具有y坐标不变的特点,即与y轴平行。

根据选项中的四个函数,我们可以发现只有C. f(x) = 3的图像是一条平行于x轴的直线,因为无论x取什么值,f(x)始终等于3,即函数的图像位于y = 3这条直线上。

2. 下列函数中,哪一个函数的图像是与y轴平行的直线?A. f(x) = 4x - 2B. f(x) = x^2 - 1C. f(x) = 4D. f(x) = |x|解析:与y轴平行的直线具有x坐标不变的特点,即x的值始终相同。

根据选项中的四个函数,我们可以发现只有A. f(x) = 4x - 2的图像是一条与y轴平行的直线,因为不管x取什么值,4x - 2都只与x有关,与y无关。

3. 下列函数中,哪一个函数的图像是一个抛物线?A. f(x) = 2xB. f(x) = x^2 - 1C. f(x) = 3x + 4D. f(x) = |x|解析:抛物线具有开口方向的特点,其图像通常为一个弯曲的曲线。

根据选项中的四个函数,我们可以发现只有B. f(x) = x^2 - 1的图像是一个抛物线,因为x的平方具有平方函数的特点,其图像为对称的抛物线。

4. 下列函数中,哪一个函数的图像是一个反比例函数?A. f(x) = 2xB. f(x) = x^2 - 1C. f(x) = 3x + 4D. f(x) = 1/x解析:反比例函数具有形如f(x) = k/x的特点,其中k为常数。

(完整word版)八年级函数图像练习题

(完整word版)八年级函数图像练习题

函数图像1.(2015•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点2.(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个3.(2015•济宁)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.4.(2008•菏泽)如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A.10 B.16 C.18 D.205.(2003•武汉)小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了()A.32元B.36元C.38元D.44元6 .(2015•聊城)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮7.已知某一函数的全部图象如图所示,根据图象回答下列问题:(1)确定自变量x的取值范围,;(2)当x=﹣4时,y的值是;(3)当y=0时,x的值是;(4)当x=时,y的值最大,当x= 时,y的值最小;(5)当x的值在什么范围内时y随x的增大而增大?答:;(6)当x的值在什么范围内时,y<0,答.8.(2014秋•海曙区期末)一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米10.(2014•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为cm,匀速注水的水流速度为cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.9、(2015•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点10、(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个11、(2015•济宁)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h 随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.12.(2015秋•威海期中)如图(1),等边三角形ABC的边长为8,点P由点B开始沿BC 以每秒1个单位长的速度作匀速运动,到点C后停止运动;点Q由点C开始沿C﹣A﹣B以每秒2个单位长的速度作匀速运动,到点B后停止运动.若点P,Q同时开始运动,运动的时间为t(秒)(t>0).求当点P、Q运动时,△PCQ的面积S与t的函数关系式,并指出自变量t的取值范围.13、已知某一函数的图象所示,根据图象回答下列问题:(1)确定自变量的取值范围;(2)求当x=﹣4,﹣2,4时y的值是多少?(3)求当y=0,4时x的值是多少?(4)当x取何值时y的值最大?当x取何值时y的值最小?(5)当x的值在什么范围内是y随x的增大而增大?当x的值在什么范围内时y随x的增大而减小?14、已知某一函数的全部图象如图所示,根据图象回答下列问题:(1)确定自变量x的取值范围,;(2)当x=﹣4时,y的值是;(3)当y=0时,x的值是;(4)当x=时,y的值最大,当x=时,y的值最小;(5)当x的值在什么范围内时y随x的增大而增大?答:;(6)当x的值在什么范围内时,y<0,答.。

八年级数学下册期中期末-专题01 一次函数的概念与图像(真题测试)(原卷版)

八年级数学下册期中期末-专题01 一次函数的概念与图像(真题测试)(原卷版)

专题01 一次函数的概念与图像【真题测试】一、选择题1.(松江2018期中13)下列函数中,是一次函数的是( ) A.11y x=+; B.2y x =-; C.()y kx b k b =+、是常数; D.22y x =+. 2.(奉贤2018期末1)下列函数中,一次函数是( ) A. B. C.11y x =+ D.22y x =-3.(浦东四署2018期中1)下列函数中,是一次函数的是( )(A )21+=xy ; (B )2+=x y ; (C )22y x =+; (D )y kx b =+ 4.(长宁2018期末1)函数y =(k -2)x +3是一次函数,则k 的取值范围是( )A. B. C. D.5.(松江2018期中14)如图,一次函数y kx b =+的图像经过(1,3),(2,0)两点,那么当3y >时,x 的取值范围是( )A.0x <;B.2x <;C.1x >;D.1x <.2yx O P (1,3)6. (长宁2018期末2)函数y =2x -1的图象经过( )A. 一、二、三象限;B. 二、三、四象限;C. 一、三、四象限;D. 一、二、四象限;7. (松江2019期中2)一次函数y=﹣2x+1的图象不经过下列哪个象限( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 8.(闵行2018期末1)一次函数y =3x ﹣2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.(嘉定2019期末1)直线23y x =-的截距是( )A. – 3;B. – 2;C. 2;D. 3.10. (松江2019期中5)一次函数的图像大致是( ) A. B. C. D.11.(松江2018期中17)一次函数12y ax b y bx a =+=+与在同一坐标系中的图像可能是( )C D O x y y x O O x y yx OB A12.(浦东四署2018期中6)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 ( ) (A )(3,4) (B )(4,5) (C )(7,4) (D )(7,3)二、填空题13. (长宁2018期末7)已知函数f (x )=+1,则f ()=______. 14.(长宁2019期末6)已知函数224(5)1m y m x m -=-++,若它是一次函数,则m = .15.(普陀2018期中7)函数y =-2x +3在y 轴上的截距为______.16.(崇明2018期中6)一次函数26y x =-在y 轴上的截距是 .17.(松江2019期中8)一次函数的图像在y 轴上的截距是_____________.18.(闵行2018期末7)已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b = .19.(黄浦2018期中15)如果一次函数y =-3x +m -1的图象不经过第一象限,那么m 的取值范围是______20. (奉贤2018期末9)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______21.(金山2018期中9)将直线21y x =--向上平移4个单位,所得直线的表达式是 .22.(浦东四署2019期中11)将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为 .23.(普陀2018期末10)将直线y =﹣2x ﹣2向上平移5个单位后,得到的直线为 .24.(青浦2018期末8)把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为 .25.(浦东四署2019期末11)如果将直线112y x =+平移,使其经过点(0,2),那么平移后所得直线的表达式是 .26. (杨浦2019期中3)直线b kx y +=与15+-=x y 平行,且经过点(2,1),则k= b= .27. (普陀2018期中10)已知直线y =kx +b 如图所示,当y <0时,x 的取值范围是______.28. (杨浦2019期中4)已知,一次函数b kx y +=的图像经过点A (2,1)(如下图所示),当1y ≥时,x 的取值范围是 .21O A (2,1)XY29.(嘉定2019期末8)已知函数37y x =-+,当2x >时,函数值y 的取值范围是 .30.(杨浦2019期中1)一次函数72--=x y 与x 轴的交点是 .31.(崇明2018期中10)直线334y x =-与x 轴和y 轴的交点分别为A 、B ,那么线段AB 的长为 .32.(浦东四署2018期中9一次函数的图像经过点(0,2)、(–2,0),这个一次函数的解析式是 . 33. (松江2019期中16)函数y kx b =+(k 、b 为常数)的图象如图所示,则关于x 的不等式0kx b +>的解集是 .34. (长宁2018期末10)如图,一次函数y =kx +b (k ≠0)的图象经过点(2,0),则关于x 的不等式kx +b >0的解集是______.35. (普陀2018期中17)如图,在直角坐标系xOy 中,点A 的坐标是(2,0)、点B 的坐标是(0,2)、点C 的坐标是(0,3),若直线CD 的解析式为y =-x +3,则S △ABD 为______.三、解答题36.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点.(1)求直线y =kx +b 的表达式;(2)当x 取何值时,y >5.37. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积.38. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.39.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+.(1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积.40.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x轴的负半轴上,直线y kx =+点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+于点C ,如果60MAO ∠=︒.(1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.41.(松江2018期中27)如图,直线y =+与x 轴相交于点A,与直线y =相交于点P.(1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.42.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y=kx-7的图像与x、y轴分别交于点A、B,那么△ABO为此一次函数的坐标三角形(也称为直线AB的坐标三角形).(1)如果点C在x轴上,将△ABC沿着直线AB翻折,使点C落在点D(0,18)上,求直线BC的坐标三角形的面积;(2)如果一次函数y=kx-7的坐标三角形的周长是21,求k值;(3)在(1)(2)条件下,如果点E的坐标是(0,8),直线AB上有一点P,使得△PDE周长最小,且点P正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.。

(完整word版)八年级数学一次函数性质和图像练习试题

(完整word版)八年级数学一次函数性质和图像练习试题

卓越个性化教案GFJW0901学生姓名彭年级初二授课时间教师姓名刘课时2课题一次函数性质和图像教学目标掌握一次函数的性质重点一次函数性质和图像的应用一次函数性质和图像的应用难点【知识点】:1.函数的概念:在某一变化过程中,可以取不同数值的量,叫做变量.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.在某一变化过程中,有两个量,如x 和y,对于 x 的每一个值,y 都有惟一的值与之对应,其中 x 是自变量,y 是因变量,此时称y 是x的函数.注意:〔 1〕“y有唯一值与x 对应〞是指在自变量的取值范围内,x 每取一个确定值,y 都唯一的值与之相对应,否那么y 不是x的函数.〔2〕判断两个变量是否有函数关系, 不仅要有关系式,还要满足上述确定的对应关系.x 取不同的值, y 的取值可以相同.例如: 函数 y ( x 3)2中,x2 时,y 1 ;x 4 时,y 1 .(3〕函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系.例题 1:以下各图给出了变量x 与 y 之间的函数是:【】例题 2:假设等腰三角形周长为30,一腰长为a,底边长为L,那么 L 关于 a 的函数解析式为,它是,也是.2.数学上表示函数关系的方法通常有三种:〔1〕解析法:用数学式子表示函数的方法叫做解析法.如:S 30t ,S R2.(2〕列表法:通过列表表示函数的方法.(3〕图象法:用图象直观、形象地表示一个函数的方法.例题 3: y- 1 与 x+ 2 成正比例,且当x= 1 时, y=- 5, 求 y 与 x 之间的函数关系式;假设点〔- 2,a〕在这个函数的图象上,求出 a 的值 .3.关于函数的关系式( 解析式 ) 的理解:〔1〕函数关系式是等式.例如y4x 就是一个函数关系式.〔2〕函数关系式中指明了那个是自变量,哪个是函数.八年级数学一次函数性质和图像练习试题通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如: y2x 4 中 x 是自变量,y是 x 的函数.〔3〕函数关系式在书写时有顺序性.例如: y 3x 1 是表示y是 x 的函数,假设写成x1 y就表示 x 是y的函数.3〔4〕求y与 x 的函数关系时,必须是只用变量x 的代数式表示y,得到的等式右边只含 x 的代数式.4.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y x 1 中,自变量 x 受到开平方运算的限制,有x 1 0 即 x 1 ;当汽车行进的速度为每小时80 公里时,它行进的路程s与时间 t 的关系式为s80t;这里 t 的实际意义影响 t 的取值范围 t 应该为非负数,即t0.在初中阶段,自变量的取值范围考虑下面几个方面:(1〕整式型:一切实数(2〕根式型:当根指数为偶数时,被开方数为非负数.(3〕分式型:分母不为0.(4〕复合型:不等式组(5〕应用型:实际有意义即可x 2】例题 4:函数y中的自变量 x 的取值范围是【x1A、x≥- 2B、x≠ 1C、x>-2且x≠ 1 D 、 x≥- 2 且 x≠1例题 5:函数例题 6:函数yx1422x中的自变量 x 的取值范围为 _________________ x24y14 x x248中的自变量 x 的取值范围为 _________________ x 7例题 7:假设等腰三角形周长为30,一腰长为a,底边长为L,那么 L 关于 a的函数解析式为,其中 a 的取值范围是 ___________y5.函数图象:函数的图象是由平面直角中的一系列点组成的.6.函数图像的位置决定两个函数的大小关系:y 1〔 1〕图像y在图像y2的上方y1y2yy 21x 1O x〔2〕图像y1在图像y2的下方y1y2x 2y 2y1x 1Ox2x〔3〕特别说明:图像y 在x轴上方y0;图像 y 在x轴下方y 0例题 8:直线 l:y= k x+b 与直线 l :y= k x+ c 在同一平面直角坐标系中的图象如下图,1122那么关于 x 的不等式k x+b< k x+ c 的解集为【】12A、 x> 1B、x< 1C、 x>- 2D、 x<- 22/ 20八年级数学一次函数性质和图像练习试题例题 9:如图,直线y kx b(k 0) 与 x 轴交于点 (3,0) ,关于 x 的不等式kx b0 的解集是【】A.x3B.x3C.x0D.x07.描点法画函数图象的步骤:〔1〕列表;〔2〕描点;〔3〕连线.例题 10:画出函数y 2x 4 的图像8.函数解析式与函数图象的关系:(1〕满足函数解析式的有序实数对为坐标的点一定在函数图象上;(2〕函数图象上点的坐标满足函数解析式.9.验证一个点是否在图像上方法:代入、求值、比拟、判断例题 11:以下各点中,在反比例函数y=6图象上的是【】xA.〔- 2, 3〕B.〔2,-3〕C.〔1,6〕D.〔-1,6〕10.一次函数及其性质知识点一:一次函数的定义一般地,形如 y kx b〔k,b是常数,k0 〕的函数,叫做一次函数,当 b 0 时,即y kx ,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b ,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当 b 0 , k 0 时,y kx 仍是一次函数.⑶当 b 0 , k0 时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.知识点二:一次函数的图象及其画法⑴一次函数y kx b 〔k0 , k , b 为常数〕的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取0 ,0 , 1,k两点;②如果这个函数是一般的一次函数〔 b 0 〕,通常取0 ,b ,b ,0,即直线与两坐标轴k的交点.⑶由函数图象的意义知,满足函数关系式y kx b 的点x ,y在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标x ,y 满足 y kx b ,也就是说,直线l 与y kx b 是一一对应的,所以通常把一次函数y kx b 的图象叫做直线l :y kx b ,有时直接称为直线y kx b .3 / 20八年级数学一次函数性质和图像练习试题知识点三:一次函数的性质⑴当 k0时,一次函数y kx b 的图象从左到右上升,y 随x的增大而增大;⑵当 k0时,一次函数y kx b 的图象从左到右下降,y 随x的增大而减小.知识点四:一次函数y kx b 的图象、性质与k 、 b 的符号一次函数k kx b k0k0k 0k , b 符号b 0 b 0 b 0 b 0 b 0 b 0y y y y y y 图象O Ox Ox x Ox O xOx性质y 随x的增大而增大y 随x的增大而减小字母 k, b 的作用: k 决定函数趋势, b 决定直线与 y 轴交点位置,也称为截距 .倾斜度: |k| 越大,越接近 y 轴; |k| 越小,越接近 x 轴图像的平移: b> 0 时,将直线 y= kx 的图象向上平移 b 个单位,对应解析式为:y= kx + b b< 0 时,将直线 y=kx 的图象向下平移b个单位,对应解析式为: y= kx- b口诀:“上+下-〞将直线 y=kx 的图象向左平移m个单位,对应解析式为:y=k〔 x+ m〕将直线 y=kx 的图象向右平移m个单位,对应解析式为:y=k〔 x- m〕口诀:“左+右-〞知识点五:用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.⑵用待定系数法求函数解析式的一般步骤:①根据条件写出含有待定系数的解析式;②将 x,y 的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程〔组〕,得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.例题 12:一次函数y kx b 的图象只经过第一、二、三象限,那么【】A.k 0,b 0B.k0, b 0C. k0,b0D .k 0,b 0例题 13:如果一次函数y kx b 的图象经过第一象限,且与y 轴负半轴相交,那么【】A.k 0,b 0B.k0 , b 0C.k0 , b0D.k 0,b 0例题 14:一次函数的图象过点〔3,5〕与〔- 4,- 9〕,求该函数的图象与y轴交点的坐标 .例题 15:一次函数( 2k1) x(k3) y k 110 ,试说明:不管k为何值,这条直4/ 20八年级数学一次函数性质和图像练习试题线总要经过一个定点,并求出这个定点.例题16:一次函数y=ax + b 的图像关于直线y=- x 轴对称的图像的函数解析式为____ __例题17:某公交公司的公共汽车和出租车每天从乌鲁木齐市出发往返于乌鲁木齐市和石河子市两地,出租车比公共汽车多往返一趟,如图表示出租车距乌鲁木齐市的路程y 〔单位:千米〕与所用时间x〔单位:小时〕的函数图象.公共汽车比出租车晚 1 小时出发,到达石河子市后休息 2 小时,然后按原路原速返回,结果比出租车最后一次返回乌鲁木齐早1小时.〔1〕请在图中画出公共汽车距乌鲁木齐市的路程y 〔千米〕与所用时间x 〔小时〕的函数图象.(2〕求两车在途中相遇的次数〔直接写出答案〕(3〕求两车最后一次相遇时,距乌鲁木齐市的路程.例题 18:某一次函数当自变量取值范围是2≤y≤6时,函数值的取值范围是5≤x≤9.求此一次函数的解析式.例题19:一次函数y= ax+ 4与 y= bx- 2 的图象在 x 轴上相交于同一点, 那么b的值是a【】A、 4B、- 2C1D1、2、-2例题 20:求直线 y=2x- 1 与两坐标轴所围成的三角形面积.11.直线y k1x b1〔 k10 〕与 y k2 x b2〔 k20 〕的位置关系〔1〕两直线平行k1k 2且 b1b2〔2〕两直线相交k1k2〔3〕两直线重合k1k 2且 b1b2〔4〕两直线垂直k1k21例题 21:一次函数y x 1 ,另一条直线与之平行,且与坐标轴所围成的三角形面积为 8,求此一次函数解析式.12.一次函数与一元一次方程的关系:直线 y kx b〔 k 0〕与x轴交点的横坐标,就是一元一次方程kx b 0(k0) 的解 . 求直线 y kx b 与x轴交点时,可令 y 0 ,得到方程kx b 0 ,解方程得x b ,直线y kx bk5 / 20八年级数学一次函数性质和图像练习试题交 x 轴于 (b,0) , b就是直线 y kx b 与 x 轴交点的横坐标 .kk13.一次函数与一元一次不等式的关系:任何一元一次不等式都可以转化为ax b 0或 ax b 0( a 、b 为常数, a 0) 的形式,所以解一元一次不等式可以看作:当一次函数值大〔小〕于 0 时,求自变量相应的取值范围.【课堂训练 】:一次函数综合练习〔一〕函数的概念1 .矩形的面积为 S,那么长a 和宽b 之间的关系为S,当长一定时 ,是常量,是变量 .2. 以下:①yx 2 ;② y 2x 1;③ y 22x( x ≥ 0) ;④ yx (x ≥ 0) ,具有函数关系〔自变量为x〕的是.3 .齿轮每分钟 120 转,如果 n表示转数, t 表示转动时间,那么用n表示 t 的关系是,其中为变量,为常量5 C(F 32)4 .摄氏温度C 与华氏温度 F 之间的对应关系为9℃,那么其中的变量是,常量是1 sah5.在⊿ ABC中,它的底边是 a ,底边上的高是 h ,那么三角形的面积 2,当底边 a的长一定时,在关系式中的常量是 ,变量是6.全年级每个同学需要一本代数教科书, 书的单价为6 元,那么总金额 y( 元 ) 与学生数n( 个 )的关系是。

八年级数学上册试题 6.3.1函数的图象同步练习-苏科版(含答案)

八年级数学上册试题 6.3.1函数的图象同步练习-苏科版(含答案)

6.3.1函数的图象一 、选择题1. 请找出符合以下情景的图象:小颖将一个球被竖直向上抛起,球升到最高点后垂直下落,直到地面,在此过程中,球的速度与时间的关系的图象( )....2. 如图,下面图象(折线 O EFPMN) 描述了某汽车在行驶过程中速度与时间之间的关系,下列说法中错误的是( )A. 第3分钟时汽车的速度是40千米/小时B. 第12分钟时汽车的速度是0千米/小时C. 从第3分钟后到第6分钟,汽车停止不动D. 从第9分钟到第12分钟,汽车速度从60千米/小时减少到0千米/小时3. 已知小林的家、体育场、文具店在同一直线上,图中的信息反映的过程:小林从家跑步去 体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家,图中 x 表示时间, y 表示小林离家的距离,依据图中的信息,下列说法错误的是( )A. 体育场离小林家2.5 kmB. 小林在文具店买笔停留了20minC. 小林从体育场出发到文具店的平均速度是50 m/minD. 小林从文具店回家的平均速度是60 m/minD C B A4. 如图所示的函数图象反映的过程是:小明从家去书店选购学习资料,又到体育馆去锻炼身体,然后回家.其中x 表示时间, y 表示小明离他家的距离,下列结论中:①体育馆离小明家的距离是2 千米;②小明从家里到书店的平均速度与从书店到体育馆的平均速度相等;③小明在体育馆锻炼身体的时间是18分;④小明从体育馆返回家的平均速度是0.08千米/小时,正确的结论有( )A.①②B.②④C.①③D.①③④5. 一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:下列说法正确的是( )A. 当h=70cm 时,t=1.50sB.h 每增加10cm,t 减小1.23C. 随着h 逐渐变大,t 也逐渐变大D. 随着h 逐渐升高,小车下滑的平均速度逐渐加快6. 在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s 测量一次锅中油温,测量得到的数据如下表:王红发现,烧了110s 时,油沸腾了,则下列说法不正确的是( )A. 没有加热时,油的温度是10℃B. 加热50s, 油的温度是110℃C. 估计这种食用油的沸点温度约是230℃D. 每加热10s, 油的温度升高30℃7. 电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额 y (元)与通话时间 t (分钟)之间的函数图象是图中的( )....8. 如图, D2020 次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x 之间的关系用图象描述大致是( )火车隧道....9. 在一个长2分米、宽1分米、高8分米的长方体容器中,水面高5分米,把一个实心铁块 缓慢浸入这个容器的水中,能够表示铁块浸入水中的体积y (单位:分米3)与水面上升高 度x (单位:分米)之间关系的图象的是( )D B C A D B C A....10. 把水匀速滴进如图所示玻璃容器,那么水的高度随着时间变化的图象大致是( )....二、 填空题11. 小亮从家骑车上学,先经过一段平路到达A 地后,再上坡到达B 地,最后下坡到达学校, 所行驶路程 s (千米)与时间 t (分钟)的关系如图所示.如果返回时,上坡、下坡、平路 的速度仍然保持不变,那么他从学校回到家需要的时间是 分钟 .D B CA DBC A12.小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,y i、 y₂分别表示小东、小明离B 地的距离(千米)与所用时间x (小时)的关系如图所示,根据图象提供的信息,请求出小明到达A 地所需的时间应为小时.13. 甲、乙二人沿相同的路线由A 到B匀速行进, A,B 两地间的路程为20km. 他们行进的路程s(km) 与甲出发后的时间 t(h) 之间的函数图象如图所示.根据图象信息,下列说法正确的是 (填序号) .①甲的速度是4km/h;②乙的速度是10km/h;③乙比甲晚出发1h;④甲比乙晚到B 地 3h.14. 如图是购买水果所付金额y (元)与购买量x (千克)之间的函数图象,则一次购买5千克这种水果比分五次每次购买1千克这种水果可节省.15. 如图, A 、B 两地相距180km, 一列火车从B 地出发沿BC 方向以120km/h 的速度行驶,在行驶过程中,这列火车离A 地的路程 y (km) 与行驶时间 x (h) 之间的函数关系式是16. 某计算程序编辑如图所示, 当输入x= 时 ,输出的y=3.17. 如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 点在 AC 上运动,设 AD 长为 x,△BCD 的面积 y, 则 y 与 x 之间的函数表达式为 .18. 经济学家在研究市场供求关系时, 一般用纵轴表示产品单价(自变量),而用横轴表示产 品数量(因变量),下列两条曲线分别表示某种产品数量与单价之间的供求关系, 一条表示 厂商希望的供应曲线,另一条表示客户希望的需求曲线,其中表示客户希望的需求曲线的 是 (填入序号即可).输入xx<3y=3x+5输出x≥3y=√x -3①三、 解答题19. 如图所示是鞍山市的某一天的气温变化图,在这一天中,气温随着时间的变化而变化,请观察图象,回答下列问题:时间时(1)在这 一 天中(凌晨0时到深夜24 时均在内)气温在什么时候达到最高,最高温度为 多少摄氏度?(2)什么时间气温达到最低,最低气温是多少摄氏度? (3)上午10时、下午20时的气温各为多少摄氏度?(4)如果某旅行团这天想去登山,登山的气温最好在18℃以上,请问该旅行团适宜登山的 时间从几点开始?共有多长时间适宜登山?②20. 新冠病毒防疫期间,草莓摊主小钱为避免交叉感染的风险,建议顾客选择微信支付,尽量不使用现金,早上开始营业前,他查看了自己的微信零钱;销售完20kg 后,他又一次查看了微信零钱,由于草莓所剩不多,他想早点卖完回家,于是每千克降价10元销售,很快销售一空,小钱弟弟根据小钱的微信零钱(元)与销售草莓数量 (kg) 之间的关系绘制了下列图象,请你根据以上信息回答下列问题:(1)图象中A 点表示的意义是什么?(2)降价前草莓每千克售价多少元?(3)小钱卖完所有草莓微信零钱应有多少元?21. 小明家距离学校8千米,今天早晨,小明骑车上学图中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他以更快的速度匀速骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行驶的路程(千米)与他所用的时间(分钟)之间的关系.请根据图象,解答下列问题:(1)小明行了多少千米时,自行车出现故障?修车用了几分钟?(2)小明从早晨出发直到到达学校共用了多少分钟?(3)小明修车前、后的行驶速度分别是多少?(4)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟?22. 如图所示,小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况,(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)10时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?23. 小明从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是小明离家的距离与时间的关系图象,根据图象回答下列问题:(1)体育场离小明家千米.(2)小明在文具店逗留了分钟.(3)求小明从文具店到家的速度(千米/时)是多少?24. (竞秀区期末)某地举行龙舟赛,甲、乙两队在比赛时,路程y (米)与时间x (分钟)的函数图象如图所示,根据函数图象填空和解答问题:(1)最先到达终点的是队,比另一队领先分钟到达;(2)在比赛过程中,甲队的速度始终保持为米/分;而乙队在第分钟后第一次加速,速度变为米/分,在第分钟后第二次加速;(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、乙两队谁先到达终点?请说明理由.答案一、选择题D.C.C.C.D.D.D.A.A.D.二、填空题11.16.5.12.13.③.14 . 6元.15.y=180+120t(t≥0).16.1217.y=24-3x(0≤x<8).18.①.三、解答题19. 由图象可知,(1)下午14时气温达到最高,最高温度为22℃;(2)深夜24时气温达到最低,最低温度约为10℃;(3)上午10时气温20℃,下午20时气温为14℃;(4)该旅行团适宜登山的时间从上午8时30分开始,共有9.5小时适宜登山.20. (1)由图象可知,小钱开始营业前微信零钱有50元;(2)由图象可知,销售草莓20kg 后,小钱的微信零钱为650元,∴销售草莓20kg, 销售收入为650-50=600元,∴降价前草莓每千克售价为:600÷20=30(元);(3)降价后草莓每千克售价为:30- 10=20元,∴小钱卖完所有草莓微信零钱为:650+5×20=750(元),答:小钱卖完所有草莓微信零钱应该有750元.21. (1)由图可知,小明行了3千米时,自行车出现故障,修车用了15-10=5(分钟);(2)小明共用了30分钟到学校;(3)修车前速度:3÷10=0.3千米/分,修车后速度:米/分;(4) (分种),故他比实际情况早到分钟.22. (1)图象表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;(2)根据图象可知,他到达离家最远的地方是在12时,离家30千米;(3)根据图象可知,30- 15=15(千米) .故:10时到12时他行驶了15千米;(4)根据图象可知,他可能在10时30分到11时或12时到13时间内休息,并吃午餐;(5)根据图象可知,30÷(15-13)=15(千米/时) .故:他由离家最远的地方返回时的平均速度是15千米/时,23. (1)由图象可知,体育场离小明家2.5千米.故答案为:2.5;(2)由图象可知,小明在文具店逗留了:65-45=20(分钟).故答案为:20;(3)1.答:小明从文具店到家的速度为千米/时.24. (1)由函数图象得:最先到达终点的是乙队,比另一队领先6-5=1分钟到达.故答案为:乙,1;(2)由函数图象得:甲的速度为:900÷6=150米/分,而乙队在第2分钟后第一次加速,其速度为(500-200)÷2=150米/分,第4分钟后第二次加速.故答案为:150,2,150,4;(3)乙队在第一次加速后,始终保持这个速度继续前进走完余下路程需要的时间为∴乙队走完全程的时间为分钟.∵甲队行驶完全程需要的时间是6分钟.∴甲先到达终点.。

(完整版)北师大版本八年级数学上一次函数的图像练习题.doc

(完整版)北师大版本八年级数学上一次函数的图像练习题.doc

北师大版本八年级数学上一次函数的图像练习题一、选择题 :( 每小题 3 分 , 共 24 分 )1. 下列函数中 ,y 是 x 的一次函数的是 ( )A.y=2x 2+1;B.y=x-1+1 C.y=-2(x+1)D.y=2(x+1)22. 下列关于函数的说法中 , 正确的是 ( )A. 一次函数是正比例函数B.正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数22 B.m=1 2 1A.m= ; ; C.m>; D.m<32324. 下列函数 : ①y= - 8x; ②y=8; ③y=8x 2; ④y=8x+1; ⑤y= . 其中是一次函数的有 ( )xA.1 个B.2 个C.3 个D.4 个5. 若函数 y=(m-3) x m 1+x+3 是一次函数 (x ≠0), 则 m 的值为 ( )A.3B.1C.2D.3或 1 6. 过点 A(0,-2), 且与直线 y=5x 平行的直线是 ( ) A.y=5x+2B.y=5x-2C.y=-5x+2D.y=-5x-27. 将直线 y=3x-2 平移后 , 得到直线 y=3x+6, 则原直线 ( )A. 沿 y 轴向上平移了 8 个单位B. 沿 y 轴向下平移了 8 个单位C. 沿 x 轴向左平移了 8 个单位D. 沿 x 轴向右平移了 8 个单位8. 汽车由天津开往相距120km 的北京 , 若它的平均速度是 60km/h, 则汽车距北京的路程 s(km) 与行驶时间 t(h) 之间的函数关系式是 ( )A.s=60t;B.s=120-60tC.s=(120-60)tD.s=120+60t二、填空题 : ( 每小题 3 分, 共 27 分 )1. 若 y=(n-2) x n 2 n 1是正比例函数 , 则 n 的值是 ________.2. 函数 y=x+4 中 , 若自变量 x 的取值范围是 -3<x< - 1, 则函数值 y 的取值范围是 _____.3. 当 a=_____时 , 函数 y=(a-1)x 2+ax-2 是一次函数 .4. 长方形的长为 3cm,宽为 2cm,若长增加 xcm, 则它的面积 S(cm 2) 与 x(cm) 之间的函数关系式是_____, 它是 ______函数 , 它的图象是 _______.5. 已知函数 y= mx m 2m 1m 2 1, 当 m=______时 , 它是正比例函数 , 这个正比例函数的关 系式为 _______; 当 m=________时 , 它是一次函数 , 这个一次函数的关系式为 _______. 6. 把函数 y=2x 的图象沿着 y 轴向下平移 3 个单位 , 得到的直线的解析式为_____.a1 3 7. 两条直线 l 1 : yx b,l 2 : yx425中 , 当 a________,b______ 时 ,L 1∥L 2.8. 直线 y=-3x+2 和 y=3x+2 是否平行 ?_________.9. 一棵树现在高50cm,若每月长高2cm,x 月后这棵树的高度为ycm,则 y 与 x 之间的函数关系式是 ________.三、基础训练: ( 共 10 分)求小球速度v( 米 / 秒 ) 与时间 t( 秒 ) 之间的函数关系式:(1) 小球由静止开始从斜坡上向下滚动, 速度每秒增加 2 米 ;(2)小球以 3 米 / 秒的初速度向下滚动 , 速度每秒增加 2 米;(3) 小球以 10 米 / 秒的初速度从斜坡下向上滚动, 若速度每秒减小 2 米 , 则 2 秒后速度变为多少 ?何时速度为零 ?四、提高训练:( 每小题 9 分 , 共 27 分 )1.m 为何值时 , 函数 y=(m+3) x2 m 1 +4x- 5(x ≠0) 是一次函数?2. 已知一次函数 y=(k-2)x+1- k2 : (1)k 为何值时 , 函数图象经过原点 ? (2)k 为何值时 , 函4数图象过点 A(0,3)? (3)k 为何值时 , 函数图象平行于直线 y=2x?3.甲每小时走 3 千米 , 走了 1.5 小时后 , 乙以每小时4.5 千米的速度追甲 , 设乙行走的时间为t( 时 ), 写出甲、乙两人所走的路程 s( 千米 ) 与时间 t( 时 ) 之间的关系式 , 并在同一坐标系内画出函数的图象 .五、中考题与竞赛题:( 共 12 分 )某机动车出发前油箱内有油42 升 , 行驶若干小时后, 途中在加油站加油若干升,油箱中余油量Q(升 ) 与行驶时间t( 时 ) 之间的函数关系如图所示, 回答下列问题.(1)机动车行驶几小时后加油 ?(2)求加油前油箱余油量 Q与行驶时间 t 的函数关系 , 并求自变量 t 的取值范围 ;(3)中途加油多少升 ?(4)如果加油站距目的地还有 230 千米 , 车速为 40 千米 / 时 , 要到达目的地 , 油箱中的油是否够用 ?请说明理由 .Q(升)42363024181260 1 2 3 4 5 6 7 8 9 10 11 12t( 时 )答案 :一、 1.C 2.B 3.A 4.C 5.D 6.B 7.A 五、提示 :(1)t=5.8.B (2)Q=42- 6t(0 ≤t ≤5).二、 1.-1 2.1<y<3 3.1 4.S=2x+6 (3)Q=24一次一条直线(4) ∵加油后油箱里的油可供行驶5.-1 y=-x 2 或 - 1 y=2x+3 或 y=-x 11-5=6( 小时 ),6.y=2x- 37.=2 ≠ - 3∴剩下的油可行驶 6×40=240(千米 ), 8. 不平行5 ∵240>230,9.y=50+2x ∴油箱中的油够用 .三、 (1)v=2t (2)v=3+2t.(3) 解 :v=10-2t,当 t=2 时 ,v=10-2t=6(米/秒),∴2秒后速度为 6 米/ 秒 ;当 v=0 时 ,10-2t=0,∴t=5, ∴5秒后速度为零.四、 1. 解 : 当 m+3=0,即 m=-3 时,y=4x-5一次函数 ;当 m+3≠0时 , 由 2m+1=1,得 m= 0,∴当 m=0时 ,y=7x-5是一次函数;是由 2m+1=0,得m=- 1.2∴当m=- 1时 ,y=4x-5 是一次函数,2 21综上所述 ,m=-3 或 0 或 -.2.解:(1) ∵原点 (0,0) 的坐标满足函数解析式 , 即 1- k2 =0, 4∴k=±2,又∵k- 2≠0, ∴k= -2(2) 把 A(0,-3)k2 代入解析式 , 得 -3=1-,4∴k=±4.(3)∵该直线与 y=2x 平行 ,∴k-2=2,∴k=4.3. 解 :S 甲 =3t+4.5(t>0),S乙=4.5t(t>0),。

人教版八年级数学下册19.1.2《函数的图象(1)》习题含答案

人教版八年级数学下册19.1.2《函数的图象(1)》习题含答案

19.1.2《函数的图象(1)》习题含答案一.选择题(共10小题)1.下列是函数图象的是()A.B.C.D.2.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.3.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.4.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是()A.小明中途休息用了20分钟B.小明在上述过程中所走路程为7200米C.小明休息前爬山的速度为每分钟60米D.小明休息前后爬山的平均速度相等5.如图所示的游泳池内蓄满了水,现打开深水区底部的出水口匀速放水,在这个过程中,可以近似地刻画出泳池水面高度h与放水时间t之间的变化情况的是()A.B.C.D.6.某同学放学回家,在路上遇到一个同学,一块去同学家玩了会儿,然后独自回家.下列图象能表示这位同学所剩路程与时间变化关系的是()A.B.C.D.7.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象表示正确的是()A.B.C.D.8.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟9.如图,一只蚂蚁沿台阶A1→A2→A3→A4→A5匀速爬行,蚂蚁爬行的高度h随时间t变化的图象大致是()A.B.C.D.10.甲、乙两名同学骑自行车从A地出发沿同一条路前往B地,他们离A地的距离s(km)与甲离开A地的时间t(h)之间的函数关系的图象如图所示,根据图象提供的信息,有下列说法:①甲、乙同学都骑行了18km②甲、乙同学同时到达B地③甲停留前、后的骑行速度相同④乙的骑行速度是12km/h其中正确的说法是()A.①③B.①④C.②④D.②③二.填空题(共3小题)11.如图是某市某天的气温T(℃)随时间t(时)变化的图象,则由图象可知,该天最高气温与最低气温之差为℃.12.甲、乙两人分别从A、B两地相向而行,y与x的函数关系如图,其中x表示乙行走的时间(时),y表示两人与A地的距离(千米),甲的速度比乙每小时快千米.13.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行米.14.某天早晨,小王从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是小王从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小王从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小王吃早餐用了分钟;(3)小王吃早餐以前和吃完早餐后的平均速度分别是多少米/分钟?15.如图是甲、乙两人从同一地点出发后,路程随时间变化的图象.(1)在此变化过程中,是自变量;(2)甲的速度乙的速度;(填“大于”、“等于”、或“小于”)(3)甲出发后与乙相遇;(4)甲比乙先走小时;(5)9时甲在乙的(填“前面”、“后面”、“相同位置”);(6)路程为150千米,甲行驶了小时,乙行驶了小时.19.1.2《函数的图象(1)》习题答案一.选择题(共10小题)1.【分析】根据函数的概念(当x取一值时,y有唯一与它对应的值)解答即可.【解答】解:A、当x取一值时,y没有唯一与它对应的值,y不是x的函数,故本选项不合题意;B、当x取一值时,y有唯一与它对应的值,y是x的函数,故本选项符合题意;C、当x取一值时,y没有唯一与它对应的值,y不是x的函数,故本选项不合题意;D、当x取一值时,y没有唯一与它对应的值,y不是x的函数,故本选项不合题意;故选:B.2.【分析】从小亮散步的时间段看,分为0﹣20分钟散步,20﹣30分钟看报,30﹣45分钟返回家,按时间段把函数图象分为三段.【解答】解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.3.【分析】根据前20秒匀加速进行,20秒至50秒保持跳绳速度不变,后10秒继续匀加速进行,得出速度y随时间x的增加的变化情况,即可求出答案.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y随时间x的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y随时间x的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y随时间x的增加而增加,故选:C.4.【分析】根据函数图象可知,小明40分钟爬山2400米,40~60分钟休息,60~100分钟爬山(4800﹣2400)米,爬山的总路程为4800米,根据路程、速度、时间之间的关系进行解答即可.【解答】解:A、小明中途休息的时间是:60﹣40=20分钟,故本选项正确;B、小明在上述过程中所走路程为4800米,故本选项错误;C、小明休息前爬山的速度为=60(米/分钟),故本选项正确;D、因为小明休息后爬山的速度是=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选:B.5.【分析】根据题意和图形,可以得到浅水区和深水区h随t的变化情况,从而可以解答本题.【解答】解:由题意可得,在浅水区,h随t的增大而减小,h下降的速度比较慢,在深水区,h随t的增大而减小,h下降的速度比较快,故选:C.6.【分析】根据题意可以写出各段过程中,所剩路程与时间的关系,从而可以解答本题.【解答】解:由题意可得,这位同学从学校出发到与同学相遇前这一过程中,所剩路程随着时间的增加而减小,这位同学与同学相遇到在同学家玩这一过程中,所剩路程随着时间的增加不变,这位同学离开同学家到回到家的这一过程中,所剩路程随着时间的增加而减小,故选:C.7.【分析】根据题意可以写出火车行驶的各个阶段中y与x的函数关系,从而可以解答本题.【解答】解:由题意可得,火车头刚进入隧道到火车尾刚进入隧道的这一过程中,y随x的增大而增大,火车尾刚进入隧道到火车头刚要驶离隧道的这一过车中,y随x的增加不发生变化,火车头刚出隧道到火车尾刚驶离隧道这一过程中,y随x的增大而减小,故选:A.8.【分析】根据图象分析,从纵坐标可以看出,在离家1000米处停留了15﹣10=5分钟,20分钟时,离家2000米到学校.根据这些信息即可判断.【解答】解:根据图象分析,从纵坐标可以看出,在离家1000米处停留了15﹣10=5分钟,故A正确,此时离家2000﹣1000=1000米.故B正确,20分钟时,离家2000米到学校.故C正确,到达学校骑行的时间为:20﹣5=15分钟,故D错误故选:D.9.【分析】根据图形,可以分析出各段过程中,h随t的增加如何变化,从而可以解答本题.【解答】解:由图可得,蚂蚁沿台阶从A1→A2的过程中,h随t的增加不发生变化,蚂蚁沿台阶从A2→A3的过程中,h随t的增加在变小,蚂蚁沿台阶从A3→A4的过程中,h随t的增加不发生变化,蚂蚁沿台阶从A4→A5的过程中,h随t的增加变小直到为零,故选:A.10.【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,甲、乙同学都骑行了18km,故①正确,甲比乙先到达B地,故②错误,甲停留前的速度为:10÷0.5=20km/h,甲停留后的速度为:(18﹣10)÷(1.5﹣1)=16km/h,故③错误,乙的骑行速度为:18÷(2﹣0.5)=12km/h,故④正确,故选:B.二.填空题(共3小题)11.【分析】根据观察函数图象的纵坐标,可得最高气温、最低气温,根据有理数的减法,可得温差.【解答】解:如图:,由纵坐标看出最高气温是10℃,最低气温是﹣2℃,该天最高气温与最低气温之差为10﹣(﹣2)=12℃.故答案为:1212.【分析】根据“速度=路程÷时间”分别求得甲、乙的速度,然后求其差.【解答】解:根据图示知,甲的速度是:8÷(5﹣1)=2(千米/小时),乙的速度是:8÷5=1.6(千米/小时).则:2﹣1.6=0.4(千米/小时).故答案是:0.4.13.【分析】总路程÷回家用的时间,即可求解.【解答】解:小明回家用了15﹣5=10分钟,总路程为500,故小明回家的速度为:500÷10=50(米/分),故答案为50.三.解答题(共13小题)14.【分析】(1)看图象即可求解;(2)小王吃早餐时,s的值为常数,即可求解;(3)确定该时段学生走的距离和时间,即可求解.【解答】解:(1)从图象看,小王从家到学校的路程共1000米,从家出发到学校,小明共用了25分钟;故答案为1000,25;(2)小王吃早餐时,s的值为常数,故从10分钟到20分钟,共10分钟,故答案为:10;(3)小王吃早餐以前的平均速度为:500÷10=50米/分钟;小王吃早餐后的平均速度为:(1000﹣500)÷5=100米/分钟.15.【分析】(1)根据自变量与因变量的含义得到时间是自变量,路程是因变量;(2)甲走6行驶100千米,乙走3小时行驶了100千米,则可得到它们的速度的大小;(3)6时两图象相交,说明他们相遇;(4)甲比乙先走3小时;(5)观察图象得到t=9时,乙的图象在甲的上方,即乙行驶的路程远些;(6)路程为150千米,甲行驶了9时,根据乙的速度可得乙行驶的时间.【解答】解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s为因变量;(2)甲的速度=千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)甲比乙先走3小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)路程为150千米,甲行驶了9时,乙行驶的时间为:150÷(100÷3)=4.5(小时).故答案为:(1)t;(2)小于;(3)6时;(4)3;(5)后面;(6)9;4.5.。

八年级数学下册《函数的图象》练习题及答案(人教版)

八年级数学下册《函数的图象》练习题及答案(人教版)

八年级数学下册《函数的图象》练习题及答案(人教版)班级姓名考号一、单选题1.小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.2.小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离h与散步时间t之间的函数关系可能是()A.B.C.D.3.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是【】A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了—会儿书,继续向前走了一段,18分钟后开始返回4.下列是y关于x的函数是().A.B.C.D.5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店6.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A .8.6分钟B .9分钟C .12分钟D .16分钟7.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程y (km )与行进时间t (h )之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;①乙用了4.5个小时到达目的地:①乙比甲迟出发0.5小时;①甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个8.如图1,点P 从菱形ABCD 的顶点A 出发,沿着折线ABCDA 匀速运动,图2是线段AP 的长度y 与时间x 之间的函数关系的图像(不妨设当点P 与点A 重合时,y =0),则菱形ABCD 的面积为( )A .12B .6C .5D .2.59.铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是( ) A .一条直线 B .一条射线 C .一条线段 D .10个不同的点10.如图,60MAN ∠=︒,点B 在射线AN 上,2AB =.点P 在射线AM 上运动(点P 不与点A 重合),连接BP ,以点B 为圆心,BP 为半径作弧交射线AN 于点Q ,连接PQ .若,AP x PQ y ==,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.13.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,右图为P运动的路与ABP的面积14.学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.15.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是____米/分钟.三、解答题16.写出下列各问题中的函数关系式,并指出自变量的取值范围.(1)如果直角三角形中一个锐角的度数为α,另一个锐角的度数β与α之间的关系;(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x(分钟)之间的关系;(3)有一边长为2cm的正方形,若其边长增加xcm,则增加的面积y(cm2)与x之间的关系.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.他本次上学所用的时间与路程的关系示意图如图所示.(1)小明在书店停留了______分钟;(2)本次上学途中,小明一共行驶的路程为______;(1)在上升或下降过程中,无人机的速度是米/分;20.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离()m y 与小雪离开出发地的时间()min x 之间的函数图象如图所示,请根据图象解答下列问题:(1)小雪跑步的速度为多少米/分?(2)小松骑自行车的速度为米/分?(3)当小松到家时,小雪离图书馆的距离为多少米?参考答案1.C2.C3.D4.C5.C6.C7.C8.B9.D10.C(3)由图象可知:图象关于直线x =2对称;故答案为:图象关于直线x =2对称;(4)进一步探究函数图象发现:①函数图象与x 轴有2个交点,对应的方程2|x ﹣2|﹣1=0有2个实数根; ①若关于x 的方程2|x ﹣2|﹣1=a 有两个实数根,则a 的取值范围是a >﹣1 故答案为2,2;a >﹣1.20.(1)解:由函数图象可知小雪跑步5分钟的路程为450035001000m -= ①小雪跑步的速度为10005200m /min ÷=;(2)解:由(1)得小雪步行的速度为100m/min设小雪在第t 分钟改为步行①()200100354500t t +-=解得10t =①由函数图象可知,当第10分钟时,小雪改为步行,此时两人相距1000m ①小松骑车的速度为()()4500200101000105300m /min -⨯-÷-=; (3)解:由(2)得小松到家的时间为4500300520min ÷+= ①小雪离图书馆的距离为()45002001010020101500m -⨯-⨯-=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数与图象》姓名 分数
一、填空题
1.平面直角坐标系中的点和 一一对应;
2.平面直角坐标系中的P (3,-5),关于x 轴对称的点 1P 的坐标为 ;关于y 轴
对称的点 2P 的坐标为 关于原点对称的点 3P 的坐标为 ;
3.点Q (-4,5)到x 轴的距离是 ,到y 轴的距离是 ; 4.描点法法画函数图象的一般步骤是 ; 5.若点)1,(+a a P 在函数
62--=x y 的图象上,则a = ;
6.函数的三种表示方法分别是 ;
7.某种灯的使用寿命为1000小时,它的可用天数y 与平均每天使用的小时x 之间的关系式为 ;
8、若点H )1,
23(-+a a 在x 轴上,则点H 的坐标是 ;
9.等腰三角形的周长是50cm ,底边长是x cm ,一腰长为y cm ,则y 与x 之间的函数关系式是______;自变量x 的取值范围是______.
10.若直线
b x y +=2过点(2,1),则b = .
11、当k 时,点P )12,2(--k 关于y 轴对称的点在第四象限
12、假定甲、乙两人在一次赛跑中,路程S 与时间 T 的关系在平面直角坐标系中所示,如图,请结合图形 和数据回答问题:
(1)这是一次 米赛跑;
(2)(2)甲、乙两人中先到达终点的是 ; (3)乙在这次赛跑中的速度为 ; (4)甲到达终点时,乙离终点还有 米。

二、选择题
1.已知点(1-a,a+2)在第二象限,则a 的取值范围是( ) A .a>-2 B. -2<a <1 C a<-2 D a>1 2.函数
562+-=x x y 中自变量x 的取值范围是( )
A .全体实数 B.0≠x
C 0〉x
D 0〈x
3.在平面直角坐标系中,点),(b a Q 在第四象限内,则点),(a b P 在( ) A .第一象限 B 第二象限 C 第三象限 D 第四象限 4.点p (-3,2)关于y 轴对称点的坐标是( )
A.(―3,―2)
B.(3,2)
C.(3,—2)
D.(2,—3)
5.一个矩形的周长为30,则矩形的面积y 与矩形一边长x 的函数关系为( )
A.y ﹦x(15-x)
B.y ﹦x(30-x)
C.y ﹦x(30-2x)
D.y ﹦x(15+x) 6.若点p 在第二象限,且p 点到x 轴的距离为
3,
到y 轴的距离为1,则p 点的坐标是( )A.(-1,
3)
B.(-
3,1)
C.(
3,-1)
D.(1,-
3)
7.下列函数中,自变量取值范围选取错误的是( )
A .
中,x 取全体实数 B .
中,
C .
中,
D .
中,
8.如果每盒圆珠笔有12支,售价18元,那么圆珠笔的售价y (元)与圆珠笔的支数x 之间的
函数关系式是( )A .
B .
C .
D .
9.函数
21
3+=
x y 的自变量x 的取值范围是 ( ) A .31-≠x B .x ≠一3 C .x 取任意实数 D.3
1
->x
10.函数
x y -=2的自变量x 的取值范围是 ( )
A .x<2
B .x ≤2 C. x ≥2 D .x >2 三、解答题
1.图17—4是北京市某日的气温变化图,从图中我们可以获得信息,例如:
(1)这天2时的气温是4℃; (2)这天的最高气温为11.8℃; (3)这天的最低气温是1.8℃;
(4)这一天中,从凌晨4时到14时气温在逐渐升高. 除以上4条信息外,请你从图中再写出4条信息来.
答:①_______________________________________________________ ②___________________________________________________________ ③___________________________________________________________ ④___________________________________________________________
2.等腰△ABC 的周长为10cm ,底边BC 的长为ycm,腰AB 的长为xcm.
(1)写出y 关于x 的函数关系式 (2)求x 的取值范围 (3)求y 的取值范围 (4)画出函数的图象。

相关文档
最新文档