八年级上册数学期末测试模拟题AWB[含答案]

合集下载

八年级数学上册期末试卷模拟训练(Word版 含解析)

八年级数学上册期末试卷模拟训练(Word版 含解析)

八年级数学上册期末试卷模拟训练(Word 版 含解析)一、八年级数学全等三角形解答题压轴题(难)1.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,(1) 求证:点A 为BE 的中点(2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△PO Q=2 HI.【答案】(1)证明见解析;(2)22(0,)7F ;(3)证明见解析. 【解析】 试题分析:(1)过E 点作EG ⊥x 轴于G ,根据B 、E 点的坐标,可证明△AEG ≌△ABO ,从而根据全等三角形的性质得证;(2)过A 作AD⊥AE 交EF 延长线于D ,过D 作DK ⊥x 轴于K ,然后根据全等三角形的判定得到△AEG ≌△DAK ,进而求出D 点的坐标,然后设F 坐标为(0,y ),根据S 梯形EGKD =S 梯形EGOF +S 梯形FOKD 可求出F 的坐标;(3)连接MI 、NI ,根据全等三角形的判定SAS 证得△MIN ≌△MIA ,从而得到∠MIN=∠MIA 和∠MIN=∠NIB ,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI ,作IS⊥OM 于S, 再次证明△HIP ≌△SIC 和△QIP ≌△QIC ,得到C △POQ 周长.试题解析:(1)过E 点作EG⊥x 轴于G ,∵B (0,-4),E (-6,4),∴OB=EG=4,在△AEG 和△ABO 中,∵90EGA BOA EAG BAO EG BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEG ≌△ABO (AAS ),∴AE=AB∴A 为BE 中点(2)过A 作AD ⊥AE 交EF 延长线于D ,过D 作DK⊥x 轴于K ,∵∠FEA=45°,∴AE=AD ,∴可证△AEG≌△DAK,∴D(1,3),设F (0,y ),∵S 梯形EGKD =S 梯形EGOF +S 梯形FOKD ,∴()()()111347463222y y +⨯=+⨯++ ∴227y = ∴220,7F ⎛⎫ ⎪⎝⎭(3)连接MI 、NI∵I为△MON内角平分线交点,∴NI平分∠MNO,MI平分∠OMN,在△MIN和△MIA中,∵MN MANMI AMIMI MI=⎧⎪∠=∠⎨⎪=⎩∴△MIN≌△MIA(SAS),∴∠MIN=∠MIA,同理可得∠MIN=∠NIB,∵NI平分∠MNO,MI平分∠OMN,∠MON=90°,∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,∴∠AIB=135°×3-360°=45°,连接OI,作IS⊥OM于S, ∵IH⊥ON,OI平分∠MON,∴IH=IS=OH=OS,∠HIS=90°,∠HIP+∠QIS=45°,在SM上截取SC=HP,可证△HIP≌△SIC,∴IP=IC,∠HIP=∠SIC,∴∠QIC=45°,可证△QIP≌△QIC,∴PQ=QC=QS+HP,∴C△POQ=OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC ,∠ABP=∠CBP=45°,结合PB=PB 得出△ABP ≌△CBP ,从而得出结论;(2)、根据全等得出∠BAP=∠BCP ,∠DAP=∠DCP ,根据PA=PE 得出∠DAP=∠E ,即∠DCP=∠E ,易得答案;(3)、首先证明△ABP 和△CBP 全等,然后得出PA=PC ,∠BAP=∠BCP ,然后得出∠DCP=∠E ,从而得出∠CPF=∠EDF=60°,然后得出△EPC 是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD 中,AB=BC ,∠ABP=∠CBP=45°,在△ABP 和△CBP 中,又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∵PA=PE ,∴PC=PE ;(2)、由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∴∠DAP=∠DCP ,∵PA=PE , ∴∠DAP=∠E , ∴∠DCP=∠E , ∵∠CFP=∠EFD (对顶角相等),∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=90°;(3)、AP =CE理由是:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP ,在△ABP 和△CBP 中, 又∵ PB=PB ∴△ABP ≌△CBP (SAS ),∴PA=PC ,∠BAP=∠DCP ,∵PA=PE ,∴PC=PE ,∴∠DAP=∠DCP , ∵PA=PC ∴∠DAP=∠E , ∴∠DCP=∠E∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E ,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE考点:三角形全等的证明3.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF与△BDE中BE CFB DCABD CD=⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BDE(SAS)∴DE=DF(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AAS)∴DN=DM当S△ADF=2S△BDE.∴12×AF×DN=2×12×BE×DM∴|4-3x|=2x∴x1=4,x2=45综上所述:x=45或4【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.4.如图,在ABC∆中,ACB∠为锐角,点D为射线BC上一动点,连接AD.以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .【详解】解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD ,在△ACF 和△ABD 中,∵AB=AC ,∠CAF=∠BAD ,AD=AF ,∴△ACF ≌△ABD(SAS),∴CF=BD ,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF ⊥BD ;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,∵AC=AE,∠CAF=∠EAD,AD=AF,∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BD.【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.5.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF , ∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.6.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析.【解析】【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AECABD CAEAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE-CE.【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS,SAS,AAS,HL等.这种类型的题目经常考到,要注意掌握.7.如图,在ABC∆中,903,7C AC BC∠=︒==,,点D是BC边上的动点,连接AD,以AD为斜边在AD的下方作等腰直角三角形ADE.(1)填空:ABC∆的面积等于;(2)连接CE,求证:CE是ACB∠的平分线;(3)点O在BC边上,且1CO=,当D从点O出发运动至点B停止时,求点E相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】【分析】(1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM≌△DEN(AAS),得到ME=NE,即可利用角平分线的判定证明;(3)由(2)可知点E在∠ACB的平分线上,当点D向点B运动时,点E的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD+,根据CD的长度计算出CE的长度即可.【详解】解:(1)903,7C AC BC∠=︒==,∴112137222 ABCS AC BC=⨯=⨯⨯=,故答案为:21 2(2)连接CE,过点E作EM⊥AC于点M,作EN⊥BC于点N,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM与△DEN中,∠EMA=∠END=90°,∠AEM=∠DEN,AE=DE∴△AEM≌△DEN(AAS)∴ME=NE∴点E在∠ACB的平分线上,即CE是ACB∠的平分线(3)由(2)可知,点E在∠ACB的平分线上,∴当点D向点B运动时,点E的路径为一条直线,∵△AEM≌△DEN∴AM=DN,即AC-CM=CN-CD在Rt△CME与Rt△CNE中,CE=CE,ME=NE,∴Rt△CME≌Rt△CNE(HL)∴CM=CN∴CN=1() 2AC CD+,又∵∠MCE=∠NCE=45°,∠CME=90°,∴22()2CN AC CD=+,当AC=3,CD=CO=1时,CE=2(31)222+= 当AC=3,CD=CB=7时,CE=2(37)522+= ∴点E 的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.8.如图1,在长方形ABCD 中,AB=CD=5 cm , BC=12 cm ,点P 从点B 出发,以2cm/s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC=___cm ;(用含t 的式子表示)(2)当t 为何值时,△ABP ≌△DCP ?.(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由.【答案】(1)()122t -;(2)3t =;(3)存在,2v =或53v =【解析】【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC 的长减去BP 的长即可得到PC 的长; (2)先根据三角形全等的条件得出当BP=CP ,列方程求解即得;(3)先分两种情况:当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ;或当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,然后分别列方程计算出t 的值,进而计算出v 的值.【详解】解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm =∵12BC cm =∴()122PC BC BP t cm =-=-故答案为:()122t -(2)∵ABP DCP ∆≅∆∴BP CP =∴2122t t =-解得3t =.(3)存在,理由如下:①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,∴PC=AB=5∴BP=BC-PC=12-5=7∵2BP tcm =∴2t=7解得t=3.5∴CQ=BP=7,则3.5v=7解得2v =.②当BA CQ =,PB PC =时,ABP QCP ∆≅∆∵12BC cm = ∴162BP CP BC cm === ∵2BP tcm =∴26t = 解得3t =∴3CQ vcm =∵5AB CQ cm ==∴35v = 解得53v =. 综上所述,当2v =或53v =时,ABP ∆与以P ,Q ,C 为顶点的直角三角形全等. 【点睛】本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.9.如图1,Rt △ABC 中,∠A =90°,AB =AC ,点D 是BC 边的中点连接AD ,则易证AD =BD =CD ,即AD =12BC ;如图2,若将题中AB =AC 这个条件删去,此时AD 仍然等于12BC .理由如下:延长AD到H,使得AH=2AD,连接CH,先证得△ABD≌△CHD,此时若能证得△ABC≌△CHA,即可证得AH=BC,此时AD=12BC,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC≌△CHA,并用一句话总结题中的结论;(2)现将图1中△ABC折叠(如图3),点A与点D重合,折痕为EF,此时不难看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.【解析】【分析】(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.(3)图5,图6中,上面的关系式仍然成立.【详解】(1)证明:如图2中,∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),∴∠B=∠HCD,AB=CH,∴AB∥CH,∴∠BAC+∠ACH=180°,∵∠BAC=90°,∴∠ACH=∠BAC=90°,∵AC=CA,∴△BAC≌△HCA(SAS),∴AH=BC,∴AD=DH=BD=DC,∴AD=12 BC.结论:直角三角形斜边上的中线等于斜边的一半.(2)解:有这样分关系式.理由:如图4中,延长ED到H山顶DH=DE.∵ED=DH,∠EDB=∠HDC,DB=DC,∴△EDB≌△HDC(SAS),∴∠B=∠HCD,BE=CH,∵∠B+∠ACB=90°,∴∠ACB+∠HCD=90°,∴∠FCH=90°,∴FH2=CF2+CH2,∵DF⊥EH,ED=DH,∴EF=FH,∴EF2=BE2+CF2.(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.证明方法类似(2).【点睛】本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.10.如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA=DB.(1)求证:∠ACB =∠ADB ;(2)求证:AC +BC <2BD ;(3)如图2,若∠ECF =60°,证明:AC =BC +CD .【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,证明Rt △DAM ≌Rt △DBN ,得出∠DAM=∠DBN ,则结论得证;(2)证明Rt △DMC ≌Rt △DNC ,可得CM=CN ,得出AC+BC=2BN ,又BN <BD ,则结论得证;(3)在AC 上取一点P ,使CP=CD ,连接DP ,可证明△ADP ≌△BDC ,得出AP=BC ,则结论可得出.【详解】(1)证明:过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,∵CF 是△ABC 的外角∠ACE 的角平分线,∴DM =DN ,在Rt △DAM 和Rt △DBN 中,DA DB DM DN =⎧⎨=⎩, ∴Rt △DAM ≌Rt △DBN (HL ),∴∠DAM =∠DBN ,∴∠ACB =∠ADB ;(2)证明:由(1)知DM =DN ,在Rt △DMC 和Rt △DNC 中,DC DCDM DN=⎧⎨=⎩,∴Rt△DMC≌Rt△DNC(HL),∴CM=CN,∴AC+BC=AM+CM+BC=AM+CN+BC=AM+BN,又∵AM=BN,∴AC+BC=2BN,∵BN<BD,∴AC+BC<2BD.(3)由(1)知∠CAD=∠CBD,在AC上取一点P,使CP=CD,连接DP,∵∠ECF=60°,∠ACF=60°,∴△CDP为等边三角形,∴DP=DC,∠DPC=60°,∴∠APD=120°,∵∠ECF=60°,∴∠BCD=120°,在△ADP和△BDC中,APD BCDPAD CBDDA DB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP≌△BDC(AAS),∴AP=BC,∵AC=AP+CP,∴AC=BC+CP,∴AC=BC+CD.【点睛】本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.二、八年级数学轴对称解答题压轴题(难)11.如图,在ABC△中,已知AD是BC边上的中线,E是AD上一点,且BE AC=,延长BE交AC于点F,求证:AF EF=.【答案】证明见解析【解析】【分析】延长AD到点G,使得AD DG=,连接BG,结合D是BC的中点,易证△ADC和△GDB全等,利用全等三角形性质以及等量代换,得到△AEF中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD到点G,延长AD到点G,使得AD DG=,连接BG.∵AD是BC边上的中线,∴DC DB=.在ADC和GDB△中,AD DGADC GDBDC DB=⎧⎪∠=∠⎨⎪=⎩(对顶角相等),∴ADC≌GDB△(SAS).∴CAD G∠=∠,BG AC=.又BE AC=,∴BE BG=.∴BED G∠=∠.∵BED AEF∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.12.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ⊥OA于Q,∴∠AQC=90°,△为等腰直角三角形,∵ABC∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,≅(AAS),∴AQC BOA∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,△是等腰直角三角形,∵ABD∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD=90°,≅∴AOB BPD∴AO=BP,∵BP=OB -PO=m-(-n)=m+n, ∵A ()23,0-,∴OA=23,∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,∴整式2253m n +-的值不变为3-.(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM,∴EN=12(EM-GM),∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.13.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF=BD,理由如下:如图1中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,在△BCD和△ACF中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(2)AF 与BD 在(1)中的结论成立,理由如下:如图2中,∵△ABC 是等边三角形,∴BC =AC ,∠BCA =60°,同理知,DC =CF ,∠DCF =60°,∴∠BCA +∠DCA =∠DCF +∠DCA ,即∠BCD =∠ACF ,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(3)Ⅰ.AF +BF ′=AB ,理由如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:同理可得:BCF ACD ∠=∠′,F C DC =′,在△BCF ′和△ACD 中,BC AC BCF ACD F C DC =∠⎧⎪=∠=⎪⎨⎩′′, ∴△BCF ′≌△ACD (SAS ),∴BF ′=AD ,又由(2)知,AF =BD ,∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.14.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .(1)求证:2FAD ABD ∠=∠;(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,AD CD =,ADK CDH ∠=∠,∴△AKD ≌△CHD (AAS ),DK DH ∴=,∵,,AK DF AF AD AE AH ⊥==,,FK DK EK HK ∴==,3DH EF ∴==,6DF ∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.15.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠ BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==-在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.16.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.17.已知如图1,在ABC ∆中,AC BC =,90ACB ∠=,点D 是AB 的中点,点E 是AB 边上一点,直线BF 垂直于直线CE 于点F ,交CD 于点G .(1)求证:AE CG =.(2)如图2,直线AH 垂直于直线CE ,垂足为点H ,交CD 的延长线于点M ,求证:BE CM =.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)首先根据点D 是AB 中点,∠ACB =90°,可得出∠ACD =∠BCD =45°,判断出△AEC ≌△CGB ,即可得出AE =CG ;(2)根据垂直的定义得出∠CMA +∠MCH =90°,∠BEC +∠MCH =90°,再根据AC =BC ,∠ACM =∠CBE =45°,得出△BCE ≌△CAM ,进而证明出BE =CM .【详解】(1)∵点D 是AB 中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,∴∠CAD =∠CBD =45°,∴∠CAE =∠BCG .又∵BF ⊥CE ,∴∠CBG +∠BCF =90°.又∵∠ACE +∠BCF =90°,∴∠ACE =∠CBG .在△AEC和△CGB中,∵CAE BCGAC BCACE CBG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,BEC CMAACM CBEBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.18.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在x正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BDABC DBQBC BQ=⎧⎪∠=∠⎨⎪=⎩∴△CBA≌△QBD(SAS),∴∠BDQ=∠BAC=60°,∴∠PDO=60°,∴PD=2DO=6,∵PD=23DC,∴DC=9,即 OC=OD+CD=12,∴点 C的坐标为(12,0);(3)如图3,以 OA为对称轴作等边△ADE,连接 EP,并延长 EP交 x 轴于点F.由(2)得,△AEP≌△ADB,∴∠AEP=∠ADB=120°,∴∠OEF=60°,∴OF=OA=3,∴点P在直线 EF上运动,当 OP⊥EF时,OP最小,∴OP=12OF=32则OP的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.19.数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,110A∠=,求B的度数.(答案:35)。

北师大版八年级数学上册期末模拟检测试题(含答案).docx

北师大版八年级数学上册期末模拟检测试题(含答案).docx

八年级数学上册期末模拟检测试题班级: __________姓名: __________一、单选题(共10 题;共 30 分)1. 在平面直角坐标系中,点(1, 3)位于第()象限。

A.第一象限B.第二象限 C.第三象限 D.第四象限2. 如果一组数据 2, 4, x, 3, 5 的众数是 4,那么该组数据的平均数是().A.5. 2B.4. 6C.4D.3. 63. 对于命题“如果∠ 1+∠ 2=180°,那么∠ 1≠∠ 2”,能说明它是假命题的反例是()A.∠ 1=150°,∠ 2=30°B. ∠ 1=60°,∠ 2=60°C.∠ 1=∠ 2=90°D.∠ 1=100°,∠ 2=40°4. 已知点 P 关于 x 轴的对称点为( a, -2 ),关于 y 轴对称点为( 1, b),那么点P 的坐标为()A.( a, - b)B. (b, -a) C.( -2,1) D. ( -1, 2)5.如图,射线 OC的端点 O在直线 AB上, 1 的度数 x 比 2 的度数 y 的 2 倍多 10 度,则可列正确的方程组为()A. B. C. D.6. 已知,如果x与y互为相反数,那么()A. k=0B.k=-C. k=-D. k=7. 甲、乙两车从 A 地驶向 B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了 0.5h (甲车休息前后的速度相同),甲、乙两车行驶的路程y( km)与行驶的时间x( h)的函数图象如图所示.根据图象的信息有如下四个说法:①甲车行驶40 千米开始休息②乙车行驶 3.5 小时与甲车相遇③甲车比乙车晚 2.5 小时到到 B 地④两车相距50km 时乙车行驶了小时,其中正确的说法有()A. 1 个B.2个 C.3个 D. 4 个8. 下列根式中,最简二次根式是()A. B.C. D.9. 如图, AB∥ CD∥ EF,则下列各式中正确的是()A. ∠ 1=180°﹣∠ 3B. ∠1=∠ 3﹣∠2 C. ∠2+∠ 3=180°﹣∠ 1 D. ∠ 2+∠3=180° +∠ 110. 如图 1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、 S2、 S3;如图 2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、 S6。

八年级上册数学期末模拟试卷【含答案】

八年级上册数学期末模拟试卷【含答案】

八年级上册数学期末模拟试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 下列哪个数是质数?A. 12B. 17C. 20D. 213. 下列哪个数是立方数?A. 8B. 27C. 64D. 1254. 下列哪个数是平方数?A. 36B. 49C. 50D. 815. 下列哪个数是无理数?A. √2B. √3C. √4D. √5二、判断题1. 2的平方根是2。

()2. 0是偶数。

()3. 两个质数相乘一定是合数。

()4. 两个奇数相加一定是偶数。

()5. 两个偶数相乘一定是偶数。

()三、填空题1. 5的平方是______。

2. 12的立方是______。

3. 2的平方根是______。

4. 9的算术平方根是______。

5. 16的立方根是______。

四、简答题1. 请写出前5个正整数的平方。

2. 请写出前5个正整数的立方。

3. 请写出前5个质数。

4. 请写出前5个偶数。

5. 请写出前5个奇数。

五、应用题1. 一个正方形的边长是4,请计算它的面积。

2. 一个立方体的边长是3,请计算它的体积。

3. 一个长方形的长是6,宽是4,请计算它的面积。

4. 一个圆柱的底面半径是5,高是10,请计算它的体积。

5. 一个圆锥的底面半径是3,高是4,请计算它的体积。

六、分析题1. 请分析质数和合数的区别。

2. 请分析有理数和无理数的区别。

七、实践操作题1. 请用直尺和圆规画一个边长为5的正方形。

2. 请用直尺和圆规画一个边长为4的立方体。

八、专业设计题1. 设计一个面积为24平方米的长方形,并计算其周长。

2. 设计一个体积为120立方厘米的长方体,并计算其表面积。

3. 设计一个底面半径为6厘米,高为10厘米的圆锥,并计算其体积。

4. 设计一个底面直径为10厘米,高为15厘米的圆柱,并计算其体积。

5. 设计一个边长为3厘米的正方体,并计算其表面积。

九、概念解释题1. 解释什么是算术平方根。

八年级数学上册期末模拟试卷(含答案)

八年级数学上册期末模拟试卷(含答案)

八年级数学上册期末模拟试卷一、选择题:1.下列运算正确的是( )A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=12.以下图形中对称轴的数量小于3的是()3.下列式子中,与分式的值相等的是( )A.B.C.D.4.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°5.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b26.将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A.145°B.135°C.120°D.115°7.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处8.如图,把一副三角尺叠放在一起,若AB∥CD,则∠1的度数是()A.75°B.60°C.45°D.30°9.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为()11.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()12.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014 B.2015 C.D.二、填空题13.点P(﹣1,3)关于y轴的对称点的坐标是.14.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.15.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.16.若4x2+2(k-3)x+9是完全平方式,则k=______.17.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.18.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.三、解答题19.化简:(x+y)2﹣(x+y)(x﹣y) 20.(x2+y2)2﹣4x2y2.21.化简:22.解分式方程:23.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.25.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?26.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2). (1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.a2-b2=(a+b)(a-b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;②计算:27.如图,已知△ABC是等边三角形,D为AC边上的一点,DG∥AB,延长AB到E,使BE=GD,连接DE交BC 于F.(1)求证:GF=BF;(2)若△ABC的边长为a,BE的长为b,且a,b满足(a﹣7)2+b2﹣6b+9=0,求BF的长.参考答案1.B.2.D3.A4.B5.C6.B7.C8.A.9.A10.B11.B.12.D13.答案为:(1,3).14.答案为:第1,利用SAS得出全等三角形,即可配成与原来同样大小的一块.15.答案为:20°.16.答案为:9或﹣3 .17.答案为:或.18.答案为:15.19.原式=x2+2xy+y2﹣x2+y2=2xy+2y2.20.(x2+y2)2﹣4x2y2=(x2+y2﹣2xy)(x2+y2+2xy)=(x﹣y)2(x+y)2.21.原式====.22.去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;23.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.24.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.25.26.(1)B;(2)①,4;②;27.⑴证明:△DGF≌△EBF,GF=BF;⑵∵(a-7)2+b2-6b+9=0,∴a=7,b=3,BF=2.。

2022—2023年部编版八年级数学上册期末模拟考试及完整答案

2022—2023年部编版八年级数学上册期末模拟考试及完整答案

2022—2023年部编版八年级数学上册期末模拟考试及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-. 3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.化简x 1x -,正确的是( ) A .x - B .x C .﹣x - D .﹣x5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )A .2%B .4.4%C .20%D .44%7.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm9.如图,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC ,交AB 于 E ,∠A=60º, ∠BDC=95º,则∠BED 的度数是( )A .35°B .70°C .110°D .130°10.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.216.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x+=-,求k的值.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a-+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、A6、C7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、43、如果两个角互为对顶角,那么这两个角相等45、656、20三、解答题(本大题共6小题,共72分)1、(1)43x ≤-,数轴表示见解析;(2)12x >,数轴表示见解析. 2、20xy-32,-40.3、(1)见解析;(2)k =84、(1)证明略;(2)证明略;(3)10.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

八年级上册数学期末测试模拟题IB[含答案]

八年级上册数学期末测试模拟题IB[含答案]

八年级上册数学期末测试模拟题[含答案]一、选择题1.某地区10户家庭的年消费情况如下:年消费l0万元的有2户,年消费5万元的有l 户,年消费1.5万元的有6户,年消费7千元的有1户.可估计该地区每户年消费金额的一般水平为()A.1.5万元 B.5万元 C.10万元 D.3.47万元答案:A2.如图所示,下列说法中错误的是()A.∠C和∠3是同位角B.∠A和∠3是内错角C.∠A和∠B是同旁内角D.∠l和∠3是内错角答案:B3.等腰三角形一腰上的高线与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或l50°D.60°或l20°答案:D4.如果△ABC是等腰三角形,那么∠A,∠B的度数可以是()A.∠A=60°,∠B=50°B.∠A=70°,∠B=40°C.∠A=80°,∠B=60°D.∠A=90°,∠B=30°答案:B5.在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定答案:C6.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN 等于()A.65B.95C.125D.165答案:C AM NCB7.为了了解全世界每天婴儿出生的情况,应选择的调查方式是()A.普查B.抽样调查C.普查,抽样调查都可以D.普查,抽样调查都不可以答案:B8.若一组数据80,82,79,81,69,74,78,x,其众数是82,则()A.x=79 B.x=80 C.x=81 D.x=82答案:D9.今年某市有800名八年级学生参加了省数学竞赛,为了了解这800名学生的成绩,从中抽取了100名学生的考试成绩进行分析,以下说法中,正确的是()A.800名学生是总体B.每个学生是个体C.100名学生的数学成绩是一个样本D.800名学生是样本容量答案:C10.甲、乙、丙、丁四位数选手各l0次射击成绩的平均数都是8环,众数和方差如下表,则这四个人中水平发挥最稳定的是()A.甲B.乙C.丙D.丁答案:B11.某校初三·一班6名女生的体重(单位:kg)为:35 36 38 40 42 42则这组数据的中位数等于()A.38 B.39 C.40 D.42答案:B12.如图所示,∠l和∠2是()A.同位角B.同旁内角C.内错角D.以上结论都不对答案:C13.某居民区月底统计用电情况,其中用电45度的有3户,用电50度的有5户,用电42度的有6户,则平( )答案:C14.下列说法中,错误的是( ) A .长方体、立方体都是棱柱 B .竖放的直三棱柱的侧面是三角形C .竖放的直六棱柱有六个侧面,侧面为长方形 C .球体的三种视图均为同样大小的图形答案:B15.||3x ≤的整数解是( ) A .0,1,2,3B .0,1,2,3±±±C .1,2,3±+±D .-1,-2 ,-3,0答案:B16.若方程3(1)1(3)5m x m x x ++=--的解是负数,则 m 的取值范围是( ) A .54m >-B .54m > C .54m <- D .54m <答案:A17.已知关于x 的不等式2x 3m ->-的解的解如图所示,则m 的值等于( ) A .2B .1C . -1D .0答案:B18.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( ) A .(-4,3)B .(-3,-4)C .(-3,4)D .(3,-4)答案:C19.如图,下列各点在阴影区域内的是 ( )A .(3,2)B .(-3,2)C .(3,-2)D .(-3,-2)答案:A20.若直线l 与已知直线y=2x+1关于y 轴对称,则直线l 的解析式为( ) A .y=-2x 一1B .y=-2x+1C .y=2x-1D .112y x =-+答案:B21. 如图,点A 、B 、C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线. 则图中阴部分的面积之和是( )A .1B . 3C .3(1)m -D .3(2)2m -答案:B22.如图,直线y kx b =+交坐标轴于A B ,两点,则不等式0kx b +>的解集是( ) A .2x >-B .3x >C .2x <-D .3x <解析:A23.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① △ACE ≌△DCB ; ② CM =CN ;③ AC =DN .其中正确结论的个数是( ) A . 3个 B .2个C . 1个D .0个答案:B24.如图,已知直线a,b 被直线c 所截,a ∥b ,∠2=50°,则∠1等于( ) A .150°B .130°C .40°D .50°答案:B25.不等式组213351x x +>⎧⎨-≤⎩的解在数轴上表示正确的是( )A .B .C .D .答案:C26.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数是( ) A .30元B .35元C .50元D .100元答案:C 二、填空题27.已知M ,N 在直线l 上,l ∥BC ,MN = 3,BC = 5,则:MBC CMN S S ∆∆= .解析:5:328.直线4y kx =+与两坐标轴围成的直角三角形面积为2,则这条直线与x 轴的交点 为 .解析:(-1,0)或(1,O)29.把直线y=-2x 一2向上平移3个单位的直线是 . 解析:y=-2x+130.多边形的内角和的度数y 与边数n 之间的关系为y=(n-2)·180°,其中常量为 ,变量为 . 解析:2、180°;y 、n31.在平面直角坐标系中.点A(x-l ,2-x)在第四象限,则实数x 的取值范围是 .解析:2x >32.已知点P(-1,2),PQ 垂直于x 轴,垂足为Q ,则点Q 的坐标为 . 解析:(-l ,O)33.x 的3倍与 1 的差不大于2与x 的和的一半,用不等式表示为 .解析:131(2)2x x -≤+34.在一个班的40名学生中,14岁的有15人,15岁的有14人,l6岁的有7人,l7岁的有4人,则这个班的学生年龄的中位数是 岁,众数是 岁.解析:15,1435.若一个底面为正方形的直棱柱的侧面展开图是一个边长为4的正方形,则这个直棱柱的表面积是,体积是.解析:18,436.若一个边三角形的边长为 6,则它的面积为 .解析:37.如图,在长方形ABCD中,AB=1,BC=2则AC=___________.解析:538.如果一个三角形一边上的中线恰好与该边上的高重合,那么这个三角形 (填“一定”或“不一定”)是等腰三角形.解析:一定39.已知等腰三角形的两条边长为3和5,求等腰三角形的周长.解析:11或l3三、解答题40.已知:如图,直线l是一次函数y kx b=+的图象.求:(1)这个函数的解析式;(2)当4x=时,y的值.解析:解:(1)依题意,得201k bb-+=⎧⎨=⎩,.,解得112k b==,.112y x =+∴. (2)当4x =时,3y =.41.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例关系. 当x=20时,y=1600,当x=30时,y=2000. (1)求y 与x 之间的函数解析式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?解析:(1)y=40x+800;(2)56元42.若不等式组1212325x x x a +-⎧>⎪⎨⎪-≥-⎩的正整数解只有4,求a 的取值范围.1113a <≤解析:1113a <≤43.解下列不等式,并把解表示在数轴上. (1)533(2)x x +<+; (2)215136x x ++-≤-解析:(1)32x <,在数轴上表示略 (2)15x ≤-,在数轴上表示略 44.某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100 m ,气温下降 0.5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜(假设山脚海拔为 0 m)?解析:400 m 到800m45.已知方程21|28|(5)02x x y a -+--=. (1)当0y >时,求a 的取值范围; (2)当0y <时,求a 的取值范围.解析:(1)a<20;(2)a>2046.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数. 方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.解析:解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710+++⨯+⨯+=; 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.47.因受国际金融危机影响,某药业集团降低生产成本,将药品包装盆的生产样式进行改革. 如图是该包装盒的表面展开图,如长方体 盒子的长比宽多 4厘米,求这种药品包装盒的体积. 单位:厘米解析:设长方体盒子的宽和高分别为x 厘米、y 厘米,则该长方体盒子的长为(4x +)厘米.根据题意,得2()144213x y x y +=⎧⎨++=⎩, 解得5213x y =⎧⎨=⎩,∴49x +=.∴长方体盒子的长、宽、高分别为9厘米、5厘米、2厘米. ∴9×5×2=90(立方厘米).∴这种药品包装盒的体积为90立方厘米.48.如图所示,一棵大树被龙卷风吹断了,折断点离地面9 m ,树顶端落在离树根12 m 处,问这棵大树原先高度是多少?解析:24m49.如图所示,△ABC 和△ABD 是有公共斜边的两个直角三角形,且AC=2,BC=1.5,AD=2.4,求AB 和BD 的长.解析:AB=2.5,BD=0.750.如图,如果∠2+ 3 = 180∠,那么a与b平行吗?请说明理由.解析:平行.理由:∵∠2+∠3=180°,∠2=∠4,∴∠4+∠3=180°,∴a∥b.。

八年级上册数学期末测试模拟题AWN[含答案]

八年级上册数学期末测试模拟题AWN[含答案]

八年级上册数学期末测试模拟题[含答案]一、选择题1.某种奶制品的包装盒上注明“蛋白质≥2.9%”,它的含义是()A.蛋白质的含量是2.9% B.蛋白质的含量高于2. 9%C.蛋白质的含量不低于 2. 9% D.蛋白质的含量不高于 2. 9%答案:C2.下列语句错误的是()A.连结两点的线段长度叫做两点间的距离B.两点之间,直线最短C.两条平行线中,-条直线上的点到另一条直线的距离叫两条平行线间的距离D.平移变换中,各组对应点连成两线段平行且相等答案:C3.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE答案:D4.有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有()A. 1个B.2个C.3个D.4个答案:C5.由四个大小相同的小立方体叠成的几何体的左视图如图所示.则这个几何体的叠法不可能是()A. B.C. D.答案:A6.图中几何体的左视图是()答案:A7.小伟五次数学考试成绩分别为86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的()A.平均数B.众数C.中位数D.方差答案:D8.对于数据3,3,2,3,6,3,10,3,6,3,2. 有以下结论:①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位教与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的有()A.1个B. 2个C.3个D.4个答案:A9.如图,a∥b,则∠1=∠2 的依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行答案:B10.由x y>的条件是()<得到ax ayA.0a>D.0a<a≤C.0a≥B.0答案:D11.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行的距离是()A.6 m B. 8 m C. 10 m D. 12 m答案:C12.不等式组x ax b >⎧⎨>⎩的解集为x b >(a b ≠),则a 与b 的关系是( ) A .a b >B .a b <C .0a b >>D .0a b <<答案:B13.在△ABC 中,AB= 14,BC= 2x ,AC= 3x ,则x 的取值范围是( ) A . 2.8x >B .2.814x <<C .14x <D .714x <<答案:B14. 已知一次函数(24)(3)y m x n =++-,当它的图象与y 轴的交点在x 轴下方时,则有( )A .2m ≠-,3n >B .2m <-,3n ≠C .2m >-,3n ≠D .2m ≠-,3n <答案:A15.一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 等于( ) A .135°B .l05°C .75°D .45°答案:D16.点P (x ,y )的坐标x ,y 满足0xy =,则P 点在( ) A .x 轴上B .y 轴上C .x 轴或y 轴上D .原点答案:C17.如果点M 在直线1y x =-上,则点M 的坐标可以是( ) A .(-1,O )B .(0,1)C .(1,0)D .(1,-1)答案:C18.若正比例函数(21)y m x =-的图象经过点A (1x ,1y )和点B (2x ,2y ),当12x x <时,12y y >,则m 的取值范围是( ) A .0m <B .0m >C .12m <D .12m >答案:C19.如图,下列条件不能判定直线a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=D .24180∠+∠=解析:C20.在国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)的情况如下表.该乡去年人均收入的中位数是( )A.3700元B.3800元C.3850元 D.3900元答案:B二、填空题21.如图,l1反映了某公司的销售收入与销量的关系,l2 反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入大于成本)时,销售量必须____________.解析:大于422.如图,∠1的同位角是,∠3 的内错角是,∠4与是同旁内角.解析:∠4,∠2,∠223.如图AD与BC相交于点O,, AB∥CD, ∠B=20°,∠D = 40°,那么∠BOD = .解析:60°24.如图,在△ABC中,AB=AC=BC,若AD⊥BC,BD=5 cm,则AB= cm.解析:1025.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A、B、C、D的面积的和为 cm2.解析:4926.如图,点D是△ABC内部一点,DE⊥AB于E,DF⊥BC于F,且DE=DF,若∠ABD=26°,则∠ABC= .解析:52°27.如图,B、C是河岸两点,A是对岸一点,测得∠ABC=45°,BC=60m ,∠ACB=45°,则点A到岸边BC的距离是 m.解析:3028.如图,在长方形ABCD中,AB=1,BC=2则AC=___________.解析:529.如图,直线a、b均与 c相交,形成∠1,∠2,……,∠8 共八个角,请填上你认为适当的一个条件使得 a∥b,条件为.解析:如∠1=∠5(答案不唯一)30.在Rt△ABC中,∠C = 90°,∠B = 35°,则∠A = .解析:55°31.某地某天的最高气温为8℃,最低气温比最高气温低10℃,则这天此地气温t(℃)的取值范围是.解析:-2≤t≤832.一个不等式的解集如图所示,则这个不等式的正整数解是____________.解析:1,233.象棋中,有“马走日,象走田……”的规则(列数在前,排数在后)图中“马”可移动到上,“象”可移动到上.解析:(1,3)或(3,3)或(4,2),(1,8)或(5,8)34.若点M(1,2n一1)在第四象限内,则a的取范围是.解析:1a235.市场上出售一种大豆,大豆的总售价与所售大豆的数量之间的关系如下表:(1)上表中所反映的变量是;(2)如果出售2.5 kg大豆,那么总售价应为元;(3)出售 kg大豆,可得总售价为45元.解析:(1)总售价、所售大豆的数量;(2)7.5;(3)1536.如图表示甲骑电动自行车和乙驾驶汽车沿相同的路线行驶45km,由A地到B地时,行驶的路程y(km)与经过的时间x(h)之间的函数关系.请根据这个行驶过程中的图象填空:汽车出发 h与电动自行车相遇;电动自行车的速度为/h;汽车的速度为km/h;汽车比电动自行车早 h到达B地.解析:0.5,9,45,237.若解方程x+2=3x-2得到x=2,则当x 时,直线y=x+2上的点在直线y=3x一2上相应点的上方.解析:<238.—函数的图祭经过点(3,0)和(-3,6),则这个一次函数的解析式是 .解析:3y x =-+39.直线4y ax =-与直线3y bx =+交于x 轴上一点,则ab等于 . 解析:43-40.现用火柴棒摆一个直角三角形,两直角边分别用了7根、24根长度相同的火柴棒,则斜边需要用 根相同的火柴棒. 解析:25三、解答题41.某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不小于5000册时,投入的成本与印数间的相应数据如下:(1)经过对上表中各组数据的探究,发现这种读物的投入成本y(元)是印数x(册)的一次函数,求这个一次函数的解析式;(2)如果出版社投入成本46000元,那么能印该读物多少册?解析:(1)y=2.5x+16000;(2)1200042. 一个长方形足球场的长为x (m),宽为 70 m .如果它周长大于350m ,面积小于7560 m 2,求x 的取值范围.用于国际比赛的足球场有如下要求:长在 100 m 到110之间,宽在64m 到75 m 之间,请你判断上述球场是否亩以用作国标足球比赛.解析:105108x <<,可以用作国际足球比赛43.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?解析:(1)设预定男篮门票x 张,则乒乓球门票(15x -)张.得:1000x+500(15-x)=12000,解得:x = 9 ∴151596x -=-=,即预定男篮门票9张,乒乓球门票6张. (2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为(15-2y )张,得:8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩, 解得:2545714y ≤≤.由y 为正整数可得y=5. 15-2y=5 ,即可以订男篮门票5张,足球门票5张,乒乓球门票5张44.如图,在△ABC 中,点D ,E 分别在AC ,AB 上,若AE=DE=DB=BC ,且∠ABC=110°,求∠A 的度数.解析:17.5° 45.若不等式2123x a x b -<⎧⎨->⎩的解集为11x -<<,求(1)(1)a b +-的值.解析:-646.一个物体的俯视图是正方形,你认为这个物体可能是什么形状?你能写出两种或两种以上不同的物体吗?解析:正方体,正四棱柱等47.是否存在一个有l0个面、26条棱、18个顶点的棱柱?若存在,请指出是几棱柱;若不存在,请说说你的理由.解析:不存在,若存在n棱柱,有(n+2)个面,2n个顶点,3n条棱48.已知:如图,AD、BE是△ABC的高,F是DE中点,G是AB的中点.试说明GF⊥DE.解析:先说明EG=DG,再利用三线合一说明49.如图,用同样大小的四个等边三角形,可以拼成一个轴对称图形,你能再拼出一种轴对称图形吗?解析:略50.如图,D 是 BC 上一点,若 DE∥AC 交AB于 E,DF∥AB 交 AC 于 F,则∠EDF =∠A.试说明理由.解析:可由DE∥AC说明,∠A=∠BED,再由DF∥AB,说明∠EDF=∠BED。

2022年秋八年级上册期末数学考试模拟题(共5套)【含答案】

2022年秋八年级上册期末数学考试模拟题(共5套)【含答案】

2022年秋八年级上册期末模拟题(一)一、选择题1.下列一组数:﹣8,2.6,0,﹣π,﹣,0.…(每两个2中逐次增加一个0)中,无理数有( )A.0个B.1个C.2个D.3个2.下列实数中,最大的是( )A.﹣1B.﹣2C.﹣0.5D.﹣3.下列说法正确的是( )A.(﹣3)2的平方根是3B.=±4C.1的平方根是1D.4的算术平方根是24.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r之间的关系B.某地一天的温度T与时间t的关系C.某班学生的身高y与这个班学生的学号x的关系D.一个正数b的平方根a与这个正数b之间的关系5.下列函数:①y=2x+1 ②y=③y=x2﹣1 ④y=﹣8x中,是一次函数的有( )A.1个B.2个C.3个D.4个6.在Rt△ABC中,∠ACB=90°,D,E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,则BD的长为( )A.5cm B.6cm C.7cm D.8cm7.如图,△EFG≌NMH,△EFG的周长为15cm,HM=6cm,EF=4cm,EH=1cm,则HG等于( )A.4 cm B.5cm C.6cm D.8cm8.下列不是无理数的一项是( )A.π的相反数B.π的倒数C.π的平方根D.9.点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是( )A.a=1,b=﹣3B.a=1,b=﹣1C.a=5,b=﹣3D.a=5,b=﹣1 10.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是( )A.B.C.D.11.函数y=ax+b(a,b为常数,a≠0)的图象如图所示,则关于x的不等式ax+b>0的解集是( )A.x>4B.x<0C.x<3D.x>312.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依次法继续作下去,S1,S2,S3…分别表示各个三角形的面积,那么S12+S22+S32+…+S92的值是( )A.B.C.D.55二.填空题13.计算:﹣()﹣1+(π﹣2018)0﹣|﹣1|= .14.如果+(2y+1)2=0,那么x2018y2017= 15.如果+3是一次函数,则m的值是 .16.若3,4,a和5,b,13是两组勾股数,则a+b的值是 .17.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简﹣|a+b|的结果是 .三.解答题18.在平面直角坐标系中,点P(m,n)在第一象限,且在直线y=﹣x+6上,点A的坐标为(5,0),O是坐标原点,△PAO的面积是S.(1)求S与m的函数关系式,并画出函数S的图象;(2)小杰认为△PAO的面积可以为15,你认为呢?19.求值:(1)|﹣2|﹣+(﹣1)×(﹣3)(2)(﹣1)2018+|1﹣|﹣20.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F 在AC上,BE=FC.求证:BD=DF.21.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线AF交CD 于点E,交BC于F,CM⊥AF于M,CM的延长线交AB于点N.(1)求证:EM=FM;(2)求证:AC=AN.22.如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.23.“交通管理条例第三十五条”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方50米处,过了6秒后,测得小汽车与车速检测仪间距离为130米,这辆小汽车超速了吗?24.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租一本书,租书金额y(元)与租书时间x(天)之间的关系如图所示:(1)用租书卡每天租书的收费为 元,用会员卡每天租书的收费是 元;(2)分别写出用租书卡和会员卡租书的金额y1、y2与租书时间x之间的函数关系式;(3)如果租书50天,选择哪种租书方式比较划算?如果花费80元租书,选择哪种租书方式比较划算?答案一.选择题1.解:无理数有﹣π,0.…(每两个2中逐次增加一个0),故选:C.2.解:∵﹣2<﹣<﹣1<﹣0.5,∴最大的数是﹣0.5,故选:C.3.解:A、(﹣3)2=9的平方根是±3,故此选项错误;B、=4,故此选项错误;C、1的平方根是±1,故此选项错误;D、4的算术平方根是2,正确.故选:D.4.解:A、圆的面积S和半径r之间的关系是S=πr2,符合函数的定义,不符合题意;B、某地一天的温度T与时间t的关系符合函数的定义,不符合题意;C、每一个学生对应一个身高,y是x的函数,不符合题意;D、一个正数b的平方根a与这个正数b之间的关系为a=±,b每取一个正数,a都有两个值与之对应,不符合函数的定义,符合题意;故选:D.5.解:①y=2x+1是一次函数,②y=是反比例函数,不是一次函数,③y=x2﹣1是二次函数,不是一次函数,④y=﹣8x是一次函数,故选:B.6.解:∵∠ACB=90°,CE⊥AB,∴∠ACE=∠B,∵CE所在直线垂直平分线段AD,∴CD=CA=5,∠ACE=∠DCE,∵CD平分∠BCE,∴∠DCE=∠BCD,∴∠BCD=∠B,∴BD=CD=5((cm),故选:A.7.解:∵△EFG≌△NMH,∴MN=EF=4cm,FG=MH,△HMN的周长=△EFG的周长=15cm,∴FG﹣HG=MH﹣HG,即FH=GM=1cm,∵△EFG的周长为15cm,∴HM=15﹣6﹣4=5cm,∴HG=5﹣1=4cm,故选:A.8.解:A、B、C都是无理数;D、=9,是有理数.故选:D.9.解:(2,b+2)与点(a﹣3,﹣1)关于x轴对称,得a﹣3=2,b+2=1.解得a=5,b=﹣1,故选:D.10.解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A.11.解:关于x的不等式ax+b>0的解集为x<3.故选:C.12.解:由勾股定理得:OP1=,OP2=;OP3=2;OP4==;依此类推可得OP n=,∴S12=,S22=,S32=,…,S92=,∴S12+S22+S32+…+S92=.故选:C.二.填空题13.解:原式=3﹣5+1﹣(﹣1)=3﹣5+1﹣+1=2﹣3.故2﹣3.14.解:∵+(2y+1)2=0,∴x﹣2=0且2y+1=0,解得x=2,y=﹣,则原式=x•x2017y2017=x•(xy)2017=2×(﹣×2)2017=2×(﹣1)2017=2×(﹣1)=﹣2,故﹣2.15.解:∵+3是一次函数,∴2﹣m2=1且m﹣1≠0,解得m=﹣1.故答案是:﹣1.16.解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=17,故17.17.解:由图可得,a+b=0,b<0,∴a>0,a﹣b>0,∴﹣|a+b|=a﹣b﹣0=a﹣b,故a﹣b.三.解答题18.解:(1)∵P(m,n)在直线y=﹣x+6上,且在第一象限∴n=﹣m+6,即:点P到x轴距离为﹣m+6.∵点A坐标为(5,0),(2)△PAO的面积不可能为15.理由:若S=15,即,解得m=0,此时点P的坐标为(0,6),点P在第一象限不符合题意,故△PAO的面积不可能为15.19.解:(1)|﹣2|﹣+(﹣1)×(﹣3)=2﹣2+3=3;(2)(﹣1)2018+|1﹣|﹣=1+﹣1﹣2=﹣2.20.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.21.(1)证明:∵∠ACB=90°,CD⊥AB,∴∠ADC=90°,∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°,又∵∠BAC的平分线AF交CD于E,∴∠DAE=∠CAE,∴∠AED=∠CFE,又∵∠AED=∠CEF,∴∠CEF=∠CFE,又∵CM⊥AF,∴EM=FM.(2)证明:∵CN⊥AF,∴∠AMC=∠AMN=90°,在△AMN和△AMC中,,∴△AMN≌△AMC(SAS),∴AC=AN.22.解:①延长BE与CD相交于点F,则EF=BE,证明:∵AB∥CD,∴∠A=∠D,∠ABE=∠DFE,∵E是AD的中点,∴AE=DE,在△AEB与△DEF中,,∴△AEB≌△△DEF(AAS),∴BE=EF;②∵△AEB≌△△DEF,∴DF=AB=6,BE=EF=BF,∴CF=CD﹣DF=6,∵BC⊥CD,∴BF==10,∴BE=BF=5.23.解:由勾股定理得,BC===120米,v=120÷6=20米/秒,∵20×3.6=72,∴20米/秒=72千米/小时,72>70,∴这辆小汽车超速了.24.解:(1)租书卡每天租书花费:50÷100=0.5(元),设会员卡每天租书花费x元,则20+100x=50,得x=0.3;故0.5;0.3;(2)设用租书卡的函数关系式为:y=kx,∴100k=50,解得:k=0.5,∴用租书卡的关系为:y=0.5x,设用会员卡的关系为:y=ax+b,∴,解得:,∴用会员卡的关系式为:y=0.3x+20;(3)租书50天,租书卡花费0.5×50=25(元),会员卡花费0.3×50+20=35(元),说明使用会员卡比租书卡划算.花费80元租书,租书卡花费0.5×x=80(元),解得:x=160,会员卡花费0.3×x+20=80(元),解得:x=200,说明使用会员卡比租书卡划算.2022年秋八年级上册期末模拟题(二)一、选择题(每题3分,共30分)1.实数,0,-π,,,0.101 001 000 1…(相邻两个1之间依次多一个0),其中3271613无理数有( )A .1个B .2个C .3个D .4个2.下列各式运算正确的是( )A .3a +2b =5abB .a 3·a 2=a 5C .a 8·a 2=a 4D .(2a 2)3=-6a 63.下列长度的四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .1,,324.下列因式分解中,正确的个数为( )①x 3+2xy +x =x(x 2+2y);②x 2+4x +4=(x +2)2;③-x 2+y 2=(x +y)(x -y).A .3个B .2个C .1个D .0个5.已知(a -2)2+|b -8|=0,则的平方根为( )ab A .± B .- C .±2 D .212126.下列命题中,正确的是( )A .如果|a|=|b|,那么a =bB .一个角的补角一定大于这个角C .直角三角形的两个锐角互余D .一个角的余角一定小于这个角7.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD 的条件是( )A .BD =CDB .AB =AC C .∠B=∠CD .AD 平分∠BAC(第7题)(第8题)(第9题)(第10题)8.如图所示,所提供的信息正确的是( )A .七年级学生最多B .九年级的男生人数是女生人数的2倍C .九年级女生比男生多D .八年级比九年级的学生多9.如图,在△MNP 中,∠P=60°,MN =NP ,MQ⊥PN,垂足为Q ,延长MN 至G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 的周长是( )A .8+2aB .8+aC .6+aD .6+2a10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连12接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △DAB =CD∶DB=AC∶AB.A .1B .2C .3D .4二、填空题(每题3分,共30分)11.a 的算术平方根为8,则a 的立方根是________.12.某校对1 200名女生的身高进行测量,身高在1.58 m ~1.63 m 这一小组的频率为0.25,则该组的人数为________.13.因式分解:x 2y 4-x 4y 2=______________.14.如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示的是________.7(第14题)(第16题)(第18题)(第19题)15.已知(a -b)m =3,(b -a)n =2,则(a -b)3m -2n =________16.将一副三角尺如图所示叠放在一起,若AC =14 cm ,则阴影部分的面积是________ cm 2.17.若x <y ,x 2+y 2=3,xy =1,则x -y =________.18.如图,在△ABC 中,AB =AC =3 cm ,AB 的垂直平分线分别交AB ,AC 于点M ,N ,△BCN 的周长是5 cm ,则BC 的长等于________cm.19.如图,在Rt △ABC 中,∠B=90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在斜边AC 上,点B 与点B′重合,AE 为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于C ,D 两点;12(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.计算或因式分解:(1)+++(-1)2 014; (2)a 3-a 2b +ab 2.3-27(-2)21422.先化简,再求值:(x +y)(x -y)+(4xy 3-8x 2y 2)÷4xy ,其中x =1,y =.1223.如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC=∠DAE,点C 在DE 上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图). 频数分布表(第24题)代码,和谁在一起生活,频数,频率A,父母,4 200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6 000,1 请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.(第27题)答案:1.B1.B2.B3.B4.C5.A6.C7.B8.B9.D10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.4 12.300 13.x 2y 2(y +x)(y -x) 14.点P15. 点拨:(a -b)3m -2n =(a -b)3m ÷(a -b)2n =[(a -b)m ]3÷[(a -b)n ]2=[(a -b)m ]2743÷[(b -a)n ]2=33÷22=.27416.9817.-1 点拨:(x -y)2=x 2+y 2-2xy =3-2×1=1,∵x<y ,∴x-y <0,∴x-y =-=-1.118.219. 点拨:在Rt △ABC 中,∠B=90°,AB =3,BC =4,∴AC=5,设BE =B′E=x ,则32EC =4-x ,B′C=5-3=2,在Rt △B′EC 中,由勾股定理得EC 2=B′C 2+B′E 2,即(4-x)2=22+x 2,解得x =.3220.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=-3+2+1=;1919(2)原式=a =a .2 22.解:原式=x 2-y 2+y 2-2xy =x 2-2xy ,当x =1,y =时,原式=1-2×1×=0.121223.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB =AC ,AD =AE ,∴△ABD≌△ACE(S .A .S .);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD =AE ,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1) 20°(2)设AD =x ,则BD = x ,DC = 8-x .在Rt△BCD 中,DC 2+BC 2=BD 2,即(8-x )2+62=x 2,解得:x =.∴AD 的长为.254254(3)由题意知:AC 2+BC 2=m 2,AC ·BC =m +1,12∴(AC +BC )2-2AC ·BC =m 2,∴(AC +BC )2=m 2+2AC ·BC =m 2+4(m +1)=(m +2)2,∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2.26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF =AF =EF ,又∵∠ABC=90°,∴∠DCF,∠AMF 都与∠MAC 互余,∴∠DCF=∠AMF.在△DFC 和△AFM 中,∴△DFC≌△AFM(A .A .S .),∴CF=MF ,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD =EF ,FM =FC ,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC =2时,△ABD≌△DCE.理由如下:∵AB=AC ,∴∠C=∠B=40°,∴∠DEC+∠EDC=140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC =2,∴△ABD≌△DCE(A .A .S .);(3)可以.∠BDA 的度数为110°或80°.2022年秋八年级上册期末模拟题(三)一.选择题1.下列代数式中,属于分式的是( )A .﹣3B .﹣a﹣bC .D .﹣4a 3b2.若分式的值为零,则m 的取值为( )A .m=±1B .m=﹣1C .m=1D .m 的值不存在3.已知a﹣1=20172+20182,则=( )A .4033B .4034C .4035D .40364.下列各数中:,3.,0.2020020002…(每两个2之间0的个数逐次增加1个),,0,3.,﹣,,无理数有( )个.A.3B.4C.5D.65.若有意义,则x满足条件是( )A.x≥﹣3且x≠1B.x>﹣3且x≠1C.x≥1D.x≥﹣36.下列根式中属于最简二次根式的是( )A.B.C.D.7.如图,在Rt△ABC中,∠C=90°,点D为AB边中点,DE⊥AB,并与AC边交于点E.如果∠A=15°,BC=1,那么AC等于( )A.2B.C.D.8.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于( )A.6B.8C.9D.189.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是( )A.10B.8C.6D.410.在Rt△ABC中,∠ACB=90°,CD是高,AC=4m,BC=3m,则线段CD的长为( )A.5m B.m C.m D.m11.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )A.BC=EC B.EC=BE C.BC=BE D.AE=EC12.计算(1+)÷的结果是( )A.x+1B.C.D.二.填空题13.分式与的最简公分母是 .14.|1﹣|= .1﹣的相反数是 .15.如图,四边形OABC为长方形,OA=1,则点P表示的数为 .16.化简:(a>0)= .17.若3,4,a和5,b,13是两组勾股数,则a+b的值是 .18.如果一个三角形的三边长之比为9:12:15,且周长为72cm,则它的面积为 cm2.三.解答题19.解方程:=20.(1)已知a、b为实数,且+(1﹣b)=0,求a2017﹣b2018的值;(2)若x满足2(x2﹣2)3﹣16=0,求x的值.21.已知x=﹣1,求x2+3x﹣1的值.22.如图,已知△ABC中,∠C=90°,AB的垂直平分线交BC于M,交AB于N,若AC=,MB=2MC,求AB的长.23.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE 于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.24.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.25.一项旧城区改造工程,如果由甲工程队单独做,需要60天可以完成;如果由甲乙两队合作12天后,剩下的工程由乙工程队单独做,还需20天才能完成.求乙工程队单独完成这项工程需要多少天?答案一.选择题1.解:A、﹣3是整式;B、﹣a﹣b是多项式,属于整式;C、是分式;D、﹣4a3b是单项式,属于整式;故选:C.2.解:∵分式的值为零,∴|m|﹣1=0,m﹣1≠0,解得:m=﹣1.故选:B.3.解:∵a﹣1=20172+20182,∴a=20172+20182+1,∴2a﹣3=2(20172+20182+1)﹣3=2×20172+2×20182﹣1=2×20172+2017+2×20182﹣2018=2017×(2×2017+1)+2018×(2×2018﹣1)=2017×4035+2018×4035=4035×(2017+2018)=4035×4035=40352,∴=4035,故选:C.4.解:在所列8个数中,无理数有,0.2020020002…(每两个2之间0的个数逐次增加1个),﹣这3个数,故选:A.5.解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.6.解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、是最简二次根式,正确;故选:D.7.解:∵点D为AB边中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=15°,∴∠BEC=∠A+∠ABE=30°,∵∠C=90°,∴BE=AE=2BC=2,CE=BC=,∴AC=AE+CE=2+,故选:C.8.解:作EH⊥BC于H,∵BE平分∠ABC,CD是AB边上的高线,EH⊥BC,∴EH=DE=3,∴△BCE的面积=×BC×EH=9,故选:C.9.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×12=6,故选:C.10.解:在Rt△ABC中,AB===5,△ABC的面积=×AB×CD=×AC×BC,即×5×CD=×4×3,解得,CD=,故选:B.11.解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.12.解:原式=(+)÷=•=,故选:B.二.填空题13.解:分式与的最简公分母是6a3b4c,故6a3b4c.14.解:|1﹣|=﹣1,1﹣的相反数是:﹣(1﹣)=﹣1.故﹣1,﹣1.15.解:∵OA=1,OC=3,∴OB==,故点P表示的数为,故.16.解:∵a>0,∴==2a,故2a.17.解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=17,故17.18.解:设三边长为9xcm,12xcm,15xcm,∵(9x)2+(12x)2=(15x)2,∴AC2+BC2=AB2,∴∠C=90°,∵周长为72cm,∴9x+12x+15x=72,解得:x=2,∴9x=18,12x=24,∴它的面积为:×18×24=216(cm2),故216.三.解答题19.解:方程两边都乘以(1+x)(1﹣x),得:6=1+x,解得:x=5,检验:当x=5时,(1+x)(1﹣x)=﹣24≠0,所以分式方程的解为x=﹣5.20.解:(1)∵a,b为实数,且+(1﹣b)=0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2017﹣b2018=(﹣1)2017﹣12018=(﹣1)﹣1=﹣2;(2)2(x2﹣2)3﹣16=0,2(x2﹣2)3=16,(x2﹣2)3=8,x2﹣2=2,x2=4,x=±2.21.解:∵x=﹣1,∴x2+3x﹣1==2﹣2+1+3﹣3﹣1=﹣1+.22.解:如图,连接MA,∵M在线段AB的垂直平分线上,∴MA=MB=2MC,∵∠C=90°,∴AC2+CM2=MA2,即3+MC2=4MC2,解得MC=1,∴MB=2MC=2,∴BC=3,在Rt△ABC中,由勾股定理可得AB===2,即AB的长为2.23.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.24.解:在Rt△ABD中,AB=AD=2,∠BAD=90°,∴BD==4,∵CD=4,BC=8,∴BC 2=BD 2+CD 2,∴∠BDC=90°,∴S 四边形ABCD =S △ABD +S △DCB =×2×2+×4×4=4+8.25.解:设乙工程队单独完成这项工程需要x 天,根据题意,得:(+)×12+=1,解得:x=40,经检验:x=40是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要40天.2022年秋八年级上册期末模拟题(四)一、选择题(本大题共10小题,共40分)1. 点 关于y 轴对称的点的坐标是( ),1(P )2- A. (1,2) B. (-1,2) C. (-1,-2) D. (-2,1)2. 有一个角是的等腰三角形,其它两个角的度数是( )A. 36°,108°B. 36°,72°C. 72°,72°D. 36°,108°或72°,°72°3. 点P 在x 轴的下方,且距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标 为( )A. (4,-3)B. (3,-4)C. (-3,-4)或(3,-4)D. (-4,-3)或(4,-3)4. 若三条线段中,,为奇数,那么由a 、b 、c 为边组成的三角形共有( )3=a 5=b cA. 1个B. 3个C. 无数多个D. 无法确定5. 在同一直角坐标系中,若直线与直线平行,则( )3+=kx y b x y +-=2A., B., C., D.,2-=k 3≠b 2-=k 3=b 2-≠k 3≠b 2-≠k 3=b 6. 当,时,函数的图象大致是( )0>k 0<b b kx y += A. B. C. D.7. 有以下四个其中正确的个数为( )(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是矩形;(3)两条对角线互相垂直的平行四边形是菱形;(4)有一组邻边相等且有一个角是直角的四边形是正方形;A. 1B. 2C. 3D. 48. 如图,OP 是∠的平分线,点P 到OA 的距离为3,点AOB N 是OB 上的任意一点,则线段PN 的取值范围为( )A. B. C. D. 3<PN 3>PN 3≥PN 3≤PN 9. 如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C落在处,折痕为EF ,若,,则△C '1=AB 2=BC ABE和的周长之和为( )F C B 'A. 3 B. 4 C. 6 D. 810.有下列四个①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离第8题图第9题图其中是真命题的个数有( )A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共6小题,共18分)11. 如图,把“”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“” 笑脸右眼B 的坐标_______________ .12. 如图,在平面直角坐标系xOy 中,△由△绕点P 旋转得到,则点P 的C B A '''ABC 坐标为_______________.13. 已知函数是正比例函数,则 _________2)1(+--=n x m y =n 14. 如图,,请补充一个条件:_________________使△≌△(填其DC AB =ABC DCB 中一种即可)第12题图15. 已知:如图,,,,若,则的度数为AE AC =21∠=∠AD AB =︒=∠25D B ∠_____________________ .16. 如图,已知OC 平分,,若AOB ∠OB CD ∥,则CD 的长等于____________ .cm OD 6=三、计算题(本大题共5小题,共30分)17. 在直角坐标平面内,已点(3,0)、A (-5,3),将点A 向左平移6个单B 位到达C 点,将点B 向下平移6个单位到达D 点.(1)写出C 点、D 点的坐标:C __________,D ____________ ;(2)把这些点按顺次连A D CB A ----接起来,这个图形的面积是__________.18. 已知点关于x 轴的对称点在第一象限,求a 的取值范围.)12,1(-+a aP 题图第15题图19. 如图是屋架设计图的一部分,其中,点D 是斜梁AB 的中点,BC 、DE 垂直于︒=∠30A 横梁,,则立柱,要多长?AC cm AB 8=BC DE20. 我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费元与用水量吨之间的函数关系.y x (1) 小明家五月份用水8吨,应交水费______ 元;(2) 按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比三月份节约用水多少吨?21.设一次函数的图象经过(1,3)、(0,-2)两点,求此函数的)0(≠+=k b kx y A B 解析式.四、解答题(本大题共3小题,共32分)22.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图(10分).根据图中提供的信息回答下列问题:(1)小明家到学校的路程是________米(2)小明在书店停留了___________分钟.(3)本次上学途中,小明一共行驶了________ 米,一共用了______ 分钟.(4)在整个上学的途中_________(哪个时间段)小明骑车速度最快,最快的速度是___________________米/分.23.已知是关于的一次函数,且当时,;当时,.(10分)y x 3=x 2-=y 2=x 3-=y (1)求这个一次函数的表达式;(2)求当时,函数的值;3-=x y (3)求当时,自变量的值;2=y x (4)当时,自变量的取值范围.1>y x 24.种植草莓大户小华现有22吨草莓等待出售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,受客观因素影响,小华每天只能采用一种销售渠道,而且草莓必须在10天内售出(含10天)经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见右表:(12分)(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润(元)与运往省城直接批发零售商的草莓量(吨)之间的函数关y x 系式;(2)怎样安排这22吨草莓的销售渠道,才使小华所获纯利润最大?并求出最大纯利润.答案1. C2. D3. D4. B5. A6. D7. B8. C9.C10. A11.12.13. 214.15.16. 6cm17. ;;1818. 解:依题意得p点在第四象限,,解得:,即a的取值范围是.19. 解:,,、DE垂直于横梁AC,,又D是AB的中点,,答:立柱BC要要2m.20. 解:根据图象可知,10吨以内每吨水应缴元所以元.解法一:由图可得用水10吨内每吨2元,10吨以上每吨元三月份交水费26元元所以用水:吨四月份交水费18元元,所以用水:吨四月份比三月份节约用水:吨解法二:由图可得10吨内每吨2元,当时,知当时,可设y与x的关系为:由图可知,当时,时,可解得与x之间的函数关系式为:,当时,知,有,解得,四月份比三月份节约用水:吨.直接根据图象先求得10吨以内每吨水应缴元,再求小明家的水费;根据图象求得10吨以上每吨3元,3月份交水费26元元,故水费按照超过10吨,每吨3元计算;四月份交水费18元元,故水费按照每吨2元计算,分别计算用水量做差即可求出节约的水量.主要考查了一次函数的实际应用和读图的基本能力解题的关键是能根据函数图象得到函数类型,并根据函数图象上点的实际意义求解.21. 解:把、代入得,解得,所以此函数解析式为.22. 1500;4;2700;14;12分钟至14分钟;45023.. 解:设一次函数的表达式为由题意,得,解得.所以,该一次函数解析式为:;当时,;当时,,解得.当时,,解得24. 解:由题意可得,,即销售22吨草莓所获纯利润元与运往省城直接批发零售商的草莓量吨之间的函数关系式是;草莓必须在10天内售出含10天,,解得,,,在函数中,y随x的增大而减小,当时,y取得最大值,此时,,即用4天时间运往省城批发,6天在本地零售,可以使小华所获纯利润最大,最大利润为31200元.当时,,解得2022年秋八年级上册期末模拟题(五)一、选择题(每小题3分,共10小题,满分30分.请把表示正确答案的字母填入下表中对应的题号下.)1.(3分)下列代数式①,②,③,④中,分式有()A.1个B.2个C.3个D.4个2.(3分)根据分式的基本性质填空:=,括号内应填()A.x2﹣3x B.x3﹣3C.x2﹣3D.x4﹣3x3.(3分)下列计算正确的是()A.30=0B.3﹣2=﹣6C.3﹣2=﹣D.3﹣2=4.(3分)若代数式有意义,则x必须满足条件()A.x≥﹣1B.x≠﹣1C.x≥1D.x≤﹣15.(3分)已知一个等腰三角形的两边长分别是5cm与6cm,则这个等腰三角形的周长为()A.16cm B.17cm C.16cm或17cm D.无法确定6.(3分)下列命题是真命题的是()A.如果a是整数,那么a是有理数B.内错角相等C.任何实数的绝对值都是正数D.两边一角对应相等的两个三角形全等7.(3分)不等式组的解集在数轴上表示如图所示,则该不等式组可能为()A.B.C.D.8.(3分)(﹣4)2的平方根是()A.4B.±4C.2D.±29.(3分)已知a,b均为有理数,且a+b=(2﹣)2,则a、b的值为()A.a=4,b=3B.a=4,b=4C.a=7,b=﹣4D.a=7,b=410.(3分)方程的解是x等于()A.2B.﹣2C.±2D.无解二、填空题(每小题3分,共8小题,满分24分)11.(3分)科学实验发现有一种新型可入肺颗粒物的直径约为2.5μm(1μm=0.000001m),用科学记数法表示这种颗粒物的直径约为 m.12.(3分)在实数范围内分解因式:x2﹣3=.13.(3分)实数﹣4的绝对值等于.14.(3分)如图,在△BCD中,∠C=30°,∠D=40°,点A为CB的延长线上一点,BE为∠ABD的角平分线,则∠ABE= °.15.(3分)如图,已知AD=BC,则再添加一个条件(只填一种),可证出△ABC≌△BAD.16.(3分)计算:()2015()2016= .17.(3分)巳知等腰三角形一底角为30°,则这个等腰三角形顶角的大小是度.18.(3分)如图,已知在△ABC中,BC=10cm,AB的垂直平分线EF交BC与点F,AC的垂直平分线MN交BC于点N,则△AFN的周长为 cm.三、解答题(19题每小题8分,20题6分,满分14分)19.(8分)①化简:②计算:.20.(6分)求当x取何值时,代数式﹣的值不小于1?四、分析与说理(每小题8分,共2小题,满分16分)21.(8分)已知:如图所示,在△ABC中,∠ABC=∠ACB,BD⊥AC,垂足为点D,CE⊥AB,垂足为点E.求证:BD=CE.22.(8分)已知:如图所示,点D、E分别在等边△ABC的边BC、AC上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.五、实践与应用(每小题8分,共2小题,满分16分)23.(8分)娄底到长沙的距离约为120km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比小张晚出发15分钟,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?(列方程解答)24.(8分)某校组织开展了“娄底是我家,建设娄底靠大家”的环保知识竞赛,共25道竞赛题,选对一题得4分,不选或选错每题扣2分,大赛组委会规定总得分不低于80分获奖,那么至少应选对多少道题才能获奖?(列不等式解答)六、阅读与探究(每小题10分,共2小题,满分20分)25.(10分)阅读下列材料,并解决问题:①已知方程x2+3x+2=0的两根分别为x1=﹣1,x2=﹣2,计算:x1+x2= ,x1•x2=②已知方程x2﹣3x﹣4=0的两根分别为x1=4,x2=﹣1,计算:x1+x2= ,x1•x2=③已知关于x的方程x2+px+q=0有两根分别记作x1,x2,且x1=,x2=,请通过计算x1+x2及x1•x2,探究出它们与p、q的关系.26.(10分)在长方形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,将三角板绕点E按顺时针方向旋转,当三角板的两直角边分别与AB、BC分别相交于点M,N时,观察或测量BM与CN的长度,你能得到什么结论?并证明你的结论.答案:一、选择题(每小题3分,共10小题,满分30分.请把表示正确答案的字母填入下表中对应的题号下.)1.(3分)下列代数式①,②,③,④中,分式有()A.1个B.2个C.3个D.4个【分析】根据分式的定义看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,即可得出答案.解:①是分式;②分母中不含字母,不是分式;③分母中不含字母,不是分式;④分母中含有字母是分式.故选:B.2.(3分)根据分式的基本性质填空:=,括号内应填()A.x2﹣3x B.x3﹣3C.x2﹣3D.x4﹣3x【分析】把分式的分母与分子同时除以x即可得出结论.解:∵分式的分母与分子同时除以x得,=.∴括号内应填x2﹣3.故选C.3.(3分)下列计算正确的是()A.30=0B.3﹣2=﹣6C.3﹣2=﹣D.3﹣2=【分析】根据零指数幂:a0=1(a≠0),负整数指数幂:a﹣p=(a≠0,p为正整数)进行计算.解:30=1,3﹣2=,故选:D.4.(3分)若代数式有意义,则x必须满足条件()A.x≥﹣1B.x≠﹣1C.x≥1D.x≤﹣1【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.解:由题意得,x+1≥0,解得,x≥﹣1,故选:A.5.(3分)已知一个等腰三角形的两边长分别是5cm与6cm,则这个等腰三角形的周长为()A.16cm B.17cm C.16cm或17cm D.无法确定【分析】分腰为6cm和腰为5cm两种情况,再求其周长.解:当腰为6cm时,则三角形的三边长分别为6cm、6cm、5cm,满足三角形的三边关系,周长为17cm;当腰为5时,则三角形的三边长分别为5cm、5cm、6cm,满足三角形的三边关系,周长为16cm;综上可知,等腰三角形的周长为16cm或17cm.故选C.6.(3分)下列命题是真命题的是()A.如果a是整数,那么a是有理数B.内错角相等C.任何实数的绝对值都是正数D.两边一角对应相等的两个三角形全等【分析】根据有理数的分类对A进行判断;根据平行线的性质对B进行判断;根据绝对值的意义对C进行判断;根据全等三角形的判定方法对D进行判断.。

2022-2023学年人教版八年级数学上册期末模拟试卷(含答案)

2022-2023学年人教版八年级数学上册期末模拟试卷(含答案)

2022-2023学年八年级(上)期末数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题所给的四个选项中,有且只有一项是符合题目要求的)1.(3分)下列体育运动图标中,是轴对称图形的是()A.B.C.D.2.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短3.(3分)光刻机采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上,是制造芯片的核心装备.ArF准分子激光是光刻机常用光源之一,其波长为0.000000193米,该光源波长用科学记数法表示为()A.193×106米B.193×10﹣9米C.1.93×10﹣7米D.1.93×10﹣9米4.(3分)如图,用直尺和圆规作一个三角形O1A1B1,使得△O1A1B1≌△OAB的示意图,依据()定理可以判定两个三角形全等.A.SSS B.SAS C.ASA D.AAS5.(3分)下列由左边到右边的变形中,是因式分解的为()A.10x2y3=5xy2•2xy B.m2﹣n2=(m+n)(m﹣n)C.3m(R+r)=3mR+3mr D.x2﹣x﹣5=(x+2)(x﹣3)+16.(3分)已知一个正多边形的每个外角的度数都是60°,则该多边形的对角线条数为()A.6B.9C.12D.187.(3分)如图,AE,BE,CE分别平分∠BAC,∠ABC,∠ACB,ED⊥BC于点D,ED=3,△ABC的周长为24,则△ABC的面积为()A.18B.24C.36D.728.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80D.=9.(3分)如图,点D为△ABC的边BC上一点,且满足AD=DC,作BE⊥AD于点E,若∠BAC=70°,∠C=40°,AB=6,则BE的长为()A.2B.3C.4D.510.(3分)下列说法:①三角形中至少有一个内角不小于60°;②三角形的重心是三角形三条中线的交点;③周长相等的两个圆是全等图形;④到三角形的三条边距离相等的点是三角形三条高的交点.其中正确说法的个数是()A.1B.2C.3D.411.(3分)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为49,小正方形的面积为4,若分别用x ,y (x >y )表示小长方形的长和宽,则下列关系式中不正确的是( )A .x 2+2xy +y 2=49B .x 2﹣2xy +y 2=4C .x 2+y 2=25D .x 2﹣y 2=1412.(3分)如图,已知∠ABC =120°,BD 平分∠ABC ,∠DAC =60°,若AB =2,BC =3,则BD 的长是( )A .5B .7C .8D .9二、填空题(本大题共4小题,每小题4分,共16分) 13.(4分)当x=时,分式的值为0.14.(4分)已知点P (4,2a ﹣3)关于x 轴对称的点在第一象限,则a 的取值范围是 . 15.(4分)已知a =+2021,b =+2022,c =+2023,则代数式2(a 2+b 2+c 2﹣ab ﹣bc ﹣ac )的值为 .16.(4分)如图,△ABC 中,BF 是高,延长CB 至点D ,使BD =BA ,连接AD ,过点D 作DE ⊥AB 交AB 的延长线于点E ,当AF =BE ,∠CAD =96°时,∠C = .三、解答题(本大题共9小题,共98分。

北师大版2022-2023学年八年级数学上册期末模拟测试题(附答案)

北师大版2022-2023学年八年级数学上册期末模拟测试题(附答案)

2022-2023学年八年级数学上册期末模拟测试题(附答案)一、选择题(1~10小题,每小题3分;11~16小题,每小题2分,共42分。

)1.16的平方根等于()A.4B.±4C.±2D.22.若一组数据2,0,3,4,6,x的众数为4,则这组数据中位数是()A.0B.2C.3D.3.53.下列长度的线段中,能构成直角三角形的一组是()A.2,3,4B.5,7,8C.5,10,13D.1,,2 4.已知一次函数y=kx+3的函数值y随x的增大而减小,则该函数的图象大致是()A.B.C.D.5.命题:①同位角相等;②三角形的外角大于三角形的内角;③一组数据1,4,7,x,5的平均数为4,则x的值为3;④等腰三角形是轴对称图形,其中是真命题的有()A.1个B.2个C.3个D.4个6.如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是()如图,已知∠1=∠3,∠2+∠3=180°,求证:AB与DE平行.证明:①:AB∥DE;②:∠2+∠4=180°,∠2+∠3=180°;③:∠3=∠4;④:∠1=∠4;⑤:∠1=∠3.A.①②③④⑤B.②③⑤④①C.②④⑤③①D.③②④⑤①7.下列计算正确的是()A.B.=4C.D.8.已知是方程组的解,则a+b=()A.2B.﹣2C.4D.﹣49.甲,乙,丙,丁四位同学本学期5次百米跑成绩平均数(秒)及方差如下表,若从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,则应该选的同学是()甲乙丙丁平均数(秒)12.312.312.512.5方差0.450.20.20.45 A.甲B.乙C.丙D.丁10.已知点A(3,2)是点B(a,b)关于y轴的对称点,则坐标原点O与点B之间的距离为()A.B.C.3D.211.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=105°,则∠DAC 的度数为()A.80°B.82°C.84°D.86°12.将直线y=5(x﹣1)+2向上平移1个单位长度,则平移后直线的函数表达式为()A.y=5x﹣2B.y=5x+3C.y=5x﹣1D.y=5x13.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A'D为1.5米,则小巷的宽为()A.2.5米B.2.6米C.2.7米D.2.8米14.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了xmin,下坡用了ymin,根据题意可列方程组()A.B.C.D.15.在平面直角坐标系中,已知点A(﹣2,3),B(1,﹣4),经过点A的直线l∥y轴,C 是直线l上的一个动点,当线股BC的长度最小时,点C的坐标为()A.(﹣2,﹣4)B.(1,4)C.(1,3)D.(﹣2,﹣3)16.已知关于x,y的方程组,下列结论:①当a=1时,方程组的解也是x+y=2a﹣1的解;②无论a取何值,x,y不可能互为相反数;③x,y都为自然数的解有4对;④若2x+y=8,则a=3,其中不正确的有()A.1个B.2个C.3个D.4个二、填空题(共10分,17~-18小题各3分;19小题有两小空,每空2分)17.若一次函数y=﹣3x+b上有两点(1,y1)和(﹣2020,y2),则y1与y2的大小关系为y1y2(填“>“、“<“或“=“).18.已知,x、y是有理数,且y=+﹣4,则2x+3y的立方根为.19.(4分)正方形OA1B1C1、A1A2B2C2、A2A3B3C3;…按如图放置,其中点A1、A2、A3,…在x轴正半轴上,点B1、B2、B3…在直线y=﹣x+2上,依此类推,其中B1的坐标,点B n的坐标是.三、解答题(共68分,)20.(1);(2)解方程组:.21.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.22.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.23.八年级260名学生参加捐赠图书活动,活动结束后随机调查了部分学生每人捐赠图书的数量,并按捐书数量分为四种类型,A类;5本;B类;6本;C类:7本;D类:8本,然后统计数据并绘制成如图9﹣1所示的条形统计图和如图9﹣2所示的扇形统计图.(1)本次接受随机调查的学生人数为人;在扇形统计图中,m=.(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计这260名学生共捐赠图书多少本?24.甲、乙两车从A地驶向B地,甲车比乙车早行驶2h.并在中途休息了0.5h.休息前后速度相同.图是甲、乙两车行驶的路程y(km)与甲车行驶的时间x(h)函数图象.(1)求a的值;(2)求当b<x≤7时,甲车行驶的路程y与甲行驶的时间x的函数表达式;(3)直接写出乙车行驶几小时时,两车恰好相距40km.25.[1]问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过点P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.[2]问题迁移:(1)如图3.AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.猜想∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请写出∠CPD、∠a、∠β之间的数量关系,选择其中一种情况画图并证明.26.为迎接“国家级文明卫生城市“检查,某市环卫局准备购买A,B两种型号的垃圾箱,通过市场调研发现;购买1个A型垃圾箱和2个B型拉圾箱共需340元:购买了3个A 型拉圾箱和1个B型垃圾箱共需420元.(1)求1个A型垃圾箱,1个B型垃圾箱分别是多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中购买A型垃圾箱x(x≤16)个.①求购买垃圾箱的总费用W(元)与A型垃圾箱x(个)之间的函数表达式;②当购买A型垃圾箱多少个时,总费用最少?最少费用是多少?参考答案一、选择题(1~10小题,每小题3分;11~16小题,每小题2分,共42分)1.解:∵(±4)2=16,∴16的平方根是±4,故选:B.2.解:这组数据的众数是4,因此x=4,将这组数据从小到大排序后,处在第3、4位的两个数的平均数为(3+4)÷2=3.5,因此中位数是3.5,故选:D.3.解:A、因为22+32≠42,所以不能组成直角三角形,故本选项不符合题意;B、因为52+72≠82,所以不能组成直角三角形,故本选项不符合题意;C、因为52+102≠132,所以不能组成直角三角形,故本选项不符合题意;D、因为12+()2=22,所以能组成直角三角形,故本选项符合题意.故选:D.4.解:∵一次函数y=kx+3的函数值y随x的增大而减小,∴k<0,∴y=kx+3经过第一、二、四象限,故选:C.5.解:同位角不一定相等,故①是假命题;三角形的外角大于与它不相邻的三角形的内角,故②是假命题;一组数据1,4,7,x,5的平均数为4,则x的值为3,故③是真命题;等腰三角形是轴对称图形,故④是真命题;∴真命题有③④,共两个,故选:B.6.证明:∵∠2+∠3=180°(已知),∠2+∠4=180°(邻补角的定义),∴∠3=∠4(同角的补角相等).∵∠1=∠3(已知),∴∠1=∠4 (等量代换),∴AB∥DE(同位角相等,两直线平行).所以排序正确的是②③⑤④①,故选:B.7.解:A.与不能合并,所以A选项不符合题意;B.原式=2,所以B选项不符合题意;C.原式==3,所以C选项符合题意;A.原式==,所以D选项不符合题意.故选:C.8.解:∵是方程组的解∴将代入①,得a+2=﹣1,∴a=﹣3.把代入②,得2﹣2b=0,∴b=1.∴a+b=﹣3+1=﹣2.故选:B.9.解:∵S乙2=S丙2<S甲2=S丁2,而乙的成绩比丙的成绩好,∴这四位同学中乙同学的成绩较好且状态稳定,∴应该选乙同学参加学校比赛.故选:B.10.解:∵点A(3,2)是点B(a,b)关于y轴的对称点,∴B(﹣3,2),∴坐标原点O与点B之间的距离为:=.故选:A.11.解:∵∠BAC=105°,∴∠2+∠3=75°①,∵∠1=∠2,∠3=∠4,∴∠4=∠3=∠1+∠2=2∠2②,把②代入①得:3∠2=75°,∴∠2=25°,∴∠DAC=105°﹣25°=80°.故选:A.12.解:将直线y=5(x﹣1)+2向上平移1个单位长度,平移后的直线表达式为y=5(x ﹣1)+2+1,整理,得y=5x﹣2,故选:A.13.解:在Rt△ABC中,AB===2.5(米),∴A′B=2.5米,在Rt△A′BD中,BD===2(米),∴BC+BD=2+0.7=2.7(米),故选:C.14.解:可根据所用时间和所走的路程和得到相应的方程组为:,故选:B.15.解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣2,3),B(1,﹣4),AC∥y轴,∴BC=2,∴C(﹣2,﹣4),故选:A.16.解:①将a=1代入原方程组,得解得将x=3,y=0,a=1代入方程x+y=2a﹣1的左右两边,左边=3,右边=1,当a=1时,方程组的解不是是x+y=2a﹣1的解;②解原方程组,得∴x+y=3,无论a取何值,x,y的值不可能是互为相反数;③∵x+y=2a+1+2﹣2a=3∴x、y为自然数的解有,,,.④∵2x+y=8,∴2(2a+1)+2﹣2a=8,解得a=2.综上所述:②③正确,故选:B.二、填空题(本大题共10分,17~-18小题各3分;19小题有两小空,每空2分)17.解:∵k=﹣3<0,∴y随x的增大而减小,又∵点(1,y1)和(﹣2020,y2)在一次函数y=﹣3x+b的图象上,且1>﹣2020,∴y1<y2.故答案为:<.18.解:由题意得:,解得:x=2,则y=﹣4,2x+3y=2×2+3×(﹣4)=4﹣12=﹣8.所以=﹣2.故答案是:﹣2.19.解:∵四边形OA1B1C1是正方形,∴A1B1=B1C1.∵点B1在直线y=﹣x+2上,∴设B1的坐标是(x,﹣x+2),∴x=﹣x+2,x=1.∴B1的坐标是(1,1).∴点A1的坐标为(1,0).∵A1A2B2C2是正方形,∴B2C2=A1C2,∵点B2在直线y=﹣x+2上,∴B2C2=B1C2,∴B2C2=A1B1=,∴OA2=OA1+A1A2=1+=2﹣,∴点B2的坐标为(1+,).同理,OA3=OA1+A1A2+A2A3=1++=2﹣A3D=2﹣,可得到点B3的坐标为(1++,),依此类推,OA n=OA1+A1A2+⋯A n﹣1A n=1+++⋯+=2﹣A n D=2﹣=,∴B n的坐标为(,).故答案为:(1,1),(,).三、解答题(共68分,)20.解:(1)原式=4÷﹣+2=4+.(2)由②得:y=2x﹣14③,将③代入①得:x=7,将x=7代入③得:y=0,∴方程组的解为:.21.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.22.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,﹣b).故答案为:(a+4,﹣b).23.解:(1)本次接受随机调查的学生人数为6÷30%=20(人),在扇形统计图中,m%=×100%=40%,即m=40;故答案为:20、40;(2)平均数为=6.6(本),众数为6本,中位数为=6.5(本);(3)260×6.6=1716(本),答:估计这260名学生共捐赠图书1716本.24.解:(1)由题意120÷(3.5﹣0.5)=40,a=1×40=40,(2)当<x≤7时,设y与x之间的函数关系式为y=k2x+b,由题意,得,解得,∴y=40x﹣20;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得,∴y=80x﹣160,当40x﹣20﹣(80x﹣160)=40时,解得:x=.当80x﹣160﹣(40x﹣20)=40时,解得:x=,答:乙车行驶0.5小时或=2.5小时,两车恰好相距40km,25.解:(1)如图3:∠CPD=∠α+∠β,理由如下:过P作PE∥AD,交CD于E.∵AD∥BC.∴PE∥BC.∴∠α=∠DPE,∠β=∠CPE.∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)如图,当P在A左侧时,∠β=∠α+∠CPD.∵AD∥BC.∴∠β=∠COD.∵∠COD是△POD的外角.∴∠COD=∠CPD+∠ADP.∴∠β=∠α+∠CPD;如图,当P在B的右侧时,∠α=∠β+∠CPD.∵AD∥BC.∴∠α=∠BOP.∵∠BOP是△POC的外角.∴∠BOP=∠PCB+∠CPD.∴∠α=∠β+∠CPD.26.解:(1)设每个A型垃圾箱x元,每个B型垃圾箱y元,由题意得:,解得:,答:1个A型垃圾箱100元,1个B型垃圾箱120元;(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,由题意得:W=100x+120(30﹣x)=﹣20x+3600(0≤x≤16,且x为整数);②由①知,W=﹣20x+3600,∴W是x的一次函数.∵k=﹣20<0,∴W随x的增大而减小.又0≤x≤16,且x为整数,∴当x=16,W取最小值,且最小值为﹣20×16+3600=3280.答:①函数关系式为W=﹣20x+3600(0≤x≤16,且x为整数),②购买16个A型垃圾箱,总费用最少,最少费用为3280元.。

八年级上册数学期末模拟试卷【含答案】

八年级上册数学期末模拟试卷【含答案】

八年级上册数学期末模拟试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等差数列的首项为2,公差为3,则第10项为多少?A. 28B. 29C. 30D. 315. 若一个圆的半径为5cm,则它的面积是多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)6. 任何一个等边三角形的三个角都是60°。

()7. 两个质数的和一定是偶数。

()8. 一个数的立方根只有一个。

()9. 任何一个正数都有两个平方根,它们互为相反数。

()10. 若两个角的和为180°,则这两个角互补。

()三、填空题(每题1分,共5分)11. 若一个数的算术平方根为4,则这个数为______。

12. 若一个等边三角形的周长为18cm,则其边长为______cm。

13. 若一个等差数列的第3项为7,第7项为19,则其公差为______。

14. 若一个圆的直径为14cm,则其周长为______cm。

15. 若一个数的立方为27,则这个数的算术平方根为______。

四、简答题(每题2分,共10分)16. 简述等差数列的定义。

17. 什么是算术平方根?一个正数的算术平方根有几个?18. 简述圆的周长公式。

19. 什么是等边三角形?它的三个角都是多少度?20. 简述勾股定理。

五、应用题(每题2分,共10分)21. 一个长方体的长、宽、高分别为10cm、6cm、4cm,求它的体积。

新八年级数学上期末模拟试题附答案

新八年级数学上期末模拟试题附答案

新八年级数学上期末模拟试题附答案一、选择题1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 2.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+3.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A .射线OE 是∠AOB 的平分线B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称D .O 、E 两点关于CD 所在直线对称4.下列计算正确的是( )A .2236a a b b ⎛⎫= ⎪⎝⎭B .1a b a b b a -=--C .112a b a b +=+D .1x y x y --=-+ 5.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .136.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50° 7.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 8.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按图中所标注的数据,计算图中实线所围成的面积S 是( )A .50B .62C .65D .689.等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为( ) A .30B .30或150C .60或150D .60或12010.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4 C .x ≠0 D .x ≠411.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度12.到三角形各顶点的距离相等的点是三角形( )A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点二、填空题13.如图所示,在Rt △ABC 中,∠A=30°,∠B=90°,AB=12,D 是斜边AC 的中点,P 是AB 上一动点,则PC +PD 的最小值为_____.14.若分式221x x -+的值为零,则x 的值等于_____. 15.求值:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-----= ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭______. 16.如图,在△ABC 中,∠A=70°,点O 到AB,BC,AC 的距离相等,连接BO ,CO ,则∠BOC=________.17.A 、B 两种型号的机器加工同一种零件,已知A 型机器比B 型机器每小时多加工20个零件,A 型机器加工400个零件所用时间与B 型机器加工300个零件所用时间相同.A 型机器每小时加工零件的个数_____.18.正六边形的每个内角等于______________°.19.分式293x x --当x __________时,分式的值为零. 20.分解因式2m 2﹣32=_____.三、解答题21.为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天? 22.用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A 、B 型机器人每小时分别搬运多少袋大米.23.化简:2221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭,并从﹣1,0,1,2中选择一个合适的数求代数式的值.24.如图,ABO 与CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE . 求证:FD=BE .25.2020年2月22日深圳地铁10号线华南城站试运行,预计今年6月正式开通.在地铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元;已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a-+,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故11+423a a-+=0,解得:a=1 3 .故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.2.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.3.D解析:D【解析】试题分析:A 、连接CE 、DE ,根据作图得到OC=OD ,CE=DE .∵在△EOC 与△EOD 中,OC=OD ,CE=DE ,OE=OE ,∴△EOC ≌△EOD (SSS ).∴∠AOE=∠BOE ,即射线OE 是∠AOB 的平分线,正确,不符合题意.B 、根据作图得到OC=OD ,∴△COD 是等腰三角形,正确,不符合题意.C 、根据作图得到OC=OD ,又∵射线OE 平分∠AOB ,∴OE 是CD 的垂直平分线.∴C 、D 两点关于OE 所在直线对称,正确,不符合题意.D 、根据作图不能得出CD 平分OE ,∴CD 不是OE 的平分线,∴O 、E 两点关于CD 所在直线不对称,错误,符合题意.故选D .4.D解析:D【解析】【分析】根据分式的乘方、分式的加减运算法则及分式的性质逐一判断即可得答案.【详解】A.22222()3(3)9a a ab b b==,故该选项计算错误,不符合题意,B.a b a b a ba b b a a b a b a b+-=+=-----,故该选项计算错误,不符合题意,C.11b a a ba b ab ab ab++=+=,故该选项计算错误,不符合题意,D.()1x y x yx y x y---+==-++,故该选项计算正确,符合题意,故选:D.【点睛】本题考查分式的运算,分式的乘方,要把分式的分子、分母分别乘方;同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减;熟练掌握分式的运算法则是解题关键.5.A解析:A【解析】因为ba b-=14,所以4b=a-b.,解得a=5b,所以ab=55bb=.故选A. 6.C解析:C 【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.7.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A、a2•a3=a5,故此选项错误;B、122= a10,故此选项错误;a aC、(a3)3=a9,故此选项错误;D、(-a)6=a6,故此选项正确.故选D.【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.8.A解析:A【解析】【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△AGB,所以AF=BG,AG=EF;同理证得△BGC≌△CHD,GC=DH,CH=BG.故可求出FH的长,然后利用面积的割补法和面积公式即可求出图形的面积.【详解】∵如图,AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90º,∠EAF+∠BAG=90º,∠ABG+∠BAG=90º⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.故选A.【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD. 9.B解析:B【解析】【分析】等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为【详解】解:如图1,∵∠ABD=60°,BD是高,∴∠A=90°-∠ABD=30°;如图2,∵∠ABD=60°,BD是高,∴∠BAD=90°-∠ABD=30°,∴∠BAC=180°-∠BAD=150°;∴顶角的度数为30°或150°.故选:B.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.10.D解析:D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.11.C解析:C【解析】【分析】看是否符合所学的全等的公理或定理即可.【详解】A、符合全等三角形的判定SAS,能作出唯一三角形;B、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA判定全等,因而所作三角形是唯一的;C、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.12.C解析:C【解析】【分析】根据三角形外心的作法,确定到三定点距离相等的点.【详解】解:因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等.故选:C.【点睛】本题考查了垂直平分线的性质和三角形外心的作法,关键是根据垂直平分线的性质解答.二、填空题13.12【解析】【分析】作C关于AB的对称点E连接ED易求∠ACE=60°则AC=AE且△ACE为等边三角形CP+PD=DP+PE为E与直线AC之间的连接线段其最小值为E到AC的距离=AB=12所以最小解析:12【解析】【分析】作C关于AB的对称点E,连接ED,易求∠ACE=60°,则AC=AE,且△ACE为等边三角形,CP+PD=DP+PE为E与直线AC之间的连接线段,其最小值为E到AC的距离=AB=12,所以最小值为12.【详解】作C关于AB的对称点E,连接ED,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AE ,∴△ACE 为等边三角形,∴CP+PD=DP+PE 为E 与直线AC 之间的连接线段,∴最小值为C'到AC 的距离=AB=12,故答案为12【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.14.2【解析】根据题意得:x ﹣2=0解得:x=2此时2x+1=5符合题意故答案为2解析:2【解析】根据题意得:x ﹣2=0,解得:x=2.此时2x +1=5,符合题意,故答案为2.15.【解析】【分析】由题意平方差公式把每一项展开然后直接约分运算即可得出答案【详解】解:===故填【点睛】本题考查有理数幂的化简与求值熟练掌握平方差公式把每一项展开是解题的关键 解析:1120【解析】【分析】由题意平方差公式把每一项展开,然后直接约分运算即可得出答案.【详解】 解:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =1111111111111111...1111223344991010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+-+ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132435810911 (223344991010)⨯⨯⨯⨯⨯⨯⨯⨯⨯ =1120故填11 20.【点睛】本题考查有理数幂的化简与求值,熟练掌握平方差公式把每一项展开是解题的关键. 16.125°【解析】【分析】根据角平分线性质推出O为△ABC三角平分线的交点根据三角形内角和定理求出∠ABC+∠ACB根据角平分线定义求出∠OBC+∠OCB 即可求出答案【详解】:∵点O到ABBCAC的距解析:125°【解析】【分析】根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.【详解】:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴12OBC ABC∠=∠,12OCB ACB∠=∠,∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴1110552OBC OCB∠+∠=⨯︒=︒,∴∠BOC=180°-(∠OBC+∠OCB)=125°;故答案为:125.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.17.80【解析】【分析】设A型机器每小时加工x个零件则B型机器每小时加工(x-20)个零件根据工作时间=工作总量÷工作效率结合A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同即可得解析:80【解析】【分析】设A型机器每小时加工x个零件,则B型机器每小时加工(x-20)个零件,根据工作时间=工作总量÷工作效率结合A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设A型机器每小时加工x个零件,则B型机器每小时加工(x-20)个零件,根据题意得:40030020x x=-,解得:x=80,经检验,x=80是原分式方程的根,且符合题意.答:A型机器每小时加工80个零件.故答案为80.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角解析:120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.19.=-3【解析】【分析】根据分子为0分母不为0时分式的值为0来解答【详解】根据题意得:且x-30解得:x=-3故答案为:=-3【点睛】本题考查的是分式值为0的条件易错点是只考虑了分子为0而没有考虑同时解析:= -3【解析】【分析】根据分子为0,分母不为0时分式的值为0来解答.【详解】根据题意得:290x且x-3 0解得:x= -3故答案为:= -3.【点睛】本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.20.2(m+4)(m﹣4)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(m2﹣16)=2(m+4)(m﹣4)故答案为2(m+4)(m﹣4)【点睛】本题考查了提公因式法与公式法的综合解析:2(m+4)(m﹣4)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(m2﹣16)=2(m+4)(m﹣4),故答案为2(m+4)(m﹣4).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.原计划植树20天.【解析】【分析】设原计划每天种x棵树,则实际每天种(1+20%)x棵,根据题意可得等量关系:原计划完成任务的天数﹣实际完成任务的天数=3,列方程即可.【详解】解:设原计划每天种x棵树,则实际每天种(1+20%)x棵,依题意得:4004000803(120%)x x+-=+解得x=200,经检验得出:x=200是原方程的解.所以4000200=20.答:原计划植树20天.【点睛】此题主要考查了分式方程的应用,正确理解题意,找出题目中的等量关系,列出方程是解题关键.22.A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=700x,B型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:700x=500x-20,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.考点:分式方程的应用.23.1x x +,x=2时,原式=23. 【解析】【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=2代入计算即可求出值.【详解】 解:2221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭=2221(1)(1)(1)x x x x x x x ⎡⎤+-÷⎢⎥--⎣⎦=21(1)x x x --•22(1)x x + =(1)(1)(1)x x x x +--•22(1)x x + =1x x + 由题意可知,x ≠0,±1∴当x=2时,原式=23. 【点睛】本题考查分式的化简求值及分式成立的条件.24.详见解析【解析】【分析】根据中心对称得出OB=OD ,OA=OC ,求出OF=OE ,根据SAS 推出△DOF ≌△BOE 即可.【详解】证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB=OD ,OA=OC .∵AF=CE ,∴OF=OE . ∵在△DOF 和△BOE 中,OB OD DOF BOE OF OE =⎧⎪∠=∠⎨⎪=⎩,∴△DOF ≌△BOE (SAS ).∴FD=BE .25.(1)甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)应选甲工程队单独完成;理由见解析.【解析】【分析】(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x 天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【详解】解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x 天,依题意,得:12121.5x x+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.【点睛】本题主要考查了分式方程的实际应用,解题的关键是合理设出未知数,找到等量关系,列出方程.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学期末测试模拟题[含答案]一、选择题1.甲、乙、丙、丁四位数选手各l0次射击成绩的平均数都是8环,众数和方差如下表,则这四个人中水平发挥最稳定的是( )A .甲B .乙C .丙D .丁答案:B2.下列图形中,∠l 与∠2不是同位角的是( )A .B .C .D .答案:C3.己如,已知1l ∥2l ,AB ∥CD ,CE ⊥2l 于点E ,FG ⊥2l 于点 G ,下列说法中不正确的是( )A .∠ABD=∠CDEB .CE=FGC .A 、B 两点间的距离就是线段AB 的长度D .1l 与2l 之间的距离就是线段CD 的长度答案:D4.如图,在 Rt △ABC 中,∠ACB = 90°,DE 过点C 且平行于AB. 若∠BCE = 35°,则∠A 等于( ) A . 35°B .45°C . 55°D . 65°答案:C5.等腰三角形一腰上的高线与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或l50°D.60°或l20°答案:D6.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是()A.等腰三角形顶角的平分线所在的直线是它的对称轴B.等腰三角形底边上的中线所在的直线是它的对称轴C.等腰三角形底边上的高线所在的直线是它的对称轴D.以上都对答案:D7.△ABC和△DEF都是等边三角形,若△ABC的周长为24 cm ,△DEF的边长比△ABC 的边长长3 cm,则△DEF的周长为()A.27 cm B.30 cm C.33 cm D.无法确定答案:C8.如图,在等边△ABC中,点D是边BC上的点,DE⊥AC于E,则∠CDE的度数为()A.90°B.60°C.45°D.30°答案:D9.已知Rt△ABC中,∠C=90°,若三角形的周长为24 cm ,斜边c为10 cm,则Rt△ABC的面积为()A.24 cm2 B.36 cm2 C.48 cm2 D.96 cm2答案:A10.如图,将圆桶中的水倒入一个直径为40cm,高为55cm的圆口容器中,圆桶放置的角度与水平线的夹角为45o.若使容器中的水与圆桶相接触,则容器中水的深度至少应为()A.10cm B.20cm C.30cm D.35cm答案:D11.一个几何体的主视图,左视图和俯视图都是正方形,那么这个几何体可以是( ) A .圆锥B .立方体C .圆柱D .直六棱柱答案:B12.在一次乒乓球比赛中,甲、乙两名运动员7局球的比分依次是6:11,10:12,7:11,11:8,13:11,12:10,11:6,则运动员甲7局得分(6,10,7,11,13,12,Il )的众数、中位数、平均数分别是( ) A .6,11,11B .11,12,10C .11,11,9D .11,11,10答案:D13.如果x y x ->,x y y +<,那么下列式子中,正确的是( ) A .0x y +> 0x y -< C .0xy <D .0xy> 答案:D14.把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是( )A .B .C .D .答案:C15.已知点(0,0),(0,一2),(-4,0),(一1,2),(2,-2),(-2,4).其中在x 轴上的点的个数有( ) A .0个B .1个C .2个D .3个答案:C16.已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( ) A .3B .5C .6D .7答案:A17.如图,表示A 点的位置的准确说法是( ) A .距0点3 km 的地方 B .在O 点的东北方向上 C .在O 点东偏北40°的方向D .在0点北偏东50°方向,距O 点3 km 的地方答案:D18.已知,一次函数b kx y +=的图象如图,下列结论正确的是( ) A .0>k ,0>bB .0>k ,0<bC .0<k ,0>bD .0<k ,0<b答案:B19.直线2y x =-+和直线2y x =-的交点 P 的坐标是( ) A . P (2, 0)B . P (-2,0)C . P (0,2)D . P (0, -2)答案:A20.如图,已知一次函数y kx b =+的图象,当x<0时,y 的取值范围是 ( ) A .y>0B .y<OC .-2<y<OD .y<-2答案:D21.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点0,过点O 作EF ∥BC ,交AB 于点E ,交AC 于点F ,△ABC 的周长是24cm ,BC=10cm ,则△AEF 的周长是( ) A .10 cmB .12cmC .14 cmD .34 cm答案:C 二、填空题22.不等式 5x- 4<6x 的解集是 . 546x x -<解析:x>-423. 如图,在△ABC 中,AB=AC ,D 是AC 上的一点,使 BD=BC=AD ,则∠A = .解析:36°24.如图,将一等边三角形剪去一个角后,∠1+∠2= .解析:240°25.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= .解析:135°26.直六棱柱的其中一条侧棱长为5 cm,那么它的所有侧棱长度之和为 cm.解析:3027.下图是由一些相同的小正方体构成的几何体的三视图,则这个几何体共有小正方体个.解析:528.为了了解2008年某超市每天上午的顾客人数,抽查了其中30天的每天上午的顾客人数,在这个问题中,样本是.解析:从中抽查的30天每天上午的顾客人数29.一组数据1,2,3,x的平均数是4,则这组数据的中位数是.解析:2.530.如图,直线 AB∥CD,BD⊥AB 于点 B,若直线 AB 与 CD 之伺的距离为0.9 cm,则BD= .解析:0.9 cm31.在10000株樟树苗中,任意测量20株的苗高,这个问题中,样本容量是.解析:2032.如图,该图形经过折叠可以围成一个立方体,折好以后,与“静”字相对的字是.解析:着33.已知关于x 的不等式50x m-<只有两个正整数解,则m的取值范围是.解析:10<m≤1534.关于x的不等式组2132xxx m+⎧>-⎪⎨⎪<⎩的所有整数解的和是-7,则m的取值范围是_____________.解析:-3<m≤-235.根据“x的相反数的13不大于x的 2 倍与 10 的和”,列出不等式:.解析:1210 3x x-≤+36.在直角坐标系中,点P(-3,4)到x 轴的距离为,到y 轴的距离为.解析:4,337.若33320x x y+++-=,则点P(x,y)在第象限,点Q(x+1,y-2)在.解析:二,y轴上38.已知点A(-1,2),将它先向左平移2个单位,再向上平移3个单位后得到点B,则点B的坐标是______.解析:(-3,5)39.a是数据l,2,3,4,5的中位数,b是数据2,3,3,4的方差,则点P(a,b)关于x轴的对称点的坐标为 .解析:(3,1 2 -)40.如图,把直线3y x =-向上平移后得到直线AB ,直线AB 经过点(m ,n ),且35m n +=,则直线AB 的解析式是 .解析:35y x =-+41.学校篮球队五名队员的年龄分别为l7,15,17,l6,15,其方差为0.8,则四年后这五名队员年龄的方差为 . 解析:0.8三、解答题42.小敏暑假到某一名山旅游,从科学课上知道山区气温随着海拔高度的增加而下降,沿途她利用随身所带的登山表检测气温,气温y (℃)与海拔高度x (m)存在着下列关系:(1)现以海拔高度为x 轴,气温为y 轴建立平面直角坐标系(如图),根据提供的数据,请通过描点画图探究y 与x 之间的函数关系,并求出函数解析式;(2)若小敏到达山巅时,测得当时气温为19.4℃,请求出这里的海拔高度.解析:(1)描点画图略,图象是直线,所以此函数为一次函数,此一次函数解析式为334.4500y x =-+ (2)2500m43.已知一次函数的图象过点(-1,5),且与正比例函数12y x =-的图象交于点(2,a),求:(1)求一次函数解析式;(2)这两个函数图象与x 轴所围成的三角形面积,解析:(1)y=-2x+3;(2)3444.指出下列事例中的常量与变量:(1)长方形的长和宽分别是a 与b ,周长为c=2(a+b).(2)△ABC 的其中一个内角度数为60°,另两个内角的度数分别为、β,则β=120°-α. (3)某种储蓄的月利率为0.3%,存入l0000元本金后,利息y(元)与所求月数x(月)之间的关系式为y=30x .(4)某地温度T(℃)与海拔高度h(m)之间的关系可用10150hT =-来近似估计.解析:(1)常量:2;变量 a 、b 、c ;(2)常量:120°;变量:α、β;(3)常量:30,变量; x 、y ;(4)常量:10、150;变量:T 、h45.解不等式组12512x x x +≤⎧⎪⎨->⎪⎩,并写出它的所有整数解.解析:1≤x<3,1,246.甲、乙两人打靶,前三枪甲的成绩分别为9环、8环和7环,乙的成绩为l0环、9环和6环,第四枪甲打了8环.问:(1)乙第四枪要打多少环才能与甲的平均环数相同? (2)在(1)中,如果乙打了这个环数,那么谁发挥得较稳定?解析:(1)7环;(2)甲稳定47.在△ABC 中,如果∠A=∠B=12∠C ,试判断△ABC 的形状,并说明理由.解析:△ABC是等腰直角基角形48.如图4,AB∥EF,AB∥CD. 若∠EFB =l20°,∠C =70°,求∠FBC的度数.解析:∵AB∥EF,∠EFB=120°,∴∠ABF=180°-120°=60°∵AB∥CD.∠C=70°,∴∠A8C=∠C=70°.∴∠FBC∠ABC-∠ABF=70°-60°=10°49.如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,问∠2和∠3 有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?(提示:分析这两条光线被哪条直线所截)解析:略50.从2005年9月起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注。

相关文档
最新文档