人教版选修(3-5)《氢原子光谱》ppt课件

合集下载

高中物理 第18章 第3节 氢原子光谱课件 新人教版选修3-5

高中物理 第18章 第3节 氢原子光谱课件 新人教版选修3-5
超级记忆法
第十八章 第三节
成才之路 ·高中新课程 ·学习指导 ·人教版 ·物理 ·选修3-5
超级记忆法-记忆规律
记忆前
选择记忆的黄金时段 前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息 后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
第十八章 第三节
成才之路 ·高中新课程 ·学习指导 ·人教版 ·物理 ·选修3-5
氢原子光谱的实验规律
1.光的产生 许多情况下光是由原子内部_电__子__的运动产生的,因此光 谱研究是探索_原__子___结__构__的一条重要途径。 2.巴耳末公式 1λ=___R__21_2_-__n1_2 ___(n=3,4,5…) 3.巴耳末公式的意义 以简洁的形式反映了氢原子的线状光谱,即辐射波长的 _分__立__特征。
能否根据对月光的光谱分析确定月球的组成成分? 答案:不能。月球不能发光,它只能反射太阳光,故其 光谱是太阳的光谱,对月光进行光谱分析确定的并非月球的 组成成分。
二、氢原子光谱的实验规律 1.氢原子光谱实验 在充有稀薄氢气的放电管两极间加上2kV~3kV的高压, 使氢气放电,氢原子在电场的激发下发光,通过分光镜观察氢 原子的光谱。(实验装置如图所示)
经典理论的困难
1.核式结构模型的成就 正 确 地 指 出 了 __原__子__核__ 的 存 在 , 很 好 的 解 释 了 _α_粒__子__散__射__实__验___。 2.经典理论的困难 经典物理学既无法解释原子的__稳__定__性__又无法解释原子光 谱的__分__立__特__征__。
重点难点突破
如何利用规律实现更好记忆呢?
第十八章 第三节
成才之路 ·高中新课程 ·学习指导 ·人教版 ·物理 ·选修3-5

高考物理一轮复习人教版原子结构氢原子光谱优质课件

高考物理一轮复习人教版原子结构氢原子光谱优质课件

【Hale Waihona Puke 析】由放出的三种不同能量的光子的能量可知,跃迁
发生前这些原子分布在两个激发态,其中最高能级(n=3)的能量 值是-13.6 eV+12.09 eV=-1.51 eV.
m.
②氢原子能级公式 1 En= n2 E1(n=1,2,3,…),其中E1为氢原子基态的能量值, 其数值为E1= -13.6eV .
③原子的最低能量状态为 基态 ,对应电子在离核最近的轨道 上运动;较高的能量状态称为 激发态 ,对应电子在离核较远的轨 道上运动.氢原子的能级图如图所示.
三、原子的跃迁与电离 原子跃迁时,不管是吸收还是辐射光子,光子的能量都必须 等于这两个能级的能量差.若想把处于某一定态上的原子的电子 电离出去,就需要给原子一定的能量,如基态原子电离(即上升到 n=∞),其电离能为13.6 eV,只要能量等于或大于13.6 eV的光子 都能使基态氢原子电离,只不过入射光子的能量越大,原子电离 后产生的自由电子具有的动能越大.
③跃迁假设:原子从一个能量状态向另一个能量状态跃迁时 要 辐射或吸收 一定频率的光子,光子的能量等于两个能级的能 量差,即hν=Em-En(m>n).
(2)氢原子的能级和轨道半径 ①氢原子轨道半径公式 rn =
n2 r1(n=1,2,3,…),其中r1为基态半径,也称为玻尔半
-10
径,其数值为r1= 0.53×10
选修3-5 第三章 原子结构
原子核
说考纲—分析考情知考向
考纲要求 1.氢原子光谱(Ⅰ) 2.氢原子的能级结构、能级公式(Ⅰ) 3.原子核的组成、放射性、原子核的衰 变、半衰期(Ⅰ) 4.放射性同位素(Ⅰ) 5.核力、核反应方程(Ⅰ) 6.结合能、质量亏损(Ⅰ) 7.裂变反应和聚变反应、裂变反应堆(Ⅰ) 8.射线的危害和防护(Ⅰ) 命题规律 (1)氢原子光谱、能级 的考查; (2)放射性元素的衰 变、核反应的考查; (3)质能方程、核反应 方程的计算; (4)与动量守恒定律相 结合的计算 复习策略 体会微观领域的 研究方法,从实 际出发,经分析 总结、提出假 设、建立模型, 在经过实验验 证,发现新的问 题,从而对假设 进行修正

第三节:氢原子光谱上课

第三节:氢原子光谱上课

人教版物理·选修3-5
返回导航 上页 下页
2.几种光谱的比较
比较 光谱
产生条件
光谱形式
应用
一些不连续的明线组成,
线状光谱 稀薄气体发光形成的光谱 不同元素的明线光谱不同 可用于光谱分析
(又叫特征光谱)
炽热的固体、液体和高压 连续分布,一切波长的光
连续光谱
不能用于光谱分析
气体发光形成的
都有
人教版物理·选修3-5
探究一:光谱分析法
(二)线状谱
1、实验器材
2、实验结果
探究一:光谱分析法
(二)线状谱
稀薄气体
金属蒸气
探究一:光谱分析法
4、不同线状谱的异同:
(1)各种原子的发射光谱都是 线状谱 (2)原子只发射几种特定频率 的光 (3)不同原子的发光频率是 不一样的
探究一:光谱分析法 思考:烟花中的五颜六色是什么原理呢?
这个公式打开了光谱奥秘的大门。找到了译解原子“密 码”的依据。
探究三:经典理论的困难
• 1、矛盾一:无法解释原子的稳定性 • 2、矛盾二:无法解释原子光谱的分立性
核外电子绕核运动
辐射电磁波
电子轨道半径连续变小
原子不稳定
事实上: 原子是稳定的
辐射电磁波频率连续变化
辐射电磁波频率只是 某些确定值
人教版物理·选修3-5
第一:每一个n值分别对应一条谱线。 n的两层含义:
第二:n只能取正整数3,4,5······,不能 取连续值,说明了原子光谱波长的分立特 性(线状谱)。 除了巴耳末系,后来发现的氢光谱在红外和紫个光区 的其它谱线也都满足与巴耳末公式类似的关系式.
探究二:氢原子光谱的实验规律
三、实验结论:

高中物理选修3-5优质课件:微型专题 氢原子跃迁规律的应用

高中物理选修3-5优质课件:微型专题 氢原子跃迁规律的应用

达标检测
检测评价 达标过关
重点探究
启迪思维 探究重点
01
一 几种跃迁的对比理解
1.自发跃迁与受激跃迁的比较 (1)自发跃迁: ①由高能级到低能级,由远轨道到近轨道. ②释放能量,放出光子(发光):hν=E初-E末. ③大量处于激发态为n能级的原子可能的光谱线条数:nn-1 .
2 (2)受激跃迁: ①由低能级到高能级,由近轨道到远轨道.
第十八章 原子结构
学科素养与目标要求
物理观念:
进一步加深对玻尔理论的理解,掌握玻尔理论的假设.
科学思维:
1.会分析、计算能级跃迁过程中吸收或放出光子的能量. 2.理解受激跃迁与自发跃迁的区别. 3.知道使氢原子电离的方式并能进行相关计算.
内容索引
NEIRONGSUOYIN
重点探究
启迪思维 探究重点
图2
B.用11 eV的光子照射
√D.用11 eV的电子碰撞
针对训练1 如图3为氢原子的能级图,已知可见光光子的能量范围为1.62~3.11 eV, 金属钾的逸出功是2.25 eV,现有大量处于n=4能级的氢原子.下列说法正确的是
A.氢原子跃迁时最多可发出6种可见光 B.氢原子跃迁时发出的可见光均能使金属钾发生光电效应
12345
2.(能级跃迁规律的应用)(多选)如图7所示,氢原子在不同能级间发生a、b、c三种跃 迁时,释放光子的波长分别为λa、λb、λc,则下列说法正确的是
图7
√A.从n=3能级跃迁到n=1能级时,释放的光子的波长可表示为λb=λaλ+aλcλc
B.从n=3能级跃迁到n=2能级时,电子的势能减小,氢原子的能量增加 C.用能量为11 eV的电子碰撞处于基态的氢原子时,氢原子一定不会发生跃迁

第3节 氢原子光谱

第3节 氢原子光谱

提 升
菜单
|物理|选修3-5
第十八章 原子结构


4.光谱分析
特征谱线
互 动
(1)定义:利用原子的_____________来鉴别物质和确 ·
定物质的组成成分,这种方法叫作光谱分析。
考 点

(2)优点:灵敏度高。
突 破

二、氢原子光谱的实验规律


1.许多情况下光是由原子内部电子的运动产生的,因
· 落




·

三、经典理论的困难
点 突

1.核式结构模型的成就:正确地指出了

前 预
__原__子__核____的存在,很好地解释了粒__子__散射实验。
习 ·
2.经典理论的困难:经典物理学既无法解释
落 实
原子的__稳__定__性___,又无法解释原子光谱的_分__立__

基 础
特征。
下 作

·




实 基
探索原子核内部结构的一条重要途径。( × )
课 下

(4)稀薄气体的分子在强电场的作用下会变成导体并
作 业
发光。( √
)
· 能



菜单
|物理|选修3-5
第十八章 原子结构




·

(5)巴耳末公式中的 n 既可以取整数也可以取小
点 突

数。( × )

前 预
(6)经典物理学很好地解释原子的稳定性。(× )
考 点

A.炽热固体、液体和高压气体发出的光谱是

选修3-5 第二章 第1讲 原子结构 氢原子光谱

选修3-5 第二章 第1讲 原子结构  氢原子光谱

3.光谱分析
特征谱线 可以用来鉴别物质和确定 利用每种原子都有自己的_________
物质的组成成分,且灵敏度很高。在发现和鉴别化学元素上有
着重大的意义。
知识点 2
氢原子的能级结构、能级公式

1.玻尔理论
不连续 的能量状态中,在这 (1)定态:原子只能处于一系列_______
稳定 的,电子虽然绕核运动,但并不向 些能量状态中原子是_____
表示电子由较高能级向较低能级跃迁,电 子跃迁的条件为hν =Em-En
带箭头的竖线
2.对电子跃迁条件hν =Em-En的说明
(1)电子跃迁条件hν =Em-En只适用于光子和原子作用而使原子
在各定态之间跃迁的情况。
(2)当光子能量大于或等于13.6 eV时,也可以被处于基态的氢 原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量 大于13.6 eV时,氢原子电离后,电子具有一定的初动能。 (3)原子还可吸收外来实物粒子(例如自由电子)的能量而被 激发。由于实物粒子的动能可全部或部分被原子吸收,所以只要 入射粒子的能量大于或等于两能级的能量差值(E=Em-En),均
②利用原子能量公式En=Ekn+Epn判断,当轨道半径增大时,原
子能量增大,电子动能减小,故原子的电势能增大。反之,当
轨道半径减小时,原子能量减小,电子动能增大,故原子的电 势能减小。
【典例透析2】氢原子辐射出一个光子后,根据玻尔理论,下 述说法正确的是( )
A.电子绕核旋转的半径增大
B.电子的动能增大
【典例透析1】如图所示为氢原子能级
图,下列说法正确的是(
的光谱
)
A.玻尔理论也能很好地解释复杂原子 B.玻尔理论认为原子的能量是连续的, 电子的轨道半径是不连续的

氢原子光谱PPT教学课件

氢原子光谱PPT教学课件
R 称为“普适气体常数 ”
代入: PV PoVo M PoVmol
T
To
M mol To
理想气体物态方程: PV M RT M mol
阿伏伽德罗常数: N A 6.022 1023 mol 1
玻耳兹曼常数: k R 1.38 1023 (J K 1) NA
设:分子质量为 m,气体分子数为N,分子数密度 n。
单个分子速率不可预知,大量分子的速率分布是遵 循统计规律,是确定的,这个规律也叫麦克斯韦速 率分布律。
氢原子光谱
引言
每种原子、分子都有其特征光谱。因此分析其特征 光谱,对研究不同原子、分子及其结构有着重大的意义。 光谱学已成为光学的一个重要分支,并被广泛用于科研 和生产中。
氢原子是最简单的原子,其光谱线在按波长(或波 数)大小的排列次序上显示出简单的规律性。研究原子 结构,很自然氢原子首先被关注。
热现象
热学的研究方法:
1.宏观法. 最基本的实验规律逻辑推理(运用数学) ------称为热力学。
优点:可靠、普遍。 缺点:未揭示微观本质。 2.微观法.
物质的微观结构 + 统计方法 ------称为统计力学 其初级理论称为气体分子运动论(气体动理论) 优点:揭示了热现象的微观本质。 缺点:可靠性、普遍性差。
宏观法与微观法相辅相成。
气体动理论 §1 分子运动的基本概念
一.热力学系统 热力学研究的对象----热力学系统. 热力学系统以外的物体称为外界。 孤立系统:系统和外界完全隔绝的系统
例:若汽缸内气体为系统,其它为外界
二.系统状态的描述 微观量:分子的质量、速度、动量、能量等。
在宏观上不能直接进行测量和观察。 宏观量: 温度、压强、体积等。
2

高中物理选修3-5第十八章第59讲 原子的核式结构模型 氢原子光谱 原子能级

高中物理选修3-5第十八章第59讲 原子的核式结构模型 氢原子光谱 原子能级

第59讲原子的核式结构模型氢原子光谱原子能级考情剖析(注:①考纲要求及变化中Ⅰ代表了解和认识,Ⅱ代表理解和应用;②命题难度中的A 代表容易,B代表中等,C代表难)知识 整合知识网络基础自测一、原子结构 1.电子的发现英国物理学家____________________发现了电子. 2.α粒子散射实验1909~1911年,英国物理学家____________和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿______________方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于______________,也就是说它们几乎被“撞”了回来.3.原子的核式结构模型在原子中心有一个很小的核,原子全部的__________________和几乎全部__________________都集中在核里,带负电的电子在核外空间绕核旋转.4.三种原子模型的对比二、氢原子光谱与玻尔理论1.光谱(1)光谱用光栅或棱镜可以把光按波长展开,获得光的____________________(频率)和强度分布的记录,即光谱.(2)光谱分类有些光谱是一条条的____________,这样的光谱叫做线状谱.有的光谱是连在一起的____________,这样的光谱叫做连续谱.(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=________________________,(n=3,4,5,…),R是里德伯常量,R=1.10×107m-1,n为量子数.2.玻尔理论(1)定态原子只能处于一系列____________的能量状态中,在这些能量状态中原子是__________________的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=__________________.(h是普朗克常量,h=6.63×10-34 J·s)(3)轨道原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是________________,因此电子的可能轨道也是________________________________________________________________________.3.玻尔模型的局限性玻尔模型的成功之处在于引入了量子化观点,其不足之处在于保留了轨道的观念.量子力学中,核外电子并没有确定的轨道,玻尔的电子轨道,只不过是电子出现____________的地方,把电子的概率分布用图象表示时,用小黑点的稠密程度代表概率的大小,其结果如同电子在原子核周围形成云雾,称为“电子云”.三、氢原子的能级、能级公式1.氢原子的能级和轨道半径(1)氢原子的能级公式:E n=__________(n=1,2,3,…),其中E1为基态能量,其数值为E1=__________.(2)氢原子的半径公式:r n=____________________(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.2.氢原子的能级图能级图如图所示.重点阐述重点知识概述能级图中相关量意义的说明难点释疑1.氢原子跃迁时电子动能、电势能与原子能量的变化(1)原子能量:E n =E kn +E pn =E 1n2,随n 增大而增大,其中E 1=-13.6 eV.(2)电子动能:电子绕氢原子核运动时静电力提供向心力,即k e 2r 2=m v 2r ,所以E k n =ke 22r n,随r 增大而减小.(3)电势能通过库仑力做功判断电势能的增减. 当轨道半径减小时,库仑力做正功,电势能减小;反之,轨道半径增大时,电势能增加. 2.关于光谱线条数的两点说明(1)一群氢原子跃迁发出可能的光谱线条数为N =C 2n=n (n -1)2. (2)一个氢原子跃迁发出可能的光谱线条数最多为(n -1).【典型例题1】 (1)能量为E i 的光子照射基态氢原子,刚好可使该原子中的电子成为自由电子.这一能量E i 称为氢的电离能.现用一频率为ν的光子从基态氢原子中击出了一电子,该电子在远离核以后速度的大小为____________(用光子频率ν、电子质量m 、氢原子的电离能E i 和普朗克常量h 表示).(2)氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV ,求氢原子处于基态时:①电子的动能;②原子的电势能;③用波长是多少的光照射可使其电离?温馨提示(2)由圆周运动规律、能量守恒定律和光电效应方程易解本题.记录空间【变式训练1】如图所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时:(1)有可能放出多少种能量的光子?(2)在哪两个能级间跃迁时,所放出光子波长最长?波长是多少?【变式训练2】如图所示,氢原子从n>2的某一能级跃迁到n=2的能级,辐射出能量为2.55 eV的光子.问:(1)最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射出上述能量的光子?(2)请在图中画出获得该能量后的氢原子可能的辐射跃迁图.易错诊所1.光子的发射和吸收(1)能级的跃迁根据玻尔模型,原子只能处于一系列的不连续的能量状态中,这些状态分基态和激发态两种.其中原子在基态时是稳定的,原子在激发态时是不稳定的,当原子处于激发态时会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.【注意】①原子能级跃迁时,处于激发态的原子可能经过一次跃迁回到基态;也可能由较高能级的激发态先跃迁到较低能级的激发态,最后回到基态.一个原子由较高能级回到基态,到底发生了几次跃迁,是不确定的.②物质中含有大量的原子,各个原子的跃迁方式也是不统一的.有的原子可能经过一次跃迁就回到基态.而有的原子可能经过几次跃迁才回到基态.(2)光子的发射原子能级跃迁时以光子的形式放出能量,原子在始末两个能级E m和E n(m>n)间跃迁时发射光子的能量可由下式表示:hν=E m-E n由上式可以看出,能级的能量差越大,放出光子的频率就越高.(3)光子的吸收光子的吸收是光子发射的逆过程,原子在吸收了光子后会从较低能级向较高能级跃迁.两个能级的能量差值仍是一个光子的能量.其关系式仍为hν=E m-E n.【说明】由于原子的能级是一系列不连续的值,则任意两个能级差也是不连续的,故原子只能发射一些特定频率的光子,同样也只能吸收一些特定频率的光子.但是.当光子能量足够大时,如光子能量E≥13.6 eV时,则处于基态的氢原子仍能吸收此光子并发生电离.2.原子能级跃迁问题跃迁是指电子从某一轨道跳到另一轨道,而电子从某一轨道跃迁到另一轨道对应着原子就从一个能量状态(定态)跃迁到另一个能量状态(定态).(1)跃迁时电子动能、原子势能与原子能量的变化.当轨道半径减小时,库仑引力做正功,原子的电势能E p减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.(2)使原子能级跃迁的两种粒子——光子与实物粒子.原子若是吸收光子的能量而被激发,则光子的能量必须等于两能级的能量差,否则不被吸收.不存在激发到n=2时能量有余,而激发到n=3时能量不足,则可激发到n=2的问题.原子还可吸收外来实物粒子(例如自由电子)的能量而被激发,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E=E m-E n),均可使原子发生能级跃迁.【典型例题2】试计算处于基态的氢原子吸收波长为多少的光子,电子可以跃迁到n =2轨道上.温馨提示大于或小于这个能量均不能发生上述跃迁.记录空间【变式训练3】欲使处于基态的氢原子激发,下列措施可行的是()①用10.2 eV的光子照射;②用11 eV的光子照射;③用14 eV的光子照射;④用动能为11 eV的电子碰撞.A.①②③B.①③④C.②③④D.①②④随堂演练1.在卢瑟福的α粒子散射实验中,有极少数α粒子发生了大角度的偏转,其原因可能是()A.原子的正电荷和绝大部分质量集中在一个很小的核上B.正电荷在原子中是均匀分布的C.原子中存在着带负电的电子D.原子只能处于一系列不连续的能量状态中2.关于玻尔的原子模型理论,下面说法正确的是()A.原子可以处于连续的能量状态中B.原子能量状态不可能是连续的C.原子中的电子在核外轨道上运动时,要向外辐射能量D.原子核外电子在轨道上运动时,不向外辐射能量3.卢瑟福通过α粒子散射实验,判断出原子中心有一个很小的核,并由此提出了原子的核式结构学说.如图所示的平面示意图中①、③两条线表示α粒子运动的轨迹,则沿②所示方向射向原子核的α粒子可能的运动轨迹是()第3题图A.轨迹a B.轨迹bC.轨迹c D.轨迹d4.已知氢原子的基态能量为-13.6eV,用能量为12.3eV的光子去照射一群处于基态的氢原子,受光子照射后,下列关于氢原子跃迁的说法中正确的是()A.原子能跃迁到n=2的轨道上去B.原子能跃迁到n=3的轨道上去C.原子能跃迁到n=4的轨道上去D.原子不能跃迁到其他轨道上去5.(多选)(1)氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是()A.氢原子的能量增加B.氢原子的能量减少C.氢原子要吸收一定频率的光子D.氢原子要放出一定频率的光子(2)在氢原子光谱中,电子从较高能级跃迁到n=2能级发出的谱线属于巴耳末线系,若一群氢原子自发跃迁时发出的谱线中只有2条属于巴耳末线系,则这群氢原子自发跃迁时最多发出__________一条不同频率的谱线.第59讲 原子的核式结构模型氢原子光谱 原子能级知识整合 基础自测一、1.汤姆孙 2.卢瑟福 原来 90° 3.正电荷 质量二、1.(1)波长 (2)亮线 光带 (3)R ⎝⎛⎭⎫122-1n 2 2.(1)不连续 稳定 (2)E m -E n (3)不连续的 不连续的 3.概率最大三、1.(1)1n2E 1 -13.6 eV (2)n 2r 1重点阐述【典型例题1】 (1)能量为E i 的光子照射基态氢原子,刚好可使该原子中的电子成为自由电子.这一能量E i 称为氢的电离能.现用一频率为ν的光子从基态氢原子中击出了一电子,该电子在远离核以后速度的大小为____________(用光子频率ν、电子质量m 、氢原子的电离能E i 和普朗克常量h 表示).(2)氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV ,求氢原子处于基态时:①电子的动能; ②原子的电势能;③用波长是多少的光照射可使其电离?【答案】 (1)2(hν-E i )m(2)①13.6eV ②-27.2eV ③9.14×10-8m 【解析】 (1)由能量守恒得12mv 2=h ν-E i ,解得电子速度为v =2(hν-E i )m.(2)①设处于基态的氢原子核外电子速度为v 1,则k e 2r 21=mv 2r 1.所以电子动能E k1=12mv 21ke 22r 1=9×109×(1.6×10-19)22×0.53×10-10×1.6×10-19eV =13.6eV. ②因为E 1=Ek 1+Ep 1,所以Ep 1=E 1-Ek 1=-13.6eV -13.6eV =-27.2eV . ③设用波长为λ的光照射可使氢原子电离:hcλ=0-E 1.所以λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19m =9.14×10-8m. 【点评】 与能级有关的能量问题的规范求解1.一般解题步骤(1)分析已知量,根据库仑力提供核外电子做圆周运动的向心力列圆周运动动力学方程.(2)根据处于某定态原子的能量等于电子动能与电子电势能之和列方程,求电势能. (3)原子发生能级跃迁时能量与吸收或放出光子(或实物粒子)的能量相等,可列方程求光子的频率或相关物理量.2.对氢原子能级跃迁的进一步理解 (1)原子从低能级向高能级跃迁:吸收一定能量的光子,当一个光子的能量满足hν=E末-E 初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量hν大于或小于E 末-E 初时都不能被原子吸收.(2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差.(3)当光子能量大于或等于13.6 eV 时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV 时,氢原子电离后,电子具有一定的初动能.(4)原子还可以吸收外来实物粒子(例如自由原子)的能量而被激发.由于实物粒子的动能可全部或部分被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E =E m -E n ),均可使原子发生能级跃迁.(5)跃迁时电子动能、原子势能与原子能量的变化当轨道半径减小时,库仑引力做正功,原子的电势能减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.变式训练1 (1)6种 (2)第4能级向第3能级跃迁 1.88×10-6m【解析】 (1)N =n (n -1)2=4×(4-1)2种=6种.(2)氢原子由第4能级向第3能级跃迁时,能量差最小,辐射的光子波长最长.由hν=E 4-E 3 得:h cλ=E 4-E 3所以λ=hcE 4-E 3= 6.63×10-34×3×108[-0.85-(-1.51)]×1.6×10-19m≈1.88×10-6 m.变式训练2 (1)12.75eV (2)如图所示 【解析】 (1)氢原子从n >2的某一能级跃迁到n =2的能级,辐射光子的频率应满足hν=E n -E 2=2.55eV ,E n =hν+E 2=-0.85eV ,所以n =4,基态氢原子要跃迁到n =4的能级,应提供:ΔE =E 4-E 1=12.75eV .(2)辐射跃迁图如图所示.【典型例题2】 试计算处于基态的氢原子吸收波长为多少的光子,电子可以跃迁到n =2轨道上.【答案】 1.22×10-7m【解析】 氢原子基态对应的能量E 1=-13.6 eV ,电子在n =2的轨道上时,氢原子的能量为E 2=E 122=-3.4 eV ,氢原子核外电子从n =1轨道跃迁到n =2轨道需要的能量:ΔE =E 2-E 1=10.2 eV =1.632×10-18J.由玻尔理论有:hν=ΔE ,又ν=c/λ,所以chλ=ΔE.11 λ=ch ΔE =3×108×6.63×10-341.632×10-18m =1.22×10-7m. 变式训练3 B 【解析】 由原子的跃迁条件知:氢原子在各能级间跃迁时,只有吸收能量值刚好等于某两能级能量之差的光子(即hν=E 初-E 终).由氢原子能级关系不难算出10.2 eV 刚好为氢原子n =1和n =2的两能级能量之差,而11 eV 则不是氢原子基态和任一激发态的能量之差,因而氢原子只能吸收前者被激发,而不能吸收后者.对于14 eV 的光子,其能量大于氢原子的电离能(13.6 eV),足以使氢原子电离——使电子脱离核的束缚而成为自由电子,因而不受氢原子能级间跃迁条件的限制.由能的转化和守恒定律不难知道,氢原子吸收14 eV 的光子电离后产生的自由电子还应具有0.4 eV 的动能.另外,用电子去碰撞氢原子时,入射电子的动能可全部或部分地被氢原子吸收,所以只要入射电子的动能大于或等于基态和某个激发态能量之差,也可使氢原子激发,由以上分析知选项B 正确.随堂演练1.A 【解析】 卢瑟福根据α粒子散射实验提出核式结构模型:在原子的中心有一很小的核,原子的全部正电荷和几乎全部的质量都集中在原子核上,带负电的电子在核外空间里绕核高速旋转.本题答案为选项A.2.BD 【解析】 根据玻尔模型中能级的量子化可知,A 错,B 正确;而原子核外电子处于不同能级时,电子虽然加速运动,但不向外辐射能量,C 错,D 正确.3.A 【解析】 α粒子的运动轨迹夹在速度与合力的方向之间并向合力的一侧偏转,沿②所示方向的α粒子所受原子核的作用力的合力方向向下,故轨迹为a ,即A 正确.4.D 【解析】 由E =13.6n 2 eV 可知: E 1=-13.6 eV, E 2=-3.4 eVE 3=-1.51 eV, E 4=-0.85 eV则:E 2-E 1=10.2 eV<12.3 eVE 3-E 1=12.09 eV<12.3 eVE 4-E 1=12.75 eV>12.3 eV所以处于基态的氢原子不可能吸收该光子,因而氢原子不能跃迁到其他轨道上去.正确答案为选项D.5.(1)BD (2)6【解析】 (1)氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B 、D 正确.(2)氢原子发出的光谱线中有2条属于巴耳末线系,说明电子是从n =4能级向低能级跃迁的,因此可发出的谱线条数为n =C 24=6(条).。

人教版高中物理 选择性 必修第三册:氢原子光谱和玻尔的原子模型【精品课件】

人教版高中物理 选择性 必修第三册:氢原子光谱和玻尔的原子模型【精品课件】

它一定以一定的速度绕核转动。电子在做周期性运动,它产生的电磁场就
在周期性变化,而周期性变化的电磁场会激发电磁波,即电子不断把自己绕
核转动的能量以电磁波的形式辐射出去,因此电子绕核转动是不稳定的,电
子会失去能量,轨道半径逐渐变小,最后落在原子核上。但是事实不是这样,
原子是个很稳定的系统。
(2)无法解释原子光谱的分立特征
D.我们能通过光谱分析鉴别月球的物质成分
答案 BC
解析 太阳光谱中的暗线是太阳发出的连续谱经过太阳大气层时产生的吸
收光谱,是太阳发出的光谱被太阳大气层中存在的对应元素吸收所致,白炽
灯发出的是连续谱,选项A错误;月球本身不会发光,靠反射太阳光才能使我
们看到它,所以不能通过光谱分析鉴别月球的物质成分,选项D错误;光谱分

炽热的固体、液体和高
连续谱
连续分布,一切波长的光都有
压气体发光形成的光谱
炽热的白光通过温度比 用分光镜观察时,可见到连续光谱
吸收光谱 白光低的气体后,再色 背景上出现一些暗线(与特征谱线
散形成的光谱
相对应),可用于光谱分析
变式训练1(多选)通过光栅或棱镜获得物质发光的光谱,光谱(
)
A.按光子的频率顺序排列
的含量达到10-13 kg 时就可以被检测到。
二、氢原子光谱的实验规律
1.实验发现,氢原子的光谱是线状谱。
2.巴耳末公式:氢原子的光谱在可见光区的四条谱线的波长满足
1
1
1
=R ( − )(n=3,4,5…)。
∞ 22 2
3.巴耳末公式的意义:以简洁的形式反映了氢原子的线状光谱的特征。
三、经典理论的困难
(3)电子在这些轨道上绕核的运动是稳定的,不产生电磁辐射。

2018-2019高二人教版物理选修3-5课件:第18章 原子结构 18.3

2018-2019高二人教版物理选修3-5课件:第18章 原子结构 18.3

(4)应用:由于每种原子都有自己的_特__征__谱__线__,可以利 用它来鉴别物质和确定物质的_组__成__成__分__。这种方法称 为光谱分析,它的优点是_灵__敏__度__高,样本中一种元素的 含量达到_1_0_-_10_g_时就可以被检测到。
2.氢原子光谱的实验规律与经典电磁理论的困难: (1)氢原子光谱的实验规律: ①许多情况下光是由原子内部电子的运动产生的,因此 光谱研究是探索_原__子__结__构__的一条重要途径。
②氢原子光谱的实验规律满足
巴耳末公式:
1
R(212
1 n2
)(n=3,4,5…)
式中R为_里__德__伯__常量,R=1.10×107m-1,n取整数。
③巴耳末公式的意义:以简洁的形式反映了氢原子的
_线__状__光谱,即辐射波长的_分__立__特征。
(2)经典理论的困难: ①经典电磁理论无法解释原子核外的电子高速绕核转 动而又_不__辐__射__电磁波而处于稳定状态。 ②经典电磁理论无法解释原子光谱的_分__立__特征。
3.(多选)有关氢原子光谱的说法正确的是 ( ) A.氢原子的发射光谱是连续谱 B.氢原子光谱说明氢原子只发出特定频率的光 C.氢原子光谱说明氢原子能级是分立的 D.氢原子光谱线的频率与氢原子能级的能量差无关
【解析】选B、C。原子的发射光谱是原子跃迁时形成 的,由于原子的能级是分立的,所以氢原子的发射光谱 不是连续谱,原子发出的光子的能量正好等于原子跃迁 时的能级差,故氢原子只能发出特定频率的光,综上所 述,选项A、D错,B、C对。
【解题指南】(1)掌握原子的核式结构中电子的运动规 律。 (2)正确理解经典电磁理论与事实不符的事实。
【解析】选B、C。根据经典电磁理论,电子在绕核做加 速运动的过程中,要向外辐射电磁波,因此能量要减少, 电子的轨道半径要减小,最终会落到原子核上,因而原 子是不稳定的。电子在转动过程中,随着转动半径不断 减小,转动频率不断增大,辐射电磁波的频率不断变化, 因而大量原子发光的光谱应该是连续谱。事实上,原子 是稳定的,原子光谱也不是连续谱,而是线状谱,故A错,

选修3-5 第三章 第1讲

选修3-5 第三章 第1讲
接跃迁,有时可能是间接跃迁。两种情况下辐射(或吸收)光子 的能量是不同的。直接跃迁时辐射(或吸收)光子的能量等于间 接跃迁时辐射(或吸收)的所有光子的能量和。
【典例透析1】如图所示为氢原子最低的四个能级,当氢原子
在这些能级间跃迁时:
(1)有可能放出多少种能量的光子?
(2)在哪两个能级间跃迁时,所放出光子波长最长?最长波长
1 En=Ekn+Epn= E2 ,随n增大而增大,随n的减小而减小,其中
E1=-13.6 eV。
n
(2)电子动能变化规律
①从公式上判断电子绕氢原子核运动时静电力提供向心力,即
ke 2 e2 v2 ,所以 E kn ,随r增大而减小。 k 2 m 2rn r r
②从库仑力做功上判断,当轨道半径增大时,库仑引力做负功, 故电子动能减小。反之,当轨道半径减小时,库仑引力做正功, 故电子的动能增大。
n n 1 4 4 1 【解析】(1)N= 种=6种。
(2)氢原子由第4能级向第3能级跃迁时,能量差最小,辐射的 光子波长最长。 由hν=E4-E3得:h c =E4-E3
hc 所以最长波长λ= E 4 E3 6.63 1034 3 108 = [ 0.85 1.51] 1.6 1019
能级图中的横线
横线左端的数字“1,2,3„”
相 关 量
意义 表示氢原子的能量 表示相邻的能量差,量子数越 大相邻的能量差越小,距离越 小 表示原子由较高能级向较低能 级跃迁,原子跃迁的条件为 hν =Em-En
横线右端的数字“-13.6, -3.4„”
相邻横线间的距离
带箭头的竖线
2.对原子跃迁条件hν =Em-En的说明 (1)原子跃迁条件hν =Em-En只适用于光子和原子作用而使原子 在各定态之间跃迁的情况。

人教版高中物理选修3-5课件第十八章第3节氢原子光谱

人教版高中物理选修3-5课件第十八章第3节氢原子光谱
高中物理课件
灿若寒星整理制作
第第 十3 八节 章
新知预 习·巧设计
名师课 堂·一点通
创新演 练·大冲关
要点一 要点二
随堂检测 归纳小结 课下作业 综合提升
1.知道光谱、线状谱、连续谱、吸收 光谱、光谱分析等概念。 2.知道氢原子光谱的实验规律。 3.知道经典物理的困难在于无法解释 原子的稳定性和光谱分立特征。
特征谱
的不,同说明不同原子的发光频率是的,光不谱一中样的亮
线
线称为原子的
特征谱线
光谱分析:利用原子的来特鉴征别谱物线质和确定物质的
应用 优点:高,组样成本成中分一种元素的含量达到10-就可 被检测到灵敏度
[关键一点] 连续谱含有可见光的一切波长,不具有原子
的特征谱线,不能用来进行光谱分析。
2.氢原子光谱的实验规律 (1)许多情况下光是由原子内部电子的运动产生的,因此光 谱研究是探索 原子结构 的重要途径。 (2)巴耳末公式:1λ= R(212-n12) (n=3,4,5…),式中 R 叫 里德伯常量,其值为 R=1.10×107 m-1。 (3)巴耳末公式的意义:以简洁的形式反映了氢原子的线状 光谱,即辐射波长的 分立 特征。
成,由此知A、C、D说法正确。故选B。
答案:B
3.关于巴耳末公式1λ=R(212-n12)的理解,正确的是(
)
A.此公式是巴耳末在研究氢原子光谱特征时发现的
B.公式中 n 可取任意值,故氢原子光谱是连续谱
C.公式中 n 只能取大于或等于 3 的整数值,故氢原子光
谱是线状谱
D.公式不但适用于氢原子光谱的分析,也适用于其他原
5.计算巴耳末系中,当 n=5 时氢原子光谱线的波长。 解析:当 n=5 时,由巴耳末公式有1λ=R(212-512),则 λ= 0.211R=0.21×11.10×107 m=4.33×10-7 m。 答案:4.33×10-7 m

人教版高中物理选择性必修三 第4章第3节氢原子光谱和玻尔的原子模型 课件

人教版高中物理选择性必修三 第4章第3节氢原子光谱和玻尔的原子模型 课件

四、玻尔原子理论的基本假设
假说3:频率条件(跃迁
假说)


基光


针对原子光谱是线状
谱提出
电子克服库仑力做功增大电
势能,

n
E∞
5
4
3
E
5E
4
E
原子的能量增加



电子所受库仑力做正功减小电


势能,
原子的能量减少


3
2
E
2

= − (
> )



1
E
1


新知讲解
五、玻尔理论对氢光谱的解释
光谱研究是探索原子结构的一条重要途径。
氢气光
谱管
分光

高压电

新知讲解
二、氢原子光谱的实验规律
许多情况下光是由原子内部电子的运动产生的,因此
光谱研究是探索原子结构的一条重要途径。
新知讲解
二、氢原子光谱的实验规律
新知讲解
二、氢原子光谱的实验规律
氢原子是最简单的原子,其光谱也最简单。



7 m−1
4
N=
5
N=
6
帕邢系(红
外线)
布喇开系
逢德

成功解释了
氢光谱的所
有谱线
新知讲解
五、玻尔理论对氢光谱的解释
新知讲解
五、玻尔理论对氢光谱的解释 Nhomakorabea新知讲解
五、玻尔理论对氢光谱的解释
新知讲解
五、玻尔理论对氢光谱的解释
1.从高能级向低能级跃迁
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标高中物理选修3-5 第十八章原子结构
α粒子散射的实验使我们知道原子具有核式结构,但电子在核的周围怎样运动?它的能量怎样变化?这些还要通过其他事实来认识。

早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。

一、光谱
用光栅或棱镜把光按波长分开,得到光的波长(频率)成分和强度分布的记录,叫光谱。

(有时只记录波长成分)
光谱分为发射光谱和吸收光谱。

1、发射光谱
1)物体发光直接产生的光谱叫发射光谱2)发射光谱可分为连续光谱、明线光谱。

①连续光谱
由连续分布的一切波长的光组成的光谱叫做连续光谱。

炽热的固体、液体及高压气体的光谱是连续光谱,
例如:白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。

②明线光谱
只含有一些不连续的亮线的光谱叫明线光谱。

明线光谱中的亮线叫谱线,各条谱线对应不同波
长的光。

稀薄气体或金属的蒸气的发射光谱是明线光谱。

明线光谱是由游离状态的原子发射的,也叫原子光谱。

每种元素都只能发出具有本身特征的某些波长的光,明线光谱的谱线也叫原子的特征谱线。

2、吸收光谱
高温物体发出的白光(连续光谱)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。

发现:各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应。

表明:吸收光谱也是原子的特征谱线。

太阳光谱是吸收光谱。

连续光谱H 的发射光谱
钠的发射光谱
钠的吸收光谱
太阳的吸收光谱
光谱




定义:由发光体直接产生的光谱
连续光谱
{产生条件:炽热的固体、液体和高压气体
发光形成的
光谱的形式:连续分布,一切波长的光都有线状光谱{
(原子光谱)
产生条件:稀薄气体发光形成的光谱
光谱形式:由不连续的明线组成,不同元
素的明线光谱不同(又叫特征光谱)




定义:连续光谱中某些波长的光被物质吸收后产生的
光谱
产生条件:炽热的白光通过温度比白光低的气体后,
再色散形成的
光谱形式:用分光镜观察时,见到连续光谱背景上出
现一些暗线(与特征谱线相对应)
3、总结各种光谱的特点及成因:
4、光谱分析
1)由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定物质的组成成分。

这种方法叫做光谱分析。

2)光谱分析法由基尔霍夫开创。

3)优点:灵敏度高。

样本中一种元素的含量达到10-10g时就可以被检测到。

因此光谱分析可以用来确定样品中包含哪些元素,这种方法非常灵敏,利用光谱还能确定遥远星球的物质成分.
X射线照射激发荧
光,通过分析荧光判断
越王勾践宝剑的成分.漆碗:第三文化层(距今
6500~6000年).
利用红外光分析其表面,
其光谱图和马王堆汉墓出土漆
皮的裂解光谱图相似.
原子光谱的不连续性反映出原子结构的不连续性,所以光谱分析也可以用于探索原子的结构。







气体放电管:
玻璃管中稀薄气体的分子在强电场的作用下
会电离,成为自由移动的正负电荷,于是气体变成导体,导电时会发光。

这样的装置叫做气体放电管。

氢原子是最简单的原子,其光谱也最简单。

二、氢原子光谱的实验规律
1885年,巴耳末对当时已知的,在可见光区的4条谱线作了分析,发现这些谱线的波长可以用一个公式表示:
除了巴耳末系,后来发现的氢光谱在红外和紫个光区的其它谱线也都满足与巴耳末公式类似的关系式。

×7-1R =1.1010m 其中叫里德伯常量巴耳末公式:
核外电子绕核运动
辐射电磁波 电子轨道半径连续变小
原子不稳定 辐射电磁波频率连续变化
事实上:原子是稳定的、原子光谱是线状谱。

三、经典物理的困难
卢瑟福原子核式模型很好地解释了α粒子散射实验。

但是,由经典物理学既无法解释原子的稳定性,又无法解释原子光谱的分立特征。

1、在实际生活中,我们可以通过光谱分析来鉴别物质和物质的组成成分。

例如某样本中一种元素的含量达到10-10g时就可以被检测到。

那么我们是通过分析下列哪种谱线来鉴别物质
BC
和物质的组成成分的()
A 连续谱
B 线状谱
C 特征谱线
D 任意一种光谱
BD
2、下列说法正确的是()
A、通过光栅或棱镜可以把光按波长展开,从而获
得光的波长成分的记录,这就是光谱。

即光谱与光强度无关。

B、通过光栅或棱镜可以把光按波长展开,从而获
得光的波长成分和强度分布记录,这就是光谱。

即光谱不仅记录了光的波长分布,还记录了强度分布。

C、在研究太阳光谱时发现太阳光谱中有许多暗线,这说明了太阳内部缺少对应的元素。

D、在研究太阳光谱时发现太阳光谱中有许多暗线,这些暗线与某些元素的特征谱线相对应,这说明了太阳大气层内存在对应的元素。

【精品课件,教学帮手】
3 根据巴耳末公式,指出氢原子光谱在可见光范围内波长最长的两条谱线所对应的n,它们的波长各是多少?氢原子光谱有什么特点?。

相关文档
最新文档