2018年普通高等学校招生全国统一考试最新模拟数学(理)试题(全国新课标Ⅰ卷)-含答案

合集下载

2018年全国1数学理科 试卷及答案(精校版)

2018年全国1数学理科 试卷及答案(精校版)

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,则 A .B .C .D2.已知集合,则 A . B . C .D .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设为等差数列的前项和,若,,则 A .B .C .D .1i2i 1iz -=++||z =0121{}220A x x x =-->A =R ð{}12x x -<<{}12x x -≤≤}{}{|1|2x x x x <->}{}{|1|2x x x x ≤-≥n S {}n a n 3243S S S =+12a ==5a 12-10-10125.设函数,若为奇函数,则曲线在点处的切线方程为 A .B .C .D .6.在中,为边上的中线,为的中点,则 A .B .C .D .7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A .B .C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则= A .5B .6C .7D .89.已知函数.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN 为直角三角形,则|MN |=32()(1)f x x a x ax =+-+()f x ()y f x =(0,0)2y x =-y x =-2y x =y x =ABC △AD BC E AD EB =3144AB AC -1344AB AC -3144AB AC +1344AB AC +M A N B M N 1725223FM FN ⋅e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++2213x y -=△A .B .3C .D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。

2018年全国普通高等学校招生统一考试理科数学(新课标I卷)

2018年全国普通高等学校招生统一考试理科数学(新课标I卷)

○…………外………………○…………:___________班级:________○…………内………………○…………2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.设z =1−i 1+i +2i ,则|z|=A. 0B. 12C. 1D. √22.已知集合A ={x |x 2−x −2>0 },则∁R A = A. {x |−1<x <2 } B. {x |−1≤x ≤2 }C. {x|x <−1}∪ {x|x >2}D. {x|x ≤−1}∪ {x|x ≥2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A. −12 B. −10 C. 10 D. 125.设函数f(x)=x 3+(a −1)x 2+ax ,若f(x)为奇函数,则曲线y =f(x)在点(0,0)处的切线方程为A. y =−2xB. y =−xC. y =2xD. y =x6.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为答案第2页,总12页…………○※※答※※题※※…………○A. 2√17 B. 2√ C. 3 D. 2 7.已知函数f(x)={e x ,x ≤0,lnx ,x >0,g(x)=f(x)+x +a .若g ,x )存在2个零点,则a 的取值范围是A. [–1,0,B. [0,+∞,C. [–1,+∞,D. [1,+∞,8.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I,II,III 的概率分别记为p 1,p 2,p 3,则A. p 1=p 2B. p 1=p 3C. p 2=p 3D. p 1=p 2+p 39.已知双曲线C ,x 23−y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若△OMN 为直角三角形,则|MN |= A. 32 B.3 C. 2√3 D. 410.(题文)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)11.若x ,y 满足约束条件{x −2y −2≤0x −y +1≥0y ≤0,则z =3x +2y 的最大值为_____________,12.记S n 为数列{a n }的前n 项和,若S n =2a n +1,则S 6=_____________,13.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案, 14.已知函数f (x )=2sinx +sin2x ,则f (x )的最小值是_____________,三、解答题(题型注释)15.在平面四边形ABCD 中,∠ADC =90∘,∠A =45∘,AB =2,BD =5.(1)求cos∠ADB , (2)若DC=2√2,求BC .16.设椭圆C:x 22+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.17.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立,(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0,,2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用,(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;,ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?18.已知函数f(x)=1x−x+alnx,(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:f(x1)−f(x2)x1−x2<a−2,19.[选修4—4:坐标系与参数方程]在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ−3=0,(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.20.[选修4–5:不等式选讲]已知f(x)=|x+1|−|ax−1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.答案第4页,总12页参数答案1.C【解析】1.分析:首先根据复数的运算法则,将其化简得到z =i ,根据复数模的公式,得到|z |=1,从而选出正确结果. 详解:因为z=1−i 1+i +2i =(1−i)2(1+i)(1−i)+2i =−2i 2+2i =i ,所以|z |=√0+12=1,故选C.2.B【解析】2.分析:首先利用一元二次不等式的解法,求出x 2−x −2>0的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式x 2−x −2>0得x <−1或x >2,所以A={x|x <−1或x >2},所以可以求得C R A ={x|−1≤x ≤2},故选B. 3.A【解析】3.分析:首先设出新农村建设前的经济收入为M ,根据题意,得到新农村建设后的经济收入为2M ,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确; 新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确; 新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D 正确; 故选A. 4.B【解析】4.分析:首先设出等差数列{a n }的公差为d ,利用等差数列的求和公式,得到公差d 所满足的等量关系式,从而求得结果d =−3,之后应用等差数列的通项公式求得a 5=a 1+4d =2−12=−10,从而求得正确结果. 详解:设该等差数列的公差为d , 根据题中的条件可得3(3×2+3×22⋅d)=2×2+d +4×2+4×32⋅d ,整理解得d =−3,所以a 5=a 1+4d =2−12=−10,故选B.5.D【解析】5.分析:利用奇函数偶此项系数为零求得a =1,进而得到f(x)的解析式,再对f(x)求导得出切线的斜率k ,进而求得切线方程.…………○…………装学校:___________姓名…………○…………装详解:因为函数f(x)是奇函数,所以a −1=0,解得a =1, 所以f(x)=x 3+x ,f′(x)=3x 2+1, 所以f′(0)=1,f(0)=0,所以曲线y =f(x)在点(0,0)处的切线方程为y −f(0)=f′(0)x , 化简可得y =x ,故选D. 6.B【解析】6.分析:首先根据题中所给的三视图,得到点M 和点N 在圆柱上所处的位置,点M 在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M 、N 在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 详解:根据圆柱的三视图以及其本身的特征,可以确定点M 和点N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为√42+22=2√5,故选B.7.C【解析】7.分析:首先根据g (x )存在2个零点,得到方程f(x)+x +a =0有两个解,将其转化为f(x)=−x −a 有两个解,即直线y =−x −a 与曲线y =f(x)有两个交点,根据题中所给的函数解析式,画出函数f(x)的图像(将e x (x >0)去掉),再画出直线y =−x ,并将其上下移动,从图中可以发现,当−a ≤1时,满足y =−x −a 与曲线y =f(x)有两个交点,从而求得结果. 详解:画出函数f(x)的图像,y =e x 在y 轴右侧的去掉, 再画出直线y =−x ,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程f(x)=−x −a 有两个解, 也就是函数g(x)有两个零点,此时满足−a ≤1,即a ≥−1,故选C.8.A【解析】8.分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p 1,p 2,p 3的关系,从而求得结果. 详解:设AC=b,AB =c,BC =a ,则有b 2+c 2=a 2,答案第6页,总12页从而可以求得ΔABC 的面积为S 1=12bc , 黑色部分的面积为S 2=π⋅(c 2)2+π⋅(b 2)2−[π⋅(a 2)2−12bc] =π(c 24+b 24−a 24)+12bc =π⋅c 2+b 2−a 24+12bc =12bc ,其余部分的面积为S 3=π⋅(a 2)2−12bc =πa 24−12bc ,所以有S 1=S 2,根据面积型几何概型的概率公式,可以得到p 1=p 2,故选A.9.B【解析】9.分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到∠FON =30°,根据直角三角形的条件,可以确定直线MN 的倾斜角为60°或120°,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60°,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得M(3,√3),N(32,−√32),利用两点间距离同时求得|MN |的值.详解:根据题意,可知其渐近线的斜率为±√33,且右焦点为F(2,0),从而得到∠FON=30°,所以直线MN 的倾斜角为60°或120°,根据双曲线的对称性,设其倾斜角为60°, 可以得出直线MN 的方程为y =√3(x −2),分别与两条渐近线y =√33x 和y =−√33x 联立,求得M(3,√3),N(32,−√32),所以|MN |=√(3−32)2+(√3+√32)2=3,故选B.10.A【解析】10.分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果. 详解:根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D 中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的,………装…………○…………__________姓名:___________班级:________………装…………○…………同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2, 所以其面积为26S ==⎝⎭,故选A. 11.6【解析】11.分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式y=−32x +12z ,之后在图中画出直线y =−32x ,在上下移动的过程中,结合12z 的几何意义,可以发现直线y=−32x +12z 过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值.详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由z=3x +2y 可得y =−32x +12z ,画出直线y=−32x ,将其上下移动,结合z 2的几何意义,可知当直线过点B 时,z 取得最大值,由{x −2y −2=0y =0,解得B(2,0),此时z max =3×2+0=6,故答案为6. 12.−63【解析】12.分析:首先根据题中所给的S n=2a n +1,类比着写出S n+1=2a n+1+1,两式相减,整理得到a n+1=2a n ,从而确定出数列{a n }为等比数列,再令n =1,结合a 1,S 1的关系,求得a 1=−1,答案第8页,总12页详解:根据S n =2a n +1,可得S n+1=2a n+1+1, 两式相减得a n+1=2a n+1−2a n ,即a n+1=2a n , 当n =1时,S 1=a 1=2a 1+1,解得a 1=−1, 所以数列{a n }是以-1为首项,以2为公布的等比数列, 所以S 6=−(1−26)1−2=−63,故答案是−63.13.16【解析】13.分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果. 详解:根据题意,没有女生入选有C 43=4种选法,从6名学生中任意选3人有C 63=20种选法,故至少有1位女生入选,则不同的选法共有20−4=16种,故答案是16.14.−3√32【解析】14.分析:首先对函数进行求导,化简求得f′(x)=4(cosx +1)(cosx −12),从而确定出函数的单调区间,减区间为[2kπ−5π3,2kπ−π3](k ∈Z),增区间为[2kπ−π3,2kπ+π3](k ∈Z),确定出函数的最小值点,从而求得sinx =−√32,sin2x =−√32代入求得函数的最小值.详解:f′(x)=2cosx +2cos2x =4cos 2x +2cosx −2=4(cosx +1)(cosx −12), 所以当cosx<12时函数单调减,当cosx >12时函数单调增,从而得到函数的减区间为[2kπ−5π3,2kπ−π3](k ∈Z),函数的增区间为[2kπ−π3,2kπ+π3](k ∈Z),所以当x=2kπ−π3,k ∈Z 时,函数f (x )取得最小值, 此时sinx=−√32,sin2x =−√32,所以f (x )min =2×(−√32)−√32=−3√32,故答案是−3√32.15. (1) √235. (2)BC =5.【解析】15.分析:(1)根据正弦定理可以得到BDsin∠A =ABsin∠ADB ,根据题设条件,求得sin∠ADB=√25,结合角的范围,利用同角三角函数关系式,求得cos∠ADB=√1−225=√235,(2)根据题设条件以及第一问的结论可以求得cos∠BDC=sin∠ADB=√25,之后在△BCD中,用余弦定理得到BC所满足的关系,从而求得结果.详解:(1)在△ABD中,由正弦定理得BDsin∠A =ABsin∠ADB.由题设知,5sin45°=2sin∠ADB,所以sin∠ADB=√25.由题设知,∠ADB<90°,所以cos∠ADB=√1−225=√235.(2)由题设及(1)知,cos∠BDC=sin∠ADB=√2 5 .在△BCD中,由余弦定理得BC2=BD2+DC2−2⋅BD⋅DC⋅cos∠BDC=25+8−2×5×2√2×√2 5=25.所以BC=5.16.(1) AM的方程为y=−√22x+√2或y=√22x−√2.(2)证明见解析.【解析】16.分析:(1)首先根据l与x轴垂直,且过点F(1,0),求得直线l的方程为x=1,代入椭圆方程求得点A的坐标为(1,√22)或(1,−√22),利用两点式求得直线AM的方程;(2)分直线l与x轴重合、l与x轴垂直、l与x轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.详解:(1)由已知得F(1,0),l的方程为x=1.由已知可得,点A的坐标为(1,√22)或(1,−√22).所以AM的方程为y=−√22x+√2或y=√22x−√2.(2)当l与x轴重合时,∠OMA=∠OMB=0°.当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x−1)(k≠0),A(x1,y1),B(x2,y2),则x1<√2,x2<√2,直线MA,MB的斜率之和为k MA+k MB=y1x1−2+y2x2−2.由y1=kx1−k,y2=kx2−k得k MA+k MB=2kx1x2−3k(x1+x2)+4k(x1−2)(x2−2).将y=k(x−1)代入x 2+y2=1得答案第10页,总12页(2k 2+1)x 2−4k 2x +2k 2−2=0.所以,x 1+x 2=4k22k 2+1,x 1x 2=2k 2−22k 2+1.则2kx 1x 2−3k(x 1+x 2)+4k =4k 3−4k−12k 3+8k 3+4k2k 2+1=0.从而k MA +k MB =0,故MA ,MB 的倾斜角互补,所以∠OMA =∠OMB .综上,∠OMA =∠OMB . 17.】(1)p 0=0.1.(2) ,i )490.,ii )应该对余下的产品作检验.【解析】17.分析:(1)利用独立重复实验成功次数对应的概率,求得f(p)=C 202p 2(1−p)18,之后对其求导,利用导数在相应区间上的符号,确定其单调性,从而得到其最大值点,这里要注意0<p <1的条件;(2)先根据第一问的条件,确定出p =0.1,在解,i )的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;在解,ii )的时候,就通过比较两个期望的大小,得到结果. 详解:(1)20件产品中恰有2件不合格品的概率为f(p)=C 202p 2(1−p)18.因此f ′(p)=C 202[2p(1−p)18−18p 2(1−p)17]=2C 202p(1−p)17(1−10p).令f ′(p)=0,得p=0.1.当p ∈(0,0.1)时,f ′(p)>0;当p ∈(0.1,1)时,f ′(p)<0.所以f(p)的最大值点为p 0=0.1.(2)由(1)知,p =0.1.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知Y ∼B(180,0.1),X =20×2+25Y ,即X =40+25Y .所以EX =E(40+25Y)=40+25EY =490.,ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于EX >400,故应该对余下的产品作检验. 18.(1)当a ≤2时,f(x)在(0,+∞)单调递减., 当a>2时, f(x)在(0,a−√a 2−42),(a+√a 2−42,+∞)单调递减,在(a−√a 2−42,a+√a 2−42)单调递增.(2)证明见解析.【解析】18.分析:(1)首先确定函数的定义域,之后对函数求导,之后对a 进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2)根据f(x)存在两个极值点,结合第一问的结论,可以确定a >2,令f′(x)=0,得到两个极值点x 1,x 2是方程x 2−ax +1=0的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果. 详解:(1)f(x)的定义域为(0,+∞),f ′(x)=−1x 2−1+ax=−x 2−ax+1x 2.(i )若a ≤2,则f ′(x)≤0,当且仅当a =2,x =1时f ′(x)=0,所以f(x)在(0,+∞)单调递减. (ii )若a>2,令f ′(x)=0得,x =a−√a 2−42或x =a+√a 2−42.第11页,总12页当x ∈(0,a−√a 2−42)∪(a+√a 2−42,+∞)时,f ′(x)<0,当x∈(a−√a 2−42,a+√a 2−42)时,f ′(x)>0.所以f(x)在(0,a−√a 2−42),(a+√a 2−42,+∞)单调递减,在(a−√a 2−42,a+√a 2−42)单调递增.(2)由(1)知,f(x)存在两个极值点当且仅当a >2.由于f(x)的两个极值点x 1,x 2满足x 2−ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f(x 1)−f(x 2)x 1−x 2=−1x 1x 2−1+a lnx 1−lnx 2x 1−x 2=−2+a lnx 1−lnx 2x 1−x2=−2+a −2lnx 21x 2−x 2, 所以f(x 1)−f(x 2)x 1−x 2<a −2等价于1x 2−x 2+2lnx 2<0.设函数g(x)=1x−x +2lnx ,由(1)知,g(x)在(0,+∞)单调递减,又g(1)=0,从而当x ∈(1,+∞)时,g(x)<0.所以1x2−x 2+2lnx 2<0,即f(x 1)−f(x 2)x 1−x2<a −2. 19. (1,(x +1)2+y 2=4,(2)综上,所求C 1的方程为y =−43|x|+2,【解析】19.分析:(1)就根据x =ρcosθ,y =ρsinθ以及ρ2=x 2+y 2,将方程ρ2+2ρcosθ−3=0中的相关的量代换,求得直角坐标方程;(2)结合方程的形式,可以断定曲线C 2是圆心为A(−1,0),半径为2的圆,C 1是过点B(0,2)且关于y 轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k 所满足的关系式,从而求得结果. 详解:(1)由x=ρcosθ,y =ρsinθ得C 2的直角坐标方程为(x +1)2+y 2=4,,2)由(1)知C 2是圆心为A(−1,0),半径为2的圆, 由题设知,C 1是过点B(0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点, 当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,所以√k +1=2,故k =−43或k =0,经检验,当k =0时,l 1与C 2没有公共点;当k =−43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点,当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2,所以√k +1=2,故k =0或k =43,经检验,当k=0时,l 1与C 2没有公共点;当k =43时,l 2与C 2没有公共点,综上,所求C 1的方程为y=−43|x|+2,答案第12页,总12页20.(1){x|x >12},(2)(0,2],【解析】20.分析:(1)将a=1代入函数解析式,求得f(x)=|x +1|−|x −1|,利用零点分段将解析式化为f(x)={−2,x ≤−1,2x,−1<x <1,2,x ≥1.,然后利用分段函数,分情况讨论求得不等式f(x)>1的解集为{x|x>12};(2)根据题中所给的x ∈(0,1),其中一个绝对值符号可以去掉,不等式f(x)>x 可以化为x ∈(0,1)时|ax −1|<1,分情况讨论即可求得结果.详解:(1)当a =1时,f(x)=|x +1|−|x −1|,即f(x)={−2,x ≤−1,2x,−1<x <1,2,x ≥1.故不等式f(x)>1的解集为{x|x >12},(2)当x ∈(0,1)时|x +1|−|ax −1|>x 成立等价于当x ∈(0,1)时|ax −1|<1成立,若a ≤0,则当x ∈(0,1)时|ax −1|≥1, 若a>0,|ax −1|<1的解集为0<x <2a,所以2a≥1,故0<a ≤2, 综上,a 的取值范围为(0,2],。

2018普通高等学校招生全国统一考试理科数学全国1卷试题及答案解析

2018普通高等学校招生全国统一考试理科数学全国1卷试题及答案解析

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,则 A .B .C .D2.已知集合,则 A . B . C .D .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少1i2i 1iz -=++||z =0121{}220A x x x =-->A =R ð{}12x x -<<{}12x x -≤≤}{}{|1|2x x x x <->}{}{|1|2x x x x ≤-≥B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则 A . B . C .D .5.设函数.若为奇函数,则曲线在点处的切线方程为 A .B .C .D .6.在中,为边上的中线,为的中点,则 A .B .C .D . 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A .B .C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则= A .5B .6C .7D .8n S {}n a n 3243S S S =+12a ==5a 12-10-101232()(1)f x x a x ax =+-+()f x ()y f x =(0,0)2y x =-y x =-2y x =y x =ABC △AD BC E AD EB =3144AB AC -1344AB AC -3144AB AC +1344AB AC +M A N B M N 1725223FM FN ⋅9.已知函数.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若为直角三角形,则|MN |= A .B .3C .D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。

2018年普通高等学校招生全国统一考试仿真卷 理科数学

2018年普通高等学校招生全国统一考试仿真卷 理科数学

绝密★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(一)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·晋城一模]已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N = ()A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0M N = .选D .2.[2018·台州期末](i 为虚数单位)班级姓名准考证号 考场号 座位号此卷只装订不密封A .2B .1C .12D.2【答案】C11i 22z ∴=-=,选C . 3.[2018·德州期末]如图所示的阴影部分是由x 轴及曲线sin y x =围成,在矩形区域OABC 内随机取一点,则该点取自阴影部分的概率是()A .2πB .12C .1πD .3π【答案】A【解析】由题意,得矩形区域OABC 的面积为1π1πS =⨯=,阴影部分的面积为OABC 内随机取一点,则该点取自阴影部分的概率为212πS P S ==.故选A . 4.[2018·滁州期末]A .4-B .4C.13-D .13【答案】C【解析】sin 2costan 2ααα-=-⇒=,C .5.[2018·陕西一模]《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A .2 B.4+ C.4+D.4+【答案】C【解析】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三2,且侧棱与底面垂直,侧棱长是2,∴几C .6.[2018·天津期末]已知实数x ,y 满足2210x y x y +-⎧⎪⎨⎪⎩≥≤≥,若z x my =+的最大值为10,则m =() A .1 B .2 C .3 D .4【答案】B【解析】作出可行域,如图ABC △内部(含边界),其中()2,4A ,()2,1B ,()1,1C -,若A 是最优解,则2410m +=,2m =,检验符合题意;若B 是最优解,则210m +=,8m =,检验不符合题意,若8m =,则z 最大值为34;若C 是最优解,则110m -+=,11m =,检验不符合题意;所以2m =,故选B .7.[2018·蚌埠一模]已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是()A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+【答案】A【解析】不妨设01x =,要计算()120182017201621f =+++++ ,首先201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-.8.[2018·达州期末]若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为() A .()0,4 B .()0,+∞C .()3,4D .()3,+∞【答案】C【解析】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.[2018·朝阳期末]阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 当P ,A ,B 不共线时,PAB △面积的最大值是( )开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A.BC.3D.3【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,两边平方并整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=A .10.[2018·郴州一中]双曲线2222:1(0,0)xy C a b a b -=>>的离心率3e =,右焦点为F ,点A 是双曲线C 的一条渐近线上位于第一象限内的点,AOFOAF ∠=∠,AOF △的面积为,则双曲线C 的方程为()A .2213612x y -= B .221186x y -= C .22193x y -= D .2213x y -=【答案】C【解析】由点A 所在的渐近线为0,bx ay -=三个该渐近线的倾斜角为α,则,AOF OAF ∠=∠ ,所以直线AF 的倾斜角为2α,2222tan 2tan21tan aba bααα==--, 与0bx ay -=联立解得122AOFab S cab c ∴=⨯⨯==△,因为双曲线的离心率3e =b a ∴=,与ab =联立得3a =,b =22193x y -=.故选C .11.[2018·昆明一中]设锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,2A C =,则ABC △周长的取值范围为() A.(0,2 B.(0,3C.(2+ D.(2+【答案】C【解析】因为ABC △为锐角三角形,所以cos 2C <<;又因为2A C =,所以sin 2sin cos A C C =,又因为1c =,所以2cos a C =;由sin sin b cB C=, 即2sin sin34cos 1sin sin c B Cb C C C ===-,所以24cos 2cos a b c C C ++=+,令cos t C =,则(,22t ∈⎭,又因为函数242y t t =+在( ,22⎭上单调递增,所以函数值域为(2,故选:C .12.[2018·济南期末]若关于x 的方程e 0e e xx xx m x ++=+有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m ∈R ,e 2.71828= 为自然对数的底数,则3122312111e e e x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为() A .1 B .e C .1m - D .1m +【答案】A【解析】101t m t ++=+,()()2110t m t m ∴++++=,由韦达定理可得()1a b t t m +=-+,1a b t t m ⋅=+,()()3131131111x x x x t t e e ⎛⎫⎛⎫∴++=++ ⎪⎪⎝⎭⎝⎭()()1313=+1=11+1=1t t t t m m ++-+++,可得:31223121111e e e x x x x x x ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即3122312111e e e x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为1,故选A . 第Ⅱ卷本卷包括必考题和选考题两部分。

解析:2018年全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)

解析:2018年全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1-i1.设z=---2i,则|z|=1+11LA.0B.-C.1D.^2【答案】C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共貌复数,化简复数z,然后求解复数的模.详解:z=—+2i=(I)(I)+2i ♦i)(E1+i=—i+2i=i,则|z|=1,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轴复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.已知集合人={乂尤2一工一2>。

"则4A=A.|x|-l<x<2|B.|x|-l<x<2^D.|x|x<-l}u|x|x>2}【答案】B【解析】分析:首先利用一元二次不等式的解法,求出x2-x-2>0的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式J—X—2>。

得双―1稣所以A={x|X<-liiJcv>2},所以可以求得C R A={x\-l<x<2},故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【分析】首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【详解】设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+ 28% = 58% >50%,所以超过了经 济收入的一半,所以D 正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设S “为等差数列{%}的前〃项和,若3S 3 = S 2 + S 4, %=2,则% =A. -12B. -10C. 10D. 12【答案】B 【解析】分析:首先设出等差数列{%}的公差为d,利用等差数列的求和公式,得到公差d 所满足的等量关系式, 从而求得结果d = -3,之后应用等差数列的通项公式求得% =%+4d = 2-12 = -10,从而求得正确结果.详解:设该等差数列的公差为d,3x2 4x3根据题中的条件可得3(3x2 + —— d ) = 2x2 + d + 4x2 + —— d,2 2整理解得d =-3 ,所以% =%+4d = 2-12 = -10,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到%与的关系,从而求得结果.5. 设函数六x ) = J+(a-1)/+破.若/'(X )为奇函数,则曲线y = f (x )在点(0, 0)处的切线方程为()A. y = -2xB. y = fC. y = 2xD. y = x【答案】D 【解析】【详解】分析:利用奇函数偶次项系数为零求得” =1,进而得到/'(X )的解析式,再对/'(X )求导得出切线的 斜率上,进而求得切线方程.详解:因为函数/'(x)奇函数,所以“-1=0,解得。

精品解析:2018年全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)

精品解析:2018年全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B【解析】分析:首先设出等差数列的公差为,利用等差数列的求和公式,得到公差所满足的等量关系式,从而求得结果,之后应用等差数列的通项公式求得,从而求得正确结果. 详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A【解析】分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。

2018年普通高等学校招生全国统一考试理科数学全国1卷试题

2018年普通高等学校招生全国统一考试理科数学全国1卷试题

2018 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12小题,每小题 5 分,共 60分。

在每小题给出的四个选项中,只有项是符合题目要求的。

1i1.设z 1 i2i,则|z|1iA.01B.2C.1 D.22.已知集合A xx2x 2 0 ,则e R AA .x 1 x2 B.x1x2C.x |x 1 U x|x2 D.x |x 1 U x|x 23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记 S n 为等差数列 a n 的前 n 项和 .若 3S 3 S 2 S 4 , a 1 2 ,则 a 5A . 12B . 10C . 10D .125.设函数 f(x) x 3(a 1)x 2ax .若 f(x) 为奇函数,则曲线 y f(x)在点 (0,0) 处的切 线方程为 A . y 2x B . y xC . y 2xD . y xuuur6.在 △ABC 中, AD 为BC 边上的中线, E 为 AD 的中点,则 EB3uuur 1 uuur A . AB AC 441 uuur 3 uuur D . AB AC 447.某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正视图上的对应建设前经济收入构成比例建设后经济收入构成比例1 uuur 3uuur B . AB AC 443uuur 1 uuurC . AB AC44点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从M 到 N 的路径中,最短路径的长度为D .8取值范围是D .[1, +∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成, 三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边 AB ,AC . △ABC 的三边所围成的 区域记为Ⅰ,黑色部分记为Ⅱ, 其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自 Ⅰ,Ⅱ,Ⅲ的概率分别记为 p 1,p 2, p 3,则A.2 17 B . 25C .3D .28.设抛物线 C :y 2=4x 的焦点为 F , 2过点( –2,0)且斜率为 的直线与 C 交于 M ,N两点, uuuur uuur 则FM FN = A .5B .C .79.已知函数 f (x) xe , 0,ln x , x0, g(x) f(x) x a .若 g(x)存在 2 个零点,则 a 的A .[ –1, 0)B .[0,+∞)C .[–1,+∞)A . p 1=p 2B .p 1=p 3得截面面积的最大值为x 2y 2 0x y 1 0 ,则 z 3x 2y 的最大值为 y0 14.记 S n 为数列 a n 的前 n 项和.若S n 2a n 1,则 S6 ___________ .15.从 2 位女生, 4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的选法 共有 种.(用数字填写答案)16.已知函数 f x 2sinx sin2x ,则 f x 的最小值是 ________ .三、解答题:共 70分。

2018年高考新课标I卷_理科数学答案_(精美版)

2018年高考新课标I卷_理科数学答案_(精美版)
13
16
. 【答案】 − 3 23
max
z . 【解析】可行域为 ∆ABC 及其内部,当直线 y = − 3 x + 经过点 B (2,0) 时, z 2 2
y 1 A 1O
=6

- -1
C
B 2
x
第2页 共8页
14
. 【解析】由 a
n
1
= S1 = 2a1 + 1
6
得a
1
= −1
,当 n ≥ 2 时,a

n
= S n − S n −1 = 2a n + 1 − 2a n −1 + 1
,即 aa
n
=2
所以 {a }是等比数列, S = −1 + (− 2) + (− 4) + (− 8) + (− 16) + (− 32) = −63 . 15. 【解析】恰有 1 位女生的选法有 C C = 12 种,恰有 2 位女生的选法有 C C = 4 种,所以不同的选法共 有 16 种. 【解析】因为 f ( x) 是奇函数,且 f ( x) = f ( x + 2π ) ,即周期为 2π ,所以只需要研究 f ( x) 在 (− π , π ] 上 16. 的 图 像 . 又 f ′( x) = 2 cos x + 2 cos 2 x = 2(2 cos x + cos x − 1) = 2(2 cos x − 1)(cos x + 1) , 则 f ( x) 在


第4页 共8页

19
. 【解析】 (1)右焦点为 F (1,0) ,当 l 与 x 轴垂直时有 l : x = 1 ,则 A 为 (1, 直线 AM 的方程为: 或 ; (2)方法 1:令直线 AM , BM 的斜率分别为 k , k , ①当 l 与 x 轴重合时有 k = k = 0 ,所以 ∠OMA = ∠OMB = 0 ; ②当 l 与 x 轴不重合时,令 l : my = x − 1, A( x , y ), B( x , y ) ,

2018年普通高等学校招生全国统一考试理科数学全国1卷试题与答案

2018年普通高等学校招生全国统一考试理科数学全国1卷试题与答案

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1iz2i|z|1.设,则1i1A.B.C.1D.222202.已知集合,则Axxxe R AA.B.x1x2x1x2x|x1x|x2x|x1x|x2C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半San3S3S2S4a12a54.记为等差数列的前项和.若,,则nn121010A.B.C.D.1232fxxaxaxf(x)yf(x)(0,0)5.设函数()(1).若为奇函数,则曲线在点处的切线方程为yxyxy2x2A.B.C.yxD.△ABCADBCEADEB6.在中,为边上的中线,为的中点,则3113 A.B.C.ABACABAC4444 31 ABAC 44D.13ABAC44M7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应ANBMN点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A.17B.C.3225D.228.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,3则=FMFNA.5B.6C.7D.8xxe,0,f(x)g(x)f(x)xa9.已知函数.若g(x)存在2个零点,则a的lnx,x0,取值范围是A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.ABC的三边所围成的△区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p32x21y11.已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条3渐近线的交点分别为M、N.若△为直角三角形,则|MN|=OMN3A.B.3C.23D.4212.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为332332 A.B.C.D.4343 2二、填空题:本题共4小题,每小题5分,共20分。

2018年全国普通高等学校高考数学模拟试卷理科一参考答案与试题解析

2018年全国普通高等学校高考数学模拟试卷理科一参考答案与试题解析

2018年全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.6.(5分)已知函数则()A.2+πB.C.D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣6310.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.3212.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.14.(5分)已知x,y满足约束条件则目标函数的最小值为.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n ﹣a2n,n∈N*,则数列{b n}的前2n项和为.﹣116.(5分)如图,在直角梯形ABCD中,AB⊥BC,AD∥BC,,点E是线段CD上异于点C,D的动点,EF⊥AD于点F,将△DEF沿EF折起到△PEF 的位置,并使PF⊥AF,则五棱锥P﹣ABCEF的体积的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C的对边a,b,c分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(,)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=,P(μ﹣2σ<Z≤μ+2σ)=.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}【解答】解:A={x|﹣x2+4x≥0}={x|0≤x≤4},={x|3﹣4<3x<33}={x|﹣4<x<3},则A∪B={x|﹣4<x≤4},C={x|x=2n,n∈N},可得(A∪B)∩C={0,2,4},故选C.2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i【解答】解:由,得x+yi==2+i,∴复数x+yi的共轭复数是2﹣i.故选:A.3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数【解答】解:∵等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,∴a4+a5+a6+a7=2(a1+a10)=18,∴a1+a10=9,∴=45.故选:D.4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:设AB=2,则BC=CD=DE=EF=1,∴S=××=,△BCIS平行四边形EFGH=2S△BCI=2×=,∴所求的概率为P===.故选:A.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a 与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.【解答】解:设双曲线C:的右焦点F(c,0),双曲线的渐近线方程为y=x,由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(,b),代入双曲线的方程可得﹣=1,可得4a2﹣2ac﹣c2=0,由e=,可得e2+2e﹣4=0,解得e=﹣1(﹣1﹣舍去),故选:D.6.(5分)已知函数则()A.2+πB.C.D.【解答】解:∵,=∫cos2tdt===,∴=()+(﹣cosx)=﹣2.故选:D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.【解答】解:第1次循环后,S=,不满足退出循环的条件,k=2;第2次循环后,S=,不满足退出循环的条件,k=3;第3次循环后,S==2,不满足退出循环的条件,k=4;…第n次循环后,S=,不满足退出循环的条件,k=n+1;…第2018次循环后,S=,不满足退出循环的条件,k=2019第2019次循环后,S==2,满足退出循环的条件,故输出的S值为2,故选:C8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得【解答】解:函数=sin(2ωx)﹣•+=sin(2ωx﹣)(ω>0)的相邻两个零点差的绝对值为,∴•=,∴ω=2,f(x)=sin(4x﹣)=cos[(4x﹣)﹣]=cos(4x﹣).故把函数g(x)=cos4x的图象向右平移个单位,可得f(x)的图象,故选:B.9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣63【解答】解:展开式中所有各项系数和为(2﹣3)(1+1)6=﹣64;=(2x﹣3)(1+++…),其展开式中的常数项为﹣3+12=9,∴所求展开式中剔除常数项后的各项系数和为﹣64﹣9=﹣73.故选:A.10.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.【解答】解:如图,可得该几何体是六棱锥P﹣ABCDEF,底面是正六边形,有一PAF侧面垂直底面,且P在底面的投影为AF中点,过底面中心N作底面垂线,过侧面PAF的外心M作面PAF的垂线,两垂线的交点即为球心O,设△PAF的外接圆半径为r,,解得r=,∴,则该几何体的外接球的半径R=,∴表面积是则该几何体的外接球的表面积是S=4πR2=.故选:C.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.32【解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x﹣1),直线l2:y=k2(x﹣1),由题意可知,则,联立,整理得:k12x2﹣(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨=x1+x2+p=4+,丨DE丨=x3+x4+p=4+,∴|AB|+|DE|=8+==,当且仅当=时,上式“=”成立.∴|AB|+|DE|的最小值24,故选:C.12.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.【解答】解:根据题意,对于函数f(x),当x∈[0,2)时,,分析可得:当0≤x≤1时,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,当1<x<2时,f(x)=f(2﹣x),函数f(x)的图象关于直线x=1对称,则此时有﹣<f(x)<,又由函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2;则在∈[6,8)上,f(x)=23•f(x﹣6),则有﹣12≤f(x)≤4,则f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,则函数f(x)在区间[6,8]上的最大值为8,最小值为﹣12;对于函数,有g′(x)=﹣+x+1==,分析可得:在(0,1)上,g′(x)<0,函数g(x)为减函数,在(1,+∞)上,g′(x)>0,函数g(x)为增函数,则函数g(x)在(0,+∞)上,由最小值f(1)=+m,若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,必有g(x)min≤f(x)max,即+m≤8,解可得m≤,即m的取值范围为(﹣∞,];故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.【解答】解:根据题意,向量,,若,则•=2sinα﹣cosα=0,则有tanα=,又由sin2α+cos2α=1,则有或,则=(,)或(﹣,﹣),则||=,则=2+2﹣2•=;故答案为:14.(5分)已知x,y满足约束条件则目标函数的最小值为.【解答】解:由约束条件作出可行域如图,联立,解得A(2,4),=,令t=5x﹣3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,t有最小值为﹣2.∴目标函数的最小值为.故答案为:.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n ﹣a2n,n∈N*,则数列{b n}的前2n项和为.﹣1【解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:,整理得:,解得:.则:,所以:b n=a2n﹣1﹣a2n==﹣22n﹣4,则:T 2n ==.故答案为:.16.(5分)如图,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,,点E 是线段CD 上异于点C ,D 的动点,EF ⊥AD 于点F ,将△DEF 沿EF 折起到△PEF 的位置,并使PF ⊥AF ,则五棱锥P ﹣ABCEF 的体积的取值范围为 (0,) .【解答】解:∵PF ⊥AF ,PF ⊥EF ,AF ∩EF=F , ∴PF ⊥平面ABCD .设PF=x ,则0<x <1,且EF=DF=x .∴五边形ABCEF 的面积为S=S 梯形ABCD ﹣S △DEF =×(1+2)×1﹣x 2=(3﹣x 2). ∴五棱锥P ﹣ABCEF 的体积V=(3﹣x 2)x=(3x ﹣x 3),设f (x )=(3x ﹣x 3),则f′(x )=(3﹣3x 2)=(1﹣x 2), ∴当0<x <1时,f′(x )>0,∴f (x )在(0,1)上单调递增,又f (0)=0,f (1)=. ∴五棱锥P ﹣ABCEF 的体积的范围是(0,). 故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC 的内角A ,B ,C 的对边a ,b ,c 分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.【解答】解:(1)由2bcosA+acosC+ccosA=0及正弦定理得﹣2sinBcosA=sinAcosC+cosAsinC,即﹣2sinBcosA=sin(A+C)=sinB,在△ABC中,sinB>0,所以.又A∈(0,π),所以.在△ABC中,c=2b=2,由余弦定理得a2=b2+c2﹣2bccosA=b2+c2+bc=7,所以.(2)由,得=,所以.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.【解答】解:(1)连接A1B,A1D,AC,因为AB=AA1=AD,∠A1AB=∠A1AD=60°,所以△A1AB和△A1AD均为正三角形,于是A1B=A1D.设AC与BD的交点为O,连接A1O,则A1O⊥BD,又四边形ABCD是正方形,所以AC⊥BD,而A1O∩AC=O,所以BD⊥平面A1AC.又AA1⊂平面A1AC,所以BD⊥AA1,又CC1∥AA1,所以BD⊥CC1.(2)由,及,知A 1B⊥A1D,于是,从而A1O⊥AO,结合A1O⊥BD,AO∩AC=O,得A1O⊥底面ABCD,所以OA、OB、OA1两两垂直.如图,以点O为坐标原点,的方向为x轴的正方向,建立空间直角坐标系O ﹣xyz,则A(1,0,0),B(0,1,0),D(0,﹣1,0),A1(0,0,1),C(﹣1,0,0),,,,由,得D1(﹣1,﹣1,1).设(λ∈[0,1]),则(x E+1,y E+1,z E﹣1)=λ(﹣1,1,0),即E(﹣λ﹣1,λ﹣1,1),所以.设平面B1BD的一个法向量为,由得令x=1,得,设直线DE与平面BDB1所成角为θ,则,解得或(舍去),所以当E为D1C1的中点时,直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(,)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=,P(μ﹣2σ<Z≤μ+2σ)=.【解答】解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为.(2)①∵Z服从正态分布N(μ,σ2),且μ=,σ≈,∴P(<Z<)=P(﹣<Z<+)=,∴Z落在(,)内的概率是.②根据题意得X~B(4,),;;;;.∴X的分布列为X01234P∴.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.【解答】解:(1)由已知可得解得a2=2,b2=c2=1,所求椭圆方程为.(2)由得(1+2k2)x2+8kx+6=0,则△=64k2﹣24(1+2k2)=16k2﹣24>0,解得或.设A(x1,y1),B(x2,y2),则,,设存在点D(0,m),则,,所以==.要使k AD+k BD为定值,只需6k﹣4k(2﹣m)=6k﹣8k+4mk=2(2m﹣1),k与参数k无关,故2m﹣1=0,解得,当时,k AD+k BD=0.综上所述,存在点,使得k AD+k BD为定值,且定值为0.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.【解答】解:(1)根据题意,函数f(x)=e2﹣2(a﹣1)x﹣b,其导数为f'(x)=e x﹣2(a﹣1),当函数f(x)在区间[0,1]上单调递增时,f'(x)=e x﹣2(a﹣1)≥0在区间[0,1]上恒成立,∴2(a﹣1)≤(e x)min=1(其中x∈[0,1]),解得;当函数f(x)在区间[0,1]单调递减时,f'(x)=e x﹣2(a﹣1)≤0在区间[0,1]上恒成立,∴2(a﹣1)≥(e x)max=e(其中x∈[0,1]),解得.综上所述,实数a的取值范围是.(2)函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,则g'(x)=e x﹣2(a﹣1)x﹣b,分析可得f(x)=g'(x).由g(0)=g(1)=0,知g(x)在区间(0,1)内恰有一个零点,设该零点为x0,则g(x)在区间(0,x0)内不单调,所以f(x)在区间(0,x0)内存在零点x1,同理,f(x)在区间(x0,1)内存在零点x2,所以f(x)在区间(0,1)内恰有两个零点.由(1)知,当时,f(x)在区间[0,1]上单调递增,故f(x)在区间(0,1)内至多有一个零点,不合题意.当时,f(x)在区间[0,1]上单调递减,故f(x)在(0,1)内至多有一个零点,不合题意;所以.令f'(x)=0,得x=ln(2a﹣2)∈(0,1),所以函数f(x)在区间[0,ln(2a﹣2)]上单调递减,在区间(ln(2a﹣2),1]上单调递增.记f(x)的两个零点为x1,x2(x1<x2),因此x1∈(0,ln(2a﹣2)],x2∈(ln(2a﹣2),1),必有f(0)=1﹣b>0,f (1)=e﹣2a+2﹣b>0.由g(1)=0,得a+b=e,所以,又f(0)=a﹣e+1>0,f(1)=2﹣a>0,所以e﹣1<a<2.综上所述,实数a的取值范围为(e﹣1,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.【解答】解:(1)圆C1:(θ是参数)消去参数θ,得其普通方程为(x+1)2+(y+1)2=a2,将x=ρcosθ,y=ρsinθ代入上式并化简,得圆C1的极坐标方程,由圆C2的极坐标方程,得ρ2=2ρcosθ+2ρsinθ.将x=ρcosθ,y=ρsinθ,x2+y2=ρ2代入上式,得圆C2的直角坐标方程为(x﹣1)2+(y﹣1)2=2.(2)由(1)知圆C1的圆心C1(﹣1,﹣1),半径r1=a;圆C 2的圆心C2(1,1),半径,,∵圆C1与圆C2外切,∴,解得,即圆C1的极坐标方程为.将代入C1,得,得;将代入C2,得,得;故.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.【解答】解:(1)此不等式等价于或或解得或或3<x≤4.即不等式的解集为.(2)证明:∵m>0,n>0,m+2n=mn,,即m+2n ≥8,当且仅当即时取等号.∴f(m)+f(﹣2n)=|2m+1|+|﹣4n+1|≥|(2m+1)﹣(﹣4n+1)|=|2m+4n|=2(m+2n)≥16,当且仅当﹣4n+1≤0,即时,取等号.∴f(m)+f(﹣2n)≥16.。

普通高等学校2018届高三招生全国统一考试模拟试题(一)数学(理)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(一)数学(理)试题word含答案

普通高等学校招生全国统一考试模拟试题理科数学(一)本试卷满分150分,考试时间120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上.2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题纸上,写在本试卷上无效.3.考试结束后,将本试卷和答题纸一并交回.一、选择题:本题共12小题,每小题5分。

共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.已知集合{}{}260,,1,0,1,2,A x x x x N B A B =-++>∈=-⋂=则A .{1,2}B .{0,1,2)C .(0,1}D .{-1,0,1,2}2.已知i 为虚数单位,复数z z z ==A .2--B .2-+C .4-+D .1--3.已知双曲线C :()2210C x my m -=>:的一条渐近线方程为x =2y ,则该双曲线的实轴长与虚轴长之差为 A .12-B .12C .1-D .14.已知随机变量X ~N(2,1),其正态分布密度曲线如图所示,若向长方形ABCD 中随机投掷一点,则该点恰好落在阴影部分的概率为(附:若随机变量()2~,N ξμσ,则()(0.6827,2P P μσξμσμσξ-≤≤+≈-≤≤)20.9545.μσ+≈A .0.1359B .0.170625C .0.829325D .0.86415.执行如图所示的程序框图,若输入的4x =,则输出的n 的值为 A .5 B .6 C .7 D .86.杨辉是中国南宋时期的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图,在由二项式系数所构成的杨辉三角形中,按从上到下、从左到右的顺序数,把第1个1记为(1,1),第2个1记为(2,1),第3个1记为(2,2),第4个1记为(3,1),第5个1记为(3,2),依次类推,第21个1应记作A .(10,2)B .(11,1)C .(11,2)D .(12,1)7.已知命题2:,210p x R mx mx ∀∈-+>,命题q :指数函数()()0,1x f x m m m =>≠且为减函数,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知函()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图像如图所示,则函数4f x π⎛⎫- ⎪⎝⎭的图像的一个对称中心是A .,03π⎛⎫-⎪⎝⎭B .,012π⎛⎫-⎪⎝⎭C .7,012π⎛⎫⎪⎝⎭D .3,04π⎛⎫⎪⎝⎭9.已知一个几何体的三视图如图所示,若该几何体的体积为8163π+,则正视图中线段AB 的长为 A .2B .4C .6D .810.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,F F ,点P 在椭圆C 上,且212PF F F ⊥,过点P 作1F P 的垂线交x 轴于一点A ,若212AF c =,记椭圆C 的离心率为e ,则2e =AB.3C .12D111.已知ABC ∆的内角A ,B ,C 的对边分别为,,4,3,sin cos a b c b c a A C ==+,且sin cos cos c A A A =,点M 在边BC 上,且AB AC AM xyxy ABAC=+,则的最大值为 A.3B.4C.8D.912.已知函数()3291,0,1,0,x x x x f x ex -⎧-++≤⎪=⎨->⎪⎩若函数()()()222g x f x f x t =-+⎡⎤⎣⎦恰有8个不同的零点,则实数t 的取值范围为 A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .11,32⎛⎫⎪⎝⎭D .11,43⎛⎫⎪⎝⎭二、填空题:本题共4小题。

2018年普通高等学校招生全国统一考试数学理试题(新课标Ⅰ卷,答案)

2018年普通高等学校招生全国统一考试数学理试题(新课标Ⅰ卷,答案)

2018年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、 选择题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( )A 、A∩B=B 、A ∪B=RC 、B ⊆AD 、A ⊆B2、若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为 ( )A 、-4 (B )-45 (C )4 (D )45 3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( )A 、简单随机抽样B 、按性别分层抽样C 、按学段分层抽样D 、系统抽样4、已知双曲线C:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为 ( )A 、y =±14x (B )y =±13x (C )y =±12x (D )y =±x 5、执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于 ( )A 、[-3,4]B 、[-5,2]C 、[-4,3]D 、[-2,5]6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3 B 、866π3cm 3 C 、1372π3cm 3 D 、2048π3cm 37、设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m = ( )A 、3B 、4C 、5D 、68、某几何函数的三视图如图所示,则该几何的体积为( )A 、18+8πB 、8+8πC 、16+16πD 、8+16π9、设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( )A 、5B 、6C 、7D 、810、已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),过点F 的直线交椭圆于A 、B 两点。

2018年普通高等学校招生全国统一考试高中数学模拟测试试题一理【word版】.doc

2018年普通高等学校招生全国统一考试高中数学模拟测试试题一理【word版】.doc

2018年普通高等学校招生全国统一考试模拟卷理科数学一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A ={x |x 2-2x <0},B ={x ||x |<2},则 A .A ∩B =∅ B .A ∩B =AC .A ∪B =AD .A ∪B =R2.下面是关于复数2z i =-的四个命题:1:||5p z =;2:p z 的共轭复数为2+i ;23:34p z i =-;4121:33p i z =+.其中真命题为 A. 12p p , B. 23p p , C. 24p p , D. 34p p ,3.已知双曲线()221my x m R -=∈与抛物线28x y =有相同的焦点,则该双曲线的渐近线方程为A .13y x =± B .3y x =±C .3y x =±D .33y x =±4.甲、乙、丙、丁四位同学高考之后计划去A B C 、、三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为A . 8B .7 C. 6 D .55.已知ABC ∆中,10=AB ,6=AC ,8=BC ,M 为AB 边上的中点,则=⋅+⋅CB CM CA CM A .0B .25C .50D .1006.已知函数f (x )=32x x +4,则f (x )的大致图象为7.已知数列{a n}为等比数列,S n是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为54,则S5=A. 35B. 33C. 31D. 298.根据如下程序框图,运行相应程序,则输出S的值为A.32B.3C.23D.39.一个几何体的三视图如图所示,则该几何体的体积为A.83B.163C.203D.810.如果6314ax xx x⎛⎫⎛⎫-+⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为16,则展开式中3x项的系数为A. 392B.392- C.212- D.21211.已知直三棱柱ABC—A1B1C1的底面为等边三角形,且底面积为34,体积为34,点P,Q分别为线段A1B,B1C上的动点,若直线PQ∩平面ACC1A1=∅,点M为线段PQ的中点,则点M的轨迹长度为A.24B.34C.22D.3212.已知点P(x0,y0)(x0≠a±)在椭圆C:22221x ya b+=(a>b>0)上,若点M为椭圆C的右顶点,且PO⊥PM (O为坐标原点),则椭圆C的离心率e的取值范围是A .(0) B .1) C .,1) D .(0) 二、填空题: 本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.13.若实数x ,y 满足不等式组0,2,0,x x ⎧⎪⎨⎪⎩≥y ≤-y ≤则x +y 的最小值等于____________.14.在△ABC 中,A ,B ,C 所对应的边分别是a 、b 、c ,若其面积S =14(b 2+c 2-a 2),则A =____________.15.已知关于x 的不等式21log ()2m mx x -+>0在[1,2]上恒成立,则实数m 的取值范围为___________16.已知首项为2的正项数列{n a }的前n 项和为n S ,且当n≥2时,3n S -2=2na -31n S -.若12nn S +≤m 恒成立,则实数m 的取值范围为_______________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数()1cos cos 223f x x x x π⎛⎫=-- ⎪⎝⎭. (Ⅰ)求函数()f x 图象的对称轴方程; (Ⅱ)将函数()f x 图象向右平移4π个单位,所得图象对应的函数为()g x .当0 2x π⎡⎤∈⎢⎥⎣⎦,时,求函数()g x 的值域.18. (本小题满分12分)某理财公司有两种理财产品A 和B ,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立): 产品A投资结果 获利40%不赔不赚亏损20%概率131216产品B投资结果 获利20%不赔不赚亏损10%概率p13q注:p >(Ⅰ)已知甲、乙两人分别选择了产品A 和产品B 投资,如果一年后他们中至少有一人获利的概率大于35,求实数p 的取值范围;(Ⅱ)若丙要将家中闲置的10万元人民币进行投资,以一年后投资收益的期望值为决策依据,则选用哪种产品投资较理想?19. (本小题满分12分)如图,在空间四边形PABC 中,AC PA ⊥,AC PA =22=PC ,2=BC ,ο90=∠ACB ,且平面⊥PAC 平面ABC(Ⅰ)求证:BC PA ⊥;(Ⅱ)若直线PC 与平面ABM 所成角的余弦值为33,求PM .20. (本小题满分12分)设动圆P (圆心为P )经过定点(0,2)、(t +2,0)、(t -2,0)三点,当t 变化时,P 的轨迹为曲线C (Ⅰ) 求C 的方程(Ⅱ) 过点(0,2)且不垂直于坐标轴的直线l 与C 交于A 、B 两点,B 点关于y 轴的对称点为D ,求证:直线AD 经过定点.20. (本小题满分12分)已知函数()()()2212ln 21f x x a x ax x a a R =-++++∈. (Ⅰ)2a =-时,求()f x 在()0,2上的单调区间; (Ⅱ)0x ∀>且1x ≠,2ln 211ax xa x x >+--均恒成立,求实数a 的取值范围.请考生在第22、23题中任选一题做答。

2018年全国普通高等学校招生统一考试理科数学(新课标I卷)

2018年全国普通高等学校招生统一考试理科数学(新课标I卷)

2018年全国普通高等学校招生统一考试理科数学(新课标I卷)第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、单选题1.设,则A.B.C.D.2.已知集合,则A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.设为等差数列的前项和,若,,则A.B.C.D.5.设函数,若为奇函数,则曲线在点处的切线方程为A.B.C.D.6.在△中,为边上的中线,为的中点,则A.B.C.D.7.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A.5B.6C.7D.88.已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)9.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III 的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p310.已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A.B.3C.D.411.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A.B.C.D.第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题12.若,满足约束条件,则的最大值为_____________.13.记为数列的前项和,若,则_____________.14.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)15.已知函数,则的最小值是_____________.评卷人得分三、解答题16.在平面四边形中,,,,.(1)求;(2)若,求.17.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.18.设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.19.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?20.已知函数.(1)讨论的单调性;(2)若存在两个极值点,证明:.21.(题文)选修4-4:坐标系与参数方程在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.22.[选修4–5:不等式选讲]已知.(Ⅰ)当时,求不等式的解集;(Ⅱ)若时不等式成立,求的取值范围.参考答案1.C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4.B【解析】分析:首先设出等差数列的公差为,利用等差数列的求和公式,得到公差所满足的等量关系式,从而求得结果,之后应用等差数列的通项公式求得,从而求得正确结果.详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5.D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6.A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7.D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.8.C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.9.A【解析】分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.10.B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.11.A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.12.6【解析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由可得,画出直线,将其上下移动,结合的几何意义,可知当直线过点B时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解. 13.【解析】分析:首先根据题中所给的,类比着写出,两式相减,整理得到,从而确定出数列为等比数列,再令,结合的关系,求得,之后应用等比数列的求和公式求得的值.详解:根据,可得,两式相减得,即,当时,,解得,所以数列是以-1为首项,以2为公布的等比数列,所以,故答案是.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.14.16【解析】分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果.详解:根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.点睛:该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.15.【解析】分析:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值.详解:,所以当时函数单调减,当时函数单调增,从而得到函数的减区间为,函数的增区间为,所以当时,函数取得最小值,此时,所以,故答案是.点睛:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.16.(1);(2)5【解析】分析:(1)根据正弦定理可以得到,根据题设条件,求得,结合角的范围,利用同角三角函数关系式,求得;(2)根据题设条件以及第一问的结论可以求得,之后在中,用余弦定理得到所满足的关系,从而求得结果.详解:(1)在中,由正弦定理得.由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得.所以.点睛:该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理、同角三角函数关系式、诱导公式以及余弦定理,在解题的过程中,需要时刻关注题的条件,以及开方时对于正负号的取舍要从题的条件中寻找角的范围所满足的关系,从而正确求得结果. 17.(1)证明见解析.(2).【解析】分析:(1)首先从题的条件中确定相应的垂直关系,即BF⊥PF,BF⊥EF,又因为,利用线面垂直的判定定理可以得出BF⊥平面PEF,又平面ABFD,利用面面垂直的判定定理证得平面PEF⊥平面ABFD.(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD的法向量,设DP与平面ABFD所成角为,利用线面角的定义,可以求得,得到结果.详解:(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量.设DP与平面ABFD所成角为,则.所以DP与平面ABFD所成角的正弦值为.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.18.(1)AM的方程为或.(2)证明见解析.【解析】分析:(1)首先根据与轴垂直,且过点,求得直线l的方程为x=1,代入椭圆方程求得点A的坐标为或,利用两点式求得直线的方程;(2)分直线l与x轴重合、l与x轴垂直、l与x轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.详解:(1)由已知得,l的方程为x=1.由已知可得,点A的坐标为或.所以AM的方程为或.(2)当l与x轴重合时,.当l与x轴垂直时,OM为AB的垂直平分线,所以.当l与x轴不重合也不垂直时,设l的方程为,,则,直线MA,MB的斜率之和为.由得.将代入得.所以,.则.从而,故MA,MB的倾斜角互补,所以.综上,.点睛:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.19.(1)0.1.(2)i)490;ii)应该对余下的产品作检验.【解析】分析:(1)利用独立重复实验成功次数对应的概率,求得,之后对其求导,利用导数在相应区间上的符号,确定其单调性,从而得到其最大值点,这里要注意的条件;(2)先根据第一问的条件,确定出,在解(i)的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;在解(ii)的时候,就通过比较两个期望的大小,得到结果.详解:(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.点睛:该题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论.20.(1)见解析;(2)见解析【解析】分析:(1)首先确定函数的定义域,之后对函数求导,之后对进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2)根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.详解:(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.21.(1).(2).【解析】分析:(1)就根据,以及,将方程中的相关的量代换,求得直角坐标方程;(2)结合方程的形式,可以断定曲线是圆心为,半径为的圆,是过点且关于轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k所满足的关系式,从而求得结果.详解:(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.22.(1)(2)【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试最新模拟数学(理)试题(全国新课标Ⅰ卷)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|20A x x x =-≤,{}|1381xB x =<<,{}|2,C x x n n N ==∈,则()AB C =( ) A .{}2B .{}0,2C .{}0,2,4D .{}2,42.设i 是虚数单位,若5()2ii x yi i+=-,x ,y R ∈,则复数x yi +的共轭复数是( ) A .2i -B .2i --C .2i +D .2i -+3.已知等差数列{}n a 的前n 项和是n S ,且456718a a a a +++=,则下列命题正确的是( ) A .5a 是常数B .5S 是常数C .10a 是常数D .10S 是常数4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是( )A .316B .38C .14D .185.已知点F 为双曲线C :22221x y a b-=(0a >,0b >)的右焦点,点F 到渐近线的距离是点F 到左顶点的距离的一半,则双曲线C 的离心率为( )A 53B .53C .2D6.已知函数[]sin ,,0,()(0,1],x x f x x π⎧∈-⎪=∈则1()f x dx π-=⎰( )A .2π+B .2π C .22π-+ D .24π-7.执行如图程序框图,则输出的S 的值为( )ABC.D.18.已知函数2()sin cos 0)f x x x x ωωωω=+>的相邻两个零点差的绝对值为4π,则函数()f x 的图象( )A .可由函数()cos 4g x x =的图象向左平移524π个单位而得 B .可由函数()cos 4g x x =的图象向右平移524π个单位而得C .可由函数()cos 2g x x =的图象向右平移724π个单位而得D .可由函数()cos 2g x x =的图象向右平移56π个单位而得9.61(23)(1)x x-+的展开式中剔除常数项后的各项系数和为( )A .73-B .61-C .55-D .63-10.某几何体的三视图如图所示,其中俯视图为一个正六边形及其三条对角线,则该几何体的外接球的表面积是( )A .4πB .8πC .16πD .32π11.设O 为坐标原点,点P 为抛物线C :22(0)y px p =>上异于原点的任意一点,过点P 作斜率为0的直线交y 轴于点M ,点P 是线段MN 的中点,连接ON 并延长交抛物线于点H ,则||||OH ON 的值为( ) A .pB .12C .2D .3212.若函数()y f x =,x M ∈,对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数x ,都有()()af x f x T =+恒成立,此时T 为()f x 的类周期,函数()y f x =是M 上的a 级类周期函数,若函数()y f x =是定义在区间[0,)+∞内的2级类周期函数,且2T =,当[0,2)x ∈时,212,01,()2(2),12,x x f x f x x ⎧-≤≤⎪=⎨⎪-<<⎩函数21()2ln 2g x x x x m =-+++,若[]16,8x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是( )A .5(,]2-∞B .13(,]2-∞ C .3(,]2-∞-D .13[,)2+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(2sin ,cos )a αα=,(1,1)b =-,且a b ⊥,则2()a b -= .14.已知x ,y 满足约束条件20,20,4180,x y x y x y -≤⎧⎪-≥⎨⎪+-≤⎩则目标函数53z x y =-的最小值为 .15.在等比数列{}n a 中,2412a a a ⋅=,且4a 与72a 的等差中项为17,设(1)n n n b a =-,*n N ∈,则数列{}n b 的前2018项和为 .16.有一个容器,下部是高为5.5cm 的圆柱体,上部是与圆柱共底面且母线长为6cm 的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆的内角A ,B ,C 的对边a ,b ,c 分别满足22c b ==,2cos cos cos 0b A a C c A ++=,又点D 满足1233AD AB AC =+.(1)求a 及角A 的大小; (2)求||AD 的值.18.在四棱柱1111ABCD A BC D -中,底面ABCD是正方形,且1BC BB =1160A AB A AD ∠=∠=︒.(1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB 所成角的正弦值为14. 19.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布2(,)N μσ,利用该正态分布,求Z 落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为11.95σ≈; ②若2~(,)Z N μσ,则()0.6826P Z μσμσ-<≤+=,(22)0.9544P Z μσμσ-<≤+=.20.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C 的标准方程;(2)若直线l :2y kx =+与椭圆C 相交于A ,B 两点,点D 的坐标为1(0,)2,问直线AD 与BD 的斜率之和AD BD k k +是否为定值?若是,求出该定值,若不是,试说明理由. 21.已知函数()2(1)xf x e a x b =---,其中e 为自然对数的底数. (1)若函数()f x 在区间[]0,1上是单调函数,试求实数a 的取值范围;(2)已知函数2()(1)1x g x e a x bx =----,且(1)0g =,若函数()g x 在区间[]0,1上恰有3个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆1C 的参数方程为1cos ,1sin x a y a θθ=-=⎧⎨=-+⎩(θ是参数,a 是大于0的常数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆2C 的极坐标方程为)4πρθ=-.(1)求圆1C 的极坐标方程和圆2C 的直角坐标方程; (2)分别记直线l :12πθ=,R ρ∈与圆1C 、圆2C 的异于原点的交点为A ,B ,若圆1C 与圆2C 外切,试求实数a 的值及线段||AB 的长. 23.选修4-5:不等式选讲 已知函数()|21|f x x =+.(1)求不等式()10|3|f x x ≤--;(2)若正数m ,n 满足2m n mn +=,求证:()(2)16f m f n +-≥.参考答案一、选择题1-5:BADAB 6-10:DCBAB 11、12:CB二、填空题13.185 14.2- 15.100841312- 16.312256cm π三、解答题17.解:(1)由2cos cos cos 0b A a C c A ++=及正弦定理得2sin cos sin cos cos sin B A A C A C -=+,即2sin cos sin()sin B A A C B -=+=, 在ABC ∆中,sin 0B >, 所以1cos 2A =-, 又(0,)A π∈,所以23A π=. 在ABC ∆中,由余弦定理得222222cos 7a b c bc A b c bc =+-=++=,所以a =(2)由1233AD AB AC =+,得2212()33AD AB AC =+4441421()99929=++⨯⨯⨯-=, 所以2||3AD =. 18.解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以1A AB ∆和1A AD ∆均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1AO ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥,而1AO AC O =,所以BD ⊥平面1A AC ,又1AA ⊂平面1A AC ,所以1BD AA ⊥, 又11//CC AA ,所以1BD CC ⊥. (2)由11A B A D =2BD ==,知11A B A D ⊥,于是11122AO AO BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,AO BD O =,得1AO ⊥底面ABCD , 所以OA 、OB 、OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1,0,0)A ,(0,1,0)B ,(0,1,0)D -,1(0,0,1)A ,(1,0,0)C -,(0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)DC DC ==-, 由11(1,0,1)DD AA ==-,易求得1(1,1,1)D --. 设111D E DC λ=([]0,1λ∈),则(1,1,1)(1,1,0)E E E x y z λ++-=-,即(1,1,1)E λλ---. 设平面1B BD 的一个法向量为(,,)n x y z =,由10,0,n DB n BB ⎧⋅=⎪⎨⋅=⎪⎩得0,0,y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =, 设直线DE 与平面1BDB 所成角为θ,则s i n |c o s ,|D E n θ=<>==解得12λ=或13λ=-(舍去). 所以当E 为11D C 的中点时,直线DE 与平面1BDB所成角的正弦值为14.19.解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数x 为:50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=.(2)①∵Z 服从正态分布2(,)N μσ,且26μ=,11.95σ≈,∴(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=, ∴Z 落在(14.55,38.45)内的概率是0.6826. ②根据题意得1~(4,)2X B ,04411(0)()216P X C ===;14411(1)()24P X C ===;24413(2)()28P X C ===;34411(3)()24P X C ===;44411(4)()216P X C ===.∴X 的分布列为∴1()422E X =⨯=. 20.解:(1)由已知可得2222sin 4,c ac a b c π⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得22a =,221b c ==,故所求的椭圆方程为2212x y +=.(2)由221,22,x y y kx ⎧+=⎪⎨⎪=+⎩得22(12)860k x kx +++=,则2226424(12)16240k k k ∆=-+=->,解得k <或k >. 设11(,)A x y ,22(,)B x y , 则122812k x x k +=-+,122612x x k =+, 则1112AD y k x -=,2212BDy kx -=,所以122112121()2AD BDy x y x x x k k x x +-++=12121232()2kx x x x x x ++=6603k k -==,所以AD BD k k +为定值,且定值为0. 21.解:(1)'()2(1)xf x e a =--,当函数()f x 在区间[]0,1上单调递增时,'()2(1)0xf x e a =--≥在区间[]0,1上恒成立,∴min 2(1)()1x a e -≤=(其中[]0,1x ∈),解得32a ≤; 当函数()f x 在区间[]0,1上单调递减时,'()2(1)0xf x e a =--≤在区间[]0,1上恒成立, ∴max 2(1)()x a e e -≥=(其中[]0,1x ∈),解得12ea ≥+. 综上所述,实数a 的取值范围是3(,][1,)22e -∞++∞. (2)'()2(1)()xg x e a x b f x =---=.由(0)(1)0g g ==,知()g x 在区间(0,1)内恰有一个零点, 设该零点为0x ,则()g x 在区间0(0,)x 内不单调, 所以()f x 在区间0(0,)x 内存在零点1x ,同理,()f x 在区间0(,1)x 内存在零点2x ,所以()f x 在区间(0,1)内恰有两个零点.由(1)知,当32a ≤时,()f x 在区间[]0,1上单调递增,故()f x 在区间(0,1)内至多有一个零点,不合题意. 当12e a ≥+时,()f x 在区间[]0,1上单调递减,故()f x 在区间(0,1)内至多有一个零点,不合题意, 所以3122e a <<+. 令'()0f x =,得ln(22)(0,1)x a =-∈,所以函数()f x 在区间[]0,ln(22)a -上单调递减,在区间(ln(22),1]a -内单调递增. 记()f x 的两个零点为1x ,2x 12()x x <,因此1(0,ln(22)]x a ∈-,2(ln(22),1)x a ∈-,必有(0)10f b =->,(1)220f e a b =-+->. 由(1)0g =,得a b e +=,所以1()1()102f a b e =-+=-<,又(0)10f a e =-+>,(1)20f a =->,所以12e a -<<.综上所述,实数a 的取值范围为(1,2)e -.22.解:(1)圆1C :1cos ,1sin x a y a θθ=-+⎧⎨=-+⎩(θ是参数)消去参数θ,得其普通方程为222(1)(1)x y a +++=,将cos x ρθ=,sin y ρθ=代入上式并化简,得圆1C 的极坐标方程为22sin()204a πρθ++-+=.由圆2C 的极坐标方程)4πρθ=-,得22cos 2sin ρρθρθ=+. 将cos x ρθ=,sin y ρθ=,222x y ρ+=代入上式,得圆2C 的直角坐标方程为22(1)(1)2x y -+-=.(2)由(1)知圆1C 的圆心1C (1,1)--,半径1r a =;圆2C 的圆心2(1,1)C,半径2r =12||C C =, ∵圆1C 与圆2C 外切,a =a =即圆1C 的极坐标方程为)4πρθ=-+, 将12πθ=代入1C ,得sin()124ππρ=-+,得ρ= 将12πθ=代入2C ,得cos()124ππρ=-,得ρ=, 故12||||AB ρρ=-=.23.解:(1)此不等式等价于1,221(3)10,x x x ⎧<-⎪⎨⎪--+-≤⎩或13,221(3)10,x x x ⎧-≤≤⎪⎨⎪++-≤⎩或3,21310.x x x >⎧⎨++-≤⎩ 解得8132x -≤<-或132x -≤≤,或34x <≤, 即不等式的解集为8,43⎡⎤-⎢⎥⎣⎦. (2)∵0m >,0n >,2m n mn +=, 21(2)2(2)28m n m n m n ++=⋅≤,即28m n +≥, 当且仅当2,2,m n m n mn =⎧⎨+=⎩即4,2m n =⎧⎨=⎩时取等号. ∴()(2)|21||41|f m f n m n +-=++-+|(21)(41)|m n ≥+--+|24|m n =+2(2)16m n =+≥, 当且仅当410n -+≤,即14n ≥时取等号, ∴()(2)16f m f n +-≥.。

相关文档
最新文档