2015八年级数学下册 6.1 平行四边形及其性质导学案1(无答案)(新版)青岛版
【优选整合】北师大版八年级下册数学 6.1.1平行四边形的性质 导学案
6.1.1平行四边形的性质导学案【学习目标】1、学习平行四边形有关概念和性质;2、掌握平行四边形的性质,并能简单应用;【学习重点】平行四边形性质的探索和理解 【学习难点】平行四边形性质的探索. 【学习过程】自主探索:1、平行四边形是生活中常见的图形,你能举出一些实例吗?2、平行四边形的定义: (1)叫做平行四边形。
几何语言:(2)平行四边形 的两个顶点连成的线段叫做它的对角线。
如上图四边形ABCD 是平行四边形,记作 ,线段 、 是平行四边形ABCD 的对角线。
3、平行四边形是中心对称图形吗?如果是,它的对称中心是 .你能验证你的结论吗?你还能发现平行四边形的哪些性质?请尝试证明这些结论平行四边形的性质⎧⎧⎨⎨⎩⎩位置关系:对角关系:边 角数量关系:临角关系:ABCDABCD几何语言∵ 四边形ABCD 是平行四边形∴ (对边关系); (对角关系)方法总结:研究平行四边形的主要辅助线是 ,它把平行四边形分成 .进而将平行四边形的线段或角的相等问题转化 为 . 精讲释疑:己知,如图,在□ABCD 中,E 、F 是对角线AC 上的两点,且BE ∥DF ,求证:AE=CF分层练习:1、P137随堂练习1、22、□ABCD 中,∠A: ∠B: ∠C: ∠D 的值可以是( )A .1:2:3:4B .3:4:4:3C .3:3:4:4D .3:4:3:4 3、□ABCD 的周长为40cm ,△ABC 的周长为27cm ,AC 的长为( ) A .13cm B .3cm C .7cm D .11.5cm4、如图,将□ABCD 沿AE 翻折,使点B 恰好落在AD 上的点F 处,则下列结论不一定成立的是( ). A 、AF=EF B 、AB=EF C 、AE=AF D 、AF=BE5、如图,下列推理不正确的是( )A .∵AB ∥CD ∴∠ABC+∠C=180° B .∵∠1=∠2 ∴AD ∥BCC .∵AD ∥BC ∴∠3=∠4 D .∵∠A+∠ADC=180° ∴AB ∥CD 6、在□ABCD 中,∠A=50°,则∠B= ,∠C= ,∠D= 。
八年级数学下册6.1平行四边形及其性质平行四边形的性质的应用素材(新版)青岛版.doc
平行四边形的性质的应用一、求平行四边形的周长【例1】如图所示,在□ABCD中,AB=18cm,PC=6cm,AP是∠DAB的平分线,求□ABCD的周长.【思考与分析1】欲求□ABCD的周长,已知AB=18cm,PC=6cm,只需求出AD、BC的长.我们可以过点P作P Q∥BC交AB于Q,构造△AQP与△ADP全等.方法1:过点P 作PQ∥BC交AB于Q,由平行四边形的定义可知四边形ADPQ,BCPQ也是平行四边形.∴AQ=D P,QB=PC.∴AQ=AB-PC=18cm-6cm=12cm.∵AP是∠DAB的平分线,∴∠1=∠2.又∵∠D =∠AQP,AP=AP,∴△ADP≌△AQP.∴AD=AQ=12c.m∴□ABCD的周长为:2(AB+AD)=60cm.【思考与分析2】欲求□ABCD的周长,我们可以延长A P交BC的延长线于Q,构造等腰三角形ABQ.方法2:延长A P交BC的延长线于Q.在□ABCD中,AD∥BC,AB∥CD,∴∠1=∠Q,∠2=∠3.又∵∠1=∠2,∴∠Q=∠2=∠3.∴AB=BQ,P=C C Q.∴BC=BQ-C Q=AB-PC=18cm-6cm=12cm.∴□ABCD的周长为:2(AB+BC)=60cm.【小结】求平行四边形的周长时往往只需要求出平行四边形的相邻两边长,在求解过程中可以构造特殊的三角形,如等腰三角形、全等三角形等等.二、等分面积【例2】如图,ABCD是王老六家的一块平行四边形田地,P 为水井,现要把这块田平均分给两个儿子, 为了方便用水,要求两个儿子分到的地都与水井相邻,请你来设计一下,并说明你的理由.【思考与分析】我们说只要满足所分的两块地面积相等,且都与水井相邻就可以. 那么可以考虑利用平行四边形的性质(平行四边形的对角线互相平分)来解题. 找到两条对角线的交点,则交点和水井所在的直线将田地分成面积相等的两块.解:设对角线AC,BD交于O,如下图,过O、P 作直线交BC,AD于E、F,则线段EF分割的这两块田地符合要求. 理由如下:易证OE=OF,BE=DF,AF=CE(把证线段相等转化为证三角形全等),四边形ABEF绕点O旋转180°,就与四边形CDFE重合,这两部分面积相等, 又点P(井)在EF上,符合水井和两块地相邻的要求,故此种分法符合要求.【反思】实际生活中有很多需要直接或间接用平行四边形的性质来解决的问题,我们要牢牢把握住性质以便可以灵活地运用它来解题.三、探究相等的线段【例3】如图,在平行四边形ABCD中,点E、F 在对角线AC上,且AE=CF,请你以 F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并说明它和图象中已有的某2一条线段相等(只需说明一组线段相等即可).(1)连接.(2)猜想:=___________.(3)理由:.【思考与分析】本题立足于一个常见的基本图形,把传统的几何题,改造成一个发现猜想、说明理由的几何题,对平面几何的学习有着重要的意义.解:答案1:(1)连接BF.(2)猜想:BF=DE.(3)理由1:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC.∴∠DAE=∠BCF.在△BCF与△DAE中,∴△BCF≌△DAE. ∴BF=DE.理由2:如图,连接DB、D F,设D B、CA交于点O.∵四边形ABCD是平行四边形,∴AO=OC,DO=OB.∵AE=FC,∴AO-AE=OC-FC.即EO=OF.∴四边形EBFD为平行四边形.∴BF=DE.答案2:(1)连接DF.(2)猜想:DF=BE.(3)理由:略.【小结】理由 1 中把线段相等问题转化为求三角形全等问题;理由 2 中把线段相等问题转化为平行四边形判定的问题. 通过解转化后的问题,线段相等成为明显的事实.四、证明角相等【例4】如图,已知点M、N分别是□ABCD的边A B、DC的中点,试说明:∠DAN=∠BCM.【思考与分析】先找这两个角的位置,但没有什么联系.题中给出点M、N分别是平行四边形ABCD的边A B、DC的中点,很容易想到连接MN,得到三个四边形AMC、N AMND、BCNM是平行四边形,推出∠DAN=∠ANM,∠BCM=∠CMN,而只要能推出∠ANM∠=CMN,题中结论即可证明.解:连接MN.∵M、N分别是平行四边形ABCD的边A B、DC的中点,∴AM、CN平行且相等.∴四边形AMCN是平行四边形.同理,四边形AMND、四边形BCNM是平行四边形.∴∠DAN=∠ANM∠=CMN∠= BCM.五、证明线段平行【例5】已知:如图,E、F 是平行四边形ABCD的对角线A C上的两点,AE=CF.试说明:(1)△ADF≌△CBE;(2)EB∥DF.【思考与分析】要说明△ADF≌△CBE,就要找全等的条件. 猛一看,题中只有AE=CF一个条件,其实还有一个条件四边形ABCD是平行四边形,则A D=BC,∠DAF=∠BCE,所以△ADF≌△CBE.所以∠DFA=∠BEC,所以(2)的结论成立.4解:(1)∵AE=CF,∴AE+EF=CF+FE即AF=CE .又四边形ABCD是平行四边形,∴AD=CB,AD∥BC .∴∠DAF=∠BCE .在△ADF与△CBE中∴△ADF≌△CBE(SAS). (2)∵△ADF≌△CBE,∴∠DFA=∠BEC .∴DF∥EB .。
北师大版数学八年级下册6.1《平行四边形的性质》(第2课时)说课稿
北师大版数学八年级下册6.1《平行四边形的性质》(第2课时)说课稿一. 教材分析北师大版数学八年级下册6.1《平行四边形的性质》(第2课时)这一节的内容,是在学生已经掌握了平行四边形的概念和性质的基础上进行讲解的。
本节课的主要内容是引导学生探究平行四边形的性质,让学生通过自主学习、合作交流的方式,发现平行四边形的对角相等、对边平行等性质,并能够运用这些性质解决实际问题。
二. 学情分析在进入本节课的学习之前,学生已经对平行四边形有了初步的认识,掌握了平行四边形的定义和一些基本的性质。
但是,对于平行四边形的对角相等、对边平行的性质,学生可能还没有完全理解和掌握。
因此,在教学过程中,我需要注重引导学生通过观察、操作、思考、交流等活动,自主发现平行四边形的这些性质,并能够运用它们解决实际问题。
三. 说教学目标1.知识与技能目标:让学生掌握平行四边形的对角相等、对边平行的性质,并能够运用这些性质解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生自主学习的能力和合作交流的意识。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的观察能力、思考能力和创新能力。
四. 说教学重难点1.教学重点:平行四边形的对角相等、对边平行的性质。
2.教学难点:如何引导学生自主发现平行四边形的这些性质,并能够运用它们解决实际问题。
五. 说教学方法与手段在本节课的教学中,我将采用自主学习法、合作交流法、观察操作法、讲解法等教学方法。
同时,我会利用多媒体课件和实物模型等教学手段,帮助学生更好地理解和掌握平行四边形的性质。
六. 说教学过程1.导入新课:通过复习平行四边形的定义和性质,引导学生进入本节课的学习。
2.探究性质:让学生通过观察、操作、思考、交流等活动,自主发现平行四边形的对角相等、对边平行的性质。
3.讲解示范:对学生的探究结果进行讲解和示范,让学生更加深入地理解和掌握平行四边形的性质。
4.练习应用:设计一些练习题,让学生运用所学的性质解决实际问题,巩固所学知识。
《平行四边形的性质(边角特征)》精品导学案 人教版八年级数学下册导学案(精品)
18.1.1 平行四边形的性质第1课时平行四边形的边、角特征学习目标:1.能熟练复述平行四边形的对边相等、对角相等的两条性质.2.会根据平行四边形的性质进行简单的计算和证明.学习重点:掌握平行四边形的对边相等、对角相等的两条性质.自主研习一、课前检测二、温故知新举例说明生活中平行四边形的例子三、预习导航〔预习教材41-43页, 标出你认为重要的关键词〕1.什么叫做平行四边形?如何表示右图中的平行四边形?文字语言:符号语言:文字语言:符号语言:4.________________________________________叫做这两条平行线之间的距离.四、自学自测1.如图, DC∥GH ∥AB, DA∥EF∥CB, 图中的平行四边形有多少个?将它们表示出来.2.在上题的条件下, 从图中找出三组相等的线段和角.五、我的疑惑〔反思〕探究点拨一、要点探究探究点1:平行四边形的边、角的特征量一量1.根据平行四边形的定义,请画一个平行四边形ABCD.用尺子等工具度量它的四条边, 并记录下数据, 你能发现AB与DC, AD与BC之间的数量关系吗?2.再用量角器等工具度量它的四个角, 并记录下数据, 你能发现∠A与∠C, ∠B与∠D之间的数量关系吗?思考你发现了什么规律?证一证:四边形ABCD是平行四边形.求证:AD=BC,AB=CD,∠BAD=∠BCD,∠ABC=∠ADC.证明:如图, 连接AC.∵四边形ABCD是平行四边形,∴AD___BC, AB___CD,∴∠1___∠2, ∠3___∠4.又∵AC是△ABC和△CDA的公共边,∴△ABC____△CDA,∴AD___BC, AB___CD, ∠ABC___∠ADC.∵∠BAD=∠1+∠4, ∠BCD=∠2+∠3,∴∠BAD___∠BCD.思考不添加辅助线, 你能否直接运用平行四边形的定义, 证明其对角相等?要点归纳:平行四边形的对边___________;平行四边形的对角___________.几何语言表示:即学即练:□ABCD中,∠A:∠B=2:3,求各角的度数.□ABCD的周长为28cm,AB:BC=3:4,求各边的长度.探究点2:平行线间的距离想一想:如图,假设m // n,作 AB // CD // EF, 分别交 m于A、C、E, 交 n于B、D、F.由________________________易知四边形ABDC, CDFE均为__________________.由平行四边形的性质得AB______CD_______EF.填一填:如图, 在□ABCD中, DE⊥AB, BF⊥CD, 垂足分别是E, F.求证:DE=BF.证明:∵四边形ABCD是平行四边形,∴∠A_____∠C, AD______CB.又∠AED= ∠CFB=90°,∴△ADE____△CBF〔_____〕,∴DE_____BF.要点归纳:1.两条平行线之间的任何平行线段都__________.2.两条平行线间的距离:两条平行线中, 一条直线上任意一点到另一条直线的__________________.3.两条平行线间的距离__________.=12cm2, 求△ABD中AB边上即学即练:3.如图, AB∥CD, BC⊥AB, 假设AB=4cm, S△ABC的高.二、精讲点拨例1如图, 在□ABCD中.〔1〕假设∠BAD =32°,求其余三个角的度数.〔2〕连接AC, □ABCD的周长等于20 cm, AC=7cm, 求△ABC的周长.例2如图, 在□ABCD中,E, F是对角线AC上的两点, 并且BE∥DF.求证: BE=DF.方法总结:三、变式训练1.如图, 在□ABCD中, 假设AE平分∠DAB, AD=5cm,AB=9cm,那么EC=_______.2.剪两张对边平行的纸条随意交叉叠放在一起, 重合局部构成了一个四边形,转动其中一张纸条, 线段AD和BC的长度有什么关系?为什么?四、课堂小结平行四边形内容定义性质其它结论星级达标★1.判断题:(1)平行四边形的两组对边分别平行且相等 ( )(2)平行四边形的四个内角都相等 ( )(3)平行四边形的相邻两个内角的和等于180° ( )(4)如果平行四边形相邻两边长分别是2cm和3cm, 那么周长是10cm ( )(5)在平行四边形ABCD中, 如果∠A=35°, 那么∠C=145°( )★2.在□ABCD 中, M 是BC 延长线上的一点, 假设∠A=135°, 那么∠MCD 的度数是〔 〕A .45°B . 55°C . 65°D . 75°★3.DE ∥AC,DF ∥BC,EF ∥AB, 那么图中有____个平行四边形. ★4.如图, 直线AE//BD,点C 在BD 上,假设AE=5, BD=8,△ABD 的面积为16, 那么△ACE 的面积为_________.★★5.:如图, 在□ABCD 中, ∠ABC 的平分线BE 交AD 于点E, ∠ADC 的平分线DF 交BC 于点F .求证:ED=BF .★★6.有一块形状如下图的玻璃, 不小心把EDF 局部打碎了, 现在只测得AE=60cm, BC=80cm, ∠B=60°且AE ∥BC 、AB ∥CF,你能根据测得的数据计算出DE 的长度和∠D 的度数吗?★★★7.如图, 在□ABCD 中,点E 是BC 边的中点, 连接AE 并延长与DC 的延长线交于F.〔1〕求证:CF=CD.〔2〕假设AF 平分∠BAD,连接DE, 试判断DE 与AF 的位置关系, 并说明理由. 我的反思〔收获, 缺乏〕 分层作业必做(教材 智慧学习 配套) 选做参考答案:即学即练:1.试题分析:根据平行四边形的边和角的性质解答.详解:在□ABCD 中,AD ∥BC, ∴∠A+∠B=180°,又∵∠A:∠B=2:3,∴∠A=52×180°=72°, ∠B=53×180°=108°. :根据平行四边形的边的性质解答.详解:在□ABCD 中,AD=BC, AB=CD.∵□ABCD 的周长为28cm,∴AB+BC=14cm,又∵AB:BC=3:4,∴AB=CD=73×14=6cm, BC=AD=74×14=8cm. :根据三角形的面积求出ABC △的边AB 上的高BC , 再根据平行线间的距离相等解答.第2题图 第3题图 第4题图详解:1141222ABCS AB BC BC=⋅=⨯⋅=,解得:6BC=,∵AB∥CD, ∴点D到AB边的距离等于BC的长度,∴ABD△中AB边上的高等于6cm.例1 试题分析:根据平行四边形的边和角的性质解答.详解:〔1〕在□ABCD中, ∠BAD=∠BCD,∠B=∠D.∵∠BAD =32°,∴∠BCD =32°.∵AD∥BC, ∴∠BAD +∠B=180°,∴∠B=∠D=148°.〔2〕在□ABCD中,AD=BC, AB=CD.∵□ABCD的周长为20cm,∴AB+BC=10cm,∴△ABC的周长=AB+BC+AC=10+7=17cm.例2 试题分析:先证BC=AD, ∠ACB=∠DAC, ∠CEB=∠AFD, 根据AAS证出△BEC≌△DFA, 从而得出BE=DF.证明:∵四边形ABCD是平行四边形,∴BC=AD, BC∥AD,∴∠ACB=∠DAC,∵BE∥DF, ∴∠BEC=∠AFD,∴△CBE≌△ADF, ∴BE=DF.变式训练:1.解:如图, 在平行四边形ABCD中, 那么AB∥CD, AB=CD.∴∠2=∠3,又AE平分∠BAD, 即∠1=∠3, ∴∠1=∠2, 即DE=AD,又AD=5cm, AB=9cm,∴EC=CD-DE=9-5=4cm.:首先可判断重叠局部为平行四边形, 然后由平行四边形的性质来进行判断.详解:∵四边形ABCD是用两张对边平行的纸条交叉重叠地放在一起而组成的图形,即AB∥CD, AD∥BC, ∴四边形ABCD是平行四边形.∴AD=BC.星级达标:1、〔1〕√〔2〕×〔3〕√〔4〕√〔5〕×2、试题分析:此题考查平行四边形的性质、邻补角定义等知识, 根据平行四边形对角相等, 求出∠BCD, 再根据邻补角的定义求出∠MCD 即可. 详解:∵四边形ABCD 是平行四边形, ∴∠A=∠BCD=135°,∴∠MCD=180°-∠BCD =180°-135°=45°.应选:A .3、试题解析:图中的平行四边形有□ADFE , □BDEF , □C EDF , 共三个, 故答案为3.4、试题分析:过点A 作AF ⊥BD 于点F, 由△ABD 的面积为16可求出AF 的长, 再由AE ∥BD 可知AF 为△ACE 的高, 由三角形的面积公式即可得出结论. 详解:过点A 作AF ⊥BD 于点F, ∵△ABD 的面积为16, BD=8, ∴12BD•AF=12×8×AF=16, 解得AF=4, ∵AE ∥BD,∴AF 的长是△ACE 的高, ∴S △ACE =12×AE×4=12×5×4=10.故答案为:10. 5、试题分析:根据平行四边形的性质及角平分线定义得到ABE AEB ∠=∠, 进而推出AE=AB, 同理CF CD =, 再根据线段的和差证明即可. 详解:四边形ABCD 是平行四边形, ∴AD ∥BC , AB CD =, AD BC =,AEB CBE ∴∠=∠,BE 平分ABC ∠, ABE CBE ∴∠=∠,ABE AEB ∴∠=∠, AE AB ∴=,同理:CF CD =.AE CF ∴=, AD AE BC CF ∴-=-, ED BF ∴=.6、试题分析:首先利用定义可判断四边形ABCD 为平行四边形, 然后利用平行四边形边和角的性质来进行计算即可.详解:∵AE ∥BC 、AB ∥CF,∴四边形ABCD 为平行四边形.∴AD=BC, ∠D=∠B.又∵AE=60cm, BC=80cm, ∠B=60°, ∴DE=80-60=20cm, ∠D=60°.7、试题分析:〔1〕根据平行四边形的性质可得到AB ∥CD, 从而可得到AB ∥DF, 根据平行线的性质可得到两组内错角相等, 点E 是BC 的中点, 从而可根据AAS 来判定△BAE ≌△CFE, 根据全等三角形的对应边相等可证得AB=CF, 进而得出CF=CD;〔2〕利用全等三角形的判定与性质得出AE=EF, 再利用角平分线的性质以及等角对等边求出DA=DF, 利用等腰三角形的性质求出即可.〔1〕证明:∵四边形ABCD是平行四边形,∴AB∥CD, AB=CD.∵点F为DC的延长线上的一点, ∴AB∥DF,∴∠BAE=∠CFE, ∠ECF=∠EBA,∵E为BC中点, ∴BE=CE,那么在△BAE和△CFE中,,∴△BAE≌△CFE〔AAS〕,∴AB=CF, ∴CF=CD;〔2〕解:DE⊥AF,理由:∵AF平分∠BAD, ∴∠BAF=∠DAF,∵∠BAF=∠F, ∴∠DAF=∠F, ∴DA=DF,∴△ADF为等腰三角形.又由〔1〕知△BAE≌△CFE, ∴AE=EF,∴DE⊥AF.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表: 信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B两种树的混合林, 需要购置这两种树苗2 000棵, 种植A, B两种树苗的相关信息如下表:品种价格(单位:元/棵) 成活率劳务费(单位:元/棵)A1595% 3B2099% 4设购置A种树苗x棵, 造这片树林的总费用为y元, 解答以下问题:(1)写出y与x之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x吨, 这批原材料能用y天, 那么y与x之间的函数表达式为〔〕A.y=100x B.y=C.y=+100D.y=100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m3的圆柱形煤气储存室, 那么储存室的底面积S〔单位:m2〕与其深度d〔单位:m〕的函数图象大致是〔〕A.B.C.D.3.甲、乙两地相距s〔单位:km〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y〔单位:h〕关于行驶速度x〔单位:km/h〕的函数图象是〔〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热,水温开始下降, 此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕100 80 60 40 20压强y〔kPa〕60 75 100 150 300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32 B.x≤32 C.x>32 D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k =〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200 240 250 400销售量y〔双〕30 25 24 1513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 1.5〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小, 此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100 125 200 250 …镜片与光斑的距离y/m… 1 …m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mgmg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕400 625 800 1000 (1250)镜片焦距x〔cm〕25 16 10 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.y〔毫克/百毫升〕与时间x〔时〕成正比例;1.5小时后〔包括1.5小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?mg 的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________.10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。
八年级数学下册 6.1 平行四边形的性质(第2课时)导学案(新版)北师大版
八年级数学下册 6.1 平行四边形的性质(第2课时)导学案(新版)北师大版6、1 平行四边形的性质(第2课时)【学习目标】1、学会应用平行四边形的性质;2、在应用中进一步发展学会合情推理能力,增强逻辑推理能力,掌握说理的基本方法。
【学习重难点】重难点:平行四边形性质的应用,发展合情推理及逻辑推理能力。
【学习过程】一、学习准备:1、平行四边形都有哪些性质?按边、角、对角线进行说明。
(1)平行四边形对边。
(2)平行四边形对角。
(3)平行四边形是对角线_________________。
二、教材精读:已知:如图 ABCD的两条对角线AC与BD相交于点O。
ABCDO求证:OA=OC,OB=ODABCDFEO例2 已知:如图ABCD的对角线AC与BD相交于点O,过点O的直线与AD,BC分别相交于点E,F。
求证:OE=OF。
三、练一练:1、平行四边形ABCD中,对角线AC,BD交于O,则全等三角形的对数有对2、在平行四边形ABCD中,已知对角线AC和BD相交于点O,ΔAOB的周长为15,AB=6,那么对角线AC和BD的和是________3、如图在□ABCD中对角线AC、BD相交于点O。
点E,F分别在AO,CO上,且AE=CF。
求证:∠EBO=∠FDO。
4、如图,已知的周长为60 cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长长8cm,求这个四边形各边长、四、课堂小结1、平行四边形的定义:的四边形,叫做平行四边形。
2、平行四边形的性质:_________________________________________________________五、课后作业1、若平行四边形的一边长为5,则它的两条对角线长可以是( )A、12和2B、3和4C、4和6D、4和82、已知的对角线AC与BD相交于点O,OA,OB,AB的长分别为3,4,5、求其他各边以及两条对角线的长度。
3、已知如下图,在ABCD中,AC与BD相交于点O,点E,F 在AC上,且BE∥DF、求证:BE=DF、4、如图,ABCD的对角线AC 与BD相交于点O,∠ADB=90,OA=6,OB=3、求AD和AC的长度、。
八年级数学6.1平行四边形性质(1)导学案
八年级数学:平行四边形性质(1)预习学案一、预习目标1.掌握平行四边形有关概念;2.探索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。
二、知识回顾:1、小学时我们已经知道的平行四边形的概念:______________________2、什么是中心对称?__________________________________________三、1、自主学习阅读135页前两段,回答:平行四边形的定义、平行四边形的对角线的定义、平行四边形的表示方法以及读法练习:(1)如图所示:四边形ABCD是平行四边形,记作读作平行四边形有条对角线。
(2)请同学们举出自己身边存在的平行四边形的例子。
2、活动探究:(1)平行四边形是中心对称图形吗?如果是找出它的对称中心并验证你的结论。
(2)你还发现平行四边形的那些性质?平行四边形的对边_____________、对角____________3、证明:(1)已知:如图,如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA.(2)证明:平行四边形的对角相等.4、典型例题:已知:如图6-3,在ABCD 中, E ,F 是对角线AC 上的两点,且AE=CF .求证:BE =DF .5、议一议:(1)如果已知平行四边形一个内角的度数,能确定其它三个内角的度数吗?说说你的理由。
(2)、变换角的度数,试一试。
6、尝试练习:练习1 如图:四边形ABCD 是平行四边形。
(1)求∠ADC 、∠BCD 度数(2)边AB 、BC 的长度。
练习2如图,在平行四边形ABCD中,E、F过AC中点O交AD于E、F,试说明OE=OF拓展:如图在平行四边形ABCD 中,AB,BC,CD 的长度分别是2x+1,3x, x+4, 则 平行四边形 ABCD 的周长为_______.四:反思:通过预习你有哪些收获?还有哪些困惑?A B C D E FO。
八年级数学下册 18.1.1 平行四边形及其性质导学案1(新版)新人教版
【重点】平行四边形的定义,平行四边形对角、对边相等的性质。
一、激明标:
我们一起做游戏:开交(翻花绳)
(要求:看那一小组最先开到我出示的图形)
二、教材预习
学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。注意双色笔的使用,书写工整。
和,最后完成。
赛一赛:仔细观察交绳看看哪组找的平行四边形多
探究点二:平行线间的平行线、高的性质
你能描述他们的性质吗?
探究点三:性质的综合应用
1、如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:1) AB=AD; 2)AB=CE
方法归纳与总结:在平行四边形有角平分线时,结合平行四边形的性质会出现
B.能力测试
2.选择: 在 ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().
(A)4个(B)5个(C)8个(D)9个
C、拓展与提高
3.在 ABCD中,若∠A:∠B:∠C:∠D的值可以是(),
A.1:2:3:4 B.1:2:2:1 C 1:1:2:2 D2:1:2:1
平行四边形及其性质(一)
【励志语录】
1、要成功,需要跟成功者在一起。
2、要跟成功者有同样的结果,就必须采取同样的行动。
【学习目标】
学法指导:仔细阅读,做到有的放矢。
1、认识平行四边形的定义及有关概念;利用定义会识别平行四边形(课标与考纲)。
2、利用转化思想证明平行四边形的对边相等、对角相等的性质(课标与考纲)。
合作探究
学法指导:小组交流,形成共识,进行课堂大展示。展示时要讲清所用知识点、易错点。展示到小黑板的题要标清所用知识点、易错点;注意双色笔的使用,字体工整。
八年级数学下册6.1平行四边形的性质导学案1(无答案)(新版)北师大版
八年级数学下册6.1平行四边形的性质导学案1(无答案)(新版)北师大版平行四边形的性质1、如图,ABCD,则 AB=__________,__________=AD,∠ A=__________,__________=∠ D,若此时∠ B+∠D=128°,则∠ =__________度,∠ =__________度 .导学目标 : 1 .研究平行四边形相关观点和性质的过程发展研究意识和合作沟通的习惯;2.研究并掌握B C平行四边形的性质,并能简单应用;2、假如一个平行四边形的周长为80 cm ,且相邻两边之比为1∶ 3,要点研究并掌握平行四边形的性质,难点平行四边形的性质的简单应用;则长边 =__________cm,短边 =__________cm.知识回首:你认识平行四边形的哪些知识?自主研究,发现问题:导1、什么叫平行四边形?学过 2、平行四边形的表示方法:程3、平行四边形有哪些性质?小组合作,解决问题:将 ABCD 的性质联合图形写出来:平行四边形的对边平行且相等,平行四边形的对角相等∵四边形 ABCD是平行四边形∴导学过练一练:程1.ABCD 中,∠ B=60°,则∠ A=∠ C=∠ D=。
2.ABCD 中,∠ A 比∠ B 大 20°,则∠ C=。
3. ABCD 中, AB=3,BC=5,则 AD=CD=。
组间沟通,展现成就:导学后达成教材P137的对应习题反思运用检测,组内互评:3、如图( 1),, ∠ C的均分线交AB于点,交 A 延伸线于点,且=3 cm, B=5 cm,则ABCD E D F AE E的周长为 __________.4、如图( 2),ABCD,AB> BC,AC⊥ AD,且 AB∶BC=2∶1,则 DC∶ AD=__________,∠ DCA=__度,∠ D=∠ B=__________度,∠ DAB=∠ BCD=__________度.5、如图( 3),ABCD的对角线 AC, BD交于点O,则图中全等三角形有__________对 .(1)(2)(3)6. 以下列图 ,ABCD中, BD是ABCD的对角线, AE⊥ BD于 E, CF⊥BD于 F.(1)在图中补全图形;(2)求证:AE=CF.教课反省:。
北师大版八年级数学下册导学案设计:6.1.1-平行四边形的性质(无答案)
长清实验中学八年级导学案编制时间:4-28 授课老师课题 §6.1.1 平行四边形的性质学习目标 1.记住平行四边形的定义,探究平行四边形的性质;2.能设计实验验证平行四边形是中心对称图形;3.探究平行四边形的性质;能够根据平行四边形的性质进行简单的推理和计算;学具准备:自制两个边长分别是9厘米,13厘米且夹角为60度的三角形硬纸板 知识链接: 填空:(1)平行线的性质:两直线平行,同位角 ,内错角 ,同旁内角 。
(2)全等三角形的性质:全等三角形的对应边 ,对应角 。
(3)三角形全等的判定方法: 。
(4)把一个图形绕某点旋转180度,如果旋转前后的图形与原图形 ,则称这个图形是 ;这个点称作 。
(一)自主学习:看、划、想、做、标、思我的任务是:阅读课本P135— 137页,试着解决以下问题:活动一:拼图游戏.问题1:请运用你手中两张全等的三角形纸板拼出不同的四边形,并画出来。
问题2:观察拼出的四边形的对边有怎样的位置关系?说说你的理由.(一)探索平行四边形的定义:组长:拿着两个全等的三角形拼出一个平行四边形,让同学们分析对边的关系总结定义。
1.定义:有两组对边______________的四边形叫平形四边形,请你运用数学几何语言给平行四边形下个定义:(1)∵ ∥ , ∥ ∴四边形ABCD 是平行四边形(2)反过来 ∵四边形ABCD 是___________∴AB ∥CD,AD ∥BC (性质)2.表示:平行四边形用“______”表示,平行四边形ABCD 记作__________。
ADC B注意:表示一般按一定的方向依次写出各顶点字母3.对角线的定义:平行四边形 两个顶点连成的 叫做它的对角线4.如图口ABCD 中,对边有______组,分别是___________,对角有_____组,分别是_________,对角线有______条,它们是____________。
称作 BD 叫做活动二:探究平行四边形的性质.组长剪出两个一样的口ABCD ,将其两条对角线的交点重合在一起,将其中一个旋转180°,仔细观察,引导学生探究下列各题。
人教版八年级数学下册《18.1平行四边行的性质(1)》导学案设计(无答案)
18.1《平行四边形的性质(第1课时)》导学案学校 班级 姓名 座号一、学习目标理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质; 运用平行四边形的性质进行有关的计算与证明、进而解决简单的问题; 了解两条平行线之间距离的意义,能度量两条平行线之间的距离. 二、学习重点理解并掌握平行四边形的概念及其性质. 三、学习难点在平行四边形性质的探索过程中体会转化思想,提高合情推理和演绎推理能力. 四、学前准备卡片数张、平行四边形卡纸、两个全等的三角形卡纸、图钉、剪刀、三角尺 五、学习过程(一)先学先知环节1.与生活情景对话,揭示主题(1)有一块形状如图所示的玻璃,不小心把EDF 部分打碎了,现在只测得AE=60cm 、BC=80cm ,∠B=60°且AE ∥BC 、AB ∥CF ,你能根据测得的数据计算出DE 的长度和∠D 的度数吗?你的猜想是: .(2)平行四边形是一种很特殊的四边形,你能举出生活中常见的平行四边形的 一些例子吗?说说平行四边形是如何区别于一般的四边形的呢?你的知识储备有: .2.与教材文本对话,解读概念(学生自主阅读教材第72-74页 )(1)请在你的卡纸上,作一个平行四边形(参照P72页试一试,剪下备用) (2)通过作图,概括定义:__________________________叫做平行四边形. (3)平行四边形的表示:如图所示, 平行四边形ABCD 记作: ;对边有: ;对角有: . (4)理解定义的双重性: 具备条件:______________的四边形,才是平行四边形;反过来,平行四边形一定具有的性质是 . 几何语言表述: 如上右图所示,① ∵ AB ∥CD AD ∥BC ∴四边形ABCD 是平行四边形; ② ∵ 四边形ABCD 是平行四边形 ∴AB ∥CD AD ∥BC.B AC(5)通过探索,你还得到平行四边形的边、角的哪些性质呢?用几何语言表述. 如图所示,∵四边形ABCD 是平行四边形 ∴ ; ∴ ;∴ . 3.与题组检测对话,即学即用(1)已知□ABCD 中,∠A=40°,则∠B= ,∠C= ,∠D= ; (2)在□ABCD 中,∠A+∠C=100°, 则∠A= ,∠D= ; (3)在□ABCD 中,∠A:∠B=1:2,则∠A= ,∠D= ; (4)在□ABCD 中,AB=5, BC=8,则CD= ,AD= ; (5)已知□ABCD 的周长为60cm ,则AB+BC= ; 若AB :BC=2:3,则AB= ______,BC= ;(6)如图,在□ABCD 中,已知AC=3cm ,△ABC 的周长=8cm ,则平行四边形的周长为_______cm .(二)交流展示环节1.与探究活动对话,探索性质(合作探究平行四行边的数量关系、角的数量关系)AD CBD2.与演绎推理对话,理解性质问题:你能用已学的知识,通过演绎推理,证明上述探索的结论吗?并提出相异构想. 已知: 求证: 证明:(备用图)3.与例题改编对话,提升技能(1)例2 如图,在□ABCD 中, AB=8,周长等于24,求其余三条边的长.(2)改编训练如图,已知□ABCD 中,∠DAB 的平分线AE 交CD 于E ,且AB =8,EC =3, 求□ABCD 的周长.CDABE4.与实践探索对话,拓展知识(1)阅读教材P75页“试一试”,给了你什么启发呢?(2)请你在作业纸中任画两条平行直线m和n,用直角三角尺的一条直角边紧贴直线n;并沿着n平移,观察三角尺的另一条直角边与直线m交点处的刻度会改变吗?请概括你的发现.(3)若在直线m上任取两点A、C,过A作AB⊥n于B,过C作CD⊥n于D,测量AB、CD的长度,你有什么发现?试用平行四边形的性质定理加以说明.(4)概括:①平行线的又一个性质:;②两条平行线之间的距离的意义: .(5)如图,直线m∥n,点B、C是直线n上的两个定点,点A是直线m上的一个动点,那么在点A移动的过程中,△ABC的面积将().A、逐渐变大B、逐渐变小C、保持不变D、无法确定5.与总结收获对话,升华知识(三)课外作业与综合实践1.必做题:课本P75练习:第2、3题;P80 18.1习题:第3题、第5题2.实践与探索题:如图,甲、乙两户的承包田被折线ABC分割,给耕种带来许多不便,他们想把这条分割线改成直线,并且保持两户农田面积不变,道路的一端仍为A,问应该怎么改?画出示意图,并说明理由。
八年级数学下册2.2.1《平行四边形》导学案(无答案)湘教版(new)
平行四边形集体备课备注课型新课课题湘教版数学八年级下册 2.2。
1 《平行四边形》导学案一、学习目标:1.知识与技能:使学生掌握用平行四边形的定义判定一个四边形是平行四边形;理解并掌握用二组对边分别相等的四边形是平行四边形这个判定方法来判定一个四边形是平行四边形,能运这两种方法来证明一个四边形是平行四边形2. 过程与方法:通过观察、动手自学掌握用平行四边形的定义判定一个四边形是平行四边形并掌握用二组对边分别相等的四边形是平行四边形这个判定方法来判定一个四边形是平行四边形,能运这两种方法来证明一个四边形是平行四边形3.情感态度与价值观:培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力二、学习重难点:1、平行四边形的判定定理2、掌握平行四边形的性质和判定的区别及熟练应用三、预习感知:1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD记作__________。
2.如图□ABCD中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。
四、合作探究1。
平行四边形定义:两组对边分别的四边形叫做平行四边形.2.平行四边形的表示:平行四边形ABCD记作□ABCD3。
几何语言表述:∵B.平行四边形对角线的交点到一组对边距离相等;C.四边形具有平行四边形的所有性质;D.沿平行四边形一条对角线对折,这条对角线两旁的图形能够互相重合.3。
如图,在□ABCD中,CE⊥AB,E为垂足,如果∠A=120°,那么∠BCE的度数是( ) A.80°B。
50°C。
40°D.30°4。
用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长边的长度为__________cm.11.平行四边形的两条高分别为5cm和8cm, 较短的边长为8。
新北师大版八年级下册数学 《平行四边形的性质(1)》导学案1
第六章平行四边形第一节平行四边形的性质(一)【学习目标】1、经历探索平行四边形有关概念和性质的过程,在活动中发展探究意识和合作交流的习惯.2、探索并掌握平行四边形的性质,并能简单应用.【学习方法】自主探究与小组合作交流相结合.【学习重难点】重点:平行四边形的定义、表示方法及相关概念.难点:平行四边形性质的探索及性质的理解.【学习过程】模块一预习反馈一、学习准备:1、平行四边形的定义:的四边形,叫做平行四边形.2、平行四边形的表示:平行四边形用符号“_________”表示.3、平行四边形的不相邻的两个顶点连成的一条线段叫做它的 .如图所示线段AC就是□ABCD的一条______________.4、平行四边形的性质:(1)平行四边形对边(2)平行四边形对角(3)平行四边形是______________图形,两条对角线的交点是它____________.5、平行四边形的性质用几何语言表示:如图:∵AD // BC ,∴四边形ABCD是平行四边形;∵□ABCD∴// , //;∵□ABCD∴ = , = ;∵□ABCD∴∠ =∠ ,∠ =∠ ;二、教材精读:6、例1 四边形 ABCD 是平行四边形,AD=30,DC=25,∠B=56°(1)求∠ACD 和∠BCD 的度数;(2)AB 和BC 的长度.模块二 合作探究1、 已知如下图,在□ABCD 中,AC 与BD 相交于点O ,点E ,F 在AC 上,且AE=CF .求证:BE=DF .2、提示:下面的题都需自己先画出合适的平行四边形.(1)在□ABCD 中若∠B +∠D=80°,则∠A = ;∠C =. (2)若∠ABC=65°∠CAD=60°,则∠D= °;∠ACD= °;∠BAC= °.模块三 形成提升1、□ABCD 中,周长为40cm ,△ABC 周长为25,则对角线AC= .2、□ABCD 中,周长为48cm ,AB :BC=3:5,AD=__________,CD=_____________.3、如图,在□ABCD 中,∠ADC=125°,∠A模块四小结评价一、本课知识点:1、平行四边形的定义:的四边形,叫做平行四边形.2、平行四边形的性质:(1)平行四边形对边(2)平行四边形对角(3)平行四边形是______________图形,两条对角线的交点是它____________.二、本课典型例题:三、我的困惑:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1 平行四边形及其性质(1)
【学习目标】
1.掌握平行四边形的概念及表示方法;
2.理解平行四边形性质定理1、2并能用它解决有关问题.
【课前预习】
学习任务一:阅读教材第4—6页内容,思考并总结本节课学习的主要内容,写在下面的横线上:(要写的详细些)
学习任务二:学习课本第4页观察与思考,探究什么样的四边形是平行四边形。
(1)定义:________________________________________叫做平行四边形。
(2)几何语言表述: ∵;∴四边形ABCD是平行四边形
(3)定义的双重性: 具备__________________的四边形,才是平行四边形,反过来,平行四边形就一定具有性质。
(4)平行四边形的表示:平行四边形ABCD记作_________,读作___________.
学习任务三:平行四边形的性质
1.平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?。
已知:如图ABCD,
求证:AB=CD,CB=AD.
分析:要证AB=CD,CB=AD.我们可以考虑只要证明
四条线段所在的两个三角形即可。
因此我们可以作辅助线__________________,它将平行四边形分成_________和
__________,我们只要证明这两个三角形全等即可得到结论.
证明:
2.在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。
证明:
通过上面的证明,我们得到了:
平行四边形的性质定理1是_______________________________________.
平行四边形的性质定理2是_______________________________________.
【课中探究】
问题一:有平行四边形的定义可得的四边形叫平行四边形,平行四边形的两组对边
问题二:通过定理一的证明发现平行四边形中的线段相等,角相等是通过
证明的。
问题三:平行四边形的邻角
问题四:独立证明平行四边形性质定理2 平行四边形的对角相等。
问题四:如图,在□ ABCD中,点E,F分别是AB,CD上的点,DE∥BF.
求证:AE=CF
A
【当堂检测】
1.如图,在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有()
A.4个
B.5个
C.8个
D.9个
2.如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )
A.2和3
B.3和2
C.4和1
D.1和4
3.已知平行四边形ABCD中,∠B=4∠A,则∠C=( )
A.18°
B.36°
C.72°
D.144°
4.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE 的度数为().
A.53°
B.37°
C.47°
D.123°
5.在平行四边形中,周长等于48,①已知一边长12,求各边的长为。
②已知AB=2BC,求各边的长为。
6.如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF 的面积为a,则平行四边形ABCD的面积为(用a的代数式表示).
【课后巩固】
1.在下列图形的性质中,平行四边形不一定具有的是().
A.对角相等
B.对角互补
C.邻角互补
D.内角和是︒
360
2.如图,过口ABCD的对角线BD 上一点M 分别作平行四边形两边的平行线EF与GH ,那么图中的口AEMG的面积S1与口HCFG的面积S2的大小关系是()
A.S
1 > S
2 B.S1 < S2
C.S1 = S2
D.2S1 = S2
3.如图,在平行四边形ABCD中,E是CD上的一点,DE:
EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:
S△EBF:S△ABF=()
A.2:5:25
B.4:9:25
C.2: 3:5
D.4:10:25
4.如图,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD 上一点,且BE=BC,CE=CD,则DE= cm
5.如图,E是平行四边形ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且
AD=4,CE1
AB3
=,则CF的长为。