2014高考数学文硬手笔(真题篇)常考问题三角恒等变换与解三角形
(江苏专用)2014届高三数学二轮总复习 常考问题7 三角恒等变换与解三角形 理
常考问题7 三角恒等变换与解三角形[真题感悟]1.<2013·##卷改编>在锐角△ABC中,角A,B所对的边长分别为a,b,若2a sin B=错误!b,则角A等于________.解析在△ABC中,利用正弦定理得3sin A sin B=错误!sin B,∴sin A=错误!.又A为锐角,∴A=错误!.答案错误!2.<2012·##卷>设α为锐角,若cos错误!=错误!,则sin错误!的值为________.解析由条件可得cos错误!=2ccs2错误!-1=错误!,sin错误!=错误!,所以sin错误!=sin错误!=错误!错误!=错误!.答案错误!3.<2010·##卷>在锐角三角形ABC中,A、B、C的对边分别为a、b、c,错误!+错误!=6cos C,则错误!+错误!=________.解析错误!+错误!=6cos C⇒6ab cos C=a2+b2,6ab·错误!=a2+b2,a2+b2=错误!.错误!+错误!=错误!·错误!=错误!·错误!=错误!·错误!由正弦定理得:上式=错误!·错误!=4.答案 44.<2013·##卷>如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=错误!,AB=3错误!,AD=3,则BD的长为______.解析sin∠BAC=sin<错误!+∠BAD>=cos∠BAD,∴cos∠BAD=错误!.BD2=AB2+AD2-2AB·AD cos∠BAD=<3错误!>2+32-2×3错误!×3×错误!=3,即BD=错误!.答案错误![考题分析]高考对本内容的考查主要有:<1>两角和<差>的正弦、余弦及正切是C级要求,二倍角的正弦、余弦及正切是B级要求,应用时要适当选择公式,灵活应用.<2>正弦定理、余弦定理及其应用,要求是B级,能够应用定理实现三角形中边和角的转化,以及应用定理解决实际问题.试题类型一般是填空题,同时在解答题中与三角函数、向量等综合考查,构成中档题.。
2014高考数学(理)快速提分专题7三角恒等变换与解三角形
2014高考数学(理)快速提分直通车:专题7 三角恒等变换与解三角形1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则b 等于( ).A .5B .25 C.41 D .5 2解析 ∵S =12ac sin B =2,∴12×1×c ×sin 45°=2.∴c =4 2.∴b 2=a 2+c 2-2ac cos B =1+32-2×1×42×cos 45°. ∴b 2=25,b =5. 答案 A2.在△ABC 中,A ,B ,C 为内角,且sin A cos A =sin B cos B ,则△ABC 是( ).A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析 由sin A cos A =sin B cos B 得sin 2A =sin 2B =sin(π-2B ),所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以△ABC 为等腰或直角三角形.答案 D3.已知α∈R ,sin α+2cos α=102,则tan 2α等于 ( ).A.43B.34 C .-34 D .-43 解析 ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.化简,得4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.答案 C4.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于( ).A.725 B .-725 C .±725 D.2425解析 先用正弦定理求出角B 的余弦值,再求解. 由b sin B =csin C,且8b =5c ,C =2B , 所以5c sin 2B =8c sin B ,所以cos B =45.所以cos C =cos 2B =2cos 2B -1=725.答案 A5.已知tan β=43,sin(α+β)=513,其中α,β∈(0,π),则sin α的值为( ).A.6365 B.3365 C.1365D.6365或3365解析 依题意得sin β=45,cos β=35;注意到sin(α+β)=513<sin β,因此有α+β>π2(否则,若α+β≤π2,则有0<β<α+β≤π2,0<sin β<sin(α+β),这与“sin(α+β)<sin β”矛盾),则cos(α+β)=-1213,sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β=6365.答案 A6.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin A ,求b =______.解析 在△ABC 中,sin A cos C =3cos A sin C ,则由正弦定理及余弦定理有a ·a 2+b 2-c 22ab =3·b 2+c 2-a 22bc ·c ,化简并整理得2(a 2-c 2)=b 2.又由已知a 2-c 2=2b ,则4b =b 2,解得b =4或b =0(舍).答案 47.若α,β∈⎝ ⎛⎭⎪⎫0,π2,cos ⎝ ⎛⎭⎪⎫α-β2=32,sin ⎝ ⎛⎭⎪⎫α2-β=-12,则cos (α+β)=________.解析 ∵α,β∈⎝ ⎛⎭⎪⎫0,π2,∴-π4<α-β2<π2,-π2<α2-β<π4,由cos ⎝ ⎛⎭⎪⎫α-β2=32和sin ⎝ ⎛⎭⎪⎫α2-β=-12得α-β2=±π6,α2-β=-π6,当α-β2=-π6,α2-β=-π6时,α+β=0,与α,β∈⎝ ⎛⎭⎪⎫0,π2矛盾;当α-β2=π6,α2-β=-π6时,α=β=π3,此时cos (α+β)=-12.答案 -128.如图,嵩山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°;从B 处攀登400米到达D 处,回头看索道AC ,发现张角∠ADC =150°;从D 处再攀登800米方到达C 处,则索道AC 的长为______米. 解析 如题图,在△ABD 中,BD =400米,∠ABD =120°.因为∠ADC =150°,所以∠ADB =30°.所以∠DAB =180°-120°-30°=30°. 由正弦定理,可得BD sin ∠DAB =ADsin ∠ABD .所以400sin 30°=ADsin 120°,得AD =4003(米).在△ADC 中,DC =800米,∠ADC =150°,由余弦定理,可得AC 2=AD 2+CD 2-2×AD ×CD ×cos∠ADC =(4003)2+8002-2×4003×800×cos 150°=4002×13,解得AC =40013(米). 故索道AC 的长为40013米. 答案 400139.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫5α+53π=-65,f ⎝ ⎛⎭⎪⎫5β-56π=1617,求cos(α+β)的值.解 (1)由题意知f (x )=2cos ⎝⎛⎭⎪⎫ωx +π6的最小正周期T =10π=2πω,则ω=15.(2)由(1)知f (x )=2cos ⎝ ⎛⎭⎪⎫15x +π6, 又α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫5α+5π3=-65,f ⎝ ⎛⎭⎪⎫5β-5π6=1617,即cos ⎝⎛⎭⎪⎫α+π2=-35,cos β=817,∴sin α=35,cos α=45,sin β=1517,∴cos(α+β)=cos αcos β-sin αsin β =45×817-35×1517=-1385. 10.如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan ∠PBA . 解 (1)因为PB =12,所以∠CBP =60°,所以∠PBA =30°,由余弦定理,得PA =PB 2+BA 2-2PB ·BA ·cos∠PBA =72. (2)设∠PBA =α,由已知得PB =sin α, 由正弦定理,得3sin 150°=sin α-α,化简得3cos α=4sin α,故tan α=34. 即tan ∠PBA =34. 11.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值. 解 (1)由已知及正弦定理,得 sin A =sin B cos C +sin C sin B ,① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理,得4=a 2+c 2-2ac cos π4.又a2+c2≥2ac,故ac≤42-2,当且仅当a=c时,等号成立.因此△ABC面积的最大值为2+1. 备课札记:。
2014-2019年高考数学真题分类汇编专题4:三角函数与解三角形2(三角恒等变换)带详细答案
2014-2019年高考数学真题分类汇编专题4:三角函数与解三角形(三角恒等变换)(一)三角恒等变换选择填空(和差公式)选择题1.(2014•四川文)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75︒,30︒,此时气球的高是60m ,则河流的宽度BC 等于( )A .1)mB .1)mC .1)mD .1)m【考点】解三角形【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【解答】解:如图,15DAB ∠=︒, tan 45tan30tan15tan(4530)21tan 45tan30︒-︒︒=︒-︒==+︒︒在Rt ADB ∆中,又60AD =,tan1560(2120DB AD ∴=︒=⨯-=-在Rt ADC ∆中,60DAC ∠=︒,60AD =,tan 60DC AD ∴=︒=.(1201)()BC DC DB m ∴=-=-=.∴河流的宽度BC 等于1)m .故选:B .【点评】本题给出实际应用问题,求河流在B 、C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.2.(2015•新课标Ⅰ理)sin 20cos10cos160sin10(︒︒-︒︒= )A .BC .12-D .12【考点】两角和与差的三角函数【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可. 【解答】解:sin20cos10cos160sin10︒︒-︒︒ sin20cos10cos20sin10=︒︒+︒︒ sin30=︒ 12=. 故选:D .【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.(2015•上海文理)已知点A 的坐标为1),将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( )A B C .112D .132【考点】任意角的三角函数的定义【分析】根据三角函数的定义,求出xOA ∠的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:点A 的坐标为1),∴设xOA θ∠=,则1sin 7θ===,cos θ==, 将OA 绕坐标原点O 逆时针旋转3π至OB ,则OB 的倾斜角为3πθ+,则||||7OB OA ==,则点B 的纵坐标为11113||sin()7(sin cos cos sin )7(63337222y OB πππθθθ=+=+=⨯+=+=,故选:D .【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.4.(2015•重庆文)若1tan 3α=,1tan()2αβ+=,则tan (β= )A .17B .16C .57D .56【考点】两角和与差的三角函数【分析】由条件利用查两角差的正切公式,求得tan tan[()]βαβα=+-的值.【解答】解:1tan 3α=,1tan()2αβ+=,则11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯, 故选:A .【点评】本题主要考查两角差的正切公式的应用,属于基础题.5.(2015•重庆理)若tan 2tan 5πα=,则3cos()10(sin()5παπα-=- ) A .1B .2C .3D .4【考点】三角函数的恒等变换及化简求值;三角函数的积化和差公式【分析】直接利用两角和与差的三角函数化简所求表达式,利用同角三角函数的基本关系式结合已知条件以及积化和差个数化简求解即可.【解答】解:tan 2tan 5πα=,则33333cos()cos cos sin sin cos tan sin1010101010sin()sin cos cos sin tan cos sin 55555πππππααααπππππαααα-++==--- sin335cos 2sin3333331010cos 2tan sincos cos cos 2sin sin cos()sin sin cos sin sin 1051055105105105101052tan cos sin sin 2sin cos cos sin sin cos sin()5555555555552cos sin 55cos 5ππππππππππππππππππππππππππππππππ+++-++=====--+--31331cos [cos()cos()]cos cos 3cos 3cos 3cos 1010251051010210101010312122sin cos sin sin sin sin()cos 552525521010πππππππππππππππππππ-+--+======- 故选:C .【点评】本题考查两角和与差的三角函数,积化和差以及诱导公式的应用,考查计算能力. 6.(2016•新课标Ⅲ理)在ABC ∆中,4B π=,BC 边上的高等于13BC ,则cos A 等于( ) AB C . D . 【考点】三角形中的几何计算【分析】作出图形,令DAC θ∠=,依题意,可求得cos a ADACθ===sin θ,利用两角和的余弦即可求得答案.【解答】解:设ABC ∆中角A 、B 、C 、对应的边分别为a 、b 、c ,AD BC ⊥于D ,令DAC θ∠=,在ABC ∆中,4B π=,BC 边上的高1133AD h BC a ===, 13BD AD a ∴==,23CD a =,在Rt ADC ∆中,cos a ADACθ===,故sin θ=,cos cos()cos cos sin sin 444A πππθθθ∴=+=-== 故选:C .【点评】本题考查解三角形中,作出图形,令DAC θ∠=,利用两角和的余弦求cos A 是关键,也是亮点,属于中档题.7.(2019•新课标Ⅰ文)tan 255(︒= ) A.2-B.2-+C.2D.2+【考点】运用诱导公式化简求值【分析】利用诱导公式变形,再由两角和的正切求解. 【解答】解:tan255tan(18075)tan75tan(4530)︒=︒+︒=︒=︒+︒1tan 45tan 3021tan 45tan 30+︒+︒======+-︒︒故选:D .【点评】本题考查三角函数的取值,考查诱导公式与两角和的正切,是基础题.填空题1.(2015•四川理)sin15sin75︒+︒的值是. 【考点】三角函数的恒等变换及化简求值;两角和与差的三角函数 【分析】利用诱导公式以及两角和的正弦函数化简求解即可.【解答】解:sin15sin75sin15cos15cos45cos15sin 45)︒+︒=︒+︒=︒︒+︒︒=︒=.【点评】本题考查两角和的正弦函数,三角函数的化简求值,考查计算能力. 2.(2015•江苏)已知tan 2α=-,1tan()7αβ+=,则tan β的值为 3 . 【考点】两角和与差的三角函数【分析】直接利用两角和的正切函数,求解即可. 【解答】解:tan 2α=-,1tan()7αβ+=, 可知tan tan 1tan()1tan tan 7αβαβαβ++==-,即2tan 112tan 7ββ-+=+,解得tan 3β=. 故答案为:3.【点评】本题考查两角和的正切函数,基本知识的考查.3.(2016•新课标Ⅰ文)已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= 43- .【考点】两角和与差的三角函数 【分析】由θ得范围求得4πθ+的范围,结合已知求得cos()4πθ+,再由诱导公式求得sin()4πθ-及cos()4πθ-,进一步由诱导公式及同角三角函数基本关系式求得tan()4πθ-的值.【解答】解:θ是第四象限角,∴222k k ππθπ-+<<,则22,444k k k Z ππππθπ-+<+<+∈,又3sin()45πθ+=,4cos()45πθ∴+==. 3cos()sin()445ππθθ∴-=+=,4sin()cos()445ππθθ-=+=.则4sin()454tan()tan()3443cos()45πθππθθπθ--=--=-=-=--. 故答案为:43-.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题. 4.(2016•上海文)若函数()4sin cos f x x a x =+的最大值为5,则常数a = 3± . 【考点】两角和与差的三角函数;三角函数的最值【分析】利用辅助角公式化简函数()f x 的解析式,再利用正弦函数的最大值为5,求得a 的值.【解答】解:由于函数()4sin cos )f x x a x x θ=+=+,其中,cos θ=sin θ,故()f x 5,3a ∴=±, 故答案为:3±.【点评】本题主要考查辅助角公式,正弦函数的值域,属于基础题.5.(2017•新课标Ⅰ文)已知(0,)2πα∈,tan 2α=,则cos()4πα-=. 【考点】同角三角函数间的基本关系;两角和与差的三角函数【分析】根据同角的三角函数的关系求出sin α=,cos α= 【解答】解:(0,)2πα∈,tan 2α=,sin 2cos αα∴=,22sin cos 1αα+=,解得sin α=,cos α=cos()cos cos sin sin 44422πππααα∴-=+=,【点评】本题考查了同角的三角函数的关系以及余弦公式,考查了学生的运算能力,属于基础题. 6.(2017•北京理12)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称,若1sin 3α=,则cos()αβ-= 79- .【考点】两角和与差的三角函数【分析】方法一:根据教的对称得到1sin sin 3αβ==,cos cos αβ=-,以及两角差的余弦公式即可求出 方法二:分α在第一象限,或第二象限,根据同角的三角函数的关系以及两角差的余弦公式即可求出 【解答】解:方法一:角α与角β均以Ox 为始边,它们的终边关于y 轴对称, 1sin sin 3αβ∴==,cos cos αβ=-,22227cos()cos cos sin sin cos sin 2sin 1199αβαβαβααα∴-=+=-+=-=-=- 方法二:1sin 3α=,当α在第一象限时,cos 3α=, α,β角的终边关于y 轴对称,β∴在第二象限时,1sin sin 3βα==,cos cos βα=-=117cos()cos cos sin sin 339αβαβαβ∴-=+=+⨯=- 1:sin 3α=,当α在第二象限时,cos 3α=-, α,β角的终边关于y 轴对称,β∴在第一象限时,1sin sin 3βα==,cos cos βα=-=,117cos()cos cos sin sin 339αβαβαβ∴-=+=+⨯=- 综上所述7cos()9αβ-=-,故答案为:79-【点评】本题考查了两角差的余弦公式,以及同角的三角函数的关系,需要分类讨论,属于基础题 7.(2018•新课标Ⅱ文15)已知51tan()45πα-=,则tan α= . 【考点】两角和与差的三角函数【分析】根据三角函数的诱导公式以及两角和差的正切公式进行计算即可. 【解答】解:51tan()45πα-=, 1tan()45πα∴-=,则11tan()tan1563544tan tan()14451421tan()tan 11445ππαππααππα+-++=-+=====----⨯, 故答案为:32. 【点评】本题主要考查三角函数值的计算,利用两角和差的正切公式进行转化是解决本题的关键. 8.(2018•新课标Ⅱ理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+= 12- .【考点】两角和与差的三角函数【分析】把已知等式两边平方化简可得22(sin cos cos sin )1αβαβ++=,再利用两角和差的正弦公式化简为2sin()1αβ+=-,可得结果. 【解答】解:sin cos 1αβ+=,两边平方可得:22sin 2sin cos cos 1ααββ++=,①,cos sin 0αβ+=,两边平方可得:22cos 2cos sin sin 0ααββ++=,②,由①+②得:22(sin cos cos sin )1αβαβ++=,即22sin()1αβ++=, 2sin()1αβ∴+=-. 1sin()2αβ∴+=-. 故答案为:12-.【点评】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.(二)恒等变换选择填空(倍角公式)选择题1.(2014•新课标Ⅰ文)若tan 0α>,则( ) A .sin 0α>B .cos 0α>C .sin20α>D .cos20α>【考点】三角函数值的符号【分析】化切为弦,然后利用二倍角的正弦得答案. 【解答】解:tan 0α>,∴sin 0cos αα>, 则sin22sin cos 0ααα=>. 故选:C .【点评】本题考查三角函数值的符号,考查了二倍角的正弦公式,是基础题. 【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键. 2.(2015•陕西文理)“sin cos αα=”是“cos20α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【考点】充分条件、必要条件、充要条件;倍角公式 【分析】由22cos2cos sin ααα=-,即可判断出. 【解答】解:由22cos2cos sin ααα=-,∴ “sin cos αα=”是“cos20α=”的充分不必要条件.故选:A .【点评】本题考查了倍角公式、简易逻辑的判定方法,考查了推理能力,属于基础题.3.(2016•新课标Ⅱ理)若3cos()45πα-=,则sin 2(α= )A .725B .15C .15-D .725-【考点】三角函数的恒等变换及化简求值【分析】法1︒:利用诱导公式化sin 2cos(2)2παα=-,再利用二倍角的余弦可得答案.法︒:利用余弦二倍角公式将左边展开,可以得sin cos αα+的值,再平方,即得sin 2α的值【解答】解:法31:cos()45πα︒-=,297sin 2cos(2)cos2()2cos ()1212442525πππαααα∴=-=-=--=⨯-=-,法32:cos()cos )45πααα︒-=+=,∴19(1sin 2)225α+=, 97sin 2212525α∴=⨯-=-, 故选:D .【点评】本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.4.(2016•新课标Ⅲ文)若1tan 3θ=,则cos2(θ= )A .45-B .15-C .15D .45【考点】三角函数的恒等变换及化简求值【分析】原式利用二倍角的余弦函数公式变形,再利用同角三角函数间的基本关系化简,将tan θ的值代入计算即可求出值. 【解答】解:1tan 3θ=, 22224cos 22cos 11111519tan θθθ∴=-=-=-=++. 故选:D .【点评】此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.5.(2016•新课标Ⅲ理)若3tan 4α=,则2cos 2sin 2(αα+= ) A .6425B .4825C .1D .1625【考点】三角函数的恒等变换及化简求值【分析】将所求的关系式的分母“1”化为22(cos sin )αα+,再将“弦”化“切”即可得到答案. 【解答】解:3tan 4α=,22222314cos 4sin cos 14tan 644cos 2sin 29sin cos tan 125116ααααααααα+⨯++∴+====+++. 故选:A .【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题. 6.(2017•新课标Ⅲ文)已知4sin cos 3αα-=,则sin 2(α= ) A .79-B .29-C .29D .79【考点】二倍角的三角函数【分析】由条件,两边平方,根据二倍角公式和平方关系即可求出. 【解答】解:4sin cos 3αα-=, 216(sin cos )12sin cos 1sin 29ααααα∴-=-=-=, 7sin 29α∴=-,故选:A .【点评】本题考查了二倍角公式,属于基础题. 7.(2017•山东文)已知3cos 4x =,则cos2(x = ) A .14-B .14C .18-D .18【考点】二倍角的三角函数【专题】转化思想;56:三角函数的求值 【分析】利用倍角公式即可得出.【解答】解:根据余弦函数的倍角公式2cos22cos 1x x =-,且3cos 4x =, 231cos22()148x ∴=⨯-=.故选:D .【点评】本题考查了倍角公式,考查了推理能力与计算能力,属于基础题. 8.(2019新课标Ⅱ文11)已知(0,)2πα∈,2sin2cos21αα=+,则sin (α= )A .15BCD【考点】二倍角的三角函数【分析】由二倍角的三角函数公式化简已知可得24sin cos 2cos ααα=,结合角的范围可求sin 0α>,cos 0α>,可得cos 2sin αα=,根据同角三角函数基本关系式即可解得sin α的值.【解答】解:2sin2cos21αα=+,∴可得:24sin cos 2cos ααα=,(0,)2πα∈,sin 0α>,cos 0α>,cos 2sin αα∴=,22222sin cos sin (2sin )5sin 1ααααα+=+==,∴解得:sin α=故选:B .【点评】本题主要考查了二倍角的三角函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.9.(2018•新课标Ⅲ文理4)若1sin 3α=,则cos2(α= )A .89B .79 C .79-D .89-【考点】二倍角的三角函数【分析】2cos212sin αα=-,由此能求出结果. 【解答】解:1sin 3α=, 217cos212sin 1299αα∴=-=-⨯=.故选:B .【点评】本题考查二倍角的余弦值的求法,考查二倍角公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.填空题1.(2016•四川理)22cos sin 88ππ-=. 【考点】二倍角的三角函数【分析】把所求的式子利用二倍角的余弦函数公式化简,再利用特殊角的三角函数值,即可得到所求式子的值. 【解答】解:22cos sin 88ππ-cos(2)cos 84ππ=⨯==.【点评】此题考查了二倍角的余弦函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键. 2.(2016•上海文理)方程3sin 1cos2x x =+在区间[0,2]π上的解为 6π或56π .【考点】三角函数的恒等变换及化简求值【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可. 【解答】解:方程3sin 1cos2x x =+,可得23sin 22sin x x =-, 即22sin 3sin 20x x +-=.可得sin 2x =-,(舍去)1sin 2x =,[0x ∈,2]π 解得6x π=或56π. 故答案为:6π或56π.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力. 3.(2019•新课标Ⅰ文15)函数3()sin(2)3cos 2f x x x π=+-的最小值为 4- . 【考点】三角函数的恒等变换及化简求值【分析】线利用诱导公式,二倍角公式对已知函数进行化简,然后结合二次函数的 单调性即可去求解最小值 【解答】解:3()sin(2)3cos 2f x x x π=+-, 2cos23cos 2cos 3cos 1x x x x =--=--+,令cos t x =,则11t -剟,2()231f t t t =--+的开口向上,对称轴34t =-,在[1-,1]上先增后减,故当1t =即cos 1x =时,函数有最小值4-. 故答案为:4-【点评】本题主要考查了诱导公式,二倍角的余弦公式在三角好按时化简求值中的应用及利用余弦函数,二次函数的性质求解最值的应用,属于基础试题(三)恒等变换选择填空(和差公式与倍角公式综合)选择题1.(2014•新课标Ⅰ理)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( )A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=【考点】三角函数的恒等变换及化简求值【分析】化切为弦,整理后得到sin()cos αβα-=,由该等式左右两边角的关系可排除选项A ,B ,然后验证C 满足等式sin()cos αβα-=,则答案可求. 【解答】解:由1sin tan cos βαβ+=,得: sin 1sin cos cos αβαβ+=, 即sin cos cos sin cos αβαβα=+, sin()cos sin()2παβαα-==-,(0,)2πα∈,(0,)2πβ∈,∴当22παβ-=时,sin()sin()cos 2παβαα-=-=成立. 故选:C .【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题. 2.(2016•新课标Ⅱ文)函数()cos26cos()2f x x x π=+-的最大值为( )A .4B .5C .6D .7【考点】三角函数的最值【分析】运用二倍角的余弦公式和诱导公式,可得212sin 6sin y x x =-+,令sin (11)t x t =-剟,可得函数2261y t t =-++,配方,结合二次函数的最值的求法,以及正弦函数的值域即可得到所求最大值. 【解答】解:函数()cos26cos()2f x x x π=+-212sin 6sin x x =-+,令sin (11)t x t =-剟, 可得函数2261y t t =-++ 23112()22t =--+,由3[12∉-,1],可得函数在[1-,1]递增, 即有1t =即22x k ππ=+,k Z ∈时,函数取得最大值5.故选:B .【点评】本题考查三角函数的最值的求法,注意运用二倍角公式和诱导公式,同时考查可化为二次函数的最值的求法,属于中档题.3.(2019北京文科8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β,图中阴影区域的面积的最大值为( )A .44cos ββ+B .44sin ββ+C .22cos ββ+D .22sin ββ+【考点】三角函数模型的应用【分析】由题意可得22AOB APB β∠=∠=,要求阴影区域的面积的最大值,即为直线QO AB ⊥,运用扇形面积公式和三角形的面积公式,计算可得所求最大值. 【解答】解:由题意可得22AOB APB β∠=∠=, 要求阴影区域的面积的最大值,即为直线QO AB ⊥, 即有2QO =,Q 到线段AB 的距离为22cos β+, 22sin 4sin AB ββ==,扇形AOB 的面积为12442ββ=, ABQ ∆的面积为1(22cos )4sin 4sin 4sin cos 4sin 2sin 22βββββββ+=+=+,14sin 2sin 222sin 24sin 2AOQ BOQ S S ββββ∆∆+=+-=, 即有阴影区域的面积的最大值为44sin ββ+. 故选:B .【点评】本题考查圆的扇形面积公式和三角函数的恒等变换,考查化简运算能力,属于中档题.填空题1.(2017•浙江)已知ABC ∆,4AB AC ==,2BC =,点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是,cos BDC ∠= .【考点】三角形中的几何计算【分析】如图,取BC 得中点E ,根据勾股定理求出AE ,再求出ABC S ∆,再根据12BDC ABC S S ∆∆=即可求出,根据等腰三角形的性质和二倍角公式即可求出 【解答】解:如图,取BC 得中点E , 4AB AC ==,2BC =,112BE BC ∴==,AE BC ⊥,AE ∴ 11222ABC S BC AE ∆∴==⨯ 2BD =,12BDC ABC S S ∆∆∴==2BC BD ==, BDC BCD ∴∠=∠,2ABE BDC ∴∠=∠在Rt ABE ∆中, 1cos 4BE ABE AB ∠==, 21cos 2cos 14ABE BDC ∴∠=∠-=,cos BDC ∴∠【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题2.(2016•浙江文理)已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A b = .【考点】两角和与差的三角函数【分析】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案.【解答】解:22cos sin21cos2sin2x x x x+=++12)x x=)14xπ=++,A∴,1b=,1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.3.(2017•江苏)若1tan()46πα-=.则tanα=75.【考点】两角和与差的三角函数【分析】直接根据两角差的正切公式计算即可【解答】解:tan tan tan114tan()4tan161tan tan4παπααπαα---===++6tan6tan1αα∴-=+,解得7tan5α=,故答案为:75.【点评】本题考查了两角差的正切公式,属于基础题4.(2019江苏13)已知tan23tan()4απα=-+,则sin(2)4πα+的值是.【考点】三角函数的恒等变换及化简求值【分析】由已知求得tanα,分类利用万能公式求得sin2α,cos2α的值,展开两角和的正弦求sin(2)4πα+的值.【解答】解:由tan23tan()4απα=-+,得tan23tan tan41tan tan4απαπα=-+-,∴tan(1tan)21tan3ααα-=-+,解得tan2α=或1tan3α=-.当tan2α=时,22tan4sin215tanααα==+,2213cos215tantanααα-==-+,43sin(2)sin2cos cos2sin44455πππααα∴+=+=-=;当1tan 3α=-时,22tan 3sin 215tan ααα==-+,2214cos215tan tan ααα-==+,34sin(2)sin 2cos cos2sin 44455πππααα∴+=+=-=.综上,sin(2)4πα+.10. 【点评】本题考查三角函数的恒等变换与化简求值,考查两角和的三角函数及万能公式的应用,是基础题.(四)恒等变换解答题1.(2014•江苏)已知(2πα∈,)π,sin α=. (1)求sin()4πα+的值;(2)求5cos(2)6πα-的值. 【考点】两角和与差的三角函数【分析】(1)通过已知条件求出cos α,然后利用两角和的正弦函数求sin()4πα+的值;(2)求出cos2α,然后利用两角差的余弦函数求5cos(2)6πα-的值.【解答】解:(2πα∈,)π,sin α=.cos α∴==(1)sin()sin cos cos sin (44422πππααα+=+=⨯+=;sin()4πα∴+的值为:.(2)(2πα∈,)π,sin α23cos212sin 5αα∴=-=,4sin 22sin cos 5ααα==-555314cos(2)cos cos2sin sin 2()666525πππααα∴-=+=+⨯-=5cos(2)6πα-的值为: 【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力. 2.(2015•广东文)已知tan 2α=. (1)求tan()4πα+的值;(2)求2sin 2sin sin cos cos21ααααα+-- 的值.【考点】三角函数的恒等变换及化简求值;两角和与差的三角函数 【分析】(1)直接利用两角和的正切函数求值即可.(2)利用二倍角公式化简求解即可. 【解答】解:tan 2α=.(1)tan tan214tan()34121tan tan 4παπαπα+++===---; (2)2222sin 22sin cos 2tan 41sin sin cos cos21sin cos 121tan 24sin cos tan αααααααααααααα====+--++--+-.【点评】本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力. 3.(2018•浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点3(5P -,4)5-.(Ⅰ)求sin()απ+的值; (Ⅱ)若角β满足5sin()13αβ+=,求cos β的值. 【考点】任意角的三角函数的定义;两角和与差的三角函数 【分析】(Ⅰ)由已知条件即可求r ,则sin()απ+的值可得; (Ⅱ)由已知条件即可求sin α,cos α,cos()αβ+,再由c o s c o s [()]c o s βαβααβααβα=+-=+++代值计算得答案. 【解答】解:(Ⅰ)角α的顶点与原点O 重合,始边与x 轴非负半轴重合,终边过点3(5P -,4)5-.35x ∴=-,45y =-,||1r OP ==,4sin()sin 5y r απα∴+=-=-=;(Ⅱ)由35x =-,45y =-,||1r OP ==,得4sin 5α=-,3cos 5α=-,又由5sin()13αβ+=,得12cos()13αβ+=±,则1235456cos cos[()]cos()cos sin()sin ()()13513565βαβααβααβα=+-=+++=⨯-+⨯-=-, 或1235416cos cos[()]cos()cos sin()sin ()()13513565βαβααβααβα=+-=+++=-⨯-+⨯-=. cos β∴的值为5665-或1665. 【点评】本题考查了任意角的三角函数的定义,考查了三角函数的诱导公式的应用,是中档题. 4.(2018•江苏16)已知α,β为锐角,4tan 3α=,cos()αβ+=.(1)求cos2α的值;(2)求tan()αβ-的值.【考点】三角函数的恒等变换及化简求值【分析】(1)由已知结合平方关系求得sin α,cos α的值,再由倍角公式得cos2α的值; (2)由(1)求得tan2α,再由cos()αβ+=tan()αβ+,利用tan()tan[2()]αβααβ-=-+,展开两角差的正切求解.【解答】解:(1)由22431sin cos sin cos ααααα⎧=⎪⎪+=⎨⎪⎪⎩为锐角,解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,227cos225cos sin ααα∴=-=-; (2)由(1)得,24sin 22sin cos 25ααα==,则sin 224tan 2cos27ααα==-. α,(0,)2πβ∈,(0,)αβπ∴+∈,sin()αβ∴+= 则sin()tan()2cos()αβαβαβ++==-+.tan 2tan()2tan()tan[2()]1tan 2tan()11ααβαβααβααβ-+∴-=-+==-++.【点评】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,是中档题.。
高三数学《三角恒等变换与解三角形》专题复习题含答案
《三角恒等变换与解三角形》专题复习题含答案一、选择题1.已知α∈⎝⎛⎭⎫0,π2,2sin2α=cos2α+1,则sin α=( ) A .15 B .55 C .33 D .2552.若tan ⎝⎛⎭⎫α+π4=-3,则sin2α-cos 2α=( ) A .35 B .-25 C .-1 D .33.已知3sin x +cos x =22,则cos ⎝⎛⎭⎫x -π3=( ) A .12 B .24 C .23 D .34答案 B4.已知△ABC 的三个内角A ,B ,C 所对的边长分别为a ,b ,c ,若2cos B =ac ,则该三角形一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形5.已知sin(α+β)=12,sin(α-β)=13,则log 5⎝⎛⎭⎫tan αtan β2等于( ) A .2 B .3 C .4 D .5 6.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( )A .518B .34C .32D .787.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B =( ) A .32 B .233 C .33D . 3 8.设锐角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,B =2A ,则b 的取值范围为( )A .(0.4)B .(2.23)C .(22,23)D .(22,4) 9.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,A =60°,a =43,b =4,则B =( )A .B =30°或B =150° B .B =150°C .B =30°D .B =60°或B =150°10.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知ab sin C =20sin B ,a 2+c 2=41,且8cos B =1,则b =( )A .6B .4 2C .3 5D .711.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,已知C =45°,c =2,a =x ,若满足条件的三角形有两个,则x 的取值范围是( )A .2<x <1B .2<x <2C .1<x <2D .1<x < 2 12.若sin2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A .7π4 B .9π4 C .5π4或7π4 D .5π4或9π4二、填空题13.已知sin10°+m cos10°=-2cos40°,则m =________.14.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为m =2sin18°.若m 2+n =4,则m +nsin63°=________.15.已知点(3,a )和(2a .4)分别在角β和角β-45°的终边上,则实数a 的值是________. 16.在△ABC 中,a ,b ,c 为∠A ,∠B ,∠C 的对边,a ,b ,c 成等比数列,a +c =3,cos B =34,则AB →·BC →=________. 三、解答题17.已知△ABC 中,A =π4,cos B =35,AC =8.(1)求△ABC 的面积;(2)求AB 边上的中线CD 的长.18.在△ABC 中,AB =23,AC =3,AD 为△ABC 的内角平分线,AD =2.(1)求BDDC的值;(2)求角A 的大小.19.在△ABC 中,3sin A =2sin B ,tan C =2 2.(1)证明:△ABC 为等腰三角形;(2)若△ABC 的面积为22,D 为AC 边上一点,且BD =3CD ,求线段CD 的长.20.如图所示,锐角△ABC 中,AC =52,点D 在线段BC 上,且CD =32,△ACD 的面积为66,延长BA 至E ,使得EC ⊥BC .(1)求AD 的值;(2)若sin ∠BEC =23,求AE 的值.三角恒等变换与解三角形专题复习题含答案参考答案: 一、选择题 1、答案 B解析 由2sin2α=cos2α+1,得4sin αcos α=2cos 2α.又∵α∈⎝⎛⎭⎫0,π2,∴tan α=12,∴sin α=55.故选B. 2、答案 A解析 因为tan ⎝⎛⎭⎫α+π4=-3⇒tan α+tanπ41-tan α·tanπ4=-3⇒tan α=2,所以sin2α-cos 2α=sin2α-cos 2αsin 2α+cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-11+tan 2α=35,故选A.3、答案 B解析 由3sin x +cos x =22,得2sin ⎝⎛⎭⎫x +π6=22,所以cos ⎝⎛⎭⎫x -π3=sin ⎝⎛⎭⎫x +π6=24,故选B. 4、答案 A解析 由2cos B =ac 得2×a 2+c 2-b 22ac =a c ,即c 2=b 2,∴b =c ,∴△ABC 为等腰三角形,故选A.5、答案 C解析 因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=5,所以log5⎝⎛⎭⎫tan αtan β2=log552=4.故选C.6、答案 D解析 根据题意可设此三角形的三边长分别为2t .2t ,t ,由余弦定理得它的顶角的余弦值为222(2)(2)(2)(2)t t t t t t+-⨯⨯=78. 7、答案 B解析 由a ,b ,c 成等比数列得b 2=ac ,则有a 2=c 2+b 2-bc ,由余弦定理得cos A =b 2+c 2-a 22bc =bc2bc=12,故A =π3,对于b 2=ac , sin 2B =sin A sin C =32·sin C ,c b sin B =sin C sin 2B =sin C 32sin C =233. 8、答案 C解析 ∵a =2,B =2A ,∴0<2A <π2,A +B =3A ,∴π2<3A <π,∴π6<A <π3,又0<A <π4,∴22<cos A <32,由正弦定理得b a =12b =2cos A ,即b =4cos A ,∴22<4cos A <23,则b 的取值范围为(22,23),故选C. 9、答案 C解析 ∵A =60°,a =43,b =4,∴sin B =b sin A a =4×sin60°43=12,∵a >b ,∴B <60°,∴B =30°,故选C. 10、答案 A解析 因为ab sin C =20sin B ,所以由正弦定理得abc =20b ,所以ac =20,又因为a 2+c 2=41,cos B =18,所以由余弦定理,得b 2=a 2+c 2-2ac cos B =41-2×20×18=36,所以b =6. 11、答案 B解析 在△ABC 中,由正弦定理得a sin A =c sin C ,即x sin A =2sin45°,可得sin A =12x ,由题意得当A ∈⎝⎛⎭⎫0,3π4时,满足条件的△ABC 有两个,所以22<12x <1,解得2<x <2,则a 的取值范围是(2,2),故选B. 12、答案 A解析 因为α∈⎣⎡⎦⎤π4,π,所以2α∈⎣⎡⎦⎤π2,2π,又sin2α=55,所以2α∈⎣⎡⎦⎤π2,π,α∈⎣⎡⎦⎤π4,π2, 所以cos2α=-255.又β∈⎣⎡⎦⎤π,3π2,所以β-α∈⎣⎡⎦⎤π2,5π4,故cos(β-α)=-31010, 所以cos(α+β)=cos[2α+(β-α)]=cos2αcos(β-α)-sin2αsin(β-α)=-255×⎝⎛⎭⎫-31010-55×1010=22,又α+β∈⎣⎡⎦⎤5π4,2π,故α+β=7π4,选A. 二、填空题 13、答案 - 3解析 由sin10°+m cos10°=-2cos40°得sin10°+m cos10°=-2cos(10°+30°)=-2⎣⎡⎦⎤32cos10°-12sin10°,所以m =- 3.14、答案 2 2解析 因为m =2sin18°,m 2+n =4,所以n =4-m 2=4-4sin 218°=4cos 218°,所以m +n sin63°=2sin18°+2cos18°sin63°=sin(1845)sin 63+=2 2.15、答案 6解析 由题得tan β=a 3,tan(β-45°)=tan β-11+tan β=a3-11+a 3=42a ,所以a 2-5a -6=0,解得a =6或-1,当a =-1时,两个点分别在第四象限和第二象限,不符合题意,舍去,所以a =6. 16、答案 -32解析 因为a ,b ,c 成等比数列,所以b 2=ac .又因为a +c =3,cos B =34.根据余弦定理得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B ,所以ac =32-2ac -32ac ,解得ac =2,所以AB →·BC →=c ·a cos(π-B )=-ac cos B =-2×34=-32.三、解答题17、解 (1)∵cos B =35,且B ∈(0,π),∴sin B =1-cos 2B =45,∴sin C =sin(π-A -B )=sin(A +B )=sin A cos B +cos A sin B =22×35+22×45=7210,在△ABC 中,由正弦定理,得AC sin B =AB sin C ,即845=AB7210,解得AB =7 2.∴△ABC 的面积为S =12AB ·AC ·sin A =12×72×8×22=28.(2)解法一:在△ACD 中,AD =722,∴由余弦定理得CD 2=82+⎝⎛⎭⎫7222-2×8×722×22=652,∴CD =1302.解法二:∵cos B =35<22,∴B >π4,∵A =π4,∴C 为锐角,故cos C =1-sin 2C =210∵CA →+CB →=2CD →,∴4|CD →|2=(CA →+CB →)2=|CA →|2+2CA →·CB →+|CB →|2=64+2×8×52×210+50=130,∴CD =1302. 18、解 (1)在△ABD 中,由正弦定理,得BD sin A 2=ABsin ∠ADB ,在△ACD 中,由正弦定理,得CD sin A 2=ACsin ∠ADC ,∵sin ∠ADB =sin ∠ADC ,AC =3,AB =23,∴BD DC =ABAC=2. (2)在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD cos A 2=16-83×cos A2,在△ACD 中,由余弦定理,得CD 2=AC 2+AD 2-2AC ·AD cos A 2=7-43cos A2,所以16-83cosA27-43cosA2=4,解得cos A 2=32,又A 2∈⎝⎛⎭⎫0,π2,∴A 2=π6,即A =π3. 19、解 (1)证明:∵3sin A =2sin B ,∴3a =2b ,∵tan C =22,∴cos C =13,设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-2a ×3a2cos C =b 2,即b =c ,则△ABC 为等腰三角形.(2)∵tan C =22,∴sin C =223,则△ABC 的面积S =12ab sin C =12×32a 2×223=22,解得a =2.设CD =x ,则BD =3x ,由余弦定理可得(3x )2=x 2+22-4x ×13,解得x =-1+7312(负根舍去),从而线段CD 的长为-1+7312.20、解 (1)在△ACD 中,S △ACD =12AC ·CD sin ∠ACD =12×52×32×sin ∠ACD =66,所以sin ∠ACD =265,因为0°<∠ACD <90°,所以cos ∠ACD =1-⎝⎛⎭⎫2652=15. 由余弦定理得,AD 2=CD 2+CA 2-2·CD ·CA ·cos ∠ACD =56,得AD =214. (2)因为EC ⊥BC ,所以sin ∠ACE =sin(90°-∠ACD )=cos ∠ACD =15.在△AEC 中,由正弦定理得,AE sin ∠ACE =AC sin ∠AEC,即AE 15=5223,所以AE =322。
2014高考必考问题7 三角恒等变换与解三角形 (1)
必考问题7 三角恒等变换与解三角形1.(2012·全国)已知α为第二象限角,sin α+cos α=33,则cos 2α=( ). A .-53 B .-59 C.59 D.532.(2012·江西)若t a n θ+1t a n θ=4,则sin 2θ=( ). A.15 B.14 C.13 D.123.(2012·天津)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C =( ). A.725 B .-725 C .±725 D.24254.(2012·北京)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________. 答案 1、A 2、D 3、A 4、41.对于三角恒等变换,高考命题以公式的基本运用、计算为主,其中多以与角所在范围、三角函数的性质、三角形等知识结合为命题的热点.2.对于解三角形,重点考查正弦定理、余弦定理两公式在解三角形中的应用,通过三角形中的边、角关系和相关公式的灵活运用来考查学生分析问题、解决问题的能力以及数学运算能力.1.在三角恒等变换过程中,准确地记忆公式,适当地变换式子,有效地选取公式是解决问题的关键.2.在解三角形的试题时,要弄清楚三角形三边、三角中已知什么,求什么,这些都是解决问题的思维基础,分析题设条件,利用正、余弦定理进行边与角之间的相互转化是解决问题的关键.必备知识两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β.(3)t a n(α±β)=t a n α±t a n β1∓t a n αt a n β. 二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)t a n 2α=2t a n α1-t a n 2α. (4)降幂公式:sin 2 α=1-cos 2α2,cos 2α=1+cos 2α2. 正弦定理及其变形a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c 2R. a ∶b ∶c =sin A ∶sin B ∶sin C . 余弦定理及其推论a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab. 变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .面积公式 S △ABC =12bc sin A =12ac sin B =12ab sin C . 必备方法1.“变角”是三角变换的灵魂,因此要注意分析条件与所求之间角的联系,常考察是否具有和、差、倍、半关系或互余、互补关系.如2β与β是倍角关系.此外,根据条件与所求中的角的特点,常要对角进行恰当的配凑,如:β=(α+β)-α,α+β2=)2()2(βαβα---,2α=(α+β)+(α-β)等.2.要充分把握三角函数的变换规律.三角变换时,需会用“切化弦”“弦化切”“辅助角”“1的代换”等技巧,追求“名、角、式”(三角函数名、角度、运算结构)的统一,其中角的变换是三角变换的核心.3.在三角形内求值、证明或判断三角形形状时,要用正、余弦定理完成边与角的互化,一般是都化为边或都化为角,然后用三角公式或代数方法求解,从而达到求值、证明或判断的目的.解题时要注意隐含条件.4.解三角形的应用问题时,要将条件和求解目标转化到一个三角形中,然后用正、余弦定理或三角公式完成求解,同时注意所求结果要满足实际问题的要求,还要注意对不同概念的角的正确理解与应用,如俯角、仰角、方位角、视角等.利用三角恒等变换进行三角函数的化简、求值三角恒等变换是三角运算的核心和灵魂,常考查:①三角恒等变换在化简、求值等方面的简单应用;②三角恒等变换与三角形中相关知识的综合、与向量的交汇性问题,多以解答题形式出现,难度中档.【例1】► (2012·广东)已知函数f (x )=2cos )6(πω+x (其中ω>0,x ∈R )的最小正周期为10 π.(1)求ω的值;ω=15. (2)设α,β∈]2,0[π,f )355(πα+=-65,f )655(πβ-=1617,求cos(α+β)的值.-1385.[(1)给值求角的本质还是给值求值,即欲求某角,也要先求该角的某一三角函数值. (2)由于三角函数的多值性,故要对角的范围进行讨论,确定并求出限定范围内的角.(3)要仔细观察分析所求角与已知条件的关系,灵活使用角的变换,如α=(α+β)-β,α=α+β2+α-β2等. 【突破训练1】 已知cos )4(π-x =210,x ∈)43,2(ππ. (1)求sin x 的值;45. (2)求sin )32(π+x 的值.-24+7350. 三角函数与解三角形以三角形为载体,以三角变换为核心,结合正(余)弦定理考查解斜三角形是高考的一个热点问题.根据所给式子、三角形的特点合理选择正弦或余弦定理是解题的关键,综合考查学生逻辑分析和计算推理能力.【例2】► (2011·山东)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已 知cos A -2cos C cos B =2c -a b . (1)求sin C sin A的值;2 (2)若cos B =14,b =2,求△ABC 的面积S .154.在含有三角形内角的三角函数和边的混合关系式中要注意变换方向的选择.正弦定理、余弦定理、三角形面积公式本身就是一个方程,在解三角形的试题中方程思想是主要的数学思想方法,要注意从方程的角度出发分析问题.【突破训练2】 (2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin )4(C +π-c sin )4(B +π=a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.12. 易错点拨 第(2)问考生往往在遇到非特殊角的情况下思维受阻,导致丢分,遇到这种情况时要学会分析推测或用转化法使解题进行下去.向量与解三角形的综合考查解三角形问题常以向量为载体,解题时通常先利用向量知识将有关向量关系式转化为三角形中的边角关系,然后再借助解三角形的知识求解,难度中档偏低.【例3】► 在△ABC 中,A 、B 、C 所对的边分别为a 、b 、c ,A =π6,(1+3)c =2b . (1)求角C ;π4. (2)若CB →·CA →=1+3,求a ,b ,c . ⎩⎨⎧ a =2,b =1+3,c =2.解答这一类问题,首先要保证向量运算必须正确,否则,反被其累,要很好的掌握正、余弦定理的应用条件及灵活变形,方能使问题简捷解答.【突破训练3】 在△ABC 中,已知2AB →·AC →=3|AB →|·|AC →|=3BC →2,求角A ,B ,C 的大小.故A =π6,B =2π3,C =π6或A =π6,B =π6,C =2π3. 正、余弦定理的实际应用由于正、余弦定理是解斜三角形的工具,而解斜三角形应用问题中的测量问题、航海问题等常常是高考的热点,其主要要求是:会利用正弦定理和余弦定理等知识和方法解决一些测量和几何计算有关的实际问题.【例4】► (2012·沈阳模拟)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;14 (2)求sin α的值.3314.(1)三角形应用题的解题要点:解斜三角形的问题,通常都要根据题意,从实际问题中寻找出一个或几个三角形,然后通过解这些三角形得出所要求的量,从而得到实际问题的解.(2)有些时候也必须注意到三角形的特殊性,如直角三角形、等腰三角形、锐角三角形等.正确理解和掌握方位角、俯角、仰角对于解决三角形应用题也是必不可少的.【突破训练4】 (2012·惠州调研)如图,某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A ,B ,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°且AB =100米.(1)求sin 75°;6+24 (2)求该河段的宽度.50(3+3)3米.转化与化归在解三角形中的应用解三角形问题是历年高考的热点,常与三角恒等变换相结合考查正弦、余弦定理的应用,解题的实质是将三角形中的问题转化为代数问题或方程问题,在此过程中也常利用三角恒等变换知识进行有关的转化.可以说,三角形问题的核心就是转化与化归.【示例】► (2012·新课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .[满分解答] (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin )6(π-A =12. 又0<A <π,故A =π3.(6分) (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.(12分)老师叮咛:本题较容易,得分率较高.考查了考生利用正、余弦定理及三角公式进行转化的能力.其中,第(1)问利用正弦定理将边化成角,结合三角恒等变换知识整理出角A.第(2)问根据三角形的面积公式得到关于b ,c 的等式,再由余弦定理用a 和角A 表示出b ,c 的关系,从而求解.【试一试】 在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin )42(π-A 的值.解 (1)在△ABC 中,根据正弦定理,AB sin C =BC sin A . 于是AB =sin C sin A·BC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255. 于是si n A =1-cos 2A =55. 从而si n 2A =2si n A cos A =45,cos 2A =cos 2A -si n 2A =35. 所以si n )42(π-A =si n 2A cos π4-cos 2A si n π4=210。
(完整word版)2014年高考数学文科(高考真题+模拟新题)分类汇编:三角函数(解析版),推荐文档
数 学C 单元 三角函数C1 角的概念及任意角的三角函数 2.[2014·全国卷] 已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-452.D [解析] 根据题意,cos α=-4(-4)2+32=-45.C2 同角三角函数的基本关系式与诱导公式 18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 2.C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C.17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3×6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33×⎝⎛⎭⎫-33+63×63=13.因此△ABC 的面积S =12ab sin C =12×3×32×13=322.C3 三角函数的图象与性质 16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解: 由三角形面积公式,得12×3×1·sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×⎝⎛⎭⎫-13=12,所以a =2 3.7.[2014·福建卷] 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称7.D [解析] 将函数y =sin x 的图像向左平移π2个单位后,得到函数y =f (x )=sin ⎝⎛⎭⎫x +π2的图像,即f (x )=cos x .由余弦函数的图像与性质知,f (x )是偶函数,其最小正周期为2π,且图像关于直线x =k π(k ∈Z )对称,关于点⎝⎛⎭⎫π2+k π,0(k ∈Z )对称,故选D.图1-25.、[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.5.π6 [解析] 将x =π3分别代入两个函数,得到sin ⎝⎛⎭⎫2×π3+φ=12,解得23π+φ=π6+2k π(k ∈Z )或23π+φ=5π6+2k π(k ∈Z ),化简解得φ=-π2+2k π(k ∈Z )或φ=π6+2k π(k ∈Z ).又φ∈[0,π),故φ=π6.7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.C4 函数sin()y A x ωϕ=+的图象与性质8.[2014·天津卷] 已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C .πD .2π8.C [解析] ∵f (x )=2sin ⎝⎛⎭⎫ωx +π6=1,∴sin ⎝⎛⎭⎫ωx +π6=12,∴ωx 1+π6=π6+2k 1π(k 1∈Z )或 ωx 2+π6=5π6+2k 2π(k 2∈Z ),则ω(x 2-x 1)=2π3+2(k 2-k 1)π.又∵相邻交点距离的最小值为π3,∴ω=2,∴T =π.7.[2014·安徽卷] 若将函数f (x )=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π47.C [解析] 方法一:将f (x )=2sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =2sin ⎝⎛⎭⎫2x +π4-2φ的图像,由所得图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,又φ>0,所以φmin =3π8.13.[2014·重庆卷] 将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.13.22[解析] 函数f (x )=sin(ωx +φ)图像上每一点的横坐标缩短为原来的一半,得到y=sin(2ωx +φ)的图像,再向右平移π6个单位长度,得到y =sin2ωx -π6+φ=sin ⎝⎛⎭⎫2ωx -ωπ3+φ的图像.由题意知sin ⎝⎛⎭⎫2ωx -ωπ3+φ=sin x ,所以2ω=1,-ωπ3+φ=2k π(k ∈Z ),又-π2≤φ≤π2,所以ω=12,φ=π6,所以f (x )=sin ⎝⎛⎭⎫12x +π6,所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫12×π6+π6=sin π4=22.16.[2014·北京卷] 函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.16.解:(1)f (x )的最小正周期为π. x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1=2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.11.[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增11.B [解析] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,得到y =3sin ⎝⎛⎭⎫2x -23π的图像 ,函数单调递增,则-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z ,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,当k =0时,可知函数在区间⎣⎡⎦⎤π12,7π12上单调递增.14.[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 14.1 [解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.12.,[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 12.π [解析] 因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .2.[2014·陕西卷] 函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π 2.B [解析] T =2π2=π.4.[2014·浙江卷] 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( )A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.A [解析] y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,故将函数y =2cos3x 的图像向右平移π12个单位可以得到函数y =sin 3x +cos 3x 的图像,故选A.3.[2014·四川卷] 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度3.A [解析] 由函数y =sin x 的图像变换得到函数y =sin(x +1)的图像,应该将函数y =sin x 图像上所有的点向左平行移动1个单位长度,故选A.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.C5 两角和与差的正弦、余弦、正切 9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-419.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217. (2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.16.、[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 16.解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.18.、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .18.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 14.[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 14.1 [解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3×6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33×⎝⎛⎭⎫-33+63×63=13. 因此△ABC 的面积S =12ab sin C =12×3×32×13=322.8.、[2014·四川卷] 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m8.C [解析] 由题意可知,AC =60sin 30°=120.∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,所以sin ∠ABC =sin105°=sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45°=6+24.在△ABC 中,由正弦定理得AC sin ∠ABC =BC∠BAC,于是BC =120×222+64=240 22+6=120(3-1)(m).故选C.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.18.、[2014·重庆卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.18.解:(1)由题意可知c =8-(a +b )=72.由余弦定理得cos C =a 2+b 2-c 22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15. (2)由sin A cos 2B 2+sin B cos 2A2=2sin C 可得sin A ·1+cos B 2+sin B ·1+cos A2=2sin C ,化简得sin A +sin A cos B +sin B +sin B cos A =4sin C .因为sin A cos B +cos A sin B =sin(A +B )=sin C ,所以sin A +sin B =3sin C . 由正弦定理可知a +b =3c .又a +b +c =8,所以a +b =6.由于S =12ab sin C =92sin C ,所以ab =9,从而a 2-6a +9=0,解得a =3,所以b =3.C6 二倍角公式 18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝⎛⎭⎫sin x -122+32,所以当sinx =12时函数y =cos 2x +2sin x 取得最大值,最大值为32. 16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.43 [解析] 如图所示,根据题意知,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43,即l 1与l 2的夹角的正切值等于43.2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0 2.C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z .(2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.C7 三角函数的求值、化简与证明16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 5.、[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.5.π6 [解析] 将x =π3分别代入两个函数,得到sin ⎝⎛⎭⎫2×π3+φ=12,解得23π+φ=π6+2k π(k ∈Z )或23π+φ=5π6+2k π(k ∈Z ),化简解得φ=-π2+2k π(k ∈Z )或φ=π6+2k π(k ∈Z ).又φ∈[0,π),故φ=π6.15.[2014·江苏卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55.(1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 15.解: (1)因为α∈⎝⎛⎭⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-2 55.故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎫-2 55+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55× ⎝⎛⎭⎫-2 55=-45,cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α= ⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45=-4+3 310.16.、[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 16.解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →·BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2×2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13×79+2 23×4 29=2327.21.、[2014·辽宁卷] 已知函数f (x )=π(x -cos x )-2sin x -2,g (x )=(x -π)1-sin x1+sin x+2xπ-1.证明: (1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.21.证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=π+πsin x -2cos x >0,所以f (x )在区间⎝⎛⎭⎫0,π2上为增函数.又f (0)=-π-2<0,f ⎝⎛⎭⎫π2=π22-4>0,所以存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0.(2)当x ∈⎣⎡⎦⎤π2,π时,化简得g (x )=(π-x )·cos x 1+sin x +2xπ-1.令t =π-x 则t ∈⎣⎡⎦⎤0,π2.记u (t )=g (π-t )=-t cos t 1+sin t -2πt +1,则u ′(t )=f (t )π(1+sin t ).由(1)得,当t ∈(0,x 0)时,u ′(t )<0;当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )>0.所以在⎝⎛⎭⎫x 0,π2上u (t )为增函数,由u ⎝⎛⎭⎫π2=0知,当t ∈⎣⎡⎭⎫x 0,π2时,u (t )<0,所以u (t )在⎣⎡⎭⎫x 0,π2上无零点.在(0,x 0)上u (t )为减函数,由u (0)=1及u (x 0)<0知存在唯一t 0∈(0,x 0),使u (t 0)=0.于是存在唯一t 0∈⎝⎛⎭⎫0,π2,使u (t 0)=0.设x 1=π-t 0∈⎝⎛⎭⎫π2,π,则g (x 1)=g (π-t 0)=u (t 0)=0.因此存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.由于x 1=π-t 0,t 0<x 0,所以x 0+x 1>π.12.,[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 12.π [解析] 因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.16.[2014·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 a -c =66b ,sin B =6sin C . (1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值.16.解:(1)在△ABC 中,由b sin B =csin C,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64.(2)在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.C8 解三角形18.[2014·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =2+ 2.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值. 18.解:(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2, 化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22, 所以A +B =3π4,从而C =π4.(2)因为S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. 16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解: 由三角形面积公式,得12×3×1·sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×⎝⎛⎭⎫-13=12,所以a =2 3.12.[2014·北京卷] 在△ABC 中,a =1,b =2,cos C =14,则c =________;sin A =________.12.2158 [解析] 由余弦定理得c 2=a 2+b 2-2ab cos C =1+4-2×2×1×14=4,即c =2;cos A =b 2+c 2-a 22bc =4+4-12×2×2=78,∴sin A =1-⎝⎛⎭⎫782=158.14.[2014·福建卷] 在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________.14.1 [解析] 由BC sin A =ACsin B ,得sin B =2sin 60°3=1,即B =90°,所以△ABC 为以AB ,BC 为直角边的直角三角形, 则AB =AC 2-BC 2=22-(3)2=1,即AB 等于1.7.、[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 7.A [解析] 设R 是三角形外切圆的半径,R >0,由正弦定理,得a =2R sin A ,b =2R sin B .故选A.∵sin ≤A sin B ,∴2R sin A ≤2R sin B ,∴a ≤b .同理也可以由a ≤b 推出sin A ≤sin B .13.[2014·湖北卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a=1,b =3,则B =________.13.π3或2π3 [解析] 由正弦定理得a sin A =b sin B ,即1sin π6=3sin B,解得sin B =32.又因为b >a ,所以B =π3或2π3.19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-419.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.14.、[2014·江苏卷] 若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是______.14.6-24[解析] 设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,则由正弦定理得a +2b =2c .故cos C =a 2+b 2-c22ab=a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=34a 2+12b 2-22ab 2ab =34a 2+12b 22ab -24≥234a 2·12b 22ab -24=6-24,当且仅当3a 2=2b 2,即a b =23时等号成立.18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 5.[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19 B.13 C .1 D.725.D [解析] 由正弦定理得,原式=2b 2-a 2a 2=2⎝⎛⎭⎫b a 2-1=2×⎝⎛⎭⎫322-1=72. 17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →·BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2×2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13×79+2 23×4 29=2327. 18.、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .18.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 17.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积. 17.解:(1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C =⎝⎛⎭⎫12×1×2+12×3×2sin 60°=2 3. 16.[2014·全国新课标卷Ⅰ] 如图1-3,为测量山高MN ,选择A 和另一座山的山顶C为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°,以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图1-316.150 [解析] 在Rt △ABC 中,BC =100,∠CAB =45°,所以AC =100 2.在△MAC中,∠MAC =75°,∠MCA =60°,所以∠AMC =45°,由正弦定理有AM sin ∠MCA =ACsin ∠AMC ,即AM =sin 60°sin 45°×100 2=1003,于是在Rt △AMN 中,有MN =sin 60°×1003=150 .17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中,。
2014高考数学(文)名师指导历炼题型:2-2 三角恒等变换、解三角形及其应用
1.(交汇新)在△ABC中,角A,B,C所对的边分别是a,b,c且a cos C,b cos B,c cos A成等差数列,若b=错误!,则a+c的最大值为()A。
错误!B.3C.2错误!D.9C∵ a cos C,b cos B,c cos A成等差数列,∴ 2b cos B=a cos C+c cos A,则2sin B cos B=sin A cos C+cos A sin C=sin(A+C)=sin B,∴ cos B=错误!,b2=a2+c2-2a cos B=(a+c)2-3ac≥(a+c)2-3·错误!2=错误!,即3≥错误!,∴ a+c≤2错误!,所以选C。
2。
(角度新)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4 m,仰角∠ABE=α,∠ADE=β。
(1)该小组已测得一组α,β的值,算出了tanα=1.24,tanβ=1。
20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125 m,试问d为多少时,α-β最大?[历炼]1.解析:由题知2b cos B=a cos C+c cos A,由正弦定理知2sin B cos B=sin A cos C+sin C cos A=sin(A+C),∴ 2B=A+C=π-B,∴ B=错误!。
由余弦定理知b2=a2+c2-2ac cos B,即a2+c2-ac=3,∴ (a+c)2-3ac=3,(a+c)2=3+3ac≤3+3×错误!2,解得a+c≤2错误!,故选C。
答案:C2.解析:(1)错误!=tanβ⇒AD=错误!,同理AB=错误!,BD=错误!,AD-AB=BD,故得错误!-错误!=错误!,解得H=错误!=错误!=124(m).因此,算出的电视塔的高度H是124 m。
2014高考数学理硬手笔(真题篇)常考问题函数、基本初等函数的图象与性质
2014高考数学理“硬”手笔(真题篇)常考问题:函数、基本初等函数的图象与性质[真题感悟]1.(2013·广东卷)定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是 ( ).A .4B .3C .2D .1解析 由奇函数的概念可知,y =x 3,y =2sin x 是奇函数. 答案 C2.(2013·山东卷)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( ).A .-2B .0C .1D .2解析 f (-1)=-f (1)=-2. 答案 A 3.(2013·重庆卷)-aa +(-6≤a ≤3)的最大值为( ).A .9B .92C .3D .322解析 由于-6≤a ≤3,所以-aa +=-⎝ ⎛⎭⎪⎫a +322+814≤92,当且仅当a =-32时等号成立. 答案 B4.(2013·北京卷)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( ).A .e x +1B .e x -1C .e-x +1D .e-x -1解析 与曲线y =e x图象关于y 轴对称的曲线为y =e -x,函数y =e -x的图象向左平移一个单位得到函数f (x )的图象,即f (x )=e -(x +1)=e-x -1.答案 D5.(2013·新课标全国Ⅱ卷)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c解析 设a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,显然a >b >c . 答案 D [考题分析]题型 选择题、填空题难度 低档 主要涉及函数的定义域、奇偶性、单调性、最值、图象等的单项考查. 中高档 涉及奇偶性、单调性、周期性的综合考查.。
2014高考数学理硬手笔(真题篇)常考问题三角恒等变换与解三角形
(2)四边形 ABCD 的面积 S=12(AB·AD+CB·CD)·sin A=12[x(5-x)+
x(9-x)] 1-cos2A.
=x(7-x)
1-2x2= x2-47-x2
= x2-4x2-14x+49.
记 g(x)=(x2-4)(x2-14x+49),x∈(2,5).
• 常考问题6 三角恒等变换与解三角形
[真题感悟] [考题分析]
1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=1ta∓ntaαn±αttaannββ.
热点二 正、余弦定理的应用 【例 2】 (2013·苏锡常镇模拟)△ABC 的面积是 30,内角 A,B,C
的对边分别为 a,b,c,cos A=1123.
(1)求A→B·A→C;
(2)若 c-b=1,求 a 的值.
解 (1)由 cos A=1123,且 0<A<π, 得 sin A= 1-11232=153. 又 S△ABC=12bcsin A=30, 所以 bc=156,
(2)tan α=tan[(α-β)+β]=1t-antaαn-αβ-+βttaannββ =1+12-12×17 17=13, tan(2α-β)=tan[α+(α-β)]=1t-antαan+αttaannαα--ββ=1-13+13×12 12=1. ∵tanα=13>0,∴0<α<2π,∴0<2α<π.
2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α. (2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α. (3)tan 2α=1-2tatnanα2α.
2014年高考三角函数、三角恒等变换、解三角形1.3.5
解析:(1)根据对数函数的性质,需真数 2sinx>0, 解得 2kπ<x<(2k+1)π(k∈Z), 所以函数定义域为{x|2kπ<x<(2k+1)π,k∈Z}. cosx>0, (2)使解析式有意义的 x 满足 解得 2 36-x ≥0,
2kπ-π<x<2kπ+πk∈Z, 2 2 -6≤x≤6.
变式探究 2 求下列函数的值域: (1)y=4tanxcosx; (2)y=6-4sinx-cos2x; 2sinx+1 (3)y= . sinx-2
解析: (1)y=4tanxcosx=4sinx(cosx≠0). 由于 cosx≠0,所以 sinx≠± 1, ∴函数的值域为(-4,4). (2)y=6-4sinx-cos2x=sin2x-4sinx+5=(sinx-2)2+1. ∵-1≤sinx≤1, ∴函数的值域为[2,10].
答案:D
4.已知 ( π A.-6 )
π y=tan(2x+φ)的图象过点12,0,则
φ 可以是 π D.12
π C.-12 π 解析:∵y=tan(2x+φ)过点12,0. π π +φ=0,∴ +φ=kπ,k∈Z, ∴tan 6 6 π π ∴φ=kπ-6.当 k=0 时,φ=-6. 答案:A
π f(x)=sin2x-2,x∈R,则
f(x)是(
)
A.最小正周期为 π 的奇函数 B.最小正周期为 π 的偶函数 π C.最小正周期为2的奇函数 π D.最小正周期为2的偶函数
π 解析:f(x)=sin2x-2=-cos2x,f(-x)=f(x),
∴f(x)为偶函数,排除 A、C, 又 T=π,故选 B. 答案:B
无最值
⑲__________
高考数学复习:三角恒等变换与解三角形
考向2 求解三角形中的最值与范围问题 例 3 (2020·新高考测评联盟联考)在:①a= 3csin A-acos C,②(2a-b)sin A +(2b-a)sin B=2csin C 这两个条件中任选一个,补充在下列问题中,并 解答. 已知△ABC 的角 A,B,C 的对边分别为 a,b,c,c= 3,而且________. (1)求角 C;
解析 因为 tan C=152,所以 sin C=1123,cos C=153, 又 a=b= 13,所以 c2=a2+b2-2abcos C=13+13-2× 13× 13×153=16,
所以c=4.
由sin∠aBAC=sinc C,得sin∠1B3AC=142, 13
解得 sin∠BAC=31313.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
5.若 α,β 都是锐角,且 cos α= 55,sin(α+β)=35,则 cos β 等于
√A.2255
解 选①:因为 a= 3csin A-acos C, 所以 sin A= 3sin Csin A-sin Acos C,
因为 sin A≠0,所以 3sin C-cos C=1, 即 sinC-π6=12, 因为 0<C<π,所以-π6<C-π6<56π, 所以 C-π6=π6,即 C=π3.
选②:因为(2a-b)sin A+(2b-a)sin B=2csin C, 所以(2a-b)a+(2b-a)b=2c2, 即a2+b2-c2=ab, 所以 cos C=a2+2ba2b-c2=12, 因为 0<C<π,所以 C=π3.
π6-cosθ+π6sin π6+sinθ+π6cos π6+cosθ+π6sin
2014届高考数学二轮专题热点提升训练三角恒等变换与解三角形(2)
常考问题7 三角恒等变换与解三角形[真题感悟]1.(2013·新课标全国Ⅱ卷)已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4= ( ).A.16B.13C.12D.23解析 因为cos 2⎝ ⎛⎭⎪⎫α+π4=1+cos2⎝ ⎛⎭⎪⎫α+π42=1+cos ⎝ ⎛⎭⎪⎫2α+π22=1-sin 2α2,所以cos 2⎝ ⎛⎭⎪⎫α+π4=1-sin 2α2=1-232=16,选A.答案 A2.(2013·湖南卷)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( ). A.π2B.π6C.π4D.π3解析 在△ABC 中,利用正弦定理得 3sin A sin B =3sin B ,∴sin A =32. 又A 为锐角,∴A =π3.答案 D3.(2013·陕西卷)设△ABC 的内角A ,B ,C 所对的边分别为a ,b , c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析 由已知和正弦定理,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形.答案 B4.(2013·新课标全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( ).A .23+2 B.3+1 C .23-2D.3-1解析 因为B =π6,C =π4,所以A =7π12.由正弦定理得b sin π6=csinπ4,解得c =2 2. 所以三角形的面积为12bc sin A =12×2×22sin 7π12.因为sin 7π12=sin ⎝ ⎛⎭⎪⎫π3+π4=32×22+22×12=22⎝ ⎛⎭⎪⎫32+12,所以12bc sin A =22×22⎝ ⎛⎭⎪⎫32+12=3+1,选B.答案 B5.(2013·福建卷)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为______.解析 ∵sin ∠BAC =sin(π2+∠BAD )=cos ∠BAD ,∴cos ∠BAD =223.在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD =(32)2+32-2×32×3×223=3,即BD = 3. 答案3[考题分析]题型 选择题、填空题、解答题难度 低档 利用正弦定理、余弦定理求三角形的边、角以及判断三角形形状. 中档 以解答题形式考查正余弦定理与三角恒等变换的综合问题.。
三角函数、三角恒等变换、解三角形(含答案)
三角函数、三角恒等变换、解三角形学校:___________姓名:___________班级:___________考号:___________1.已知1sin 2α=,则cos()2πα-=( )A. 2-B. 12-C. 12D. 2 2.200︒是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3.已知()1cos 03ϕϕπ=-<<,则sin 2ϕ=( )A.9B.9-C.9D.9-4.函数 )321sin(π+=x y 的图像可由函数x y 21sin =的图像( ) A .向左平移32π个单位得到 B .向右平移3π个单位得到C .向左平移6π个单位得到 D .向左平移3π个单位得到5.函数5sin(2)2y x π=+图像的一条对称轴方程是( ) A .2π-=x B . 4π-=x C . 8π=x D .45π=x6.函数())24x f x π=-,x R ∈的最小正周期为( )A .2πB .πC .2πD .4π7.给出以下命题:①若α、β均为第一象限角,且βα>,且βαsin sin >;②若函数⎪⎭⎫⎝⎛-=3cos 2πax y 的最小正周期是π4,则21=a ; ③函数1sin sin sin 2--=x xx y 是奇函数;④函数1|sin |2y x =-的周期是π; ⑤函数||sin sin x x y +=的值域是]2,0[. 其中正确命题的个数为( )A . 3B . 2C . 1D . 0 8.函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图像如图示,则将()y f x =的图像向右平移6π个单位后,得到的图像解析式为( )A .x y 2sin = B.x y 2cos = C.)322sin(π+=x y D.)62sin(π-=x y 9.函数()sin 2f x x =的最小正周期是 .10.300tan 480sin +的值为________.11.在ABC ∆中,已知内角3A π=,边BC =,则ABC ∆的面积S 的最大值为 .12.比较大小:sin1 cos1(用“>”,“<”或“=”连接).13.已知角α的顶点在坐标原点,始边在x 轴的正半轴,终边经过点(1,,则cos ____.α=14.已知3cos()(,)41024x x πππ-=∈. (Ⅰ)求sin x 的值; (Ⅱ)求sin(2)3x π+的值.15.已知x x x x x f 424cos 3)cos (sin sin 3)(-++=.(1)求()f x 的最小值及取最小值时x 的集合; (2)求()f x 在[0,]2x π∈时的值域;(3)在给出的直角坐标系中,请画出()f x 在区间[,]22ππ-上的图像(要求列表,描点).16.已知3cos()(,)424x x πππ-=∈. (1)求sin x 的值; (2)求sin(2)3x π+的值.17.(1)化简:︒--︒︒︒-20sin 1160sin 20cos 20sin 212;(2)已知α为第二象限角,化简ααααααcos 1cos 1sin sin 1sin 1cos +-++-.18.函数(其中)的图象如图所示,把函数)(x f 的图像向右平移4π个单位,再向下平移1个单位,得到函数)(x g y =的图像.(1)若直线m y =与函数)(x g 图像在]2,0[π∈x 时有两个公共点,其横坐标分别为21,x x ,求)(21x x g +的值;(2)已知ABC ∆内角AB C 、、的对边分别为a b c 、、,且0)(,3==C g c .若向量(1,sin )m A = 与(2,sin )n B =共线,求a b 、的值.19.已知函数()4cos sin()16f x x x π=+-.(1)求()f x 的最小正周期; (2)求()f x 在区间[,]64ππ-上的最大值与最小值.参考答案1.C 【解析】 试题分析:由1cos()sin 22παα-==,故选C. 考点:诱导公式. 2.C 【解析】试题分析:因为第一象限角α的范围为36036090,k k k z α⋅<<⋅+∈ ; 第二象限角α的范围为36090360180,k k k z α⋅+<<⋅+∈ ; 第三象限角α的范围为360180360270,k k k z α⋅+<<⋅+∈ ; 第四象限角α的范围为360270360360,k k k z α⋅+<<⋅+∈ ;200∴︒是第三象限角,故选C.考点:象限角的概念. 3.D 【解析】试题分析:0ϕπ<< ,sin 0ϕ∴>,故sin ϕ===,因此sin 2ϕ=12sin cos 2339ϕϕ⎛⎫=⨯-=- ⎪⎝⎭,故选D. 考点:1.同角三角函数的基本关系;2.二倍角公式4.A 【解析】试题分析:因为1sin()23y x π=+可化为12sin ()23y x π=+.所以将x y 21sin =向左平移32π.可得到12sin ()23y x π=+.故选 A.本小题关键是考查1ω≠的三角函数的平移,将0x ωϕ+=时的x 的值,与0x =是对比.即可知道是向左还是向右,同时也可以知道移了多少单位.考点:1.三角函数的平移.2.类比的思想. 5.A 【解析】试题分析:5sin(2)sin(22)sin(2)cos 2222y x x x x ππππ=+=++=+= ,由c o s y x =的对称轴()x k k Z π=∈可知,所求函数图像的对称轴满足2()x k k Z π=∈即()2k x k Z π=∈,当1k =-时,2x π=-,故选A. 考点:1.三角函数图像与性质中的余弦函数的对称性;2.诱导公式. 6.C 【解析】 试题分析:这是三角函数图像与性质中的最小正周期问题,只要熟悉三角函数的最小正周期的计算公式即可求出,如sin(),cos()y A x k y A x k ωϕωϕ=++=++的最小正周期为2||T πω=,而t a n ()y A x k ωϕ=++的最小正周期为||T πω=,故函数()tan()24x f x π=-的最小正周期为212T ππ==,故选C.考点:三角函数的图像与性质. 7.D 【解析】试题分析:对于①来说,取390,60αβ=︒=︒,均为第一象限,而1sin 60390sin 3022=︒=︒=,故s i n s i n αβ<;对于②,由三角函数的最小正周期公式214||2T a a ππ==⇒=±;对于③,该函数的定义域为{}|s i n 10|2,2x x x x k k Zππ⎧⎫-≠=≠+∈⎨⎬⎩⎭,定义域不关于原点对称,没有奇偶性;对于④,记1()|sin |2f x x =-,若T π=,则有()()22f f ππ-=,而1()|1| 1.522f π-=--=,1()|1|0.522f π=-=,显然不相等;对于⑤,0sin sin ||2sin y x x x ⎧=+=⎨⎩(0)(0)x x <≥,而当()2sin (0)f x x x =≥时,22sin 2x -≤≤,故函数sin sin ||y x x =+的值域为[2,2]-;综上可知①②③④⑤均错误,故选D.考点:1.命题真假的判断;2.三角函数的单调性与最小正周期;3.函数的奇偶性;4.函数的值域. 8.D 【解析】试题分析:通过观察图像可得1A =,311341264T πππ=-=,所以T π=,所以222T ππωπ===,又因为函数()f x 过点(,1)6π,所以s i n ()12()332k k Z πππϕϕπ+=⇒+=+∈,而||2πϕ<,所以当0k =时,6πϕ=满足要求,所以函数()sin(2)6f x x π=+,将函数向右平移6π个单位,可得()s i n [2()]s i n (2)666f x x x πππ=-+=-,故选D.考点:1.正弦函数图像的性质.2.正弦函数图像的平移.3.待定系数确定函数的解析式. 9.π 【解析】试题分析:直接利用求周期公式2T πω=求得.考点:周期公式.10. 【解析】 试题分析:sin 480tan 300sin(120360)tan(36060)sin120tan 60sin 60tan 60+=︒+︒+︒-︒=︒-︒=︒-︒,故sin 480tan 300+==考点:1.诱导公式;2.三角恒等变换.11.【解析】试题分析:∵2222cos a b c bc A =+-,∴2212b c bc =+-,∵222b c bc +≥,∴122b c b c +≥,∴12bc ≤,∴1sin 2S bc A ∆==≤ 考点:1.余弦定理;2.基本不等式;3.三角形面积.12.>. 【解析】试题分析:在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0. 考点:三角函数线.13.-12. 【解析】试题分析:由题意可得 x=-1,r 2=x 2+y 2=4,r=2,故cos =x r =-12. 考点:任意角的三角函数的定义.14.(1)45;(2)2450+-.【解析】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可.试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()410x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-41021025=⨯+=(2)因为3(,)24x ππ∈,故3cos 5x ===-2247sin 22sin cos ,cos 22cos 12525x x x x ==-=⨯-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-. 考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换.15.(1)当1-,},12|{Z k k x x ∈-=ππ;(2)[1,3];(3)详见解析. 【解析】试题分析:先根据平方差公式、同角三角函数的基本关系式、二倍角公式化简所给的函数()2sin(2)13f x x π=-+.(1)将23x π-看成整体,然后由正弦函数sin y x =的最值可确定函数()f x 的最小值,并明确此时x 的值的集合;(2)先求出23x π-的范围为2[,]33ππ-,从而sin(2)13x π≤-≤,然后可求出]2,0[π∈x 时,函数()f x 的值域;(3)根据正弦函数的五点作图法进行列表、描点、连线完成作图.试题解析:化简424()(sin cos )f x x x x x =++222222cos )(sin cos )sin 2sin cos cos x x x x x x x =-++++22cos )2sin cos 1x x x x =-++sin 221x x =+2sin(2)13x π=-+ 4分(1)当sin(2)13x π-=-时,()f x 取得最小值211-+=-,此时22,32x k k Z πππ-=-+∈即,12x k k Zππ=-∈,故此时x 的集合为},12|{Z k k x x ∈-=ππ 6分(2)当]2,0[π∈x 时,所以]32,3[32πππ-∈-x ,所以sin(2)13x π≤-≤,从而12sin(2)133x π+≤-+≤即]3,13[)(+-∈x f 9分(3)由()2sin(2)1f x x π=-+知故()f x 在区间[,]22ππ-上的图象如图所示:13分.考点:1.三角恒等变换;2.三角函数的图像与性质.16.(1)45;(2).【解析】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可.试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()410x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-41021025=⨯+=(2)因为3(,)24x ππ∈,故3cos 5x ===-2247sin 22sin cos ,cos 22cos 12525x x x x ==-=⨯-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-. 考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换. 17.(1)1-;(2)0. 【解析】试题分析:本题主要考查同角三角函数基本关系式与诱导公式的应用.(1)将分子中的1变形为22sin 20cos 20︒+︒,从而分子进一步化简为cos20sin 20︒-︒,分母s i n 16n 20︒︒利用诱导公式与同角三角函数的基本关系式转化为s i n 20c o s 2︒-︒,最后不难得到答案;(2)1sin |cos |αα-=,1cos |sin |αα-=,然后根据三角函数在第二象限的符号去绝对值进行运算即可.试题解析:(1)原式=cos 20sin 201sin 20cos 20sin 20cos 20︒-︒==-︒-︒︒-︒6分(2)解:原式cos sin 1sin 1cos cos |sin |cos |sin |αααααα--=⨯+⨯ 1cos 1cos cos sin 0cos sin αααααα--=⨯+⨯=- 6分. 考点:1.同角三角函数的基本关系式;2.三角恒等变换;3.诱导公式.18.(1)123()2g x x +=-;(2)a b ⎧=⎨=⎩【解析】试题分析:本题主要考查三角函数的图像和性质,向量共线的充要条件以及解三角形中正弦定理余弦定理的应用,考查分析问题解决问题的能力和计算能力,考查数形结合思想和化归与转化思想.第一问,先由函数图像确定函数解析式,再通过函数图像的平移变换得到()g x 的解析式,由于y m =与()g x 在[0,]2π上有2个公共点,根据函数图像的对称性得到2个交点的横坐标的中点为3π,所以122()()3g x x g π+=得出函数值;第二问,先用()0g c =在ABC ∆中解出角C 的值,再利用两向量共线的充要条件得到sin 2sin B A =,从而利用正弦定理得出2b a =,最后利用余弦定理列出方程解出边,a b 的长.试题解析:(1)由函数)(x f 的图象,ωπππ2)3127(4=-=T ,得2=ω, 又3,32πϕπϕπ=∴=+⨯,所以)32sin()(π+=x x f 2分 由图像变换,得1)62sin(1)4()(--=--=ππx x f x g 4分由函数图像的对称性,有23)32()(21-==+πg x x g 6分 (Ⅱ)∵ ()sin(2)106f C C π=--=, 即sin(2)16C π-= ∵ 0C π<<,112666C πππ-<-<, ∴ 262C ππ-=,∴ 3C π=. 7分 ∵ m n 与共线,∴ sin 2sin 0B A -=.由正弦定理 sin sin a b A B=, 得2,b a = ① 9分 ∵ 3c =,由余弦定理,得2292cos 3a b ab π=+-, ② 11分解方程组①②,得a b ⎧=⎨=⎩ 12分 考点:1.函数图像的平移变换;2.函数图像的对称性;3.正弦定理和余弦定理;4.函数的周期性;5.两向量共线的充要条件.19.(1)T =π;(2)最大值2;最小值-1.【解析】试题分析:(1)本小题首先需要对函数的解析式进行化简()⎪⎭⎫ ⎝⎛+=62sin 2πx x f ,然后根据周期公式可求得函数的周期T =π;(2)本小题首先根据.32626,46πππππ≤+≤-≤≤-x x 所以,然后结合正弦曲线的图像分别求得函数的最大值和最小值.试题解析:(1)因为1)6sin(cos 4)(-+=πx x x f1)cos 21sin 23(cos 4-+=x x x 1cos 22sin 32-+=x xx x 2cos 2sin 3+=)62sin(2π+=x所以)(x f 的最小正周期为π(2)因为.32626,46πππππ≤+≤-≤≤-x x 所以于是,当6,262πππ==+x x 即时,)(x f 取得最大值2; 当)(,6,662x f x x 时即πππ-=-=+取得最小值—1. 考点:三角函数的图像与性质.。
2014高考数学(文)名师指导提能专训5:三角恒等变换、解三角形及其应用(含解题思路)
提能专训(五)三角恒等变换、解三角形及其应用一、选择题1.(2013·安徽淮北模拟)已知错误!=错误!,则tan α+错误!=( )A.-8 B.8C。
错误!D.-错误!答案:A 解题思路:∵错误!=错误!=cos α-sin α=错误!,∴1-2sin αcos α=错误!,即sin αcos α=-错误!.则tan α+错误!=错误!+错误!=错误!=错误!=-8.故选A。
2.在△ABC中,若tan A tan B=tan A+tan B+1,则cos C的值为( )A.-错误!B。
错误!C。
错误!D.-错误!答案:B 解题思路:由tan A tan B=tan A+tan B+1,可得tan A+tan BA+B)=-1,又因为A+B∈(0,π),1-tan A·tan B=-1,即tan(所以A+B=错误!,则C=错误!,cos C=错误!.3.已知曲线y=2sin错误!cos错误!与直线y=错误!相交,若在y轴右侧的交点自左向右依次记为P1,P2,P3,…,则|错误!|等于()A.π B.2πC.3π D.4π答案:B 命题立意:本题考查三角恒等变换及向量的坐标运算,难度较小.解题思路:由于f(x)=2sin2错误!=2×错误!=1+sin 2x,据题意,令1+sin 2x=错误!,解得2x=2kπ-错误!或2x=2kπ-错误!(k∈Z),即x =kπ-错误!或x=kπ-错误!(k∈Z),故P1错误!,P5错误!,因此|错误!|=错误!=2π.4.在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若a cos B+b cos A=c sin C,S=错误!(b2+c2-a2),则∠B等于()A.90° B.60°C.45° D.30°答案:C 解题思路:由正弦定理和已知条件知sin A cos B+sin B cos A=sin2C,即sin(A+B)=sin2C,∴sin C=1,C=错误!,从而S =错误!ab=错误!(b2+c2-a2)=错误!(b2+b2),解得a=b,因此∠B=45°.5.(2013·银川一中二模)已知错误!=k,0<θ<错误!,则sin错误!的值()A.随着k的增大而增大B.有时随着k的增大而增大,有时随着k的增大而减小C.随着k的增大而减小D.是一个与k无关的常数答案:A 解题思路:k=错误!=错误!=2sin θcos θ=sin 2θ,因为0<θ<错误!,所以sin错误!=-错误!=-错误!=-错误!为增函数,所以sin错误!的值随着k的增大而增大.6.在△ABC中,角A,B,C的对边分别为a,b,c,已知4sin2错误!-cos 2C=错误!,且a+b=5,c=错误!,则△ABC的面积为()A.错误!B.错误!C。
2014届高考数学总复习(考点引领+技巧点拨)第三章 三角函数、三角恒等变换及解三角形第2课时 同角三角函
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第三章 三角函数、三角恒等变换及解三角形第2课时同角三角函数的基本关系式页)1. (必修4P 16例1改编)α是第二象限角,tan α=-815,则sin α=________.答案:817解析:由⎩⎪⎨⎪⎧sin 2α+cos 2α=1,sin αcos α=-815,解得sin α=±817.∵ α为第二象限角,∴ sin α>0,∴ sin α=817.2. cos ⎝ ⎛⎭⎪⎫-523π=________. 答案:-12解析:cos ⎝⎛⎭⎪⎫-52π3=cos 52π3=cos(17π+π3)=-cos π3=-12.3. sin 2(π+α)-cos(π+α)·cos(-α)+1=________. 答案:2解析:原式=(-sin α)2-(-cos α)cos α+1=sin 2α+cos 2α+1=2.4. (必修4P 21例题4改编)已知cos ⎝ ⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=________.答案:-223解析:cos ⎝ ⎛⎭⎪⎫π12-α=cos[π2-⎝ ⎛⎭⎪⎫5π12+α]=sin ⎝⎛⎭⎪⎫5π12+α.又-π<α<-π2,所以-712π<5π12+α< -π12.所以sin ⎝ ⎛⎭⎪⎫512π+α=-223,所以cos ⎝ ⎛⎭⎪⎫π12-α=-223.5. (必修4P 22习题9(1)改编)已知tan θ=2,则sin ⎝ ⎛⎭⎪⎫π2+θ-cos ()π-θsin ⎝ ⎛⎭⎪⎫π2+θ-sin (π-θ)=__________.答案:-2解析:sin ⎝ ⎛⎭⎪⎫π2+θ-cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2+θ-sin (π-θ)=cos θ-(-cos θ)cos θ-sin θ=2cos θcos θ-sin θ=21-tan θ=21-2=-2.1. 同角三角函数的基本关系(1) 平方关系:sin 2α+cos 2α=1. (2) 商数关系:tan α=sin αcos α.2. 诱导公式记忆规律:奇变偶不变,符号看象限. [备课札记]题型1 同角三角函数的基本关系式例1 (必修4P 23第18题改编)已知α是三角形的内角,且sin α+cos α=15.(1) 求tan α的值; (2) 将1cos 2α-sin 2α用tan α表示出来,并求其值. 解:(1) (解法1)联立方程⎩⎪⎨⎪⎧sin α+cos α=15 ①,sin 2α+cos 2α=1 ②,由①得cos α=15-sin α,将其代入②,整理,得25sin 2α-5sin α-12=0.∵ α是三角形内角,∴ ⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴ tan α=-43.(解法2)∵ sin α+cos α=15,∴ (sin α+cos α)2=⎝ ⎛⎭⎪⎫152,即1+2sin αcos α=125,∴ 2sin αcos α=-2425,∴ (sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵ sin αcos α=-1225<0且0<α<π,∴ sin α>0,cos α<0.∵ sin α-cos α>0,∴ sin α-cos α=75.由⎩⎪⎨⎪⎧sin α+cos α=15,sin α-cos α=75,得⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴ tan α=-43.(2) 1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=tan 2α+11-tan 2α. ∵ tan α=-43,∴ 1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257.变式训练已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,且θ∈(0,2π).(1) 求sin 2θsin θ-cos θ+cos θ1-tan θ的值;(2) 求m 的值;(3) 求方程的两根及此时θ的值. 解:(1) 由韦达定理可知 ⎩⎪⎨⎪⎧sin θ+cos θ=3+12①,sin θ·cos θ=m2②,而sin 2θsin θ-cos θ+cos θ1-tan θ= sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin θ+cos θ=3+12.(2) 由①两边平方得1+2sin θcos θ=2+32,将②代入得m =32. (3) 当m =32时,原方程变为2x 2-(1+3)x +32=0,解得x 1=32,x 2=12, ∴ ⎩⎪⎨⎪⎧sin θ=32cos θ=12或⎩⎪⎨⎪⎧sin θ=12,cos θ=32.∵ θ∈(0,2π),∴ θ=π6或π3. 例2 (必修4P 23第10(2)题改编)化简: (1+sin α1-sin α-1-sin α1+sin α)·(1+cos α1-cos α-1-cos α1+cos α).解:原式=((1+sin α)2cos 2α-(1-sin α)2cos 2α)((1+cos α)2sin 2α-(1-cos α)2sin 2α)=(1+sin α|cos α|-1-sin α|cos α|)(1+cos α|sin α|-1-cos α|sin α|)=2sin α|cos α|·2cos α|sin α|=⎩⎪⎨⎪⎧4,α在第一、三象限时,-4,α在第二、四象限时. 备选变式(教师专享)已知sin α·cos α<0,sin αtan α>0,化简:cos α2·1-sinα21+sinα2+sin α2·1+cosα21-cosα2=________. 答案:±2sin ⎝ ⎛⎭⎪⎫α2+π4 解析:∵sin α·cos α<0,∴α为第二或第四象限角. 又∵sin α·tan α>0,∴α为第四象限角, ∴α2为第二或四象限角. ∴原式=cos α2·1-sin α2⎪⎪⎪⎪⎪⎪cos α2+sin α2·1+cosα2⎪⎪⎪⎪⎪⎪sin α2=⎩⎪⎨⎪⎧sin α2+cos α2⎝ ⎛⎭⎪⎫α2为第二象限角,-sin α2-cos α2⎝ ⎛⎭⎪⎫α2为第四象限角,∴原式=±2sin ⎝⎛⎭⎪⎫α2+π4.题型2 利用诱导公式进行化简求值例3 已知sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin ⎝ ⎛⎭⎪⎫3π2-α-sin (-α)的值.解:∵ sin(α-3π)=2cos(α-4π),∴ -sin(3π-α)=2cos(4π-α), ∴ sin α=-2cos α,且cos α≠0. ∴ 原式=sin α+5cos α-2cos α+sin α=-2cos α+5cos α-2cos α-2cos α=3cos α-4cos α=-34.备选变式(教师专享)已知cos(π+α)=-12,且角α在第四象限,计算:(1) sin(2π-α);(2) sin[α+(2n +1)π]+sin (π+α)sin (π-α)·cos (α+2n π)(n∈Z ).解:∵ cos(π+α)=-12,∴ -cos α=-12,cos α=12.又角α在第四象限,∴ sin α=-1-cos 2α=-32. (1) sin(2π-α)=sin[2π+(-α)]=sin(-α)=-sin α=32.(2)sin[α+(2n +1)π]+sin (π+α)sin (π-α)cos (α+2n π)=sin (α+2n π+π)-sin αsin αcos α=sin (π+α)-sin αsin αcos α=-2sin αsin αcos α=-2cos α=-4.1. (2013·广东文)已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,那么cos α=________. 答案:15解析:sin ⎝⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=15.2. 已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)=________. 答案:-12解析:由条件,知π=a 1+a 5+a 9=3a 5,∴ a 5=π3,∴ cos(a 2+a 8)=cos2a 5=cos 2π3=-12. 3. 已知sin α=13,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan α=________.答案:-24解析:因为sin α=13,α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-1-19=-223,从而tan α=-24. 4. 已知2tan α·sin α=3,-π2<α<0,则cos(α-π6)=____________.答案:0解析:依题意得2sin 2αcos α=3,即2cos 2α+3cos α-2=0,解得cos α=12或cos α=-2(舍去).又-π2<α<0,因此α=-π3,故cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎝ ⎛⎭⎪⎫-π3-π6=cos π2=0.1. 已知0<x<π,sinx +cosx =15.(1) 求sinx -cosx 的值; (2) 求tanx 的值.解:(1) ∵ sinx +cosx =15,∴ 1+2sinxcosx =125,∴ 2sinxcosx =-2425,又∵ 0<x<π,∴ sinx>0,2sinxcosx =-2425<0,∴ cosx<0,∴sinx -cosx>0,∴ sinx -cosx =1-2sinxcosx =75.(2) sinx +cosx sinx -cosx =17,tanx +1tanx -1=17,tanx =-43.2. 已知3cos 2(π+x)+5cos ⎝ ⎛⎭⎪⎫π2-x =1,求6sinx +4tan 2x -3cos 2(π-x)的值.解:由已知得3cos 2x +5sinx =1,即3sin 2x -5sinx -2=0,解得sinx =-13或sinx =2(舍去).这时cos 2x =1-⎝ ⎛⎭⎪⎫-132=89,tan 2x =sin 2x cos 2x =18,故6sinx +4tan 2x -3cos 2(π-x)=6×⎝ ⎛⎭⎪⎫-13+4×18-3×89=-256.3. 已知在△ABC 中,sinA +cosA =15.(1) 求sinA·cosA;(2) 判断△ABC 是锐角三角形还是钝角三角形; (3) 求tanA 的值.解:(1) 因为 sinA +cosA =15①,两边平方得1+2sinAcosA =125,所以sinA·cosA=-1225. (2) 由(1) sinAcosA =-1225<0,且0<A<π,可知cosA<0,所以A 为钝角,所以△ABC是钝角三角形.(3) (sinA -cosA)2=1-2sinAcosA =1+2425=4925.又sinA>0,cosA<0,sinA -cosA>0, 所以sinA -cosA =75②,所以由①,②可得sinA =45,cosA =-35,则tanA =sinA cosA =45-35=-43.4. 已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ的值.解:因为sin(3π+θ)=-sin θ=13,所以sin θ=-13.原式=-cos θcos θ(-cos θ-1)+cos (2π-θ)-sin ⎝⎛⎭⎪⎫3π2-θcos (π-θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝ ⎛⎭⎪⎫-132=18.1. 利用平方关系解决问题时,要注意开方运算结果的符号,需要根据角α的范围进行确定.2. 应熟练应用诱导公式.诱导公式的应用原则是:负化正、大化小、化到锐角为终了.诱导公式的应用是求任意角的三角函数值,其一般步骤:① 负角变正角,再写成2k π+α(k∈Z ),0≤α<2π;② 转化为锐角.3. 在应用诱导公式时需先将角变形,有一定技巧,如化32π+α为π+⎝ ⎛⎭⎪⎫π2+α或2π-⎝ ⎛⎭⎪⎫π2-α.请使用课时训练(A )第2课时(见活页).[备课札记]。
2014年高考数学(文科,大纲版)大二轮教学专题复习课件:专题二 三角函数 第2讲 三角恒等变换与解三角形
3 2
sin 47 sin17 cos 30 sin(17 30) sin17 cos 30 解析: = cos17 cos17
= =
sin17 cos 30 cos17 sin 30 sin17 cos 30 cos17
1 cos17 sin 30 =sin 30°= . 2 cos17
2.小题快做 熟练进行角的变换、 边角关系的转化是快速解决三角 函数化简求值、解三角形小题的关键,同时注意方程 思想的运用.该类真题平时练习中要达到 1 分钟内准 确求解.
热点考向突破—讲策略
考向一 三角函数的化简求值
1.热点内容
促迁移
求解三角恒等变换问题的一般思路为“五遇六想”,即遇 正切,想化弦;遇多元,想消元;遇差异,想联系;遇高次,想 降次;遇特角,想求值;想消元,引辅角. 2.问题引领 (1)已知 cos a =a(0≤a≤1),如何求 sin 2α ? 4
∵α∈(0,π), ∴sin α>0,cos α<0, ∴sin α-cos α>0, ∴sinα-cosα= sin cos = 1 2 sin cos = .
2
7 5
法二 ∵α∈(0,π),
4 1 sin , 5 sin cos , 5 得 ∴由 sin2 cos 2 1 cos 3 , 5
故选 C.
3.(2011 年高考四川卷,文 8)在△ABC 中,sin2A ≤sin B+sin C-sin Bsin C,则 A 的取值范围 是( C )
2 2
π (A) 0, 6
(C)
π , π (B) 6
(D)
2014高考数学文复习方案-二轮作业手册专题综合训练(三)-专题三-三角函数、三角恒等变换与解三角形
2014高考数学文复习方案-二轮作业手册专题综合训练(三)-专题三-三角函数、三角恒等变换与解三角形-(1)D(1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2) 判断两圆位置关系的方法两圆(x -a 1)2+(y -b 1)2=r 12(r 1>0)与(x -a 2)2+(y -b 2)2=r 22(r 2>0)的圆心距为d ,则d>r 1+r 2两圆外离;d =r 1+r 2两圆外切;|r 1-r 2|<d<r 1+r 2两圆相交;d =|r 1-r 2|(r 1≠r 2) 两圆内切;0≤d<|r 1-r 2|(r 1≠r 2) 两圆内含(d =0时为同心圆).题型1 直线与圆的位置关系例1 已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R).(1) 求证:不论m 取什么实数,直线l 与圆C 恒交于两点;(2) 求直线被圆C 截得的弦长最小时直线l 的方程.(1) 证明:直线l 的方程整理得(x +y -4)+m(2x +y -7)=0,∵ m ∈R ,∴ ⎩⎨⎧2x +y -7=0,x +y -4=0⎩⎨⎧x =3,y =1,也就是直线l 恒过定点A(3,1).由于|AC|=5<5(半径),∴ 点A(3,1)在圆C 内,故直线l 与圆C 恒交于两点.(2) 解:弦长最小时,直线l ⊥AC ,而k AC =-12,故此时直线l 的方程为2x -y -5=0. 变式训练已知圆x 2+y 2-6mx -2(m -1)y +10m 2-2m -24=0(m ∈R).(1) 求证:不论m 取什么值,圆心在同一直线l 上;(2) 与l 平行的直线中,哪些与圆相交,相切,相离.(1) 证明:配方得(x -3m)2+[y -(m -1)]2=25.设圆心为(x ,y),则⎩⎨⎧x =3m ,y =m -1,消去m ,得x -3y -3=0.故不论m 取什么值,圆心在同一直线l :x -3y -3=0上.(2) 解:设与l 平行的直线为n :x -3y +b =0,则圆心到直线l 的距离d =|3m -3(m -1)+b|10=|3+b|10,由于圆的半径r =5,∴ 当d<r ,即-510-3<b<510-3时,直线与圆相交;当d =r ,即b =±510-3时,直线与圆相切;当d>r ,即b<-510-3或b>510-3时,直线与圆相离.题型2 直线与圆相交的弦的问题例2 已知圆C :x 2+(y -3)2=4,一动直线l 过A(-1,0)与圆C 相交于P 、Q 两点,M 是PQ 中点,l 与直线m :x +3y +6=0相交于N.(1) 求证:当l 与m 垂直时,l 必过圆心C ;(2) 当PQ =23时,求直线l 的方程;(3) 探索AM→·AN →是否与直线l 的倾斜角有关?若无关,请求出其值;若有关,请说明理由.(1) 证明:∵ l 与m 垂直,且k m =-13, ∴ k l =3.又k AC =3,所以当l 与m 垂直时,l 的方程为y =3(x +1),l 必过圆心C.(2) 解:①当直线l 与x 轴垂直时, 易知x =-1符合题意.②当直线l 与x 轴不垂直时, 设直线l 的方程为y =k(x +1),即kx -y +k =0.因为PQ =2 3,所以CM =4-3=1,则由CM =|-k +3|k 2+1=1,得k =43,∴ 直线l :4x -3y +4=0. 从而所求的直线l 的方程为x =-1或4x -3y +4=0.(3) 解:∵ CM ⊥MN ,∴ AM→·AN →=(AC →+CM →)·AN→=AC →·AN →+CM →·AN →=AC →·AN → .①当l 与x 轴垂直时,易得N ⎝⎛⎭⎪⎪⎫-1,-53,则AN →=⎝⎛⎭⎪⎪⎫0,-53.又AC →=(1,3),∴ AM →·AN →=AC →·AN →=-5;②当l 的斜率存在时,设直线l 的方程为y =k(x +1),则由⎩⎨⎧y =k (x +1),x +3y +6=0,得N ⎝ ⎛⎭⎪⎫-3k -61+3k,-5k 1+3k ,则AN →=⎝ ⎛⎭⎪⎫-51+3k ,-5k 1+3k . ∴ AM →·AN →=AC →·AN →=-51+3k +-15k 1+3k=-5.综上,AM→·AN →与直线l 的斜率无关,且AM→·AN →=-5. 另解:连结CA 并延长交m 于点B ,连结CM ,CN ,由题意知AC ⊥m ,又CM ⊥l ,∴ 四点M 、C 、N 、B 都在以CN 为直径的圆上,由相交弦定理,得AM→·AN →=-|AM|·|AN|=-|AC|·|AB|=-5.备选变式(教师专享)已知圆C :(x -3)2+(y -4)2=4,直线l 1过定点A(1,0).(1) 若l 1与圆相切,求l 1的方程;(2) 若l 1与圆相交于P 、Q 两点,线段PQ 的中点为M ,又l 1与l 2:x +2y +2=0的交点为N ,判断AM ·AN 是否为定值?若是,则求出定值;若不是,请说明理由.解:(1) ①若直线l 1的斜率不存在,即直线是x =1,符合题意.②若直线l 1斜率存在,设直线l 1为y =k(x -1),即kx -y -k =0.由题意知,圆心(3,4)到已知直线l 1的距离等于半径2,即⎪⎪⎪⎪3k -4-k k 2+1=2,解得k =34. ∴所求直线方程是x =1或3x -4y -3=0.(2) (解法1)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx -y -k =0.由⎩⎨⎧x +2y +2=0,kx -y -k =0,得N ⎝ ⎛⎭⎪⎫2k -22k +1,-3k 2k +1. 又直线CM 与l 1垂直, 由⎩⎨⎧y =kx -k ,y -4=-1k(x -3),得M ⎝ ⎛⎭⎪⎫k 2+4k +31+k2,4k 2+2k 1+k 2. ∴ AM ·AN =⎝ ⎛⎭⎪⎫k 2+4k +31+k 2-12+⎝ ⎛⎭⎪⎫4k 2+2k 1+k 22· ⎝ ⎛⎭⎪⎫2k -22k +1-12+⎝ ⎛⎭⎪⎫-3k 2k +12=2|2k +1|1+k 21+k 2·31+k 2|2k +1|=6为定值. 故AM·AN 是定值,且为6.(解法2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx -y -k =0.由⎩⎨⎧x +2y +2=0,kx -y -k =0,得N ⎝ ⎛⎭⎪⎫2k -22k +1,-3k 2k +1. 再由⎩⎨⎧y =kx -k ,(x -3)2+(y -4)2=4,得(1+k 2)x 2-(2k 2+8k +6)x +k 2+8k +21=0.∴x 1+x 2=2k 2 + 8k + 61 + k2,得M ⎝ ⎛⎭⎪⎫k 2+4k +31+k2,4k 2+2k 1+k 2. 以下同解法1.(解法3)用几何法连结CA 并延长交l 2于点B ,k AC =2,kl 2=-12, ∴CB ⊥l 2.如图所示,△AMC ∽△ABN ,则AM AB=AC AN,可得AM·AN=AC·AB=25·35=6,是定值.题型3圆的切线问题例3求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.解:由题意,设所求圆的方程为圆C:(x-a)2+(y-b)2=r2.圆C与直线y=0相切,且半径为4,则圆心C的坐标为C1(a,4)或C2(a,-4).又已知圆x2+y2-4x-2y-4=0的圆心A的坐标为(2,1),半径为 3.若两圆相切,则|CA|=4+3=7或|CA|=4-3=1.①当C1(a,4)时,有(a-2)2+(4-1)2=72或(a-2)2+(4-1)2=12(无解),故可得a=2±210.∴所求圆方程为(x-2-210)2+(y-4)2=42或(x-2+210)2+(y-4)2=42.②当C2(a,-4)时,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(无解),故a=2±2 6.∴所求圆的方程为(x-2-26)2+(y+4)2=42或(x-2+26)2+(y+4)2=42.备选变式(教师专享)自点A(-3,3)发出的光线l射到x轴上,被x轴反射,反射光线所在的直线与圆C:x2+y2-4x -4y +7=0相切.求:(1) 光线l 和反射光线所在的直线方程;(2) 光线自A 到切点所经过的路程.解:根据对称关系,首先求出点A 的对称点A′的坐标为⎝⎛⎭⎫-3,-3,其次设过A′的圆C 的切线方程为y =k ⎝⎛⎭⎫x +3-3.根据d =r ,即求出圆C 的切线的斜率为k =43或k =34, 进一步求出反射光线所在的直线的方程为 4x -3y +3=0或3x -4y -3=0.最后根据入射光与反射光关于x 轴对称,求出入射光所在直线方程为4x +3y +3=0或3x +4y -3=0.光路的距离为⎪⎪⎪⎪A′M ,可由勾股定理求得 ⎪⎪⎪⎪A′M 2=⎪⎪⎪⎪A′C 2-⎪⎪⎪⎪CM 2=7.【示例】 (本题模拟高考评分标准,满分14分)直线l 过点(-4,0)且与圆(x +1)2+(y -2)2=25交于A ,B 两点,如果AB =8,求直线l 的方程.学生错解:解:设直线l 的方程为y =k(x +4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0.审题引导:(1) 如何设过定点的直线的方程?(2) 圆中弦长的问题,通常作怎样的辅助线构造直角三角形来解决?规范解答:解:过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;(4分)若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,(10分)此时直线方程为5x+12y+20=0,(12分)综上直线方程为5x+12y+20=0或x+4=0.(14分)错因分析: 1. 解答本题易误认为斜率k一定存在从而漏解.2. 对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.1. 在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是____________.答案:43解析:∵ 圆C 的方程可化为(x -4)2+y 2=1,∴ 圆C 的圆心为(4,0),半径为1.由题意知,直线y =kx -2上至少存在一点A(x 0,kx 0-2),以该点为圆心,1为半径的圆与圆C 有公共点,∴ 存在x 0∈R ,使得AC ≤1+1成立,即AC min ≤2.∵ AC min 即为点C 到直线y =kx -2的距离|4k -2|k 2+1, ∴ |4k -2|k 2+1≤2,解得0≤k ≤43.∴ k 的最大值是43. 2. 已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-24,24 解析:易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k(x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k|k 2+1<1,即k 2<18,解得-24<k <24.3. 直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若MN ≥23,则k 的取值范围是________.答案:⎣⎢⎡⎦⎥⎤-33,33 解析:设圆心C(2,3)到直线y =kx +3的距离为d ,若MN ≥23,则d 2=r 2-⎝ ⎛⎭⎪⎪⎫12MN 2≤4-3=1,即|2k|21+k2≤1, 解得-33≤k ≤33. 4. 若圆O :x 2+y 2=5与圆O 1:(x -m)2+y 2=20(m ∈R)相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.答案:4解析:依题意得OO 1=5+20=5,且△OO 1A 是直角三角形,S △OO 1A =12·AB 2·OO 1=12·OA ·AO 1,因此AB =2·OA·AO 1OO 1=2×5×255=4. 5. 如图,在平面直角坐标系xOy 中,椭圆C的中心在坐标原点O ,右焦点为F.若C 的右准线l 的方程为x =4,离心率e =22. (1) 求椭圆C 的标准方程;(2) 设点P 为准线l 上一动点,且在x 轴上方.圆M 经过O 、F 、P 三点,求当圆心M 到x 轴的距离最小时圆M 的方程.解:(1) 由题意,设椭圆C 的标准方程为x 2a2+y 2b 2=1(a>b>0),则⎩⎪⎨⎪⎧a 2c =4,c a =22,解得a =22,c =2.从而b 2=a 2-c 2=4.所以所求椭圆C 的标准方程为x 28+y 24=1. (2) (解法1)由(1)知F(2,0).由题意可设P(4,t),t>0.线段OF 的垂直平分线方程为x =1.①因为线段FP 的中点为⎝ ⎛⎭⎪⎪⎫3,t 2,斜率为t 2, 所以FP 的垂直平分线方程为y -t 2=-2t(x -3),即y =-2t x +6t +t 2.② 联立①②,解得⎩⎨⎧x =1,y =t 2+4t,即圆心M ⎝⎛⎭⎪⎪⎫1,t 2+4t . 因为t>0,所以t 2+4t ≥2t 2·4t=22,当且仅当t 2=4t,即t =22时,圆心M 到x 轴的距离最小,此时圆心为M(1,22),半径为OM =3.故所求圆M 的方程为(x -1)2+(y -22)2=9.(解法2)由(1)知F(2,0).由题意可设P(4,t),t>0.因为圆M 过原点O ,故可设圆M 的方程为x 2+y 2+Dx +Ey =0.将点F 、P 的坐标代入得⎩⎨⎧4+2D =0,16+t 2+4D +tE =0,解得⎩⎨⎧D =-2,E =-⎝ ⎛⎭⎪⎪⎫t +8t .所以圆心M 的坐标为⎝ ⎛⎭⎪⎪⎫-D 2,-E 2,即(1,t 2+4t ).因为t>0,所以t 2+4t ≥2t 2·4t=22,当且仅当t 2=4t,即t =22时,圆心M 到x 轴的距离最小,此时E =-4 2.故所求圆M 的方程为x 2+y 2-2x -42y =0.6. 如图,在平面直角坐标系xOy 中,已知曲线C 由圆弧C 1和圆弧C 2相接而成,两相接点M 、N 均在直线x =5上.圆弧C 1的圆心是坐标原点O ,半径为r 1=13;圆弧C 2过点A(29,0).(1) 求圆弧C 2所在圆的方程;(2) 曲线C 上是否存在点P ,满足PA =30PO ?若存在,指出有几个这样的点;若不存在,请说明理由;(3) 已知直线l :x -my -14=0与曲线C 交于E 、F 两点,当EF =33时,求坐标原点O 到直线l 的距离.解:(1) 由题意得,圆弧C 1所在圆的方程为x 2+y 2=169.令x =5,解得M(5,12),N(5,-12),又C 2过点A(29,0),设圆弧C 2所在圆方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧52+122+5D +12E +F =0,52+122+5D -12E +F =0,292+29D +F =0.解得⎩⎪⎨⎪⎧D =-28,E =0,F =-29.所以圆弧C 2所在圆的方程为x 2+y 2-28x -29=0.(2) 假设存在这样的点P(x ,y),则由PA =30PO ,得(x -29)2+y 2=30(x 2+y 2),即x 2+y 2+2x -29=0.由⎩⎨⎧x 2+y 2+2x -29=0,x 2+y 2=169(-13≤x ≤5),解得x =-70(舍去);由⎩⎨⎧x 2+y 2+2x -29=0,x 2+y 2-28x -29=0(5≤x ≤29),解得x =0(舍去).所以这样的点P 不存在.(3) 因为圆弧C 1、C 2所在圆的半径分别为r 1=13,r 2=15,因为EF>2r 1,EF>2r 2,所以E 、F 两点分别在两个圆弧上.设点O 到直线l 的距离为d ,因为直线l 恒过圆弧C 2所在圆的圆心(14,0),所以EF =15+132-d 2+142-d 2,即132-d 2+142-d 2=18,解得d 2=1 61516,所以点O 到直线l 的距离为 1 6154. 1. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA→·PB →的最小值为________.答案:-3+22 解析:设∠APB =2θ,|PO→|=x ,则PA →·PB →=|PA →|·|PB →|·cos2θ=|PA →|2cos2θ=(|PO →|2-1)·(1-2sin 2θ)=(x 2-1)·⎝ ⎛⎭⎪⎪⎫1-2x 2=x 2-2-1+2x 2≥-3+22,当且仅当x 2=2x2,即x =42时取等号. 2. 若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b的取值范围是________.答案:[1-22,3]解析:y=3-4x-x2变形为(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3),表示以(2,3)为圆心,2为半径的下半圆,如图所示.若直线y=x+b与曲线y=3-4x-x2有公共点,只需直线y=x+b在图中两直线之间(包括图中两条直线),y=x+b与下半圆相切时,圆心到直线y=x+b的距离为2,即|2-3+b|2=2,解得b=1-22或b=1+22(舍去),∴b的取值范围为1-22≤b≤3.3. 已知圆C过点P(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.(1) 求圆C的方程;(2) 过点P作两条相异直线分别与圆C相交于A、B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.解:(1) 设圆心C(a,b),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1, 解得⎩⎨⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2.(2) 由题意知,直线PA 和直线PB 的斜率存在,且互为相反数,故可设PA :y -1=k(x -1),PB :y -1=-k(x -1),由⎩⎨⎧y -1=k (x -1),x 2+y 2=2得(1+k 2)x 2+2k(1-k)x +(1-k)2-2=0.因为点P 的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y A x B -x A =-k (x B -1)-k (x A -1)x B -x A =2k -k (x B +x A )x B -x A =1=k OP ,所以,直线AB 和OP 一定平行.4. 已知以点C ⎝⎛⎭⎪⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1) 求证:△AOB 的面积为定值;(2) 设直线2x +y -4=0与圆C 交于点M 、N ,若|OM|=|ON|,求圆C 的方程;(3) 在(2)的条件下,设P 、Q 分别是直线l :x +y +2=0和圆C 的动点,求|PB|+|PQ|的最小值及此时点P 的坐标.解:(1) 由题设知,圆C 的方程为(x -t)2+⎝⎛⎭⎪⎪⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A(2t ,0);当x =0时,y=0或4t ,则B ⎝⎛⎭⎪⎪⎫0,4t , ∴ S ΔAOB =12|OA|·|OB|=12|2t|·⎪⎪⎪⎪⎪⎪⎪⎪4t =4为定值.(2) ∵ |OM|=|ON|,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴ C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴ t =2或t =-2,∴ 圆心C(2,1)或C(-2,-1)∴ 圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d>r ,此时不满足直线与圆相交,故舍去.∴ 圆C 的方程为(x -2)2+(y -1)2=5(3) 点B(0,2)关于直线x +y +2=0的对称点为B′(-4,-2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圆上点Q 的最短距离为|B ′C|-r =(-6)2+32-5=35-5=2 5.所以|PB|+|PQ|的最小值25,直线B′C 的方程为y =12x ,则直线B′C 与直线x +y +2=0的交点P 的坐标为⎝ ⎛⎭⎪⎪⎫-43,-23.1. 两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.2. 圆的弦长的常用求法:(1) 几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎪⎫12l 2=r 2-d 2; (2) 代数方法:运用根与系数的关系及弦长公式:AB =1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. 请使用课时训练(B)第5课时(见活页).。
2014年高考数学三角函数、解三角形汇编
2014年高考数学三角函数、解三角形1.已知函数2()2sin ()234f x x x π=--,ππ42x ⎡⎤∈⎢⎥⎣⎦, (1)求()f x 的最大值和最小值;(2)若方程()f x m =仅有一解,求实数m 的取值范围.2.已知函数()4cos sin()1(0)6f x x x πωωω=-+>的最小正周期是π. (1)求()f x 的单调递增区间;(2)求()f x 在[8π,38π]上的最大值和最小值. 3.已知函数2()2cos sin(2)1f x x x π=-+-.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[0,]2π上的最小值和最大值.4.已知函数2()cos(2)2sin 13f x x x =--+π. (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[0,]2π上的最大值和最小值.5.已知向量()1cos ,1,(1,)a x b a x ωω=+= (ω为常数且0ω>),函数x f ⋅=)(在R 上的最大值为2.(1)求实数a 的值;(2)把函数()y f x =的图象向右平移6πω个单位,可得函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,求ω取最大值时的单调增区间.6.在ABC ∆中,角,,A B C 的对边分别为,,a b c 且cos 3cos C a c B b-=. (1)求sin B ;(2)若b a c ==,求ABC ∆的面积. 7.设函数()f x a b =⋅,其中向量(sin 21,sin 2,6a x b x x R π⎛⎫⎛⎫==--∈ ⎪ ⎪⎝⎭⎝⎭ 。
(1)求()f x 的最小值,并求使()f x 取得最小值的x 的集合。
(2)将函数()f x 图像沿x 轴向右平移,则至少平移多少个单位长度,才能使得到的函数()g x 的图像关于y 轴对称。
8.已知函数22())2sin ()312f x x x ππ-+-,钝角ABC ∆(角,,A B C 对边为,,a b c )的角B 满足()1f B =. (1)求函数()f x 的单调递增区间;(2)若3,b c ==,B a .9.设函数f (x )=sin 3x πω⎛⎫+⎪⎝⎭+sin 3x πω⎛⎫- ⎪⎝⎭ωx (其中ω>0),且函数f (x )的图象的两条相邻的对称轴间的距离为2π. (1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 10.已知函数f (x )=tan 34x π⎛⎫+ ⎪⎝⎭. (1)求f 9π⎛⎫ ⎪⎝⎭的值; (2)设α∈3,2ππ⎛⎫ ⎪⎝⎭,若f 34απ⎛⎫+ ⎪⎝⎭=2,求cos 4πα⎛⎫- ⎪⎝⎭的值.11.已知函数()sin f x m x x =+,(0)m >的最大值为2.(Ⅰ)求函数()f x 在[]0,π上的值域;(Ⅱ)已知ABC ∆外接圆半径3=R ,()()sin 44f A f B A B ππ-+-=,角,A B 所对的边分别是,a b ,求ba 11+的值.12.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,ABC ∆的面积S 满足cos S A =. (Ⅰ)求角A 的值;(Ⅱ)若a =B 的大小为x,用x 表示c 并求的取值范围.13.在ABC ∆中,内角,,A B C 的对边分别为,,a b c . 已知cos -2cos 2-cos A C c a B b = . (1)求sin sin C A 的值; (2) 若1cos ,24B b ==,求ABC ∆的面积.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos cos cos a C b C c B c A -=-,且C =120°.(1)求角A ;(2)若a =2,求c .15.已知函数2()1cos 22sin (),6f x x x x R π=+--∈.(Ⅰ)求()f x 的最小正周期和对称中心;(Ⅱ)若将()f x 的图像向左平移(0)m m >个单位后所得到的图像关于y 轴对称,求实数m 的最小值.16.(本小题满分12分)设()sin (sin cos )f x x x x =+.(Ⅰ)求()f x 最大值及相应x 值;(Ⅱ)锐角ABC △中,满足()1f A =.求()sin 2B C +取值范围.17.在△ABC ,已知.sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++(1)求角A 值;(2)求C B cos sin 3-的最大值.18.已知:ABC c b a ∆分别是锐角,,三个内角A ,B ,C 所对的边,向量)sin ,cos 2(),sin 32,(sin A A b A A a ==,设b a A f ⋅=)((1)若32)(=A f ,求角A ;(2)在(1)的条件下,若2,tan 2tan tan ==+a Aa C c Bb ,求三角形ABC 的面积.19.在ABC ∆中,边a 、b 、c 分别是角A 、B 、C 的对边,且满足cos (3)cos b C a c B =-(1)求B cos ;(2)若4BC BA ⋅= ,b =a ,c 的值.20.在ABC ∆中,,,A B C 的对边分别为,,a b c 且cos ,cos ,cos a C b B c A 成等差数列.(1)求B 的值;(2)求22sin cos()A A C +-的范围.21.已知ABC ∆中,角A 、B 、C 的对边分别为a b c 、、,且)cos cos c B b C -=.(1)求角B 的大小;(2)设向量8(cos 21,cos ),(1,)5A A +-m =n =,且⊥m n ,求tan()4A π+的值.22.在ABC ∆中,角A B C 、、所对的边分别为a b c 、、sin c C =, (Ⅰ)求A 的大小;(Ⅱ)若6=a ,求b c +的取值范围.参考答案1.(1) m ()2ax f x =,min ()4f x =-(2)({}2,34⎤-⋃-⎦【解析】试题分析:(1)先用余弦的二倍角公式将其降幂,再用诱导公式及化一公式将其化简为()()sin f x A x k ωϕ=++或()()cos f x A x k ωϕ=++的形式,再根据正弦或余弦的最值情况求其最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解总解((12结题))利利(:的1用用)求由突面 余解c破积弦o此s口A和定类,=理c问o11如s求32A题,求解求且,A.解B一0<;A要AC<注π,,意需得从要s问i求n题A出=的bc不,断1由-转三11化23角中2形=寻1的53求.面
(所积应2((又12)以由及该))S第第第第A(△→c结1AoB二三一一)B知s合·CA步步→步步A=C第b,::12::c==b(可1c由求求列bs1)ci问求5nc面方s6AoiAn,中出sB积程=AA又的sA=公组3,inC0结c1式,,oA5s论6,所求A×.=以二b11c2311要b,=23c,=注14c14意-5.6b求,=解1 本题第(2)问时,
题
船乙仍留在 B 处执行任务,渔政船甲航行 30 km 到达 D 处时,收到新 的指令另有重要任务必须执行,于是立即通知在 B 处执行任务的渔政船
流 程
乙前去救援渔船丙(渔政船乙沿直线 BC 航行前去救援渔船丙),此时 B,
D 两处相距 42 km,渔政船乙要航行多少距离才能到达渔船丙所在的位置 解
√进(5行) ×边(与6)角×之(7)间√ 的(8相) ×互
(8)正弦定理可以实现边角互化,但余 转化是解决问题的关键。
弦定理不可以.
()
正、余弦定理的应用
题型突破 探究方法 构建模板
【示例 1】.△ABC 的面积是 30,内角 A,B,C 的对边分别为 a,b,c, cos A=1123. (1)求A→B·A→C;(2)若 c-b=1,求 a 的值.
的渔政船甲和在 B 处执行任务的渔政船乙,
同时收到同一片海域上一艘渔船丙的求救
信号,此时渔船丙在渔政船甲的南偏东 40°
方向距渔政船甲 70 km 的 C 处,渔政船乙在
渔政船甲的南偏西 20°方向的 B 处.两艘渔
政船协调后立即让渔政船甲向渔船丙所在
审
的位置 C 处沿直线 AC 航行前去救援,渔政
C 处实施营救?
析
利用正、余弦定理求解.
第一步:求sin∠ABD , 第二步:求cos∠BDC ,
总
第三步:求BC
结
题型突破 探究方法 构建模板
正、余弦定理的实际应用
解 设∠ABD=α,在△ABD 中,AD=30 km,
BD=42 km,∠BAD=60°,
由正弦定理,得sAinDα=sin∠BDBAD,
三角 恒等 变换 与解 三角 形
以题带点
题型突破
示例精讲 对点训练
天天冲关
以题带点 自主诊断 回扣要点
判断下列结论是否正确(请在括号中打
解析
点评
“√”或 “×”)
解1.析对于(2三)当角α恒,β等有变一换个,
(1)两角和与差的正弦、余弦公式中的 为高考0 时命此题式以成公立式,的(3基) α本=
故直线 l 的方程为 y=2x-40.又点 E(0,-55)到直线 l 的距离为
d=|0+515+-440|=3 5<7.所以船会进入警戒水域.
天天冲关 精题精练 提升能力 倒 计 时
1.(2013·北京东城区期末)在△ABC 中,A,B,C 为内角,
且 sin Acos A=sin Bcos B,则△ABC 是( ).
c,已知 a2-c2=2b,且 sin Acos C=3cos Asin A,求 b=______.
4.(2013·全国Ⅱ卷)△ABC 中内角 A,B,C 的对边分别为 a,b,c,已
知 a=bcos C+csin B.
(1)求 B;
(2)若 b=2,求△ABC 面积的最大值.
冲关答案Biblioteka 1. D 2. A 3. 4
A.等腰三角形
B.直角三角形
C.等腰直角三角形 D.等腰或直角三角形
2.(2013·天津)在△ABC 中,内角 A,B,C 所对的边分别是 a,b,c.
已知 8b=5c,C=2B,则 cos C 等于( ).
A.275
B.-275 C.±275
D.2254
3.(2013·衡水调研)在△ABC 中,内角 A,B,C 的对边长分别为 a,b,
别为 a,b,c,且 a+c=6,b=2,cos B=79.
(1)求 a,c 的值; (2)求 sin(A-B)的值.
解 (1)由余弦定理,得 cos B=a2+2ca2c-b2=a2+2ac2c-4=79, 即 a2+c2-4=194ac. ∴(a+c)2-2ac-4=194ac,∴ac=9.
由a+c=6, ac=9,
4.解:(1)由已知及正弦定理,得 sin A=sin Bcos C+sin Csin B,① 又 A=π-(B+C), 故 sin A=sin(B+C)=sin Bcos C+cos Bsin C.② 由①,②和 C∈(0,π)得 sin B=cos B. 又 B∈(0,π),所以 B=π4.
(2)△ABC 的面积 S=12acsin B= 42ac.
θ=
26 26 .
由于 0°<θ< 45°,
所以 cos θ =
1-
22662=5
26 26 .
图1
题型突破 探究方法 构建模板
由余弦定理得
BC= AB2+AC2-2AB·AC·cos θ=10 5(海里)
所以该船的行驶速度为10
2
5=15
5(海里/时).
3
(2)如图 2 所示,以 A 为原点建立平面直角坐标系,
(5)正弦定理对钝角三角形不成立. ( )
(6)在△ABC中共有三个角,三条边六
个量,可以已知三个量求另外三个量.( )
(7)余弦定理对任何三角形均成立. ( )
本对在无角形热任△题法函等点意正A求数知;B三确 三的识C, 边角中性结,(形已5质合)这均知正、为样成三弦解命的立个定三题三,角理角的角(,6) 形2.有对无于数解个三,角它形们,都重是点相 似考三查角正形、余弦定理的应 答用案,:利(1用) √正(2、) √余(3弦) √定(理4)
审 题
流 程
在△第AB二C步中:,求由b余、弦c定,理,得
解
a2=第b三2+步c2:-由2余bc弦co定s A理=求(ca- 2,b)2+2bc(1-cos A)
析
=1第+四2× 步:15求6×a.1-1123=25,所以 a=5
总
所以 a=5
结
题型突破 探究方法 构建模板
【训练 1】(2013·山东卷)设△ABC 的内角 A,B,C 所对的边分
得 a=c=3.
题型突破 探究方法 构建模板
【训练 1】(2013·山东卷)设△ABC 的内角 A,B,C 所对的边分
别为 a,b,c,且 a+c=6,b=2,cos B=79.
(1)求 a,c 的值; (2)求 sin(A-B)的值.
(2)在△ABC 中,cos B=79,
∴sin B= 1-cos2B= 1-97 2=4 9 2.
角α,β是任意的 .
( ) 0运时用成、立计,算(4为)由主三,角其形中大
(2)存在实数α,β ,使等式sin(α+β)= 边多对以大与角角及所正在弦范定围理、可三得
sin α+sin β .
()
(3)存在实数α使 tan 2α =2tan α .( )
(4)在△ABC中A>B,必有sinA>sinB. ( )
sin α=ABDDsin∠BAD=4320sin 60°=5143.
审
又 AD<BD,所以 0°<α<60°,cos α= 1-sin2α=1114,
题
co总s∠结BD: C解=决co实s(6际0°+问α题)=的-步17.骤是在△:B(1D)C准中确,理由解余题弦意定,理得分:清已 BC知2=与D所C求2+.BD(22-)根2据DC题·B意D·,cos画∠出BD示C意图,并标出条件.(3)将
由正弦定理,得
sin
A=a
sin b
B=3×24 9
2 =2
3
2.
又 A=C,∴0<A<π2,∴cos A= 1-sin2A=13,
∴sin (A-B)=sin Acos B-cos Asin B=23 2×79-13×4 9 2=1027 2.
题型突破 探究方法 构建模板
正、余弦定理的实际应用
【示例 2】.如图,正在海上 A 处执行任务
东 45°+θ(其中 sin θ= 2266,0°<θ<45°)且与点 A 相距 10 13海里 的位置 C. (1)求该船的行驶速度(单位:海里/时); (2)若该船不改变航行方向继续行驶,判断它是 否会进入警戒水域,并说明理由.
解 (1)如图 1,在△ABC 中,AB=40 2海里,
AC=10
13海里,∠BAC=θ,sin
流 程
所=求4问02题+4归22结-到80×一4个2c或os几(60个°+相α关)=联3 8三44角,形中,通过合理运 解 所以用是正否BC、具=余有62弦实(km定际).理意等义有,关得知出识正正确确答求案解..(4)检验解出的结果 析
答:渔政船乙要航行 62 km 才能到渔船丙所在位置 C 处实施营救. 总
结
题型突破 探究方法 构建模板
【训练 2】在一个特定时段内,以点 E 为中心的 7 海里以内海域 被设为警戒水域,点 E 正北 55 海里处有一个雷达观测站 A.某时 刻测得一艘匀速直线行驶的船位于点 A 北偏东 45°且与点 A 相距
40 2海里的位置 B,经过 40 分钟又测得该船已行驶到点 A 北偏
设点 B,C 的坐标分别是(x1,y1),(x2,y2),
设 BC 的延长线与 x 轴的交点为 D.由题意得,
x1=y1= 22AB=40,
图12