汽车操纵稳定性道路试验测试方法分析研究
汽车操纵稳定性试验文档
间与汽车质心侧偏角的乘积。汽车质心侧偏角可由瞬态回转试验
求得。
• 2.评价指标
•
在我国《汽车操纵稳定性试验方法》标准中规定了7项评价
指标,由于测量方法的不完善及个别指标在某些汽车上不存在等 原因,故在《汽车操纵稳定性指标极限值与评价方法》标准中仅
• 2.评价指标 •
我国转向回正试验的评价指标是横摆角速度总方差及残留横
摆角速度。
• 转向轻便性试验
•
转向轻便性试验用来测定操舵力的大小,常见的操舵力试验 有低速大转向角试验、中转速小转向角试验、高速转弯操舵力试
图11.14 回正试验几种过程曲线
• • •
(2)稳定时间:稳定时间由松开转向盘的时刻起,至汽车横摆 角速度到新稳态时为止转向盘输入; (3)残留横摆角速度:汽车横摆角速度新稳态值与零线之差即
为残留横摆角速度;
(4)自然频率:由于系统是多自由度的,横摆角速度并不是一 个严格的等圆周运动,相邻振幅的比值也不等于常数(图11.15)。
•
随着车速的不断提高,汽车操纵稳定性对汽车行车安全性的
影响越来越大,成为汽车的重要性能之一。操纵稳定性不好的汽 车可表现为“高速发飘”、“响应迟钝”、“丧失路感”和“丧
失控制”等。
•
我国《汽车操纵稳定性试验方法》标准和《汽车操纵稳定性
指标限值与评价方法》中规定汽车操纵稳定性试验包括:稳态回
转试验、转向瞬态响应试验、转向瞬态转向试验、转向回正性试 验、转向轻便性试验、蛇形试验等。 • 常用的汽车操纵稳定性试验仪器有: 、汽车横摆角速度、车身侧倾角及纵倾角等; • 2)光束水准车轮定位仪:测车轮外倾角、主销内倾角、主销外倾 角、车轮前束、车轮最大转角及转角差; • 3)车辆动态测试仪:测汽车横摆角速度、车身侧倾角及纵倾角、 汽车横向加速度与纵向加速度等运动参数;
第二节传动系性能试验-第五章汽车操纵稳定性试验(.pdf
二、操纵稳定性道路试验 1、稳态回转试验 2、蛇行试验 3、转向回正性能试验 4、转向轻便性试验 5、瞬态响应试验
稳态回转试验
1、试验的基本原理和意义
¾汽车在车速V行驶时,驾驶员以一个固定的转向盘输入,汽车产生转向运 动。根据汽车本身的固有转向特性(由汽车结构参数决定),其后若干时 间一般会出现两种现象:一种是汽车出现不稳定现象,发生激转(或称甩 尾);另—种是转向进入稳定状态,即汽车绕某定点转动且角速度不变, 这种现象称汽车进入稳态转向。前一种情况汽车的转向特性称过多转向; 后一种情况汽车的转向特性理论上有两种:—种称中性转向,另一种称不 足转向。
蛇行试验
1、试验的目的和意义
蛇行试验属于驾驶员——汽车——外界环境组合而成的闭路系统性能 试验方法之一。这种试验方法可反映出此闭路系统进行急剧的转向能力, 同时可反映出在此种急剧转向情况下乘员的舒适性和安全性。
蛇行试验
2、引用标准 ①GB/T 12534 汽车道路试验方法通则 ②GB 3730.1 汽车和挂车的术语和定义 车辆类型 ③GB 3730.2 汽车和挂车的术语和定义 车辆质量 ④GB/T 12549 汽车操纵稳定性术语及其定义
稳态回转试验
具体试验方法:
⑴仪器设备:第五车轮、车辆动态测试仪、操纵稳定性现场数据处理系统
⑵试验步骤:
①在试验场地上,用明显颜色画出半径为15m或20m的圆周。
②试验开始之前,汽车应以侧向加速度为3m/s2的相应车速沿画定的圆周行 驶500m以使轮胎升温。
③驾驶员操纵汽车以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对 称面上的车速传感器(第五轮仪)在半圈内都能对准地面所画圆周时,固定 转向盘不动,然后缓缓连续而均匀地加速(纵向加速度不超0.25m/s2), 直至汽车的侧向加速度达到6.5m/s2(或车速不能再升高而出现甩尾、或轮 胎发出尖叫声)为止。记录整个过程。
结合K&C台架试验和道路试验的汽车操纵稳定性改进研究
第 2 O卷第 l期
20 0 6年 1月
传
动
技
术
V0 . O No 1 12 .
DRI YS M VE S TE TECH QU :0 68 4 ( 0 6 0 —80 1 0 —2 4 2 0 ) 12 —5
c a a trs iso h i h a s n e a r c o d d wih t eo ii r s rp ieam y t ewa fr d - h r ce itc ft e l tp s e g rc rwe ea c r e t h rgn p e c i tv i b h y o e e g sg ig t e p r m ee so r n n e rs s e so o ls i n s . in n h a a t r ffo ta d r a u p n i n r l t f e s f
性 I , 了精 确 评 估 和 比较 小 客 车 悬 架 性 能 对 操 纵 3为 ]
感器和 6 轴力传感器来测量 。测量得 到的位移 和力
的 信 息 可 以 帮助 设 计 者 判 断 悬 架 的设 计 是 否达 到 了
设 定 的 目标 。 ]
稳定性的影响 , 分析验证悬架设计 , 需要小客车 的悬 架特性参数 值 。 由于汽 车悬 架 属 于 多元 件 机 械 结 构, 其特性参数很难获取E , 4 因此 本文采用 K&C试 3
[ b tatTo i r v h g t a s n e a' p o o tolbl ya dsa it efr n e i u p n in A s c] r mp o et e ih se g r r o r n r l it n tbl yp ro ma c , t s s e s l p c s c a i i s o
汽车操纵稳定性的研究与评价
汽车操纵稳定性的研究与评价随着汽车工业的不断发展,汽车性能得到了显著提升。
汽车操纵稳定性作为衡量汽车性能的重要指标之一,直接影响着驾驶者的操控感受和行车安全。
因此,对汽车操纵稳定性进行深入研究,提高其评价水平,对于提升汽车产品竞争力具有重要意义。
汽车操纵稳定性研究主要涉及车辆动力学、控制理论、机械系统等多个领域,其目的是在各种行驶条件下,保证汽车具有良好的操控性能和稳定性。
然而,目前汽车操纵稳定性研究仍存在一定的问题,如评价标准不统测试条件不完善等,制约了其发展。
汽车操纵稳定性对于保证驾驶安全具有重要意义。
在行驶过程中,车辆受到外部干扰或自身惯性力的影响,容易导致车身失稳,从而引发交通事故。
良好的汽车操纵稳定性通过有效抑制车身晃动、调整轮胎磨损,为驾驶者提供稳定的操控感,降低交通事故风险。
影响汽车操纵稳定性的因素主要包括以下几个方面:(1)车辆动力学性能:车辆的加速、减速、转弯等动力学性能直接影响驾驶者的操控感受和行车安全。
(2)轮胎性能:轮胎的抓地力、摩擦系数等性能对车辆的操控性和稳定性具有重要影响。
(3)悬挂系统:悬挂系统的设计直接影响车辆的侧倾、振动等特性,从而影响操纵稳定性。
(4)驾驶者的操控技巧:驾驶者的预判、反应速度、操控技巧等直接影响车辆的操纵稳定性。
为提高汽车操纵稳定性,需要采取相应的控制策略。
其中,最重要的是采取主动控制策略,包括:(1)防抱死制动系统(ABS):通过调节制动压力,防止轮胎抱死,提高制动过程中的稳定性。
(2)电子稳定系统(ESP):通过传感器实时监测车辆状态,对过度转向或不足转向进行纠正,保证车辆稳定行驶。
(3)四轮驱动(4WD):通过将驱动力分配到四个轮胎上,提高车辆的加速性能和操控稳定性。
汽车操纵稳定性的评价主要从以下几个方面进行:(1)侧向稳定性:评价车辆在侧向受力情况下的稳定性。
(2)纵向稳定性:评价车辆在纵向受力情况下的稳定性。
(3)横向稳定性:评价车辆在横向受力情况下的稳定性。
汽车操纵稳定性试验解析汇报
汽车操纵稳定性试验解析!汽车的操稳性不仅影响到汽车驾驶的操纵方面,而且也是决定汽车安全行驶的一个主要性能;为了保证安全行驶,汽车的操稳性受到汽车设计者很大的重视,成为现代汽车的重要使用性能之一,如何试验并评价汽车的操稳性显得极其重要。
汽车操控稳定性分为两个方面:1、操控性: 指汽车能够确切的响应驾驶员转向指令的能力;2、稳定性:指汽车受到外界扰动(路面扰动或阵风扰动)后恢复原来运动状态的能力。
一、常用试验仪器1、陀螺仪:用于汽车运动状态下测动态参数,如汽车行进方位角,汽车横摆角速度,车身侧倾角及纵倾角等;2、光束水准车轮定位仪:测车轮外倾角,主销内倾角,主销外倾角,车轮前束,车轮最大转角及转角差;3、车辆动态测试仪:测汽车横摆角速度,车身侧倾角及纵倾角,汽车横向加速度与纵向加速度等运动参数;4、力矩及转角仪:测转向盘转角或力矩;5、五轮仪和磁带机等。
二、试验分类三、稳态回转试验01试验步骤1、在试验场上,用明显的颜色画出半径为15m或20m的圆周;2、接通仪器电源,使之加热到正常工作温度;3、试验开始前,汽车应以侧向加速度为3m/s2的相应车速沿画定的圆周行驶500m以使轮胎升温。
4、以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对称面上的车速传感器在半圈内都能对准地面所画的圆周时,固定转向盘不动,停车并开始记录,记下各变量的零线,然后,汽车起步,缓缓连续而均匀地加速(纵向加速度不超过0·25m/s2),直至汽车的侧向加速度达到6·5m/s2为止,记录整个过程。
5、试验按向左转和右转两个方向进行,每个方向试验三次。
每次试验开始时车身应处于正中央。
02评价条件1、中性转向点侧向加速度值An:前后桥侧偏角之差与侧向加速度关系曲线上斜率为零的点的侧向加速度值,越大越好;2、不足转向度:按前后桥侧偏角之差与侧向加速度关系曲线上侧向加速度2m/s2点的平均值计算,越小越好;3、车厢侧倾度K:按车厢侧倾角与侧向加速度关系曲线上侧向加速度2m/s2点的平均斜率计算,越小越好。
汽车操纵稳定性试验方法
汽车操纵稳定性试验方法
汽车操纵稳定性试验是评价汽车在不同路况和操纵动作下的稳定性表现的重要方法。
其试验方法通常包括以下步骤:
1. 直线行驶稳定性试验:车辆沿着直线道路行驶,测试车辆的稳定性和方向盘的响应能力。
可以通过急刹车、急加速等方式来测试车辆的行驶稳定性。
2. 曲线行驶稳定性试验:车辆在不同曲线路段上进行转向试验,测试车辆的侧倾角、侧向加速度以及转向的稳定性。
3. 紧急转向稳定性试验:车辆在高速行驶中进行急转向试验,测试车辆的操纵响应速度和稳定性。
4. 突变路面稳定性试验:在不同路面条件下,如湿滑路面或不平整路面上进行操纵试验,测试车辆的抓地力和稳定性。
通过以上试验方法,可以评估汽车在操纵过程中的稳定性表现,为汽车制造商和消费者提供有关汽车操纵性能的重要参考信息。
汽车操纵稳定性主观评价试验方法
文献综述
文献综述
在已有的文献中,对于汽车操纵稳定性的主观评价主要采用问卷调查、模糊评价等方法,这些方法虽 然在一定程度上可以反映汽车的操纵稳定性,但是存在评价结果不够客观、评价标准不统一等问题。
研究现状
目前,国内外对于汽车操纵稳定性的主观评价研究主要集中在建立客观评价体系、制定评价标准等方 面,但是这些研究还存在着一定的不足之处,需要进一步完善和发展。
结果评估
根据主观评价标准和数据处理结果,对车辆的操纵稳定性进行 评价。
建议反馈
根据评估结果,提出针对性的改进建议,为车辆设计和性能优 化提供参考。
03
试验方法的应用
车辆选择与准备
车辆选择
应选择具有代表性的汽车,包括不同品牌、型号、配置和性能的车辆,以确保试验结果的广泛适用性 。
车辆准备
进行试验前,应对车辆进行详细检查和预处理,确保其处于正常工作状态,并安装必要的仪器和设备 ,如GPS定位仪、速度传感器等。
中的表现进行评估。
结论总结果,对车辆的操纵稳定性进行总结, 指出其优点和不足之处,并提出相应的改进建议。
要点二
建议提出
针对车辆操纵稳定性的不足之处,提出具体的改进方案 和建议,包括优化车辆结构设计、调整悬挂系统参数、 改进驾驶辅助系统等,以提高车辆的操纵稳定性和驾驶 安全性。
《汽车操纵稳定性主观评价 试验方法》
2023-10-29
目录
• 引言 • 主观评价试验方法 • 试验方法的应用 • 试验结果分析 • 结论与展望
01
引言
背景介绍
汽车工业的发展
随着汽车技术的不断进步,对于汽车的操纵稳定性要求也越 来越高,因此需要一种主观评价试验方法来评估汽车的操纵 稳定性。
对汽车操纵稳定性的影响因素分析及对操稳性的研究评价
第!期
马涛锋等: 对汽车操纵稳定性的影响因素分析及对操稳性的研究评价
" #$% "
不足转向量有所增加。 前悬架中采用较硬的横向稳定杆有助于提 高汽车的不足转向性, 并能改善汽车的蛇行行驶性能。
#* 万公里,发现有高速摆头现象,踩下制动踏板后有左右打手 现象。检查轮辋不偏摆, 车轮动平衡也正常, 顶起前桥从检查孔 中发现制动鼓失圆, 更换制动鼓和制动蹄片后, 故障消失。
! 气动力影响及操稳性评价的研究过程
汽车在低速行驶时,往往只须考虑所受的地面阻力,而所 受的气动力常常可忽略。但在高速行驶时,气动力对操纵稳定 性的影响变得极为重要,特别是侧向气动力的影响。空气的侧 向推力与空气的横摆力矩作用于高速行驶的汽车车身上,使汽 车各轮的负荷、轮胎的侧偏特性和车身的侧偏角都发生了变 化, 从而对汽车的操纵稳定性产生不可忽视的影响。 操稳性评价的研究过程: -. 年代以前基本上都是用开环评 价方法;/. 年代初期,人们用系统工程学方法探索操纵性的评 价方法: 利用驾驶员对汽车直线行驶性能、 转 /. 年代中期以后, 弯行驶性能和转向轻便性等特性的感觉,进行主观评价:主观 评价不仅要考虑汽车本身的特性,还要考虑人的行为特性、对 从理论和实验两个方面着手, 重新 道路跟踪的要求。 0. 年代初, 开始深入地研究驾驶员一车辆—道路闭环系统;1. 年代以来, 郭孔辉教授提出了各个单项总方差评价指标及闭环系统主动 安全性的综合评价与优化设计方法。
! 行驶系的影响
后悬架结构参数及横向稳定杆的 !V ! 前轮定位参数、 影响
前轮定位参数包括: 前轮外倾角、 主销后倾角、 主销内倾角 和前轮前束。 前轮外倾角指前轮中心线与地面垂直线所成的夹角。前轮 它的作用主要是当汽车行驶时, 将轮毂 外倾角一般在 !W X (V )W。 压向内轴承, 而减轻外端较小的轴承载荷, 同时, 可以防止因前 轴变形和主销孔与主销间隙过大引起前轮内倾,减轻轮胎着地 与主销轴线与地面交点间的距离, 从而使转向轻便。 主销后倾角是指主销轴线与前轮中心的垂线之间形成的 夹角。主销后倾角对汽车操纵稳定性的影响主要通过“后倾拖 距 ”使地面侧向力对轮胎产生一个回正力矩,该力矩产生一个 与轮胎侧偏角相似的附加转向角,它与侧向力成正比,使汽车 趋于增加不足转向,有利于改善汽车的稳态转向特性。若主销 后倾角减小,使得回正力矩变小,当地面对转向轮的干扰力矩 大于转向轮的回正力矩时, 就会产生摆振。 主销内倾角是指主销轴线与地面垂线之间形成的夹角。主 销内倾角对操纵稳定性的影响,主要也是回正力矩,它是在前 轮转动时将车身抬高,由于系统位能的提高而产生的前轮回正 力矩, 它与侧向力无关。因此可以说, 主销内倾角主要在低速时
汽车操纵稳定性道路试验测试方法研究
汽车操纵稳定性道路试验测试方法研究汽车操纵稳定性是指车辆在行驶过程中保持平稳、可控的能力。
这是一个非常重要的指标,直接影响车辆的安全性能和驾驶舒适性。
为了评估和测试车辆的操纵稳定性,需要进行道路试验。
本文将研究汽车操纵稳定性道路试验测试方法。
在进行道路试验时,一般采用以下几种测试方法。
首先是曲线行驶测试。
这项测试是通过在特定的道路上,让车辆以一定的速度行驶,进行曲线转弯。
测试时需要记录车辆横向加速度、方向盘转角等参数。
曲线行驶测试可以评估车辆在转弯时的操控稳定性和抓地力。
其次是蛇形行驶测试。
这项测试是让车辆在连续的左右变道中行驶。
测试时需要记录车辆的姿态变化、横向加速度等参数。
蛇形行驶测试可以评估车辆的侧倾稳定性和方向盘的响应能力。
第三是紧急避障测试。
这项测试是模拟紧急情况下的避让障碍物动作。
测试时需要记录车辆的刹车距离、避障动作的稳定性等参数。
紧急避障测试可以评估车辆的刹车性能和操控的可靠性。
最后是稳定性控制系统测试。
现代汽车普遍配备了稳定性控制系统,用于提高车辆的操纵稳定性。
测试时可以模拟车辆在不同路面条件或动态情况下的行驶,评估稳定性控制系统的效果。
在进行道路试验测试时,需要注意以下事项。
首先是确保测试道路的光滑度和平面度。
道路的几何形状会影响到车辆的操控稳定性,因此应选择平整度较高的道路进行测试。
其次是选择合适的测试速度。
测试速度应当符合实际的行驶条件,同时注意遵守交通规则和安全要求。
第三是对测试数据进行准确记录和分析。
记录准确的测试数据是评估车辆操纵稳定性的基础,对于数据的处理和分析可以通过计算机辅助模拟或专业软件进行。
最后是综合考虑试验结果。
道路试验只是评估车辆操纵稳定性的一种方法,还应结合其他测试方法和虚拟仿真数据,综合考虑综合性能和实际使用情况。
总之,汽车操纵稳定性道路试验测试方法的研究是评估车辆操纵性能和安全性能的重要内容。
通过合理选择测试方法和准确记录数据,可以为汽车制造商和消费者提供有关车辆操纵稳定性的参考信息,促进汽车行业的发展。
汽车操纵稳定性实验指导书
汽车操纵稳定性实验指导书(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--汽车操纵稳定性实验指导书课程编号:课程名称:实验一汽车转向轻便性实验一、实验目的汽车的转向轻便性和操纵稳定性是现代汽车重要的使用性能,通过对实验了解和掌握测试系统的安装调试、基本实验方法并学会数据处理和运用理论知识对汽车操纵稳定性研究、评价。
以培养学生解决实际工程问题的能力。
二、实验的主要内容了解测试系统的组成和测试原理,汽车转向轻便性实验的数据的实时采集和处理。
测定汽车在低速大转角时的转向轻便性,与操纵稳定性其他试验项目一起,共同评价汽车的操纵稳定性。
采集测量变量及参数方向盘转角;方向盘力矩;方向盘直径。
三、实验设备和工具1.测量仪器汽车方向盘转角——力矩传感器汽车操纵稳定性数据采集和分析仪2.实验车辆小型客车一辆3.标明试验路径的标桩16个。
四、实验原理测定汽车在道路上进行转向行驶时,驾驶员作用在方向盘上的力矩和方向盘转角的变化关系评价汽车的转向操纵性能五、验方法和步骤1.实验准备试验场地应为干燥、平坦而清洁的水泥或柏油路面。
任意方向上的坡度不大于2%。
在试验场地上,用明显颜色画出双纽线路径(图1),双纽线轨迹的极坐标方程为:轨迹上任意点的曲率半径R为:当Ψ=0°时,双纽线顶点的曲率半径为最小值,即双纫线的最小曲率半径(m)应按试验汽车的最小转弯半径(m)乘以倍,并圆整到比此乘积大的一个整数来确定。
并据此画出双纽线,在双纽线最宽处、顶点和中点(即结点)的路径两侧共放置16个标桩(图1)。
标桩与试验路径中心线的距离,按汽车的轴距确:定,当试验汽车轴距大于时,为车宽一半加50cm,当试验汽车轴距小于或等于2m时,为车宽一半加30cm。
图1 双纽线路径示意图2.试验方法2.1接通仪器电源,使之预热到正常工作温度。
2.2汽车以低速直线滑行,驾驶员松开方向盘,停车后,记录方向盘中间位置及方向盘力矩零线。
汽车操纵稳定性试验的相关研究
21 稳态 回转 .
稳 态 回转 试 验 包 括 中 性 转 向 点 的 侧 向加 速 度 值 不 足 转 向度 U和 车 身 侧倾 角 K 三 个 指 标 评 价 ,此 试验 的 目的 是 确 定 车 辆 的稳 态 操 控 特 性 , 要 表现 为侧 向加 速 度 的 函数 特 性 。 主 汽车转弯 时的特征 如图 1 示。在稳态 回转试 验时 , 所 固定 方 向盘不 动, 随着 车速 的不断升高 , 向特 性可能变化 , 转 如里转
容。
22 转 向 回正性 .
转 向 回 正 性 能试 验 分 为 低 速 转 向 回 正 性 能 试 验 和 高 速 转 向 回正 性 能 试 验 ,两 种 速 度 的 评 价 指 标 都 是 松 开 转 向盘 3 时 s 的残 留横 摆 角 速 度 对 值 △ 和 横 摆 角速 度 总 方 差 E 。△ 越 小 说 r t r 明汽车转向后 自动回正保持直线行驶 的能力越 好, r E 越小说 明
中
右摇摆 , 行驶方 向难于稳定 。这种汽车在 受到路面不平或突然
陈 风 的 拢 动 时 , 会 出现 这 种 摇 摆 。 也 () 丧失路感 ” 2“ 。正常汽车 的转弯 的程度 , 会通过方向盘在 驾 驶 员 手 上 产 生相 应 的 感觉 。有 些 操 纵 性 能 不 好 的汽 车 , 别 特 是在 车速 较 高 时或 转 向剧 时会 丧 失这 种 感 觉 。这 会增 加 驾驶 员 的 操 纵 困 难 或 影 响 驾驶 员作 出正 确 的判 断 。 () 车 辆 发 飘 ” 3“ 。有 时 驾驶 员并 未 发 指 令 到 转 向盘 , 汽 车 但 自 己不 断 改变 行驶 的方 向 , 人 感 到 飘 浮 。 使 () 失去 控 制  ̄ 4“ * I P 时汽 车 在 车 速 超 过 一 个 临 界 值 之 后 或 o有 向 一 D 速 度 超 过 一 定 值 之 后 , 驶 员 已经 完 全 不 能控 制 汽 车 的 CH  ̄ , 驾 行驶 方向。可 能驾驶 员向左 打方 向而汽车却产生 向的转 向。
任务3.2汽车操纵稳定性试验方法
(3) 高速回正试验 对于最高车速超过100km/h的汽车,要进行高速回正 性试验。高速回正试验车速按试验车的最高车速的70 %确定,并圆整到80km/h、100 km/h或120km/h 的车速进行试验。 试验时,汽车以上述规定的试验车速在试验路段直线行 驶,稳定车速,驾驶员转动转向盘使侧向加速度达到 2±0.2 m/s2,待稳定3s并开始记录后.驾驶员突然 松开转向盘,至少记录松手后4s内汽车的运动过程。 记录时间内油门位置应保持不变。低速、高速回正试验 应向右转与向左转各3次。。
(三)转向瞬态响应试验
1、试验作用 汽车转向瞬态响应试验的目的是测定车辆的瞬态 转向特性,即用来评价汽车的动态特性。瞬态转 向特性是指汽车在受到外界扰动下,达到稳定状 态前所表现出的特性,通常用时域响应特性和频 域响应特性来描述。汽车转向瞬态响应试验有转 向盘角阶跃输入试验和转向盘转角脉冲输入试验 两种,其中前者用于测定瞬态响应的时域响应特 性,后者用于测定频域响应特性。
任务3.2汽车操纵稳定性试验方法
内容
一、汽车稳态回转试验 二、蛇形试验 三、转向瞬态响应试验 四、转向回正试验 五、转向轻便性试验
(一)、汽车稳态回转试验
1、试验作用
具有过多转向特性的汽车有失去汽车操纵稳定性的危险, 汽车可能发生激转而侧滑或翻车。具有过强的不足转向特 性的汽车,也会使汽车难以控制。一般也不应使汽车具有 中性转向特性,因为在汽车使用条件变化时,中性转向汽 车可能转变为过多转向特性。
(二)蛇形试验
1、试验作用 蛇形试验是一项包括车辆—驾驶员—环境在内 的闭环试验。这种试验在—定的程度上表现出 汽车转向运动的综合性能。 这种试验测定汽 车蛇形行驶的能力,用来综合评价汽车行驶的 稳定性和乘坐的舒适性。此种试验适用于轿车、 客车、载货汽车及越野汽车。
对汽车操纵稳定性的影响因素分析及对操稳性的研究评价
#& % 前轴或车架变形导致汽车操纵失稳
由于车架是汽车的基础,它的变形会直接影响各部件的连 接及配合, 从而直接影响操纵稳定性。如果汽车前轴变形, 就会 改变主销孔的轴线位置, 使主销内倾角变大, 则外倾角变小, 反 之, 内倾角变小, 外倾角变大, 从而行驶时会产生转向沉重, 磨 胎和无自动回正的能力。
万方数据 # 来稿日期: (""+ # "% # (%
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,
前悬架导向机构的几何参数决定前轮定位参数的变化趋 势和变化率。在车轮跳动时,外倾角的变化包括由车身侧倾产 生的车轮外倾变化和车轮相对车身的跳动而引起的外倾变化 两部分。在双横臂独立悬架中,前一种变化使车轮向车身侧倾 的方向倾斜, 即外倾角增大, 结果使轮胎侧偏刚度变小, 因而使 整车不足转向效果加大;后一种变化取决于悬架上、下臂运动 的几何关系,在双横臂结构中,往往是外倾角随弹簧压缩行程 的增大而减小,这种变化与车身侧倾引起的外倾角变化相反, 会产生过度转向趋势。 后悬架结构参数对汽车操纵稳定性的影响, 近似于前悬架的 “干涉转向” 。它是在汽车转向时,由于车身侧倾导致独立悬架的 左右车轮相对车身的距离发生变化,外侧车轮上跳,与车身的距 离缩短,内侧车轮下拉,与车身的距离加大。悬架的结构参数不 同, 车轮上下跳动时, 车轮前束角的变化规律也必然会不同。 前轮前束指汽车转向的前端向内收使两前轮的前端距离 小于后端距离。两车轮前后的距离之差, 称为前束值, 一般不大 于 Y X !(OO。其作用是消除由于前轮外倾使车轮滚动时向外分 开, 引起车轮滚动时边滚边拖的现象, 引导前轮沿直线行驶。 主销内倾角与后倾角由结构上保证, 在调整时难以改变。调 整时主要调整前轮外倾及前轮前束。前轮外倾随负荷的变化而变 化。当车辆转向时, 在离心力作用下, 车身向外倾斜, 外轮悬架处 于压缩状态, 车轮外倾角逐渐减小 ’ 向负外倾变化 * ; 内轮悬架处 于伸张状态,使得本来对道路向负外倾变化的外倾角减弱。从而 提高车轮承受侧向力的能力, 使汽车转向时稳定性大为提高。前 轮前束不可过大,若前束过大,会使车轮外倾角、主销后倾角变 小, 会使前轮出现摆头现象, 行驶中有蛇行, 转向操作不稳。 横向稳定杆常用来提高悬架的侧倾角刚度,或是调整前、后 悬架侧倾角刚度的比值。在汽车转弯时,它可以防止车身产生很 大的横向侧倾和横向角振动,以保证汽车具有良好的行驶稳定 性。提高横向稳定杆的刚度后, 前悬架的侧倾角刚度增加, 转向时 左右轮荷变化加大,前轴的每个车轮的平均侧偏刚度减小,汽车
汽车操纵稳定性的试验方法和评价指标研究
汽车操纵稳定性的试验方法和评价指标研究龙佳庆【摘要】The vehicle's steering stability is one of the most importance performance to the vehicle safety, this paper studied on the local and the foreign test about the vehicle's steering stability, summarized the classical and practical test way and evaluation indexes of the vehicle's steering stability, it has guiding significance to the vehicle's production and improvement.%汽车的操纵稳定性是保障汽车安全驾驶的重要性能之一,文章针对国内外各种汽车在操纵稳定性方面的试验进行研究,总结了典型的、可操作性高的汽车操纵稳定性试验方法和评价指标,该试验方法和评价指标对汽车的制造与性能改进具有重要的指导意义.【期刊名称】《大众科技》【年(卷),期】2015(017)008【总页数】2页(P66-67)【关键词】操纵稳定性;试验方法;评价指标【作者】龙佳庆【作者单位】柳州职业技术学院,广西柳州 545005【正文语种】中文【中图分类】U467.1汽车的操纵稳定性由操纵性和稳定性两个部分组成,两者相互影响。
汽车的操纵稳定性是指在驾驶员在身体、心理、技能都正常的情况下,汽车能按照驾驶员传递给转向系统的方向行驶,当汽车行驶的过程中,遇到突发情况的干扰时,能有一定的抗干扰性,而保持继续稳定行驶的能力。
汽车操纵稳定性包括转向盘角阶跃输入下进行的稳态响应和瞬态响应,如回正性、转向盘中间位置操纵稳定性、横摆角速度频率响应特性、转向轻便性等性能[1]。
汽车操纵稳定性道路试验测试方法分析研究
汽车操纵稳定性道路实验测试方法研究汽车道路实验是在规则路面输入和典型驾驶输入下对汽车的动力性、制动性、主动安全性和操作稳定性等性能的不解体实车进行测试。
汽车道路实验检测技术是推动汽车技术进步的一种极为重要的力法,也是保证产品性能、提高产品质量和市场竞争力的重要手段,随着汽车工业的发展其作用和地位不断提高。
因此,如何通过有效的实验方法和检测系统来检测、评价汽车的性能具有重要的意义。
目前,关于汽车道路实验的研究主要可分为两个方向:一是根据汽车道路实验的特点,在提高道路实验的可靠性、测试方法、测试精度等方面做文章,因此催生出了一大批相关的新型传感器和测试方法。
二是道路模拟实验技术的发展,在实验室进行道路模拟实验,可以排除气候等因素的影响,大大地缩短实验周期和节约资金,并且实验的可控性好,实验结果的重复性强、精度高,便于对比,可以提高汽车测试效率,具有重要的工程应用价值。
本文着重对前者的技术发展状况做一个梳理。
位移、轨迹、速度、加速度和平面运动角速度等是汽车运动性能的主要描述参数,汽车的各种动力性能实验、制动性能实验和操纵稳定性能实验主要是通过对以上参数的时问特性进行测量和分析,以达到性能评价的目的。
由于汽车道路实验涉及的内容比较多,这里主要以操纵稳定性为例,结合汽车稳定性控制系统(vehicle stability control system,简称VSC>对汽车位置姿态测量技术、车轮力测量技术和为解决客观评价引入的汽车道路实验转向机器人技术的国内外研究进展进行阐述。
汽车道路实验特点及测试系统架构汽车道路实验测试系统为车载,而实验法规要求对汽车进行充分激励才能完成有效测试,故对测试系统的可靠性要求很高。
传感器等的安装不能要求改变原车的结构,对传感器的安装位置、体积、质量等提出了更高的要求。
另外,汽车信号属于低频信号(通常在25 Hz以下>,且由于是短时测量,大多数变量对采样频率、测量精度等要求不高,但各信号采样需有较好的同步性。
新能源汽车试验学 第七章 操纵稳定性试验
LOGO 转向盘测力仪
一 试验设备
LOGO
惯性传感器
驾驶机器人
二 测量设备
LOGO
四轮定位仪
轴荷仪
静侧翻试验台
三 数据采集软件
LOGO
•设置数据采集系统的参数,对各个通道进行配置 •控制数据采集开始和结束 •实时显示各通道物理量的值 •将各个通道的物理量以数据文件的形式保存在存储 设备(硬盘或存储卡)中
五 试验场地
LOGO
•操稳道路试验一般车速较高,转弯半径较大,因此需要比较大的场 地
•通常在汽车试验场的直线性能跑道和操稳广场上进行,也可以在铺 装条件较好的飞机跑道上进行
•操稳场地条件比较好的几个试验场,例如: •通用广德试验场 •正新轮胎试验场 •重庆长安汽车试验场 •中汽中心盐城汽车试验场
15
±50 N·m ±100 N·m
±50 /s 0~50 m/s ±10 m/s
±15
±15
±15 m/s2
测量仪器的最大误差 ±2(转角≤180) ±4(转角>180) ±1 N·m ±3 N·m ±0.5 /s ±0.3 m/s ±0.4 m/s
±0.15
±0.5
±0.15 m/s2
一 试验设备
LOGO
第一节 概述
LOGO
•人-车开环系统 •人-车闭环系统
常用仪器 设备
第二节 常用仪器设备
图 整车操纵要求
测量变量
转向盘转角
转向盘力矩
汽车横摆角速度 汽车纵向速度 汽车横向速度 车身侧倾/俯仰
角 汽车质心侧偏角
汽车纵向/侧 向加速度
测量范围
±360
•有些软件可以对数据进行一些简单的预处理和计算 •例如:Dewesoft(左图)、VBOXTools(右图)
汽车稳定性分析及对策研究
汽车稳定性分析及对策研究1. 引言1.1 研究背景汽车稳定性是指车辆在行驶过程中保持平稳行驶的能力,是汽车安全的重要指标之一。
随着社会经济的发展和人们对行车安全的关注不断增加,汽车稳定性问题逐渐受到重视。
在日常驾驶中,很多交通事故都与汽车稳定性不足有关,因此研究汽车稳定性,探索影响稳定性的因素,并提出相应的对策是非常必要的。
汽车稳定性受多种因素影响,包括车辆的重心位置、车辆的重心高度、轮胎的摩擦力、悬架系统的性能等。
这些因素相互作用,决定了车辆在行驶过程中的稳定性表现。
通过深入分析这些因素,可以为提高汽车稳定性提供有效的对策。
本文旨在对汽车稳定性进行深入分析,探讨影响汽车稳定性的因素,并提出相应的对策研究。
还将介绍汽车稳定性的测试方法,并通过案例分析展示汽车稳定性问题的解决方案。
通过这些研究,可以为汽车制造商和驾驶员提供参考,提高汽车的安全性和稳定性,进一步降低交通事故的发生率。
【研究背景内容到此结束】1.2 研究目的本文旨在对汽车稳定性进行深入分析,并综合研究影响汽车稳定性的因素及提高汽车稳定性的对策。
通过探讨汽车稳定性的测试方法和案例分析,旨在为汽车设计和制造领域提供实用的参考和指导,以提高汽车在各种道路及气候条件下的安全性和稳定性。
本研究的目的是为了帮助汽车制造商更好地设计出更加安全与稳定的车辆,减少交通事故的发生,保障驾驶者和乘客的生命安全。
希望通过本文的研究可以为汽车工程领域的相关专家和研究人员提供有益的参考,促进汽车行业的发展与进步。
2. 正文2.1 汽车稳定性分析汽车稳定性是指车辆在行驶过程中保持良好的稳定性和控制性能的能力。
汽车稳定性受到多种因素的影响,如车辆的重心高度、悬挂系统、操控系统以及路面状况等。
通过对汽车稳定性的分析,可以帮助提高车辆的安全性和驾驶性能。
汽车的重心高度是影响稳定性的重要因素。
重心越低,车辆在转弯时的侧倾角就会越小,稳定性就会越好。
设计车辆时应该尽量降低重心高度,以提高稳定性。
汽车操纵稳定性测试实验
操稳性测试
一、理论基础
3. 稳态响应与瞬态响应
1) 系统输入
给转向盘一个角位移输入,称为角位移输入;给 转向盘一个力矩输入,称为力矩输入。
2) 输入种类
有阶跃输入、正弦输入、脉冲输入3种。
阶跃
正弦
脉冲
xua
t
选
t
t
操稳性测试
一、理论基础
3. 稳态响应与瞬态响应
3) 时域响应
(1) 稳态响应:系统输入为周期性或恒定性的, 输出也是周期性或恒定性的,输入和输出之 间相对稳定。
不足转向 过多转向
δ 不变
汽车的三种 稳态转向特性
操稳性测试
一、理论基础
4.操纵稳定性的评价与试验方法
主观评价方法:让试验评价人员根据试验时自己 的感觉来进行评价,即感觉评价。
客观评价方法:通过仪器测出表征性能的物理量 如横摆角速度、侧向加速度、侧倾角及转向力来 评价汽车操纵稳定性,可用室内台架试验,测定 并评价有关操纵稳定的性质,也可通过道路试验, 计测汽车转弯和越线行驶的运动状态。
(2) 瞬态响应:从转向至稳态响应的中间过程, 即系统输入为周期性或恒定性而输出不是周 期性或恒定性,两者不保持相对稳定。
操稳性测试
一、理论基础
3. 稳态响应与瞬态响 应
4) 稳态转向特性
中性转向
不足转向、中性转向、过 多转向。
操纵稳定性良好的汽车应
具有适度的不足转向特性, 一般的汽车不应该具有过 多转向的特性。
本节主要内容:
简介汽车操纵稳定性能方面理论知识,操纵稳定 性能试验目的和要求,主要仪器设备及其工作原 理,实验步骤。
重点:基础理论、试验数据处理
操稳性测试
一、理论基础
汽车操纵稳定性评价方法研究
汽车操纵稳定性评价方法研究汽车的操纵稳定性是衡量汽车行驶质量的一个重要指标。
一辆汽车的操纵稳定性,不仅关乎乘坐者的安全与舒适,也直接影响车辆的市场竞争力。
为了精确地评价一辆汽车的操纵稳定性,需要运用科学的测试方法和评价标准。
评价方法1. 车载试验车载试验是评价一辆汽车操纵稳定性的一个重要手段。
通过在车内安装多种测试仪器,如惯性测量单元(IMU)、制动力反馈(BBFM)、转向率传感器(TSR)等,对汽车在不同的路况和驾驶状态下进行测试和分析。
车载试验可以动态地评估汽车的加速度、制动、转向等指标,及时反馈车辆运动学和动力学参数的变化,有利于发现和整改车辆操纵稳定性的缺陷,提高行驶安全性和舒适性。
2. 静态试验静态试验是对汽车操纵稳定性的一种简单而又直接的评估方式。
通过推拉车测量系统、悬架测试机等设备对汽车的悬架系统、悬挂刚度、车身刚度等进行测试分析,从而评估汽车悬架系统的稳定性。
静态试验方法可以帮助设计人员优化汽车结构设计,提高车辆操纵稳定性。
3. 路试路试是指在真实路况下对汽车操纵稳定性进行评估。
通过在不同路段进行测试,如山路、高速公路等,可以评估车辆在不同路况下的操纵稳定性。
路试有利于检测车辆在实际操作中的运动学和动力学性能,全面评估车辆的操纵稳定性。
评价标准1. 车辆侧倾角(roll angle)车辆在转弯时的侧倾角是评估操纵稳定性的一个重要指标。
一辆汽车悬挂系统的稳定性能够直接影响车辆的侧倾角大小。
在较高的车辆侧倾角下,车辆容易失去操纵,导致事故的发生。
2. 车辆侧向加速度(Lateral Acceleration)侧向加速度能够反映车辆在转弯时的稳定性。
较小的侧向加速度代表车辆的稳定性较好。
在高速公路上行驶,若车辆的侧向加速度过大,则容易导致车辆失去操纵。
3. 车辆制动减速度(Braking Deceleration)车辆制动减速度是一个反映汽车操纵稳定性的重要指标。
在制动时,车辆制动减速度越大,代表汽车的稳定性越好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车操纵稳定性道路实验测试方法研究
汽车道路实验是在规则路面输入和典型驾驶输入下对汽车的动力性、制动性、主动安全性和操作稳定性等性能的不解体实车进行测试。
汽车道路实验检测技术是推动汽车技术进步的一种极为重要的力法,也是保证产品性能、提高产品质量和市场竞争力的重要手段,随着汽车工业的发展其作用和地位不断提高。
因此,如何通过有效的实验方法和检测系统来检测、评价汽车的性能具有重要的意义。
目前,关于汽车道路实验的研究主要可分为两个方向:一是根据汽车道路实验的特点,在提高道路实验的可靠性、测试方法、测试精度等方面做文章,因此催生出了一大批相关的新型传感器和测试方法。
二是道路模拟实验技术的发展,在实验室进行道路模拟实验,可以排除气候等因素的影响,大大地缩短实验周期和节约资金,并且实验的可控性好,实验结果的重复性强、精度高,便于对比,可以提高汽车测试效率,具有重要的工程应用价值。
本文着重对前者的技术发展状况做一个梳理。
位移、轨迹、速度、加速度和平面运动角速度等是汽车运动性能的主要描述参数,汽车的各种动力性能实验、制动性能实验和操纵稳定性能实验主要是通过对以上参数的时问特性进行测量和分析,以达到性能评价的目的。
由于汽车道路实验涉及的内容比较多,这里主要以操纵稳定性为例,结合汽车稳定性控制系统(vehicle stability control system,简称VSC>对汽车位置姿态测量技术、
车轮力测量技术和为解决客观评价引入的汽车道路实验转向机器人技术的国内外研究进展进行阐述。
汽车道路实验特点及测试系统架构
汽车道路实验测试系统为车载,而实验法规要求对汽车进行充分激励才能完成有效测试,故对测试系统的可靠性要求很高。
传感器等的安装不能要求改变原车的结构,对传感器的安装位置、体积、质量等提出了更高的要求。
另外,汽车信号属于低频信号(通常在25 Hz以下>,且由于是短时测量,大多数变量对采样频率、测量精度等要求不高,但各信号采样需有较好的同步性。
基于以上特点构建的汽车道路实验测试系统是汽车道路实验的基础,图1所示是汽车道路实验系统的原理图,主要由传感、数据采集、数据记录和分析3部分组成。
根据可靠性和具体的测试方法,这3部分或集成在一起,或部分集成。
具有CAN节点的车载测试传感器,集成CA节点和数据存储、LCD过程显示等功能的数据采与处理装置是汽车道路实验测试系统的发展方向。
图1
车身运动姿态和质心轨迹的测量
长期以来由于缺乏有效的测试技术手段,汽车做曲线运动的速度难以准确测取,汽车质心动态轨迹无法精密测定,以至涉及汽车安全的汽车制动方向稳定性能和高速操纵稳定性实验条件控制困难、测试结果不能全面反映汽车的动态特性 2。
传统的测量方法是:
其中,、———质心在地面固定坐标系中的坐标
、———轨迹起始点坐标
———车速,汽车质心处速度矢量在地平面上的投影
———有效实验时间
由上式可以看出,轨迹测量最终归结为车速、质心侧偏角β和汽车方位角ψ的测量问题,而车速和质心侧偏角的测量可具体为汽车纵向速度和侧向速度的测量。
通常利用垂直陀螺或汽车操稳性测试仪直接测量得到的横摆角速度,经一次积分得到汽车方位角。
汽车纵向速度和侧向速度通常采用双向非接触式光学速度
传感器进行直接测量[15],但由于安装位置的影响,需要利用横摆角速度进行补偿。
可以看出,上述测量方法存在以下不足:通过横摆角速度积分得到汽车方位角,积分存在累积误差,且误差发散;忽略了地球自转角速度的影响;对横摆角速度没有进行姿态补偿,测量存在原理性误差,在转向制动等大的激励输入下测量误差较大。
针对传统方法对汽车运动学参数测量的局限性,近年来有许多学者将惯性导航技术和卫星测量技术应用于汽车道路实验测试中,如路面附着系数识别,速度、侧偏角、位置和姿态的精确测量,汽车动力学控制应用,以及测试系统同步机制实现。
其中捷联惯性测量系统(strapdown inertial measurement system,简称SIMS>和GPS组合测量汽车轨迹姿态方法有效解决了测量高精度和低成本间的矛盾。
利用这种方法可以精确测量得到汽车的轨迹、姿态、质心侧偏角,以及运动坐标系和车体坐标系下的线(加>速度、角速度等重要的运动学参数,成为汽车运动学参数测量方法新的发展方向。
差分定位方式(DGPS>就是利用两台GPS接收机来确定待定点在地心坐标中的绝对位置。
利用差分技术可以将卫星钟误差、星历误差、电离层误差、对流层误差完全消除,传播延迟误差也可大部分消除,因此该方法的定位精度高目前最好GPS差分定位可达到厘M 级的定位精度,因而能够较好的满足汽车性能实验的要求。
测试系统结构如图1所示,由2台VBOXⅢ、1台Vector Crescent、1台便携式计算机和电源等组成。
VBOXⅢ是单天线系统,由英国Racelogic公司研制的面向汽车测试应用的仪器,其主要特点是数据更新速率高(100 Hz>、集成有多路AD接口、提供外部CAN 通信接口、提供基于内部数据的数字或模拟信号接口给其他设备同步采集。
其标称水平速度精度是0·1 km/h[7]。
Vector Crescent 是加拿大hemisphere GPS公司研发的双天线定向仪器,可以以20 Hz的数据更新速率给出两天线基座连线(基线>与真北方向的夹角,在基线长度为2 m时标称测
量精度为(>。
测试系统框架图
测试系统中的2台VBOXⅢ均可测量得到天线处的水平速度及其速度方向,由于是单频单天线系统,只能工作在标准定位模式(SPS>,其测速是基于Doppler频移技术。
根据刚体运动学理论,在两天线距离已知时可以求出车身天向横摆角速度。
下图所示是由GPS测量数据计算汽车车身侧偏角的方法示意图。
图中OGxGyG为高斯水平直角坐标系,图中AB连线尽量位于汽车纵向对称平面,A点尽量位于汽车质心上方,AB间距离尽可能拉大,称AB连线为基线,A处放置的天线为主天线,B处放置的天线为辅天线。
uA、uB和φf、φr分别为A、B天线处的水平速度及其与正北
方向的夹角,由GPS接收机分别测量得到。
为基线与轴的
夹角,为汽车质心侧偏角,其定义为
式中,———汽车纵轴线与正北方向的夹角
通过GPS测量得到A、B处的位置(,>、(,>,则
对式(2>直接计算得到的值进行修正,即
然后代入式(1>进行计算。
车轮力的测量
汽车运动主要由地面对车轮的作用力引起,车轮力直接测量技术为汽车底盘运动控制系统(包括轮胎模型和悬架控制>开发和性能评价动力总成匹配、道路载荷谱采集和道路性能研究与评价等提供了新的手段。
基于测力车轮对车轮力直接测量是一种有效的方式。
测力车轮的核心部分为车轮力传感器(wheforce transducer,简称WFT>。
图4是KistlInstrument AG RWD结构简图,其结构具有代表性。
对传统车轮轮辋改进后,通过两个连接法兰将WFT传感体串联在车轮轮辋和制动器轮毂之间,地面对车桥的作用力传递路线变为:地面→胎体→改制轮辋→轮辋调节法兰→传感体→轮毂调节法兰→制动器轮毂,所以测力车轮能够更为准确地测量地面和汽车对车轮的作用力。
目前东南大学在进行WFT的产业化研究,研发的某型WFT实物车上安装。
所研发的WFT基于电阻应变式测量原理,采用八梁轮辐式传感体结构,在应变片布片组桥、非接触能量和信号传输、多分力信号结构解耦和标定、数据采集装置和数据分析等方面进行了深入研究。
WFT按测量原理分为电阻应变片测量和压电效应测量,其研发的关键技术包括传感体设计、信号传输、标定与解耦等。
其中对
WFT的动态标定和解耦是研究的难点,需要借助轮胎实验设备。
利用轮胎实验设备模拟实际路况进行复合载荷加载标定,构造合适的算法进行维间耦合动态解耦和补偿可以显著提高WFT的测量精度。
另外,针对汽车道路实验的特点,减小传感器体积、提高通用性和可靠性也是产业化过程中需要解决的重要问题。
转向力的测量
为了有效解决VSC产业化过程中道路实验方向盘转角精确控制问题,需要研究驾驶机器人代替人类驾驶员实现对转向速度、转向精度的精确控制。
图6所示是清华大学为满足DSC产业化开发而研制的转向机器人设计原理图。
图中两虚线方框给出的是GPS定位测速系统车载其余部分是转向机器人控制系统,其中GPS系统通过RS232接口为转向机器人系统实时提供精确的位置、速度等信息。
GPS系统的接收机为加拿大novAtel公司的产品,均工作在载波相位差分模式,通过两电台实现差分数据由基站向移动站的实时传输,移动站RTK数据更新速率为50 Hz。
汽车道路实验用转向机器人研究主要技术包括:转向机器人安装后不影响驾驶员驾驶操作,且在适当的时候对其工作进行主动干预;硬件设计移植性好,现场可快速装配和拆卸;模拟真实人的转向操作,具有足够的转向力度和角度;构造可靠实时控制算法、路径跟踪准确和转向控制精确等。