浙江省湖州市吴兴区2018-2019学年九年级上期末数学检测题(一)(含答案)
浙江省2018-2019学年九年级上学期数学期末综合检测卷
浙江省2018-2019学年九年级上学期数学期末综合检测卷姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.抛物线y=ax2﹣4ax﹣3a的对称轴是()A. 直线x=3B. 直线x=2C. 直线x=1D. 直线x=﹣42.已知二次函数y=x2-4x+5的顶点坐标为( )A. (-2,-1)B. (2,1)C. (2,-1)D. (-2,1)3.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A. πB. 3πC. 2πD. π4.已知二次函数y= +bx+c的图象如图所示,对称轴为直线x=1.有位学生写出了以下五个结论:①ac >0;②方程ax2+bx+c=0的两根是=﹣1,=3;③2a﹣b=0;④当x>1时,y随x的增大而减小;则以上结论中正确的有().A. 1个B. 2个C. 3个D. 4个5.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A. 弦AB的长等于圆内接正六边形的边长B. 弦AC的长等于圆内接正十二边形的边长C. D. ∠BAC=30°6.下列说法中正确的个数有()①直径不是弦;②三点确定一个圆;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④相等的圆心角所对的弧相等,所对的弦也相等A. 1个B. 2个C. 3个D. 4个7.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,……,重复操作依次得到点P1,P2,…,则点P2010的坐标是().A. (2010,2)B. (2010,-2)C. (2012,-2)D. (0,2)8.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形,图中阴影部分的面积为()A. B. . C. D.9.抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于C点,其中﹣2<h<﹣1,﹣1<x B<0,下列结论①abc <0;②(4a﹣b)(2a+b)<0;③4a﹣c<0;④若OC=OB,则(a+1)(c+1)>0,正确的为()A. ①②③④B. ①②④C. ①③④D. ①②③10.如图,在直角坐标系中,已知点P0的坐标为(1,0),进行如下操作:将线段OP0按逆时针方向旋转60°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转60°,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3,OP4,…则P32的坐标为()A. (﹣231,231)B. (231,231)C. (﹣232,232)D. (232,232)二、填空题(共6题;共24分)11.小芳抛一枚硬币10次,有6次正面朝上,当她抛第11次时,正面朝上的概率为________.12.把二次函数y=﹣2x2+4x+3化成y=a(x﹣m)2+k的形式是________.13.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=6,则AE=________.14.4二次函数y=x2+bx的图象如图,对称轴为直线x=1.若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是________.15.如图,点A是双曲线y=- 在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB 为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C 始终在双曲线上运动,则k的值为________。
浙江省湖州2018-2019学年第一学期九年级数学教学质量检测(一)参考答案及评分标准
2018-2019学年第一学期九年级教学质量检测(一)数学参考答案及评分标准一、单选题(共 10 题 共 30 分)1. A2. A【解析】()22222211y x x m x m =-++=-++,其顶点坐标为(1,21m +)在第一象限3. B4. C5. A6. B7. D8. A【解析】∵点A 的坐标为(2,1),∴点C 的坐标为(-2,-1),再次平移透明纸,使这个点与点C 重合时,此时抛物线的顶点坐标为(-4,-2),所以抛物线的函数表达式为y =(x +4)2-2=x 2+8x +14.9. C解析:如图,作PA ⊥x 轴于点A ,由题意知PA =PF .由“两点之间线段最短”知:当点M 、P 、A 共线时PM +PA =MA 最小,即PF +PM 最小,又因为MF 为定值,可得此时△PMF 周长最小.作FN ⊥MA 于点N .在Rt △MFN 中,2MF =,又MA =PM +PA =3,所以△PMF 周长最小值是PM +PF +MF =MA +MF =5.10.C解析:根据抛物线的对称性,取顶点不是格点的抛物线。
例如:以图中的左下角的顶点为坐标原点, 则抛物线可以是2177228y x ⎛⎫=-+ ⎪⎝⎭,该抛物线经过图中的8个格点.二、填空题(共 6 题,共 24 分)11.(0,-1)12.解析:根据抛物线的对称性,点(-3,0)和(1,0)关于对称轴对称,因此,对称轴是 x =-1.13.112或12- 14.x <0或x >115.1m解:根据题意可得A ,B ,C 三点有两个在二次函数图象上,一个在反比例函数图象上,不妨设A ,B 两点在二次函数图象上,点C 在反比例函数图象上, ∵二次函数2y x =的对称轴是y 轴,∴120x x +=.∵点C 在反比例函数1(0)y x x =>上, ∴31x m=, ∴1231x x x m ω=++=. 16.112y x =-三、解答题(共 8 题,共 66 分)17.(6分)解:把点(—1,0),(3,0)的坐标分别代入y =ax 2+bx -3,得,030933a b a b =--⎧⎨=+-⎩解得12a b =⎧⎨=-⎩即a 的值为1,b 的值为-2.18.(6分)(1)()223y x =--;(2)开口向下,对称轴为直线x =319.(6分)解:(1)由题意,得1122b -=-⎛⎫⨯- ⎪⎝⎭,102b c -++=, 解得132b c =-⎧⎪⎨=⎪⎩∴抛物线的函数表达式为21322y x x =--+ (2)∵()2311222y x x =-+=--++ ∴顶点坐标为(-1,2) ∴将抛物线21322y x x =--+平移,使其顶点恰好落在原点的一种平移方法:先向右平移1个单位长度,再向下平移2个单位长度(答案不唯一) 平移后的函数表达式为212y x =-20.(8分)解:(1)当a =-1时,把(-1,0)代入()2230y mx mx m =-+≠,∴解得m =-1,∴抛物线的解析式为:223y x x =--+,令y =0代入223y x x =--+,∴x =-1或x =3,∴b =3.(2)抛物线的对称轴为:x =1,把x =1代入()2230y mx mx m =-+≠,∴y =3-m∴抛物线的顶点坐标为(1,3-m ),把x =1代入y =mx +n ,∴y =m +n =m +3-2m =3-m∴顶点坐标在直线y =mx +n 上(3)∵122x x +>,∴2111x x ->-,∵121x x <<, ∴2111x x ->-,∴P 离对称轴较近,当m >0时,p <q ,当m <0时,p >q21.(8分)解:(1)设该型号自行车的进价为x 元,则标价为(1+50%)x 元.根据题意,得8[(1+50%)x ×0.9-x ]=7[(1+50%)x -100-x ]整理,得2.8x =3.5x -700解得x =1000(元)(1+50%)x =1500(元) .答:该型号自行车的进价为1000元,则标价为1500元.(2)设该型号自行车降价a 元时,每月获利W 最大.根据题意,得()3150010005120a W a ⎛⎫=--+ ⎪⎝⎭ 23480255002020a a =-++ ()231608028022550020a a =--+-+ ()23802646020a =--+. 当a =80时,每月获利最大,最大利润是26460元.即该型号自行车降价80元时,每月获利最大,最大利润是26460元.22.【思路分析】(1)比较根的判别式与0的大小关系;(2)根据函数关系式特点可判断出一定过(1,0)且不经过(1,1),故代入另两点求出a ,b ;(3)将P 点代入结合a +b <0,运用等式或不等式的性质整体转换【解题过程】(1)∵a ≠0∴()()2224420b ac b a a b b a -=++=+≥∴抛物线与x 轴有一个或两个交点.(2)由(1)可得,图像过(1,0),则不经过(1,1),即只可经过A ,B 两点, 代入A ,B 得:()41a b a b a b ⎧--+=⎪⎨+=⎪⎩,∴23b a =-⎧⎨=⎩ ∴2321y x x =--(3)∵P (2,m )在二次函数图象上,∴m =4a +2b -(a +b )=3a +b =a +b +2b又∵a +b <0,m >0∴2a >0,即a >023.(10分)(1)由题意得OA =8,AB =4,BC =2,利用两根式求得抛物线OA 段二次项系数为12-,所以抛物线BC 段的函数表达式为:()()()22111112141384132222y x x x x x =---=-++=--+ (2)m =4n ,n =4p 或者2n mp =24.(12分)解:(1)①∵AC ∥x 轴,A (-4,4)∴点C 的坐标是(0,4).把A ,C 两点的坐标分别代入2y x bx c =-++得:41644b c c =--+⎧⎨=⎩,解得:44b c =-⎧⎨=⎩②四边形AOBD 是平行四边形理由如下:由①得:抛物线的解析式为244y x x =--+.∴ 顶点D 的坐标为(-2,8).过D 点作DE ⊥AB 于点E ,则DE =OC =4,AE =2.∵AC =4,∴122BC AC ==,∴AE =BC . ∵AC ∥x 轴, ∴∠AED =∠BCO =90°.∴△AED ≌△BCO .∴AD =BO ,∠DAE =∠OBC .∴AD ∥BO .∴四边形AOBD 是平行四边形.(2)存在,点A 的坐标可以是(-2)或(2)(写一个即可).。
2018-2019学年九年级(上)期末数学试卷(有答案含解析)
2018-2019学年九年级(上)期末数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的)1.下列标志,是中心对称图形的是()A.B.C.D.2.四边形ABCD是圆的内接四边形,若∠ABC=70°,则∠ADC的度数是()A.70°B.90°C.110°D.120°3.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是()A.﹣1B.0C.1D.24.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是()A.y=﹣2x2+1B.y=﹣2x2﹣1C.y=﹣2(x+1)2D.y=﹣2(x﹣1)25.如图,把△ABC绕着点A逆时针旋转40°得到△ADE,∠1=30°,则∠BAE=()A.10°B.30°C.40°D.70°6.在元且庆祝活动中,参加活动的同学互赠贺卡,共送贺卡90张,则参加活动的有()人.A.9B.10C.12D.157.如图,PA,PB分别与⊙O相切于点A,B、过圆上点C作⊙O的切线EF分别交PA,PB于点E,F,若PA=4,则△PEF的周长是()A.4B.8C.10D.128.关于抛物线y=﹣(x+1)2+2,下列说法错误的是()A.图象的开口向下B.当x>﹣1时,y随x的增大而减少C.图象的顶点坐标是(﹣1,2)D.图象与y轴的交点坐标为(0,2)9.如图,在△ABC中,点D、E分别在边AB、AC上,且BD=2AD,CE=2AE,则下列结论中不成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2D.S△ABC =9S△ADE10.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=4,那么b的值为()A.5B.﹣5C.4D.﹣4二、填空题(本题有6个小题,每小题3分,满分18分11.点A(﹣6,3)与A′关于原点对称,则点A′的坐标是.12.如果关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么m的取值范围是.13.已知圆锥的侧面积为16πcm2,圆锥的母线长8cm,则其底面半径为cm.14.如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围.15.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣2上运动,当⊙P与x轴相切时,圆心P 的坐标为.16.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t =0(t为实数)在1≤x≤5的范围内有解,则t的取值范围是.三、解答题(本題有9个小題,共102分,解答要求写出文字说明,证明过程或计算步骤)17.(10分)解方程(1)x2+5x=0(2)x(x﹣2)=3x﹣618.(10分)已知:如图,D是AC上一点,DE∥AB,∠B=∠DAE.(1)求证:△ABC∽△DAE;(2)若AB=8,AD=,6,AE=3,求BC的长.19.(10分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1;(2)画出△ABC绕点A逆时针旋转90°的△AB2C2;直接写出点C2的坐标为;(3)求在△ABC旋转到△AB2C2的过程中,点C所经过的路径长.20.(11分)已知抛物线的对称轴是直线x=﹣1,与x轴一个交点是点A(﹣3,0),且经过点B (﹣2,6)(1)求该抛物线的解析式;(2)若点(﹣,y1)与点(2,y2)都在该抛物线上,直接写出y1与y2的大小关系.21.(11分)某农场准备围建一个矩形养鸡场,其中一边靠墙(墙的长度为15米),其余部分用篱笆围成,在墙所对的边留一道1米宽的门,已知篱笆的总长度为23米.(1)设图中AB(与墙垂直的边)长为x米,则AD的长为米(请用含x的代数式表示);(2)若整个鸡场的总面积为y米2,求y的最大值.22.(10分)如图,已知:AB为⊙O直径,PQ与⊙O交于点C,AD⊥PQ于点D,且AC为∠DAB 的平分线,BE⊥PQ于点E.(1)求证:PQ与⊙O相切;(2)求证:点C是DE的中点.23.(12分)已知:如图,BC为⊙O的弦,点A为⊙O上一个动点,△OBC的周长为16.过C作CD∥AB交⊙O于D,BD与AC相交于点P,过点P作PQ∥AB交于Q,设∠A的度数为α.(1)如图1,求∠COB的度数(用含α的式子表示);(2)如图2,若∠ABC=90°时,AB=8,求阴影部分面积(用含α的式子表示);(3)如图1,当PQ=2,求的值.24.(14分)如图,AB为⊙O的直径,且AB=m(m为常数),点C为的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CD交AB于点E.(1)当DC⊥AB时,则=;(2)①当点D在上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;②设CD长为t,求△ADB的面积S与t的函数关系式;(3)当=时,求的值.25.(14分)如图,抛物线y=a(x﹣m﹣1)2+2m(其中m>0)与其对称轴l相交于点P.与y轴相交于点A(0,m)连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC将△PBC 绕点P逆时针旋转,使点C落在抛物线上,设点C、B的对应点分别是点B′和C′.(1)当m=1时,该抛物线的解析式为:.(2)求证:∠BCA=∠CAO;(3)试问:BB′+BC﹣BC′是否存在最小值?若存在,求此时实数m的值,若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的)1.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】直接根据圆内接四边形的性质进行解答即可.【解答】解:∵四边ABCD是圆的内接四边形,∠ABC=70°,∴∠ADC=180°﹣70°=110°.故选:C.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.3.【分析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.利用方程解的定义将x =2代入方程式即可求解.【解答】解:将x=2代入x2+ax﹣6=0,得22+2a﹣6=0.解得a=1.故选:C.【点评】本题考查的是一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题.4.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.5.【分析】先找到旋转角,根据∠BAE=∠1+∠CAE进行计算.【解答】解:根据题意可知旋转角∠CAE=40°,所以∠BAE=30°+40°=70°.故选:D.【点评】本题主要考查了旋转的性质,解题的关键是找准旋转角.6.【分析】每个人都要送给他自己以外的其余人,等量关系为:人数×(人数﹣1)=90,把相关数值代入计算即可.【解答】解:设参加此次活动的人数有x人,由题意得:x(x﹣1)=90,解得:x1=10,x2=﹣9(不合题意,舍去).即参加此次活动的人数是10人.故选:B.【点评】本题考查一元二次方程的应用,得到互送贺卡总张数的等量关系是解决本题的关键.7.【分析】由切线长定理知,AE=CE,FB=CF,PA=PB=12,然后根据△PEF的周长公式即可求出其结果.【解答】解:∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,PA=PB=4,∴△PEF的周长=PE+EF+PF=PA+PB=8.故选:B.【点评】本题主要考查了切线长定理的应用,解此题的关键是求出△PEF的周长=PA+PB.8.【分析】利用二次函数的性质逐一判断后即可得到答案.【解答】解:A.y=﹣(x+1)2+2,∵a=﹣1<0,∴图象的开口向下,故本选项正确,不符合题意;B.∵y=﹣(x+1)2+2,∴开口向下,对称轴为x=﹣1,∴当x>﹣1时,y随x的增大而减少,故本选项正确,不符合题意;C.顶点坐标为(﹣1,2),故本选项正确,不符合题意;D.∵当x=0时,y=1,∴图象与y轴的交点坐标为(0,1),故本选项错误,符合题意;故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.9.【分析】由已知条件易证DE∥BC,则△ABC∽△ADE,再由相似三角形的性质即可得到问题的选项.【解答】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正确;∴△ABC∽△ADE,故A正确;∴,故C错误;∴S△ABC =9S△ADE,故D正确;故选:C.【点评】本题考查了相似三角形的判定和性质,证明DE∥BC是解题的关键.10.【分析】由韦达定理得出x1+x2=﹣b,x1x2=﹣3,将其代入x1+x2﹣3x1x2=4列出关于b的方程,解之可得答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∵x1+x2﹣3x1x2=4,∴﹣b+9=4,解得:b=5,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a、b、c均为常数且a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.二、填空题(本题有6个小题,每小题3分,满分18分11.【分析】根据关于原点的对称点,横坐标、纵坐标都互为相反数,可得答案.【解答】解:点A(﹣6,3)与A′关于原点对称,则点A′的坐标是(6,﹣3),故答案为:(6,﹣3).【点评】本题考查了关于原点对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.12.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.【解答】解:∵方程有两个不相等的实数根,a=1,b=﹣2,c=m∴△=b2﹣4ac=(﹣2)2﹣4×1×m>0,解得m<1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到×2π×r×8=16π,解得r=2,然后解关于r的方程即可.【解答】解:设圆锥的底面圆的半径为r,根据题意得×2π×r×8=16π,解得r=2,所以圆锥的底面圆的半径为2cm.故答案为2.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【分析】首先将两函数解析式联立得出其交点横坐标,进而得出当y1<y2时x的取值范围.【解答】解:由题意可得:x2+c=x+c,解得:x1=0,x2=1,则当y1<y2时x的取值范围:0<x<1.故答案为:0<x<1.【点评】此题主要考查了二次函数与不等式(组),正确得出两函数的交点横坐标是解题关键.15.【分析】根据⊙P的半径为2,以及⊙P与x轴相切,即可得出y=±2,求出x的值即可得出答案.【解答】解:∵⊙P的半径为2,圆心P在抛物线y=x2﹣2上运动,∴当⊙P与x轴相切时,假设切点为A,∴PA=2,∴|x2﹣2|=2即x2﹣2=2,或x2﹣2=﹣2,解得x=±2,或x=0,∴P点的坐标为:(2,2)或(﹣2,2)或(0,﹣2).故答案为:(2,2)或(﹣2,2)或(0,﹣2).【点评】此题主要考查了图象上点的性质以及切线的性质,根据题意得出y=2,求出x的值是解决问题的关键.16.【分析】先利用抛物线的对称轴求出m得到抛物线解析式为y=﹣x2+4x,再计算出自变量为1和5对应的函数值,然后利用函数图象写出直线y=t与抛物线y=﹣x2+4x在1≤x≤5时有公共点时t的范围即可.【解答】解:∵抛物线的对称轴为直线x=﹣=2,解得m=4,∴抛物线解析式为y=﹣x2+4x,抛物线的顶点坐标为(2,4),当x=1时,y=﹣x2+4x=﹣1+4=3;当x=5时,y=﹣x2+4x=﹣25+20=﹣5,当直线y=t与抛物线y=﹣x2+4x在1≤x≤5时有公共点时,﹣5≤t≤4,如图.所以关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1≤x≤5的范围内有解,t的取值范围为﹣5≤t≤4.故答案为﹣5≤t≤4.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了数形结合的思想.三、解答题(本題有9个小題,共102分,解答要求写出文字说明,证明过程或计算步骤)17.【分析】(1)利用因式分解法解方程;(2)先变形得到x(x﹣2)﹣3(x﹣2)=0,然后利用因式分解法解方程.【解答】解:(1)x(x+5)=0,x=0或x+5=0,所以x1=0,x2=﹣5;(2)x(x﹣2)﹣3(x﹣2)=0,(x﹣2)(x﹣3)=0,x﹣2=0或x﹣3=0,所以x1=2,x2=3.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.18.【分析】(1)利用两角对应相等的两个三角形相似即可判断.(2)利用相似三角形的性质即可解决问题.【解答】(1)证明:∵DE∥AB,∴∠EDA=∠CAB,∵∠B=∠EAD,∴△ABC∽△DAE,(2)解:∵△ABC∽△DAE,∴=,∴=,∴BC=4.【点评】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【分析】(1)由中心对称的定义和性质作图变换后的对应点,再顺次连接即可得;(2)由旋转变换的定义和性质作图变换后的对应点,再顺次连接即可得;(3)利用弧长公式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△AB2C2即为所求,其中点C2的坐标为(﹣2,2),故答案为:(﹣2,2).(3)∵∠CAC2=90°,AC==,∴点C所经过的路径长为=π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20.【分析】(1)先利用对称性确定抛物线与x轴另一个交点坐标为(1,0),则可设交点式为y =a(x+3)(x﹣1),然后把B点坐标代入求出a即可;(2)根据二次函数的性质,通过比较点(﹣,y1)和点(2,y2)到直线x=﹣1的距离大小确定y1与y2的大小关系.【解答】解:(1)∵抛物线的对称轴是直线x=﹣1,与x轴一个交点是点A(﹣3,0),∴抛物线与x轴另一个交点坐标为(1,0),设抛物线解析式为y=a(x+3)(x﹣1),把B(﹣2,6)代入得a×1×(﹣3)=6,解得a=﹣2,∴抛物线解析式为y=﹣2(x+3)(x﹣1),即y=﹣2x2﹣4x+6;(2)∵点(﹣,y1)到直线x=﹣1的距离比点(2,y2)到直线x=﹣1的距离要小,而抛物线的开口向下,∴y1>y2.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)根据题意列代数式即可得到结论;(2)根据题意列出函数关系式,然后,根据二次函数的性质即可得到结论.【解答】解:(1)由题意得,AD=23+1﹣2x=24﹣2x,故答案为:24﹣2x;(2)根据题意得,y=x(24﹣2x)=﹣2x2+24x=﹣2(x﹣6)2+72,∴y的最大值为72米2.【点评】本题考查了二次函数的应用,一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【分析】(1)连接OC,由角平分线的性质和等腰三角形的性质可得∠DAC=∠ACO,可得AD ∥OC,由平行线的性质可得OC⊥PQ,可得结论;(2)由平行线分线段成比例可得DC=CE,即点C是DE的中点.【解答】证明:(1)连接OC,∵AC平分∠DAB∴∠DAC=∠CAO,∵OA=OC,∴∠OAC=∠OCA∴∠DAC=∠ACO∴AD∥OC,且AD⊥PQ∴OC⊥PQ,且OC为半径∴PQ与⊙O相切(2)∵OC⊥PQ,AD⊥PQ,BE⊥PQ∴OC∥AD∥BE∴∴DC=CE∴点C是DE的中点.【点评】本题考查了切线的判定和性质,等腰三角形的性质,平行线分线段成比例等知识,熟练运用切线的判定和性质是本题的关键.23.【分析】(1)根据圆周角定理可得∠COB=2∠A=2α;(2)当∠ABC=90°时,可得点P与圆心O重合,根据△OBC的周长为16以及AB=8,可求得⊙O的半径为5,可得出扇形COB的面积以及△OBC的面积,进而得出阴影部分面积;(3)由CD∥AB∥PQ,可得△BPQ∽△BDC,△CPQ∽△CAB,即,两式子相加可得,即可得出的值.【解答】解:(1)∵∠A的度数为α,∴∠COB=2∠A=2α,(2)当∠ABC=90°时,AC为⊙O的直径,∵CD∥AB,∴∠DCB=180°﹣90°=90,∴BD为⊙O的直径,∴P与圆心O重合,∵PQ∥AB交于Q,∴OQ⊥BC,∴CQ=BQ,∵AB=8,∴OQ=AB=4,设⊙O的半径为r,∵△OBC的周长为16,∴CQ=8﹣r,∴(8﹣r)2+42=r2,解得r=5,CB=6,∴阴影部分面积=;(3)∵CD∥AB∥PQ,∴△BPQ∽△BDC,△CPQ∽△CAB,∴,∴,∵PQ=2,∴,∴=2.【点评】本题考查圆的基本性质,相似三角形的判定和性质,弓形你的计算.构造相似三角形得出PQ,AB,CD之间的关系是解决(3)问的关键.24.【分析】(1)首先证明当DC⊥AB时,DC也为圆的直径,且△ADB为等腰直角三角形,即可求出结果;(2)①分别过点A,B作CD的垂线,连接AC,BC,分别构造△ADM和△BDN两个等腰直角三形及△NBC和△MCA两个全等的三角形,容易证出线段DA,DB,DC之间的数量关系;②通过完全平方公式(DA+DB)2=DA2+DB2+2DA•DB的变形及将已知条件AB=m代入即可求出结果;(3)通过设特殊值法,设出PD的长度,再通过相似及面积法求出相关线段的长度,即可求出结果.【解答】解:(1)如图1,∵AB为⊙O的直径,∴∠ADB=90°,∵C为的中点,∴,∴∠ADC=∠BDC=45°,∵DC⊥AB,∴∠DEA=∠DEB=90°,∴∠DAE=∠DBE=45°,∴AE=BE,∴点E与点O重合,∴DC为⊙O的直径,∴DC=AB,在等腰直角三角形DAB中,DA=DB=AB,∴DA+DB=AB=CD,∴=;(2)①如图2,过点A作AM⊥DC于M,过点B作BN⊥CD于N,连接AC,BC,由(1)知,∴AC=BC,∵AB为⊙O的直径,∴∠ACB=∠BNC=∠CMA=90°,∴∠NBC+∠BCN=90°,∠BCN+∠MCA=90°,∴∠NBC=∠MCA,在△NBC和△MCA中,,∴△NBC≌△MCA(AAS),∴CN=AM,由(1)知∠DAE=∠DBE=45°,AM=DA,DN=DB,∴DC=DN+NC=DB+DA=(DB+DA),即DA+DB=DC;②在Rt△DAB中,DA2+DB2=AB2=m2,∵(DA+DB)2=DA2+DB2+2DA•DB,且由①知DA+DB=DC=t,∴(t)2=m2+2DA•DB,∴DA•DB=t2﹣m2,∴S=DA•DB=t2﹣m2,△ADB∴△ADB的面积S与t的函数关系式S=t2﹣m2;(3)如图3,过点E作EH⊥AD于H,EG⊥DB于G,则NE=ME,四边形DHEG为正方形,由(1)知,∴AC=BC,∴△ACB为等腰直角三角形,∴AB=AC,∵,设PD=9,则AC=20,AB=20,∵∠DBA=∠DBA,∠PAB=∠ADB,∴△ABD∽△PBA,∴,∴,∴DB=16,∴AD==12,设NE=ME=x,=AD•BD=AD•NE+BD•ME,∵S△ABD∴×12×16=×12•x+×16•x,∴x=,∴DE=HE=x=,又∵AO=AB=10,∴=×=.【点评】本题考查了圆的相关性质,等腰直三角形的性质,相似的性质等,还考查了面积法及特殊值法的运用,解题的关键是认清图形,抽象出各几何图形的特殊位置关系.25.【分析】(1)把点A的坐标代入二次函数表达式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,把m=1代入上式,即可求解;(2)求出点B、C的坐标,即可求解;(3)当点B′落在BC′所在的直线时,BB′+BC﹣BC′存在最小值,证△BAO∽△POD,即可求解.【解答】解:(1)把点A的坐标代入二次函数表达式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,则二次函数的表达式为:y=﹣(x﹣m﹣1)2+2m…①,则点P的坐标为(m+1,2m),点A的坐标为(0,m),把m=1代入①式,整理得:y=﹣x2+x+1,故:答案为:y=﹣x2+x+1;(2)把点P、A的坐标代入一次函数表达式:y=kx+b得:,解得:,则直线PA的表达式为:y=x+m,令y=0,解得:x=﹣m﹣1,即点B坐标为(﹣m﹣1,0),同理直线OP的表达式为:y=x…②,将①②联立得:a(x﹣m﹣1)2+2m﹣x=0,其中a=﹣,该方程的常数项为:a(m+1)2+2m,由韦达定理得:x1x2=x C•x P===﹣(m+1)2,其中x P=m+1,则x C=﹣m﹣1=x B,∴BC∥y轴,∴∠BCA=∠CAO;(3)如图当点B′落在BC′所在的直线时,BB′+BC﹣BC′存在最小值,设:直线l与x轴的交点为D点,连接BB′、CC′,∵点C关于l的对称点为C′,∴CC′⊥l,而OD⊥l,∴CC′∥OD,∴∠POD=∠PCC′,∵∠PB′C′+∠PB′B=180°,△PB′C′由△PBC旋转而得,∴∠PBC=∠PB′C′,PB=PB′,∠BPB′=∠CPC′,∴∠PBC+∠PB′B=180°,∵BC∥AO,∴∠ABC+∠BAO=180°,∴∠PB ′B =∠BAO ,∵PB =PB ′,PC =PC ′,∴∠PB ′B =∠PBB ′=,∴∠PCC ′=∠PC ′C =,∴∠PB ′B =∠PCC ′,∴∠BAO =∠PCC ′,而∠POD =∠PCC ′,∴∠BAO =∠POD ,而∠POD =∠BAO =90°,∴△BAO ∽△POD ,∴=, 将BO =m +1,PD =2m ,AO =m ,OD =m +1代入上式并解得:m =1+(负值已舍去).【点评】本题考查的是二次函数知识的综合运用,涉及到三角形相似、韦达定理的运用,其中用韦达定理求解数据是本题的难点.。
浙江省湖州市吴兴区九年级(上)期末数学试卷-教师用卷
浙江省湖州市吴兴区九年级(上)期末数学试卷1.已知ab =23,则a+bb的值为()A. 52B. 53C. 32D. 23【答案】B【解析】解:∵ab =23,∴a+bb =ab+1=23+1=53;故选:B.利用比例的性质即可得到答案.本题考查了比例线段:熟练掌握比例的性质是解决此题的关键.2.下列事件中,不可能事件()A. 任意选择某一电视频道,它正播放动画片B. 任意掷一枚硬币,正面朝上C. 在只装有红球的袋子里摸出一个黑球D. 射击运动员射击一次,命中10环【答案】C【解析】解:A、任意选择某一电视频道,它正播放动画片,是随机事件,故此选项不合题意;B、任意掷一枚硬币,正面朝上,是随机事件,故此选项不合题意;C、在只装有红球的袋子里摸出一个黑球,是不可能事件,故此选项符合题意;D、射击运动员射击一次,命中10环,是随机事件,故此选项不合题意.故选:C.直接利用随机事件以及不可能事件、必然事件的定义分析得出答案.此题主要考查了随机事件、必然事件、不可能事件的定义,正确掌握相关定义是解题关键.3.关于二次函数y=3x2−6,下列叙述正确的是()A. 当x=3时,y有最大值−6B. 当x=3时,y有最小值−6C. 当x=0时,y有最大值−6D. 当x=0时,y有最小值−6【答案】D【解析】解:∵y=3x2−6,∴抛物线开口向上,对称轴为x=0,顶点坐标为(0,−6),∴当x=0时,y有最小值−6;∴D正确,故选:D.由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).4.如图,点A、B、C在⊙O上,∠ACB=40°,弧AB的度数为()A. 80°B. 40°C. 20°D. 60°【答案】A【解析】解:∵∠ACB=40°,∴∠AOB=2∠ACB=80°,∴弧AB的度数为80°,故选:A.根据圆周角定理可求解∠AOB=2∠ACB,进而可求解弧AB的度数.本题主要考查圆周角定理,圆心角,弦,弧的关系,求解∠AOB的度数是解题的关键.5.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin B的值为()A. 45B. 34C. 35D. 43【答案】A【解析】解:∵∠C=90°,AB=5,BC=3,∴AC=√AB2−BC2=4,∴sinB=ACAB =45.故选:A.直接利用勾股定理得出AC的长,再利用锐角三角函数关系得出答案.此题主要考查了锐角三角函数关系以及勾股定理,正确掌握边角关系是解题关键.6.如图,在正方形网格中,线段A′B′是线段AB绕某点顺时针旋转一定角度所得,点A′与点A是对应点,则这个旋转的角度大小可能是()A. 45°B. 60°C. 90°D. 135°【答案】C【解析】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角,∴旋转角为90°故选:C.如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.本题考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.7.如图,将抛物线y=−x2+x+8图象中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,则新图象与直线y=−8的交点个数是()A. 1B. 2C. 3D. 4【答案】D【解析】解:如图,∵y=−x2+x+8中,当x=0时,y=8,∴抛物线y=−x2+x+8与y轴的解得为(0,8),∵将抛物线y=−x2+x+8图象中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,∴新图象与y轴的交点坐标为(0,−8),∴新图象与直线y=−8的交点个数是4个,故选:D.根据已知条件得到抛物线y=−x2+x+8与x轴的解得为(0,8),根据轴对称的性质得到新图象与y轴的交点坐标为(0,−8),于是得到结论.本题考查了二次函数图象与几何变换,二次函数图形上点的坐标特征,正确的理解题意是解题的关键.8.如图,△ABC中,AB=10,AC=8,BC=4,以点A为圆心,AB为半径作圆,交BC的延长线于点D,则CD长为()A. 10B. 9C. 4√5D. 8【答案】B【解析】解:如图:过A作AE⊥BC于E,Rt△ABE中,AE2+BE2=AB2,而AB=10,BC=4,∴AE2=102−(4+CE)2=84−CE2−8CE,Rt△ACE中,AE2=AC2−CE2,而AC=8,∴AE2=64−CE2,∴84−CE2−8CE=64−CE2,解得CE=2.5,∴BE=6.5,∵A作AE⊥BC于E,∴BD=2BE=13,∴CD=9,故选:B.BD从而可得答案.作BD垂线,在两个直角三角形中列方程求出12本题考查垂径定理、勾股定理,列方程求CE是解题的关键.9.如图,已知△ABC中,AC=BC,∠ACB=120°,AB=3,点D为边AB上一点,过点D作DE//AC,交BC于点E.过点E作EF⊥DE,交AB于点F.设AD=x,△DEF 的面积为y,则能大致反映y与x函数关系的图象是()A. B.C. D.【答案】B【解析】解:过点C作CG⊥AB于点G,如图:∵AC=BC,∠ACB=120°,AB=3,∴∠A=∠B=30°,AG=AB2=32,∴cos30°AGAC =32AC,∴AC=32√32=√3,∵DE//AC,∴△BED∽△BCA,∴DE:AC=BD:BA,又∵AD=x,∴DE:√3=(3−x):3,∴DE=√3,∵DE//AC,∴∠EDF=∠A=30°,∵EF⊥DE,∴∠DEF=90°,∴EF=DE⋅tan30°=3−x√3×√33=3−x3,∴y=12DE⋅EF=12√3×3−x3=√3(3−x)218,∴y是x的二次函数,且开口向上,0≤x≤3.∴只有B符合题意.故选:B.过点C作CG⊥AB于点G,先用三角函数求得AC的值;再判定△BED∽△BCA,从而得出比例式,用含x的式子表示出DE;然后用含x的式子表示出EF;最后由三角形的面积公式表示出y,即可得出答案.本题考查了动点问题的函数图象,数形结合、熟练掌握等腰三角形的性质、解直角三角形、相似三角形的判定与性质及二次函数的图象与性质等知识点,是解题的关键.10.如图,将边长为6的正六边形ABCDEF沿HG折叠,点B恰好落在边AF的中点上,延长B′C′交EF于点M,则C′M的长为()A. 1B. 65C. 56D. 95【答案】A【解析】解:如图,过点H作FA延长的垂线HQ,∵∠BAF=120°,∴∠HAQ=60°,∠HQA=90°,∴∠AHQ=30°,设AH=x,∴AQ=12x,QH=√32x,∴BH=B′H=AB−AH=6−x,∵AB′=12AB=3,∴B′Q=B′A+AQ=3+12x,在Rt△B′HQ中,根据勾股定理,得B′H2=B′Q2+QH2,∴(6−x)2=(3+12x)2+34x2,解得x=95,∴B′H=6−x=216,∵∠HAB′=∠F=∠HB′M=120°,∴∠AHB′+∠AB′H=60°,∠FB′M+∠AB′H=60°,∴∠AHB′=∠FB′M,∴△AB′M∽△FMB′,∴B′HB′M =AHB′F,∴216B′M=953,解得B′M=7,∴C′M=B′M−B′C′=7−6=1.故选:A.过点H作FA延长的垂线HQ,设AH=x,可得AQ=12x,QH=√32x,可得BH=B′H=AB−AH=6−x,由AB′=12AB=3,可得B′Q=B′A+AQ=3+12x,在Rt△B′HQ中,根据勾股定理即可得x的值,再证明△AB′M∽△FMB′,对应边成比例即可求出结果.本题考查了正多边形和圆,翻折变换,解决本题的关键是掌握正多边形和圆的关系.11.口袋内装有大小、质量和材料都相同的两种颜色的球,其中红色球3个,白色球2个,从中任意摸出一球,摸出白色球的概率是______.【答案】25【解析】解:∵袋子中共有5个小球,其中白色小球有2个,∴从中任意摸出一球,有5种等可能结果,其中摸到白色小球的有2种可能,∴从中任意摸出一球,摸出白色球的概率是25,故答案为:25.从袋中任取一球有3+2=5种可能,其中摸出白球有3种可能,利用概率公式进行求解.本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=mn .12. 将抛物线y =x 2+2向上平移1个单位后所得新抛物线的表达式为______. 【答案】y =x 2+3【解析】解:将抛物线y =x 2+2向上平移1个单位后所得新抛物线的表达式为y =x 2+2+1,即y =x 2+3. 故答案是:y =x 2+3.根据“上加下减,左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.13. 如图是一个边长为1的正方形组成的网格,△ABC 与△A 1B 1C 1都是格点三角形(顶点在网格交点处),并且△ABC∽△A 1B 1C 1,则△ABC 与△A 1B 1C 1的面积比是______ . 【答案】49【解析】解:图中观察AB =2,A 1B 1=3, ∴ABA1B 1=23,∵△ABC∽△A 1B 1C 1,∴△ABC 与△A 1B 1C 1的面积比是(23)2=49, 故答案为:49.从图中观察AB :A 1B 1=2:3,面积比等于相似比的平方即得答案. 本题考查相似三角形的性质,面积比等于相似比的平方.14. 如图,在矩形ABCD 中,AB =2,AD =1,以顶点D为圆心作半径为r 的圆.若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是______ .【答案】1<r<√5【解析】解:在直角△ABD中,CD=AB=2,AD=1,则BD=√22+12=√5.由图可知1<r<√5.故答案为:1<r<√5.要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.15.已知二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y之间满足下列数量关系:则代数式(4a+2b+c)(a−b+c)的值为______ .【答案】91【解析】解:观察表格可知:x=0时,y=7,x=2时,y=7,=1,∴抛物线的对称轴为直线x=0+22∵x=3时,y=13,∴x=−1时,y=13,∴4a+2b+c=7,a−b+c=13,∴(4a+2b+c)(a−b+c)的值为91,故答案为91.观察表格可知:x=0时,y=7,x=2时,y=7,即可求得抛物线的对称轴为直线x=0+2=1,根据抛物线的对称性求得x=−1时,y=13,从而求得4a+2b+c=7,a−2b+c=13.本题考查二次函数图象上的点的特征、解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(x+√3)2−4√3交x轴于A,B两点,16.如图,在平面直角坐标系中,抛物线y=√33交y轴于点C,点D为抛物线顶点.(1)求tan∠DAC=______ ;(2)若点P是线段AC上的一个动点,∠DPQ=∠DAC,DP⊥DQ,当点P在线段AC上运动时,D点不变,Q点随之运动.求当点P从点A运动到点C时,点Q运动的路径长为______ .【答案】1√63【解析】解:(1)如上图,过D作DE⊥y轴于E,∵抛物线y=√3(x+√3)2−4√3交x轴于A,B两点,交y轴于点C,点D为抛物线顶3点,∴D(−√3,−4√3),DE=√3,OE=4√3,(x+√3)2−4√3=0,解得x1=−3√3,x2=√3,令y=0得√33∴A(−3√3,0),B(√3,0),OA=3√3令x=0得y=−3√3,∴C(0,−3√3),OC=3√3,∴CE=OE−OC=√3,∴OA=OC=3√3,CE=DE=√3,∴△AOC和△CED是等腰直角三角形,AC=3√6,DC=√6,∴∠ACO=∠DEC=45°,∴∠DCA=90°,∴tan∠DAC=DCAC =√63√6=13,故答案为:13;(2)∵∠DPQ=∠DAC,DP⊥DQ,且∠DCA=90°,∴△ADC∽△PQD,∴DCAC =DQDP=13,∵点P在线段AC上运动时,D点不变,Q点随之运动,∴P为主动点,Q为从动点,D为定点,根据“瓜豆原理”有DPDQ等于P的路径(AC)与Q 的路径之比,∵AC=3√6,∴Q的路径为3√6×DPDQ=√6,故答案为:√6.(1)根据函数解析式可求A、B、C、D坐标,从而得到∠ACD=90°,CDAD即为所求;(2)点Q随P运动而运动,P为主动点,Q为从动点,D为定点,故DPDQ等于P的路径(AC)与Q的路径之比,算出DPDQ和AC即可得到Q的路径.本题考查二次函数、三角函数、相似三角形等知识,题目较综合,解决本题的关键是需要掌握“瓜豆原理”.17.求值:sin30°+tan45°−cos60°.【答案】解:原式=12+1−12=1.【解析】直接利用特殊角的三角函数值进而代入计算即可.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18. 如图,在平面直角坐标系中,已知抛物线y =ax 2−2x +c 与直线y =kx +b 都经过点A(0,−3)和点B(3,0),该抛物线的顶点为C .(1)求抛物线和直线AB 的解析式;(2)连接AC ,BC ,求△CAB 的面积.【答案】解:(1)把A(0,−3)和B(3,0)代入y =ax 2−2x +c 得{c =−39a −6+c =0,解得{a =1c =−3, ∴抛物线的解析式为y =x 2−2x −3;把A(0,−3)和B(3,0)代入y =kx +b 得{b =−33k +b =0,解得{k =1b =−3, ∴直线AB 的解析式为y =x −3;(2)过C 点作CD//y 轴交AB 于D ,如图,∵y =x 2−2x −3=(x −1)2−4,∴C(1,−4),当x =1时,y =x −3=−2,则D(1,−2),∴△CAB 的面积=12×3×(−2+4)=3.【解析】(1)利用待定系数法求抛物线和直线AB 的解析式;(2)过C 点作CD//y 轴交AB 于D ,如图,把一般式配成顶点式得到C(1,−4),再确定D 点坐标,然后利用三角形面积公式计算.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.19. 如图,△ABC 内接于⊙O ,∠BAC =45°,BC =20.(1)求⊙O 的半径;(2)求劣弧BC 的长.【答案】解:(1)连接OB、OC,由圆周角定理得,∠BOC=2∠BAC=90°,BC=10√2,即⊙O的半径为10√2;∴OB=√22(2)劣弧BC的长=90π×10√2=5√2π.180【解析】(1)连接OB、OC,根据圆周角定理求出∠BOC,根据等腰直角三角形的性质求出⊙O的半径;(2)根据弧长公式计算,得到答案.本题考查的是三角形的外接圆与外心,掌握圆周角定理、弧长公式是解题的关键.20.党的十九大指出,脱贫攻坚战成为我国全面建设小康社会的重中之中.为了调查学生对脱贫攻坚知识的了解程度,南海区某学校数学兴趣小组通过网上调查的方式在本校学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查结果,绘制了如图的统计图,结合统计图,回答下列问题.(1)本次抽样调查的人数是______ 人;(2)若该校有学生2000人,请根据调查结果估计这些学生中“比较了解”脱贫攻坚知识的人数约为多少?(3)根据调查结果,学校准备开展关于脱贫攻坚知识竞赛,某班要从“非常了解”的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:在一个不透明的袋中装有2个红球和2个白球,它们除了颜色外无其它差别,从中随机摸出两个球,若摸出的两个球颜色相同,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.【答案】400【解析】解:(1)本次抽样调查的人数是:20+60+180+140=400(人),故答案为:400;(2)这些学生中“比较了解”脱贫攻坚知识的人数有:2000×60400=300(人);(3)画树状图得:∵共有12种等可能的结果,两个球颜色相同的有4种情况,两个球颜色不同的有8种情况,∴P(颜色相同)=412=13,P(颜色不同)=812=23,∴游戏规则不公平.(1)把条形统计图给出的数据相加即可得出答案;(2)用总人数乘以“比较了解”所占的百分比即可;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个球颜色相同与不同的情况,再利用概率公式求得其概率,比较概率的大小,即可知这个游戏规则是否公平.此题考查了列表法或树状图法求概率以及条形统计图.注意概率相等,则公平,否则不公平.21.吴兴区某中学开展研学实践活动,来到了“两山”理论发源地--安吉余村,看到了“两山”纪念碑.如图,想测量纪念碑AB的高度,小明在纪念碑前D处用测角仪测得顶端A的仰角为60°,底端B的俯角为45°;小明又在同一水平线上的E处用测角仪测得顶端A的仰角为30°,已知DE=8m,求该纪念碑AB的高度.(√3≈1.7,结果精确到0.1m)【答案】解:设CD=x m,∵∠ADC=60°,∠CDB=45°,∴AC=x⋅tan60=√3x,CB=x⋅tan45°=x(m),∵∠AED=30°,DE=8m,∵∠AEC=30°,∴CE=√3AC,∴√3×√3x=x+8,解得x=4(m),∴AB=√3x+x=4√3+4≈10.8(m).答:该纪念碑AB的高度约为10.8m.【解析】设CD=x m,解Rt△ACD与Rt△DCB,用含x的代数式表示出AC、CB,然后根据△ACE是含30度角的直角三角形列出方程,解方程即可求x的值,进而可得AB.本题考查的是解直角三角形的应用−仰角俯角问题,理解仰角俯角的概念、熟记锐角三角函数的概念是解题的关键.22.2020年12月12日零时,某电商平台“双十二”购物狂欢节预售付尾款活动正式开启,如图是织里童装某产品每小时的成交量y(万件)与时间x(时)的函数图象,y与x的关系正好可用两段二次函数y1,y2的图象来表示,点A是两段函数的顶点,其中0≤x≤1时,图象的解析式为y1=−3x2+mx;1≤x≤7时,图象的解析式为y2;(1)根据函数图象,求几时成交量达到最大值?最大值为多少?(2)系统平台显示,当成交量达到2.25万件以上时(包括2.25万件),需要专门安排后台技术人员做维护,请问:需要维护多少时间才能保证系统全程正常运行?【答案】解:(1)∵x=−b2a=−m2×(−3)=1,∴m=6,∴y1=−3x2+6x,∴当x=1时,y1有最大值,最大值为:−3+6=3.(2)由(1)可知,顶点A(1,3),设y2=n(x−1)2+3,把(7,0)代入得:0=n(7−1)2+3,解得:n=−112,∴y2=−112(x−1)2+3,当y1=2.25时,2.25=−3x2+6x,解得:x1=1.5(舍),x2=0.5;当y2=2.25时,2.25=−112(x−1)2+3,解得:x3=−2(舍),x4=4.4−0.5=3.5(小时).∴需要维护3.5小时才能保证系统全程正常运行.【解析】(1)根据函数图象,点A是两段函数的顶点,其中0≤x≤1时,图象的解析式为y1=−3x2+mx,可知对称轴,从而根据x=−b2a =−m2×(−3)=1,可求得m的值,则可得y1的解析式,根据二次函数的性质可得答案.(2)由(1)可知,顶点A(1,3),设y2=n(x−1)2+3,把(7,0)代入,求得n的值,则可知y2的解析式,分别令y1=2.25,y2=2.25,得到关于x的方程,求得方程的解,再结合相应的取值范围即可得出答案.本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握二次函数的性质是解题的关键.23. 如图,已知直线y =−x +6的图象分别交x 轴、y 轴于点A 、B.点P 为二次函数y =(x −b)2+4b +1的顶点.(1)若点P 在直线y =−x +6上,求此时b 的值;(2)若二次函数图象经过点B ,且满足−x +6>(x −b)2+4b +1,求出x 的取值范围;(3)若二次函数的图象与△OAB 的三边恰好只有一个交点,求此时b 的值.【答案】解:(1)∵P 为二次函数y =(x −b)2+4b +1的顶点,∴顶点P(b,4b +1),把P(b,4b +1)代入y =−x +6,得4b +1=−b +6,解得b =1;(2)直线y =−x +6中,令x =0,则y =6,∴B(0,6),把B(0,6)代入y =(x −b)2+4b +1,解得b =−5或1,当b =−5时,联立{y =−x +6y =(x +5)2−19,解得x =11或0, ∴−11<x <0,当b =1时,联立{y =−x +6y =(x −1)2+5,解得x =1或0, ∴0<x <1;故x 的取值范围为−11<x <0或0<x <1;(3)①由(2)可知,当b =−5时,二次函数图象经过点B ,且恰好与△OAB 的三边只有个交点,所以b =−5②当b =1时,联立{y =−x +6y =(x −b)2+4b +1,整理得x 2−(2b −1)x +b 2+4b −5=0, 令△=0,则(2b −1)2−4(b 2+4b −5)=0,解得b=2120,综上所述:b=2120或−5.【解析】(1)把顶点P(b,4b+1)代入y=−x+6,得到关于b的方程,解方程即可求得b;(2)把B(0,6)代入y=(x−b)2+4b+1,求得b=−5或1,然后分类解解析式构成的方程组即可求得交点,根据交点即可求得;(3)当b=−5时,抛物线对称轴在y轴的左侧,经过得B,此时b=−5;当b=1时,对称轴在y轴的右侧,只有顶点在线段AB上才符合题意,解析式联立,整理成关于x的一元二次方程,根据△=0得到关于b的方程,解关于b的方程即可求得b.此题主要考查了二次函数与不等式组的关系以及二次函数、一次函数图象上点的坐标特点,正确数形结合分析是解题关键.24.如图,在Rt△ABC中,∠ACB=Rt∠,BC=2,AC=2√3.点D是AC边上的中点.有一动点P由点A以每秒1个单位的速度向终点B运动,设运动时间为t秒.(1)如图1,当△ADP是以点P为直角顶点的直角三角形时,求t的值;(2)如图2,过点A作直线DP的垂线AE,点E为垂足.(i)是否存在这样的t,使得以A,P,E为顶点的三角形与△ABC相似,若存在,请求出t的值;若不存在,请说明理由;(ii)连接BE,当点P由点A运动到点B的过程中(不包括端点),请直接写出BE的取值范围.【答案】解:(1)∵∠ACB=Rt∠,BC=2,AC=2√3,∴tanA=BCAC =2√3=√33,∴∠A=30°,∵点D是AC边上的中点,∴AD=CD=√3,∵DP⊥AB,∴cosA=APAD =AP√3=√32,∴AP=32,∴t=AP1=32(s);(2)(i)∵AE⊥DP,∴∠C=∠AED=90°,如图3,当∠BAC=∠ADP=30°时,∵∠E=90°,∠ADP=30°,∴AE=12AD=√32,∵∠APE=∠ADP+∠PAD=60°,∴∠PAE=30°,∴AP=2PE,AE=√3PE=√32,∴AP=1,∴t=AP1=1(s);如图4,若∠APD=∠BAC=30°时,∴AP=2AE,∠ADE=∠APD+∠PAD=60°,∴∠DAE=30°,∴DE=12AD=√32,AE=√3DE=32,∴AP=3,∴t=AP1=3(s);如图5,若点E与点D重合时,∴AP=2DP,AD=√3DP=√3,∴DP=1,AP=2,∴t=AP1=2(s);综上所述:t的值为1或2或3;(ii)∵∠AED=90°,∴点E在以AD为半径的圆上,如图6,取AD的中点F,连接BF,过点F作FH⊥AB于H,∴AF=√32,∵∠BAC=30°,∴FH=12AF=√34,AH=√3AH=34,AB=2BC=4,∴AH=134,∴BF=√BH2+FH2=√16916+316=√432,∵点E在以AD为半径的圆上,∴当点E在线段BF上时,BE有最小值,∴BE的最小值为√432−√32,当点E与点A重合时,BE有最大值为4,∴√43−√32≤BE<4.【解析】(1)由锐角三角函数可求∠A=30°,进而可求AP=32,即可求解;(2)(i)分三种情况讨论,由相似三角形的性质和直角三角形的性质可求解;(ii)取AD的中点F,连接BF,过点F作FH⊥AB于H,当点E在线段BF上时,BE有最小值,当点E与点A重合时,BE有最大值为4,由勾股定理可求BF的长,即可求解.本题是相似形综合题,考查了直角三角形的性质,锐角三角函数,相似三角形的判定和性质,圆的有关知识,确定点E的运动轨迹是本题的关键.。
(定稿)2018-2019学年第一学期九年级期末调研数学参考答案
50 x 50 75. 0 x 15. ∴ x 25 元不合题意,舍去.
答:销售单价应上涨 5 元. (说明 : 不舍去 x 25 元,扣 1 分) .. (2)解法一:设每件商品上涨 x 元. 根据题意得: W (55 x 50)(70 2 x). ……………………………5 分 ……………………………6 分 ……………………………7 分 ……………………………4 分
5 35 15 (元)时, 2
……………………………7 分 ……………………………8 分
W最大 = 2 (15 5) (15 35) =800(元).
(说明 :W 与 x 的关系式写成 w ( x 5)(70 2 x) ,没提出-2,只得对应的 1 分,不能得 .. 2 分) 解法三:设每件商品上涨 x 元. 根据题意得: W (55 x 50)(70 2 x). ……………………………5 分 ……………………………6 分
A
D B H E
∵△ABC 旋转得到 EBD, ∴DE=AC=2cm , E CAB 60 . ……………………………1 分 在 Rt△DEH 中, sin E ∴DH= DE sin 60 2
C
DH , DE
……………………………3 分
3 3(cm) 2
(2)∵在 Rt△DEH 中,∠HDE=30°, ∴ HE
2 2
…………………………6 分
2OA 10 6 cm
…………………7 分
由题意知 AD CD BC AB, 则 AD CD BC AB 4 AD 40 6 cm. ……8 分 所以四边形 ABCD 的周长是 40 6 cm. (说明 :不同解法酌情给分) ..
浙江省2018-2019学年数学九年级上册期末模拟试卷(浙江专版)及参考答案
A. B.
C. D.
7. 如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC,BD,以BD为直径的圆交AC于点E. 若DE=3,则AD的长为( )
A.5B.4C.3 D.2 8. 如图,小明为检验四边形MNPQ四个顶点是否在同一圆上,用尺规分别作了MN,MQ的垂直平分线交于点O,则M,N, P,Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )
,那么它对应的函数解析
12. 如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格 点数为________.
13. 将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为________ 14. 如图,四边形ABCD内接于 ,若四边形ABCO是平行四边形,则
、
两点,且与 轴交于点 .
(1) 求抛物线的表达式;
(2) 如图②,用宽为4个单位长度的直尺垂直于 轴,并沿 轴左右平移,直尺的左右两边所在的直线与抛物线相交
于 、 两点(点 在点 的左侧),连接 ,在线段 上方抛物线上有一动点 ,连接 、 .
(Ⅰ)若点 的横坐标为 ,求
面积的最大值,并求此时点 的坐标;
(1) 设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3;(填“>”“=”或“<”) (2) 写出图中的三对相似三角形,并选择其中一对进行证明. 22. 如图,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动 ,设AP=x,
(1) 求AD的长; (2) 点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的
2018-2019浙教版九年级上数学期末综合检测试卷含解析
2018-2019浙教版九年级上数学期末综合练习试卷含解析范围:九上-九下第一章姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.2.下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D .同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为3.已知二次函数y=x2+bx的图象经过点(1,﹣2),则b的值为( )A.﹣3 B.3 C.1 D.﹣14.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.教习网-海量精品课件试卷教案免费下载5.如图所示,河堤横断面堤高米,迎水坡面的坡度为(坡度是指坡面的铅直高度与水平宽度之比,又称坡比),则的长是()A.米B.米C.米D.米6.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.9.如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为()A.(1,B.C.D.10.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是()A.4 B.8 C.6 D.10二、填空题(本大题共6小题,每小题4分,共24分)11.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.在中,若,则的度数是______.13.(1)三条平行线截两条直线,所得的的比相等.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的相等.(3)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所得的三角形与原三角形.14.在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B,C,D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是____________.15.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.16.如图,P、Q分别是⊙O的内接正五边形的边AB、BC上的点,BP=CQ,则∠POQ= .三、解答题(本大题共8小题,共66分)17.先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.18.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB于点E,BD交CE于点F.求证:CF=BF.19.如图,如果,,那么与是否相似?与是否位似?试说明理由.20.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21.如图,某仓储中心有一斜坡AB,其坡度为i=1∶2,顶部A处的高AC为4 m,B,C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5 m,EF=2 m,将该货柜沿斜坡向上运送,当BF=3.5 m时,求点D离地面的高.(参考数据:5≈2.236,结果精确到0.1 m)22.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A.B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.23.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.24.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A.B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析一、选择题1.【考点】锐角三角函数的定义.【分析】利用锐角三角函数定义求出cosB的值即可.解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A【点评】此题考查了锐角三角函数定义,熟练掌握锐角三角函数定义是解本题的关键.2.【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.解:A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.3.【考点】二次函数图象上点的坐标特征.【分析】将点(1,﹣2)代入函数解析式,得出关于b的方程,解出即可得出答案.解:将点(1,﹣2)代入函数解析式得:1+b=﹣2,解得:b=﹣3.故选A.【点评】此题考查了待定系数法求二次函数解析式的知识,解答本题的关键是掌握二次函数图象上的点的坐标满足二次函数解析式.4.【考点】几何概率【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.解:如图,连接PA.PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.5.【考点】解直角三角形的应用﹣坡度坡角问题【分析】Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.解:Rt△ABC中,∵BC=5米,tanA=,∴AC=BC÷tanA=15米.故选C.【点睛】本题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用坡度的定义是解答本题的关键.6.【考点】圆内接四边形的性质;平行四边形的性质;圆周角定理.【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ADC=∠AOC;∵∠ADC=β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选C.【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.7.【考点】二次函数图象与几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A.三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;教习网-海量精品课件试卷教案免费下载D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.【点评】此题考查三边对应成比例,两三角形相似判定定理的应用.9.【考点】相似三角形的性质;坐标与图形性质.【分析】根据相似三角形对应边成比例求出CB、AC的关系,从而得到===,过点C作CD ⊥y轴于点D,然后求出△AOB和△CDB相似,根据相似三角形对应边成比例求出CD、BD,再求出OD,最后写出点C的坐标即可.解:∵A(﹣4,0),B(0,2),∴OA=4,OB=2,∵△COB∽△CAO,∴==============,∴CO=2CB,AC=2CO,∴AC=4CB,∴===,过点C作CD⊥y轴于点D,∵AO⊥y轴,∴AO∥CD,∴△AOB∽△CDB,∴=========,∴CD==AOA==,BD==OOB==,∴OD=OB+BD=2++===,∴点C的坐标为((,,).故选B.【点评】本题考查了相似三角形的性质,坐标与图形性质,主要利用了相似三角形对应边成比例,求出∴===,是解题的关键,也是本题的难点.10.【考点】垂径定理;勾股定理.【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.解:连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,AE===4,∴AB=2AE=8,故选B.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题11.【考点】概率的意义.【分析】求出一次抛一枚硬币正面朝上的概率即可.解:∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为.故答案为:.【点评】本题考查的是概率的意义,注意抛硬币只有两种情况,每次抛出的概率都是一致的,与次数无关.12.【考点】特殊角的三角函数值【分析】先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.解:在中,,,,,,.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.13.【考点】平行线分线段成比例【分析】根据平行线分线段成比例的定理直接填空.解:(1)三条平行线截两条直线,所得的对应线段的比相等.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的两边上的对应线段的比相等.(3)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所得的三角形与原三角形的三边对应成比例.故答案是:对应线段;两边上的对应线段的比;的三边对应成比例.【点评】本题考查了平行线分线段成比例.(1)定理1:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)定理2:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)定理3:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.14.【考点】点与圆的位置关系解:如图,连接AC,∵在矩形ABCD中,AB=8,AD=6,∠ABC=90°,∴,∴AD<AB<AC,∵B,C,D三点中至少有一点在⊙A内,且至少有一点⊙A在外,∴点D一定在⊙A内,点C一定在⊙A外,∴⊙A半径r的取值范围应大于AD的长,小于对角线AC的长,即6<r<10.故答案为:6<r<10.【点睛】要确定点与圆的位置关系,就要确定点到圆心的距离与半径的大小关系,设点与圆心的距离d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.15.【考点】待定系数法求函数解析式【分析】利用抛物线的解析式顶点式确定解:∵抛物线经过顶点(0,-1)∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.16.【考点】正多边形和圆.【分析】连接OA.OB、OC,证明△OBP≌△OCQ,根据全等三角形的性质得到∠BOP=∠COQ,结合图形计算即可.解:连接OA.OB、OC,∵五边形ABCDE是⊙O的内接正五边形,∴∠AOB=∠BOC=72°,∵OA=OB,OB=OC,∴∠OBA=∠OCB=54°,在△OBP和△OCQ中,,∴△OBP≌△OCQ,∴∠BOP=∠COQ,∵∠AOB=∠AOP+∠BOP,∠BOC=∠BOQ+∠QOC,∴∠BOP=∠QOC,∵∠POQ=∠BOP+∠BOQ,∠BOC=∠BOQ+∠QOC,∴∠POQ=∠BOC=72°.故答案为:72°.【点评】本题考查的是正多边形和圆、全等三角形的判定和性质,掌握正多边形的中心角的求法、全等三角形的判定定理是解题的关键.三、解答题17.【考点】分式的化简求值;特殊角的三角函数值.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.【点评】此题考查分式的混合运算及特殊角的函数值.18.【考点】圆周角定理【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ACB=90°,又由CE⊥AB,根据同角的余角相等,可证得∠2=∠A,又由C是弧BD的中点,证得∠1=∠A,继而可证得CF﹦BF.解:如图所示:∵AB是⊙O的直径,∴∠ACB﹦90°,又∵CE⊥AB,∴∠CEB﹦90°,∴∠2﹦90°-∠3﹦∠A,又∵C是弧BD的中点,∴∠1﹦∠A,∴∠1﹦∠2,∴CF﹦BF.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了直径所对的圆周角为90度和等角的余角相等.19.【考点】位似变换【分析】由AC∥BD,CE∥DF,可证△OAC∽△OBD,△OCE∽△ODF ,继而证得,∠ACE=∠BDF,即可证得△ACE∽△BDF;又由△ACE与△BDF的各对应边的连线过点O,可得△ACE与△BDF位似.解:与相似,与位似.理由:∵,,∴,,教习网-海量精品课件试卷教案免费下载∴,,,,∴,,∴;∵与的各对应顶点的连线过点,∴与位似.【点睛】此题考查了位似变换以及相似三角形的判定与性质.注意相似三角形的各对应顶点连线过同一个点,即可得位似.20.【考点】列表法与树状图法;用样本估计总体;频数(率)分布表;频数(率)分布直方图.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A.B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.21.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据坡度定义直接解答即可;(2)作DS ⊥BC ,垂足为S ,且与AB 相交于H .证出∠GDH=∠SBH ,根据=,得到GH=1m ,利用勾股定理求出DH 的长,然后求出BH=5m ,进而求出HS ,然后得到DS .解:(1)∵坡度为i =1∶2,AC =4 m , ∴BC =4×2=8 m ;(2)作DS ⊥BC ,垂足为S ,且与AB 相交于H .∵∠DGH =∠BSH ,∠DHG =∠BHS , ∴∠GDH =∠SBH , ∴GH GD =12,∵DG =EF =2 m ,∴GH =1 m , ∴DH =5 m ,BH =BF +FH =3.5+(2.5-1)=5 m ,设HS=x m,则BS=2x m,∴x2+(2x)2=52,∴x= 5 m,∴DS=5+5=25≈4.5 m.∴点D离地面的高为4.5 m.【点评】本题考查了解直角三角形的应用-坡度坡角问题,熟悉坡度坡角的定义和勾股定理是解题的关键.22.【考点】二次函数综合题。
湖州市吴兴区2018-2019学年九年级上期末数学检测题(一)有答案
浙江省湖州市吴兴区2018-2019学年九年级(上)期末数学检测题(一)一.选择题(共10小题,满分30分,每小题3分)1.在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是()A.B.C.D.2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)4.下列说法正确的是()A.矩形都是相似图形B.各角对应相等的两个五边形相似C.等边三角形都是相似三角形D.各边对应成比例的两个六边形相似5.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.D.26.如图,在△ABC中,D、E分别为AB,AC上的点,若DE∥BC,=,则=()A.B.C.D.7.如图,圆上有A,B,C,D四点,其中∠BAD=80°,若圆的半径为9,则的长度为()A.4πB.8πC.10πD.15π8.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④9.将抛物线y=x2+2x+3绕点(﹣1,0)旋转180°,得到的新抛物线的解析式为()A.y=x2﹣2x+3B.y=﹣x2+2x﹣3C.y=﹣x2﹣2x﹣1D.y=﹣x2﹣2x﹣3 10.已知A(x1,2002),B(x2,2002)是二次函数y=ax2+bx+5(a≠0)的图象上两点,则当x=x1+x2时,二次函数的值是()A.B.C.2002D.5二.填空题(共6小题,满分24分,每小题4分)11.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.12.有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.13.如图,在扇形铁皮AOB中,OA=10,∠AOB=36°,OB在直线l上.将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为.14.如图,AB是⊙O的直径,AB=4,∠BAP=40°,点Q为PB的中点,点C是直径AB 上的一个动点,则PC+QC的最小值为.15.某居民楼紧挨一座山坡AB,经过地质人员勘测,当坡度不超过45°时,可以确保山体不滑坡,如图所示,已知AE∥BD,斜坡AB的坡角∠ABD=60°,为防止滑坡,现对山坡进行改造,改造后,斜坡BC与地面BD成45°角,AC=10米.则斜坡BC=米.16.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,tanA=,那么BD=.三.解答题(共8小题,满分54分)17.(6分)﹣2sin45°.18.(6分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=A B•AD;(2)求证:△AFD∽△CFE.19.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.(8分)如图,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.(精确到1mm,参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.(8分)如图,一、二、三、四这四个扇形的面积之比为1:3:5:1.(1)请分别求出它们圆心角的度数.(2)一、二、四这三个扇形的圆心角的度数之和是多少?22.(10分)某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图中的图象是抛物线的一段,它刻画了该软件上市以来累积利润S(万元)与销售时间t(月)之间的函数关系(即前t个月的利润总和S与t之间的函数关系),根据图象提供的信息,解答下列问题:(1)该种软件上市第几个月后开始盈利?(2)求累积利润S(万元)与时间t(月)之间的函数表达式;(3)截止到几月末,公司累积利润达到30万元.23.(10分)杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数;(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大;几个月后,能收回投资?24.如图,二次函数y=﹣x2+x+2的图象与x轴交于点A,B,与y轴交于点C.点P 是该函数图象上的动点,且位于第一象限,设点P的横坐标为x.(1)写出线段AC,BC的长度:AC=,BC=;(2)记△BCP的面积为S,求S关于x的函数表达式;(3)过点P作PH⊥BC,垂足为H,连结AH,AP,设AP与BC交于点K,探究:是否存在四边形ACP H为平行四边形?若存在,请求出的值;若不存在,请说明理由,并求出的最大值.参考答案一.选择题1.解:∵∠C=90°,AC=4,AB=5,∴BC==3,∴tanA==,故选:C.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.4.解:A.矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;B.各角对应相等的两个五边形相似,对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;C.等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D.各边对应成比例的六边形对应角不一定相等,所以不一定是相似六边形,故本选项错误;故选:C.5.解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故选:D.6.解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:B.7.解:如图,设圆心为O,连结OB、OD.∵圆上有A,B,C,D四点,其中∠BAD=80°,∴∠C=180°﹣80°=100°,∴所对的圆心角=2∠C=200°,∵圆的半径为9,∴的长度为:=10π.故选:C.8.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.9.解:y=x2+2x+3,=(x2+2x)+3,=(x2+2x+1﹣1)+3,=(x2+2x+1)﹣1+3,=(x+1)2+2,∴抛物线的顶点坐标为(﹣1,2),∵点(﹣1,2)关于(﹣1,0)中心对称的点的坐标为(﹣1,﹣2),∴抛物线绕着点(﹣1,0)旋转180°后,所得到的新抛物线的解析式为y=﹣(x+1)2﹣2,即y=﹣x2﹣2x﹣3.故选:D.10.解:∵A(x1,2002),B(x2,2002)是二次函数y=ax2+bx+5(a≠0)的图象上两点,又∵点A、B的纵坐标相同,∴A、B关于对称轴x=﹣对称,∴x=x1+x2=﹣,∴a+b(﹣)+5=5;故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.12.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.13.解:当OA第1次落在l上时:点O所经过的路线长=++==12π.则当OA第5次落在l上时:点O所经过的路线长=12π×5=60π.故答案是:60π.14.解:作出Q关于AB的对称点D′,连接OP,OD′,QD′.又∵点C在⊙O上,∠BAP=40°,Q为PB的中点,即=,∴∠BAD′=∠BAP=20°.∴∠PAD′=60°.∴∠POD′=120°,∵OP=OD′=AB=4,∴PD′=2.故答案为:2.15.解:作AM⊥BD于点M,作CN⊥BD于点N,如右图所示,∵∠ABD=60°,∠CBD=45°,∴BN=,BM=,BC=,∵CN=AM,AC=BN﹣BM,AC=10米,∴BC=≈33.4米,即斜坡BC的长是33.4米.故答案为:33.416.解:∵在Rt△ABC中,∠C=90°,BC=8,tanA=,∴AC===6,∴AB==10,cosB===.∵边AB的垂直平分线交边AB于点E,∴BE=AB=5.∵在Rt△BDE中,∠BED=90°,∴cos B==,∴BD===.故答案为.三.解答题(共8小题,满分54分)17.解:原式=2﹣﹣2=﹣.18.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.19.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.20.解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°﹣∠BAD=180°﹣90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴mm在Rt△ADF中,cos,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.21.解:(1)∵一、二、三、四这四个扇形的面积之比为1:3:5:1.,∴各个扇形的面积分别占整个圆面积的,∴各个扇形的圆心角的度数分别为,,(2)一、二、四这三个扇形的圆心角的度数之和是36°+36°+108°=180°.22.解:(1)由图象可得,该种软件上市第4个月后开始盈利;(2)设S=a(t﹣2)2﹣2,∵函数图象过点(0,0),∴0=a(0﹣2)2﹣2,得a=,∴累积利润S(万元)与时间t(月)之间的函数表达式是:S=(t﹣2)2﹣2;(3)由题意,当S=30时,30=(t﹣2)2﹣2,解得,t1=10,t2=﹣6(舍去),即截止到10月末,公司累积利润达到30万元;23.解:(1)由题意得:x=1时y=2;x=2时,y=2+4=6代入得:解之得:∴y=x2+x;(2)由题意得:g=33x﹣150﹣(x2+x)=﹣x2+32 x﹣150;(3)g=﹣x2+32 x﹣150=﹣(x﹣16)2+106,值=106,∴当x=16时,g最大即设施开放16个月后,游乐场的纯收益达到最大,又∵当0<x≤16时,g随x的增大而增大;当x≤5时,g<0;而当x>6时,g>0,∴6个月后能收回投资.24.解:(1)二次函数y=﹣x2+x+2,当x=0时,y=2,∴C(0,2),∴OC=2,当y=0时,﹣x2+x+2=0,解得:x1=4,x2=﹣1,∴A(﹣1,0),B(4,0),∴OA=1,OB=4,由勾股定理得:AC==,BC==2;故答案为:,2;(2)∵B(4,0),C(0,2),∴直线BC的解析式为:y=﹣x+2,如图1,过P作PD∥y轴,交直线BC于D,设P(x,﹣x2+x+2),则D(x,﹣x+2),∴PD=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,有S=PD•OB=×4(﹣+2x)=﹣x2+4x(0<x<4);(6分)(3)不存在,如图2,∵AC2+BC2==25=AB2,∴△ABC为直角三角形,即AC⊥BC,∵PH⊥BC,∴AC∥PH,要使四边形ACPH为平行四边形,只需满足PH=AC=,(10分)∴S=BC•PH=×2×=5,∵而S=﹣x2﹣4x=﹣(x﹣2)2+4≤4,所以不存在四边形ACPH为平行四边形,∵AC∥PH,∴△AKC∽△PHK,∴===S≤;∴的最大值是.(12分)(说明:写出不存在给1分,其他说明过程酌情给分)。
浙江省湖州市吴兴区2019届九年级上学期数学期末考试试卷
第1页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………浙江省湖州市吴兴区2019届九年级上学期数学期末考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 已知两个相似三角形的对应边之比为1:3,则它们的周长比为( ) A . 1:9 B . 9:1 C . 1:6 D . 1:32. 下列事件中,属于必然事件的是( )A . 掷一枚硬币,正面朝上B . 三角形任意两边之差小于第三边C . 一个三角形三个内角之和大于180°D . 在只有红球的盒子里摸到白球3. 将抛物线y=2x 2向右平移3个单位,能得到的抛物线是( )A . y=2x 2+3B . y=2x 2﹣3C . y=2(x+3)2D . y=2(x ﹣3)24. 已知圆心角为60°的扇形面积为24π,那么扇形的半径为( ) A . 12 B . 6 C . D .5. 如图,直线,直线 分别与 相交于点 和点 若则等于( )答案第2页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 6B . 8C . 9D . 126. 如图,已知Rt△ABC 中,△C=90°,AC=6,tanA= ,则AB 的长是( )A .B .C . 12D . 67. 如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D 、E ,量出半径OC=5cm ,弦DE=8cm ,则直尺的宽度是( )A . 4cmB . 3cmC . 2cmD . 1cm8. 已知(1,y 1),(﹣2,y 2),(﹣4,y 3)是抛物线y=﹣x 2﹣4x+m 上的点,则( ) A . y 1<y 2<y 3 B . y 3<y 2<y 1 C . y 3<y 1<y 2 D . y 1<y 3<y 29. 如图,在6×8的正方形网格中,共有48个边长为1 的小正方形.A,B,C,D,E 都是正方形网格上的格点.连接DE ,DB 交AC 于点P 、Q ,则PQ 的值是( )。
2018-2019期末九年级数学参考答案
2018——2019学年度第一学期期末教学质量检查九 年 级 数 学 科 参. 考. 答. 案.(说明:全卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BDBBCACCBA二、填空题(本大题6小题,每小题4分,共24分) 11. 4,421-==x x 12.3113. (-4,-5) 14.如:1)2(22++-=x y 15. 相离 16.3434+π 三、解答题(一)(本大题3小题,每小题6分,共18分)17.解:01322=+-x x …………………1分()11243422=⨯⨯--=-ac b …………………2分413242±=-±-=a ac b b x …………………4分 11=x 212=x …………………6分18.解: (1) 作图 …………………3分如图所示:△A 1B 1C 1即为所求,……4分(2) C 1的坐标为 (1,-4) ……………6分19、证明: 过点O 作OE ⊥AB 于点E …………1分 ∵ 在⊙O 中 OE ⊥CD∴CE=DE …………………3分 ∵OA=OB ,∴AE=BE , …………………4分∴AE-CE=BE-DE …………………5分 ∴AC=BD …………………6分EA 1C 1B 120.解:(1)∵方程有两个不相等的实数根 ∴042>-ac b …………………1分 即:()042422>--k …………………2分 解得:25<k …………………3分(2)当x =2时,得4+4+2k-4=0解得k =-2 …………………4分 ∴方程为:0822=-+x x解得:21=x 42-=x …………………6分∴方程的另一根为-4 …………………7分21、解:(1) 3 ; 3 …………………2分(2)画树状图如下:黄 黄 白黄 白 黄 白 黄 黄 …………………4分共有6种等可能的结果,其中摸到的2个球都是黄球的有2种可能,…………………5分 ∴P(2个球都是黄球)=503162≠=%.…………………6分 ∴该设计方案不符合老师的要求…………………7分22.证明:(1)由旋转的性质得,CD=CF ,∠DCF=90°,…………………1分∴∠DCE+∠ECF=90°, ∵∠ACB=90°, ∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF , …………………2分 在△BDC 和△EFC 中,,∴△BDC ≌△EFC (SAS ); …………………4分 (2)∵EF ∥CD ,∴∠F+∠DCF=180°,…………………5分 ∵∠DCF=90°,∴∠F=90°,…………………6分 ∵△BDC ≌△EFC ,∴∠BDC=∠F=90°.…………………7分23.解:(1)设每次下降的百分率为x …………………1分 根据题意得:50(1﹣x )2=32 …………………2分解得:x 1=0.2,x 2=1.8(不合题意舍去)…………………3分 答:平均下降的百分率为20% …………………4分(2)设每千克应涨价m 元, 每天的利润为W 元 …………………5分W=(50-40+m )(500﹣20m ) …………………6分 = -20m 2+300m+5000 …………………7分5.7)20(23002=-⨯-=-=a b m ∵a =-20<0∴当m =7.5时函数有最大值 …………………8分答:每千克应涨价7.5元才能使每天盈利最大.…………………9分24、解:(1)连接OM ,过点O 作ON ⊥CD 于N ,…………………1分 ∵⊙O 与BC 相切于点M ,∴OM ⊥BC ,OM 是⊙O 的半径 …………………2分 ∵AC 是菱形ABCD 的对角线,∴AC 平分∠BCD …………………3分 ∵ON ⊥CD OM ⊥BC∴ON=OM =r …………………4分 ∴CD 与⊙O 相切; …………………5分 (2)∵四边形ABCD 是菱形,∴AB=BC , ∵∠ABC=60°,∴△ACB 是等边三角形,∴AC=AB=2 …………………6分 设半径为r .则OC=2﹣r ,OM=r , ∵∠ACB=60°,∠OMC=90°,∴∠COM=30°,MC=22r -…………………7 分在Rt △OMC 中,∠OMC=90° ∵OM 2+CM 2=OC 2∴()222222r r r -=⎪⎭⎫ ⎝⎛-+ …………………8分 解得346±-=r (负值舍去)∴⊙O 的半径为346+- …………………9分25、解:(1)∵二次函数y=ax 2+bx-3经过点A (﹣3,0)、B (1,0)∴{ 解得{…………………1分所以二次函数的解析式为:322-+=x x y …………………2分 (2)设直线AE 的解析式为y=kx+b ∵过点A (﹣3,0),E (0,1)∴{解得 31=k可求AE 所在直线解析式为131+=x y …………………3分 过点D 作DG ⊥x 轴,交AE 于点F ,垂足为G ,如图 设D (m ,322-+m m )则点F (m ,131+m ),∴4351313222+--=+++--=m m m m m DF …………………4分∴S △ADE =S △ADF +S △EDF =×DF ×AG+DF ×OG =×DF ×(AG+OG ) =×3×DF =)435(232+--m m =625232+--m m …………………5分=24169)65(232++-m∴当65-=m 时,△ADE 的面积取得最大值为24169.…………………6分(3)P 点的坐标为:()4,1- ;()2,1--;()6,1--;()6,1-;()1,1-- …………………9分9a-3b-3=0a+b-3=0a=1b=2-3k+b=0b=1 b=1{GF。
湖州市吴兴区2018-2019学年九年级上期末数学检测题(一)含答案
二.填空题(共 6 小题,满分 24 分,每小题 4 分)
11.袋中装有 6 个黑球和 n 个白球,经过若干次试验,发现“若 从袋中任摸出
一个球,恰是黑球的概率为 ”,则这个袋中白球大约有 个.
形沿 l 按顺时针方向旋转(旋转过程中无滑动),当 OA 第 5 次落在 l 上时,
停止旋转.则 点 O 所经过的路线长为 .
x … ﹣1 0 1 2 3 …
y … 3 0 ﹣1 m 3 …
有以下几个结论:
①抛物线 y=ax2+bx+c 的开口向下;
浙江省湖州市吴兴区 2018-2019 学年九年级(上)期末数学
检测题(一)
一.选择题(共 10 小题,满分 30 分,每小题 3 分)
1.在 Rt△ABC 中,∠C=90°,AC=4,AB=5,则 tanA 的值是( )
10.已知 A(x1,2002),B(x2,2002)是二次函数 y=ax +bx+5(a≠0)的图象
上两点,则当 x=x1+x2 时,二次函数的值是( )
A. B. C.2002 D.5
23.(10 分)杭州休博会期间,嘉年华游乐场投资 150 万元引进一项大型游乐
设施.若不计维修保养费用,预计开放后每月可创收 33 万元.而该游乐设
AB 的中点,
(1)求证:AC2 =A B•AD;
(2)求证:△AFD∽△CFE.
19.(6 分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的
面积都相等,且分别标有数字 1,2,3.
9.将抛物线 y=x2+2x+3 绕点(﹣1,0)旋转 180°,得到的新抛物线的解析式为
浙江省湖州市吴兴区2018-2019学年九年级(上)期末数学试卷(含答案)
2018-2019学年浙江省湖州市吴兴区九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.已知两个相似三角形的对应边之比为1:3,则它们的周长比为()A.1:9B.9:1C.1:6D.1:32.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球3.将抛物线y=2x2向右平移3个单位,能得到的抛物线是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)24.已知圆心角为60°的扇形面积为24π,那么扇形的半径为()A.12B.6C.4πD.2π5.如图,直线l1∥l2∥l3,直线AC,DF分别与l1,l2,l3相交于点A,B,C和点D,E,F,若=,DE=3,则EF等于()A.6B.8C.9D.126.如图,已知Rt△ABC中,∠C=90°,AC=6,tan A=,则AB的长是()A.3B.6C.12D.67.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度为()A.1cm B.2cm C.3cm D.4cm8.已知(1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣x2﹣4x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y29.如图,在6×8的正方形网格中,共有48个边长为1的小正方形.A,B,C,D,E都是正方形网格上的格点.连接DE、DB交AC于点P、Q,则PQ的值是()A.B.C.D.10.如图,探究:用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M、P、H三点的圆弧与AH交于R,则弧HR的弧长为()A.B.πC.πD.π二、填空题(本题有6小题,每小题4分,共24分)11.若,则=.12.抛物线y=(x﹣2)2+3的顶点坐标是.13.一个不透明的口袋中有除颜色外完全相同的5个小球.其中黄球有2个,红球有2个,蓝球有1个,随机摸出一个小球为红球的概率是.14.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD是斜边AB上的高线,以点C为圆心,2.5为半径作圆,则点D在圆(填“外”,“内”,“上”).15.⊙C经过坐标原点,且与两坐标轴分别交于点A、B,点A的坐标为(0,6),M是圆上一点,∠BMO=150°.则圆心C的坐标为.16.如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1(2n﹣2,0),B n(2n,0),等腰△A n B n﹣1B n为第n个三角形.(1)写出满足△A n B n﹣1B n的面积为整数的n的值.(2)若第n条抛物线为y=a n x2+b n x+c n满足10a n+5b n+c n=0,称“滑翔抛物线”,试求出满足条件的“滑翔抛物线”解析式为.三、解答题(本题有8小题,共66分)17.计算:4sin45°+3tan230°﹣18.已知:如图,点C,D在线段AB上,△PCD是等边三角形,且AC=1,CD=2,DB =4.求证:△ACP∽△PDB.19.每年11月9日为消防宣传日,今年“119”消防宣传月活动的主题是“全民参与,防治火灾”.为响应该主题,吴兴区消防大队到某中学进行消防演习.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD 的高度AH为5.2m.当起重臂AC长度为16m,张角∠HAC为130°时,求操作平台C 离地面的高度(结果精确到0.1m)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)20.近年来,吴兴区坚定不移地践行“绿水青山就是金山银山”发展理念,跑出了乡村旅游发展的“吴兴速度”.已成功打造了汇聚文化体验、乡村休闲、养生养老等多元业态的西塞山省级旅游度假区,拥有A﹣菰城景区;B﹣原乡小镇;C﹣丝绸小镇•西山漾;D﹣台湾风情小镇;E﹣古梅花观等高品质景区.吴兴区某中学九年级开展了“我最喜爱的旅游景区”的抽样调查(每人只能选一项).根据收集的数据绘制了两幅不完整的统计图,其中B对应的圆心角为900.请根据图中信息解答下列问题:(1)此次抽取的九年级学生共人,m=,并补全条形统计图;(2)九年级准备在最喜爱原乡小镇的4名优秀学生中任意选择两人去实地考察,这4名学生中有2名男生和2名女生,用树状图或列表法求选出的两名学生都是男生的概率.21.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=8,∠CBD=30°,求图中阴影部分的面积.22.吴兴区文体中心,位于湖州市吴兴区东部新城,于今年上半年完全竣工,现已投入使用.其中体育馆可容纳四千人同时观看比赛.现C区有座位400个,某赛事试营销阶段发现:当票价为80元时,可售出C区票280张,若每降价1元,可多售出6张票.设降价x 元(x取正整数)时,可售出观赛座位票y张.(1)求出y关于x的函数关系式;(2)设C区的总票价为W元,求W关于x的函数关系式,并求出W的最大值;(3)求当票价为多少元时,C区的总共售票收入为23800元.23.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)并缩短一半得到AB',把AC绕点A逆时针旋转β并缩短一半得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋半三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋半中线”,点A叫做“旋半中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=4时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用:(3)如图4,在平面直角坐标系中,△ABC的坐标分别是A(4,3),B(1,0),C(5,0),△AB′C′是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”,连结OD,求OD的最大值是多少?并请直接写出当OD最大时点D的坐标.24.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+x+3交x轴于A,B两点,交y 轴于点C,顶点为D,抛物线对称轴与x轴交点为E.(1)求直线BD的解析式.(2)点M(m,0),N(m+2,0)为x轴上两点,其中2<m<4,MM′,NN′分别垂直于x轴交抛物线于M′,N′,交直线BD于点P,Q.试求:当m为何值时,M′P+N′Q的值最大.(3)在(2)的条件下,作NN′的中垂线l交MM′于点R.现将△RNN′以每秒一个单位的速度向左平移,当点R运动到△ADE的中线AT上时,三角形停止运动.设平移的时间为t秒(t>1),设△RNN′与△ADE重叠部分的面积为S,试求S关于t的函数解析式.2018-2019学年浙江省湖州市吴兴区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.【解答】解:∵两个相似三角形的相似比为1:3,∴它们对应周长的比为1:3.故选:D.2.【解答】解:A、掷一枚硬币,正面朝上,是随机事件,故此选项错误;B、三角形任意两边之差小于第三边,是必然事件,故此选项正确;C、一个三角形三个内角之和大于180°,是不可能事件,故此选项错误;D、在只有红球的盒子里摸到白球,是不可能事件,故此选项错误;故选:B.3.【解答】解:由“左加右减”的原则可知,抛物线y=2x2向右平移3个单位,能得到的抛物线是y=2(x﹣3)2.故选:D.4.【解答】解:设扇形的半径为r.由题意:=24π,∴r2=144,∵r>0,∴r=12,故选:A.5.【解答】解:∵直线l1∥l2∥l3,=,∴,即,解得:EF=9,故选:C.6.【解答】解:在Rt△ABC中,∵tan A=,∴BC=AC tan A=6×=3,则AB===3,故选:A.7.【解答】解:过点O作OF⊥DE,垂足为F,∵OF过圆心,∵DE=8cm,∴EF=DE=4cm,∵OC=5cm,∴OE=5cm,∴OF===3cm.故选:C.8.【解答】解:∵物线y=﹣x2﹣4x+m=﹣(x+2)2+4+m,∴该抛物线的对称轴是直线x=﹣2,开口向下,∵(1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣x2﹣4x+m上的点,1﹣(﹣2)=3,(﹣2)﹣(﹣2)=0,(﹣2)﹣(﹣4)=2,∴y1<y3<y2,故选:D.9.【解答】解:由勾股定理得,AC==10,∵AB∥CD,∴△AQB∽△CQD,△APE∽△CPD,∴=,=,即=,=,解得,AQ=,AP=,则PQ=AQ﹣AP=,故选:C.10.【解答】解:连接AM,MH,MR.∵AM=MH=2,AH=2,∴AM2+MH2=AH2,∴∠AMH=90°,∴△AMH是等腰直角三角形,∵∠MPH=90°,∴MH是圆的直径,∴∠MRH=90°,∴MR⊥AH,∴∠RMH=∠RMA=45°,∴弧RH所对的圆心角为90°,∴的长==.故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.【解答】解:∵,∴设a=3k,b=4k,∴==.故答案为:.12.【解答】解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故答案为:(2,3)13.【解答】解:∵一个口袋里有5个除颜色外完全相同的小球,其中2个黄球,1个蓝球,2个红球,∴摸到红球的概率是;故答案为:.14.【解答】解:直角△ABC中,AB2=AC2+BC2,AC=4,BC=3,∴AB==5,△ABC的面积S=•AC•BC=•AB•CDCD=.∵<2.5,∴点D在⊙C内,故答案为:内.15.【解答】解:∵∠AOB=90°,∴AB是⊙C的直径,C是线段AB的中点;由于四边形ABMO内接于⊙C,∴∠BAO=180°﹣∠BMO=30°.在Rt△ABO中,OA=6,∠BAO=30°,则OB=6.所以B(﹣6,0),∵A(0,6),B(﹣6,0),∴C(﹣3,3)故答案为:(﹣3,3).16.【解答】解:(1)∵第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1(2n﹣2,0),B n(2n,0),等腰△A n B n﹣1B n为第n个三角形.∴抛物线的对称轴为:x=2n﹣1,∵点A n(x n,y n)(n为正整数)在反比例函数y=图象上,∴A n的坐标为(2n﹣1,),∴△A n B n﹣1B n的面积=,∴△A n B n﹣1B n的面积为整数的n的值1或4;(2)设第n条抛物线为y=a(x﹣2n+2)(x﹣2n),∴=a×1×(﹣1),a=,∴第n条抛物线为y=(x﹣2n+2)(x﹣2n)=,∵10a n+5b n+c n=0,∴,解得:n=1或n=5,当n=1时,y=﹣7x+14x当n=5时,或y=.故答案为:y=﹣7x+14x或y=.三、解答题(本题有8小题,共66分)17.【解答】解:原式=4×+3×()2﹣2=2+1﹣2=1.18.【解答】证明:∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,PC=CD=PD=2,∴∠PCA=∠PDB=120°,∵AC=1,BD=4,∴,=,∴=,∴△ACP∽△PDB.19.【解答】解:作AF⊥AH于F,CE⊥BD交于点G,∵∠CAH=130°,∴∠CAG=40°,∴CG=AC sin40°=16sin40°≈16×0.64≈10.2,∴CE=CG+GE=15.4(米),操作平台C离地面的高度为15.4米.20.【解答】解:(1)∵B对应的圆心角为90°,B的人数是50,∴此次抽取的九年级学生共50÷=200(人),∵E所占的百分比为×100%=20%,∴m=20,C对应的人数是:200﹣60﹣50﹣20﹣40=30,补图如下:故答案为:200,30.(2)根据题意画图如下:∵共有12种情况,两名学生都是男生的情况有2种,∴两名学生都是男生的概率是=.21.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)连接CD,OD,∵OC∥BD,∴∠OCB=∠CBD=30°,∵OC=OB,∴∠OCB=∠OBC=30°,∴∠AOC=∠OCB+∠OBC=60°,∵∠COD=2∠CBD=60°,∴∠AOD=120°,∴S阴=S扇形OAD﹣S△ADO=﹣•4×2=﹣4 22.【解答】解:(1)根据题意得,y=280+6x;(2)根据题意得,W=(80﹣x)(280+6x),即W=﹣6x2+200x+22400=﹣6(x﹣)2+当x=时,W有最大值,∵x取正整数,∴当x=17时,W最大=24066元;(3)当W=23800时,即﹣6x2+200x+22400=23800,解得:x1=10,x2=(不合题意,舍去),∴票价为80﹣10=70元,答:当票价为70元时,C区的总共售票收入为23800元.23.【解答】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=2AB′=2AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为:.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC∽△B′AC′,∴BC=2B′C′,∵B′D=DC′,∴AD=B′C′=BC==1,故答案为:1;(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC∽△AB′M,∴BC=2AM,∴AD=BC.(3)如图4,∵AD=BC,BC=4,∴AD=1,∴D在以A为圆心,以1为半径的圆上,∴当D运动到直线OA与半圆相交时OD最大,∵A(4,3),∴OA=5,∵AD=1,∴OD的最大值是6.过A作AE⊥x轴于E,过D作DF⊥x轴于F,∴AE∥DF,∴△AOE∽△DOF,∴==,∵OE=4,AE=3,∴OF=,DF=,∴D(,).24.【解答】解:(1)令y=0,解得:x=6或﹣2,令x=0,则y=3,则以下各点的坐标为:C(0,3)、B(6,0)、A(﹣2,0)D(2,4),将点B、D的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线BD的表达式为:y=﹣x+6,(2)M(m,0),N(m+2,0),则点M′(m,﹣m2+m+3)、点N′[m+2,﹣(m+2)2+m+5]、点Q(m+2,﹣m+4)、点P(m,﹣m+6),则M′P+N′Q=(﹣m2+m+3)﹣(﹣m+6)+[﹣(m+2)2+m+5]﹣(﹣m+4)=﹣(m﹣3)2+,当m=3时,M′P+N′Q的最大值为;(3)由(2)得:NN′=,S△RNN′=×MN×NN′==,点T的坐标为(2,2),则直线AT的表达式为:y=x+1,设AT与直线l交于点G,则G的纵坐标为,则点G(﹣,),当R、G重合时,t=3﹣(﹣)=;①当1<t≤3时,重叠部分与△RNN′相似,则由形似比等于高的比为,S=×()2=(t﹣1)2,②当3<t时,此时,重叠部分即为△RNN′的面积,即:s=,故:S=.。
2018-2019学年浙教版九年级数学第一学期期末试卷(含答案)
2018-2019学年九年级数学(上)期末试卷一•选择题(共12小题,满分48分)1 •对于抛物线y= -(x+2)2+3,下列结论中正」确结论的个数为()①抛物线的开口向下;②对称轴是直线x= - 2;③图象不经过第一象限;④当x>2时,y随x的增大而减小.A. 4B. 3C. 2 D . 12. 已知△ ABC 中,/ C=90°,AC=6 , BC=8,贝U cosB的值是()A. 0.6B. 0.75C. 0.8 D ."3. 下列事件中,是必然事件的是()A .明天太阳从东方升起B. 随意翻到一本书的某页,这页的页码是奇数C. 射击运动员射击一次,命中靶心D .经过有交通信号灯的路口,遇到红灯4. 若2a=3b,贝叮等于()aA.二B. 1C. = D .不能确定5. —个扇形的圆心角是60。
,半径是6cm,那么这个扇形的面积是()A. 3 n CmB. n cmC. 6 n Cm D . 9 n Sm6. 下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂宜于弦;并且平分弦所对的弧,④圆内接四边形对角互补.其中错误的结论有()7. 如图,在厶ABC 中,点D 是AB 边上的一点,若/ACD= / B , AD=1 , AC=2 ,△ ADC 的面积为3,则厶BCD 的面积为( )则弧DE 的长为(C .n 4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线y=x 2上的概率是() B. '■ 10. 如图,已知 AB 是。
O 的直径,点P 在BA 的延长线上,PD 与。
O 相切于 点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若。
O 的半径为4, BC=6,B. C . 68.如图,菱形ABCD 中, / B=70 ,AB=3,以AD 为直径的。
O 交CD 于点E , B .B . 2 二C . 3D . 2.5 D . .1A . 12 D9.从 1、2、3、 A . 4则PA的长为()11. 如图,已知点C在以AB为直径的。
2018—2019学年度九年级数学第一学期期末质量检测试卷及答案
2018—2019学年度九年级数学第一学期期末质量检测试卷一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个 1.已知∠A 为锐角,且sin A =12,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°3.已知△ABC ∽△'''A B C ,如果它们的相似比为2∶3,那么它们的面积比是A .3:2B . 2:3C .4:9D .9:4 4.下面是一个反比例函数的图象,它的表达式可能是 A .2y x = B .4y x=C .3y x =-D . 12y x =5.正方形ABCD 内接于O ,若OA .1B .2CD.6.如图,线段BD ,CE 相交于点A ,DE ∥BC .若BC =3,DE =1.5,AD =2,则AB 的长为 A .2 B .3 C .4 D .522D EC BA第6题图第8题图 第2题图第4题图第5题图A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度8. 如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(-2,-3),(1,-3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为 A.-1 B.-3 C.-5 D.-7 二、填空题(本题共16分,每小题2分)9.二次函数241y x x =++-2图象的开口方向是__________. 10.Rt△ABC 中,∠C=90°,AC=4,BC=3,则tanA 的值为 .11. 如图,为了测量某棵树的高度,小颖用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点. 此时竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为 .12.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是 . 13.如图所示的网格是正方形网格,则sin ∠BAC 与sin ∠DAE 的大小关系是 .14.写出抛物线y=2(x-1)2图象上一对对称点的坐标,这对对称点的坐标 可以是 和 .15.如图,为测量河内小岛B 到河边公路l 的距离,在l 上顺次取A ,C ,D 三点,在A 点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=50米,则小岛B 到公路l 的距离为 米.16.在平面直角坐标系xOy 内有三点:(0,-2),(1,-1),(2.17,0.37).则过这三个点 (填“能”或“不能”)画一个圆,理由是 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.已知:53a b =. 求:a bb+.18.计算:2cos30-4sin 45︒︒211题图13题图CB A(1)将y = x 2-2x -3化成y = a (x -h )2 + k 的形式; (2)求该二次函数图象的顶点坐标.20.如图,在△ABC 中,∠B 为锐角, AB=BC =7,sin 2B =,求AC 的长.21. 如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5. 求证:∠DEC =90°.22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知: △ABC .求作: 在BC 边上求作一点P , 使得△P AC ∽△ABC .作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ;E DCBA ABC④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合);⑤连接线段AD交BC于点P.所以点P就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明: ∵CD=AC,∴CD= .∴∠=∠.又∵∠=∠,∴△P AC∽△ABC ( )(填推理的依据).23.在平面直角坐标系xOy中,直线y=x+2与双曲线kyx相交于点A(m,3).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)若P是坐标轴上一点,当OA=P A时.直接写出点P的坐标.24. 如图,AB是O的直径,过点B作O的切线BM,点A,C,D分别为O的三等分点,连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F.(1)求证://CD BM;(2)连接OE,若DE=m,求△OBE的周长.B25. 在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为x cm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y,y与x的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为cm.26. 在平面直角坐标系xOy 中,抛物线22y ax ax c =++(其中a 、c 为常数,且a <0)与x 轴交于点A ()3,0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4. (1)求抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是x 轴上的一点,且ABP CAO ∠=∠,直接写出点P27. 在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH . (1) 依题意补全图1;(2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路. (可以不写出计算结果.........) A BDP图1A BCD备用图28.在平面直角坐标系xOy中,点A(x,0),B(x,y),若线段AB上存在一点Q满足12QAQB=,则称点Q是线段AB的“倍分点”.(1)若点A(1,0),AB=3,点Q是线段AB的“倍分点”.①求点Q的坐标;②若点A关于直线y= x的对称点为A′,当点B在第一象限时,求' QA QB;(2)⊙T的圆心T(0,t),半径为2,点Q在直线y x=上,⊙T上存在点B,使点Q是线段AB的“倍分点”,直接写出t的取值范围.评分标准一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个9.下10.3411. m712.32π13.sin∠BAC>sin∠DAE14.(2,2),(0,2)(答案不唯一)15.能,因为这三点不在一条直线上.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:∵53ab=,∴1a b ab b+=+=53+1=83.………………………5分=22⨯18.解:原式………………………3分4分5分19.解:(1)y=x2-2x-3=x2-2x+1-1-3……………………………2分=(x-1)2-4.……………………3分(2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵sin2B=∴∠B=∠BAD=45°.………………2分∵AB=∴AD=BD=3.…………………………3分∵BC=7,∴DC=4.∴在Rt△ACD中,5AC=.…………………………5分21.(1)证明:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=90°.∴∠A=∠B.………………2分∵AD=1,AE=2,BC=3,BE=1.5,∴121.53=.∴AD AEBE BC=∴△ADE∽△BEC.∴∠3=∠2.………………3分∵∠1+∠3=90°,∴∠1+∠2=90°.∴∠DEC=90°.………………5分22.(1)补全图形如图所示:………………2分B(2)AC ,∠CAP=∠B ,∠A CP=∠A CB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线ky x=相交于点A (m ,3). ∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入ky x=解得k=3, 3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点,∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径,∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .…………………………3分(2) 连接DB.①由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,②在Rt △ADB 中利用30°角,解得,…………………4分 ③在Rt △OBE 中,由勾股定理得出………………………………5分 ④计算出△OB E 周长为2………………………………6分25.(1)3.00…………………………………1分∴(2)…………………………………………4分 (3)1.50或4.50……………………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分 ∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方.由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.………………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=.所以1tan 3BC CAB AB ∠==. 即CAB ∠的正切值等于13.………………4分(3)点p 的坐标是(1,0).………………6分 27.(1)补全图形,如图所示.………………2分 (2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°. 证明:如图,由平移可知,PQ=DC. ∵四边形ABCD 是菱形,∠ADC=60°, ∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠D HQ=120°.∴△ADH ≌△PQH.∴AH =PH ,∠A HD =∠P HQ .∴∠A HD+∠DHP =∠P HQ+∠DHP . ∴∠A HP=∠D HQ . ∵∠D HQ=120°,∴∠A HP=120°.………………5分 (3)求解思路如下:A BCDP HQa.在△ABH中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°.b.在△AHP中,由∠A HP=120°,AH=PH,解得∠PA H=30°.c.在△ADB中,由∠A DB=∠A BD= 30°,解得∠BAD=120°.由a、b、c可得∠DAP=21°.在△DAP中,由∠A DP= 60°,∠DAP=21°,AD=1,可解△DAP,从而求得DP长.…………………………………7分28.解:(1)∵A(1,0),AB=3∴B(1,3)或B(1,-3)∵12 QA QB=∴Q(1,1)或Q(1,-1)………………3分(2)点A(1,0)关于直线y= x的对称点为A′(0,1)∴Q A =Q A′∴QBA Q'21=………………5分(3)-4≤t≤4………………7分x。
2018-2019学年最新浙教版九年级(上册)数学期末测试卷及答案
2018-2019学年九年级(上册)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若2a=5b,则=()A.B.C.2 D.52.抛物线y=x2﹣4与y轴的交点坐标是()A.(0,﹣4)B.(﹣4,0)C.(2,0) D.(0,2)3.二次函数y=2(x+1)2﹣3的最小值是()A.1 B.﹣1 C.3 D.﹣34.某路口交通信号灯的时间设置为:红灯亮25秒,绿灯亮30秒,黄灯亮5秒.当人或车随意经过该路口时,遇到绿灯的概率为()A.B.C.D.5.已知一扇形的半径长是6,圆心角为60°,则这个扇形的面积为()A.πB.2πC.6πD.12π6.如图,在△ABC中,∠ACB=90°,BC=3cm,AC=4cm,D是AB的中点,若以点C为圆心,以3cm长为半径作⊙C,则下列选项中的点在⊙C外的是()A.点A B.点B C.点C D.点D7.经过某十字路口的汽车,可能直行,也可能左转或者右转,若这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率是()A.B.C.D.8.如图,在△ABC中,点D在边AB上,过点D作DE∥BC交AC于点E,DF∥AC交BC于F,若AE:DF=2:3,则BF:BC的值是()A.B.C.D.9.如图,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,则图中与∠EAD相等的角(不包括∠EAD)有()A.2个B.3个C.4个D.5个10.如图,P是给定△ABC边AB上一动点,D是CP的延长线上一点,且2DP=PC,连结DB,动点P从点B出发,沿BA方向匀速运动到终点A,则△APC与△DBP面积的差的变化情况是()A.始终不变 B.先减小后增大 C.一直变大 D.一直变小二、填空题(共8小题,每小题3分,满分24分)11.抛物线y=x2﹣4x﹣1的对称轴为.12.将抛物线y=x2﹣2向左平移1个单位后所得抛物线的表达式为.13.某单位工会组织内部抽奖活动,共准备了100张奖券,设特等奖1个,一等奖10个,二等奖20个,三等奖30个.已知每张奖券获奖的可能性相同,则一张奖券中一等奖或二等奖的概率是.14.二次函数y=a(x+3)2+k的图象如图所示,已知点A(﹣1,y1),B(﹣2,y2)和C(﹣6.5,y 3)都在该图象上,则y1,y2,y3的大小关系是.15.如图,水平放置的圆柱形排水管道的截面直径是1m,排水管内水的最大深度CD是0.8m,则水面宽AB为m.16.如图,P是△ABC的重心,过点P作PE∥AB交BC于点E,PF∥AC交BC于点F,若△PEF的周长是6,则△ABC的周长为.17.如图,点A,B,C均在⊙O上,点O在∠ACB的内部,若∠A+∠B=56°,则为度.18.如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,则PE的长为.三、解答题(共6小题,满分46分)19.如图1,在8×8方格纸中,△ABC的三个顶点都在小方格的顶点上,按要求画一个三角形,使它的顶点都在方格的顶点上.(1)请在图2中画一个三角形,使它与△ABC相似,且相似比为2:1;(2)请在图3中画一个三角形,使它与△ABC相似,且相似比为:1.20.一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取出若干个红球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率是,问取出了多少个红球?21.如图,抛物线y=﹣(x﹣1)2+4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,CD∥x轴交抛物线另一点D,连结AC,DE∥AC交边CB于点E.(1)求A,B两点的坐标;(2)求△CDE与△BAC的面积之比.22.如图,点C,P均在⊙O上,且分布在直径AB的两侧,BE⊥CP于点E.(1)求证:△CAB∽△EPB;(2)若AB=10,AC=6,BP=5,求CP的长.23.某农场拟建三件矩形饲养室,饲养室一面靠现有墙(墙可用长≤20m),中间用两道墙隔开,已知计划中的建筑材料可建围墙的总长为60m,设饲养室宽为x(m),总占地面积为y(m2)(如图所示).(1)求y关于x的函数表达式,并直接写出自变量x的取值范围;(2)三间饲养室占地总面积有可能达到210m2吗?请说明理由.24.如图,点A,B的坐标分别为(0,8),(﹣3,0),点P从点A出发,以2单位/秒的速度沿射线AO方向运动,同时点E从点B出发,以1单位/秒的速度沿射线BO方向运动,以PE为斜边构造Rt△PEC(字母按逆时针顺序),且EC=2PC,抛物线y=﹣2x2+bx+c经过点(0,4),(﹣1,﹣2),设运动时间为t秒.(1)求该抛物线的表达式;(2)当t=2时,求点C的坐标;(3)①当t<3时,求点C的坐标(用含t的代数式表示);②在运动过程中,若点C恰好落在该抛物线上,请直接写出所有满足条件的t的值.一、选择题(共10小题,每小题3分,满分30分)1.若2a=5b,则=()A.B.C.2 D.5【考点】比例的性质.【分析】根据等式的性质,可得答案.【解答】解:两边都除以2b,得=,故选:B.【点评】本题考查了比例的性质,利用等式的性质是解题关键.2.抛物线y=x2﹣4与y轴的交点坐标是()A.(0,﹣4)B.(﹣4,0)C.(2,0) D.(0,2)【考点】二次函数图象上点的坐标特征.【分析】令x=0,求出y的值即可.【解答】解:∵令x=0,则y=﹣4,∴抛物线y=x2﹣4与y轴的交点坐标是(0,﹣4).故选A.【点评】本题考查的是二次函数图象上点的坐标特点,熟知二次函数与坐标轴交点的特点是解答此题的关键.3.二次函数y=2(x+1)2﹣3的最小值是()A.1 B.﹣1 C.3 D.﹣3【考点】二次函数的最值.【分析】根据顶点式解析式写出最小值即可.【解答】解:∵a=2>0,∴二次函数y=2(x+1)2﹣3的最小值是﹣3.故选D.【点评】本题考查了二次函数的最值问题,掌握利用顶点式解析式确定最值的方法是解题的关键.4.某路口交通信号灯的时间设置为:红灯亮25秒,绿灯亮30秒,黄灯亮5秒.当人或车随意经过该路口时,遇到绿灯的概率为()A.B.C.D.【考点】概率公式.【分析】由红灯的时间为25秒,黄灯的时间为5秒,绿灯的时间为30秒,直接利用概率公式求解即可求得答案.【解答】解:,故选D【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.已知一扇形的半径长是6,圆心角为60°,则这个扇形的面积为()A.πB.2πC.6πD.12π【考点】扇形面积的计算.【分析】利用扇形的面积公式即可直接求解.【解答】解:扇形的面积是=6π.故选C.【点评】本题考查扇形的面积公式,正确记忆公式是关键.6.如图,在△ABC中,∠ACB=90°,BC=3cm,AC=4cm,D是AB的中点,若以点C为圆心,以3cm长为半径作⊙C,则下列选项中的点在⊙C外的是()A.点A B.点B C.点C D.点D【考点】点与圆的位置关系;直角三角形斜边上的中线.【分析】分别求出AB、CD的长,根据点与圆的位置关系的判断方法进行判断即可.【解答】解:∵∠C=90°,BC=3cm,AC=4cm,∴AB==5,∵以点C为圆心,以3cm长为半径作⊙C,∴点A在⊙C外,∵D是AB的中点,∴CD=AB=2.5,故D在圆C内部,B在圆上,C是圆心.故选:A.【点评】本题考查的是点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.7.经过某十字路口的汽车,可能直行,也可能左转或者右转,若这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】此题可以采用列表法或树状图求解.可以得到一共有9种情况,两辆汽车一辆直行,一辆右转的有2种情况,根据概率公式求解即可.【解答】解:画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∵这两辆汽车行驶方向共有9种可能的结果,两辆汽车一辆直行,一辆右转的结果有2种,且所有结果的可能性相等,∴P(两辆汽车一辆直行,一辆右转)=.故选:C.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.8.如图,在△ABC中,点D在边AB上,过点D作DE∥BC交AC于点E,DF∥AC交BC于F,若AE:DF=2:3,则BF:BC的值是()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出比例式,再把它们等量代换,即可得出答案.【解答】解:∵DE∥BC,∴,∵DF∥AC,∴,∴,故选B【点评】本题考查了平行线分线段成比例定理,此题比较简单,注意掌握比例线段的对应关系是解此题的关键.9.如图,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,则图中与∠EAD相等的角(不包括∠EAD)有()A.2个B.3个C.4个D.5个【考点】三角形的外接圆与外心.【分析】直接利用角平分线的性质结合圆内接四边形的性质得出答案.【解答】解:∵AD 是△ABC 的外角∠EAC 的平分线,∴∠EAD=∠DAC ,∵∠DAC=∠DBC ,∠EAD=∠BCD ,∴∠EAD=∠DAC=∠DBC=∠BCD ,故与∠EAD 相等的角(不包括∠EAD )有3个.故选:B .【点评】此题主要考查了角平分线的性质以及圆内接四边形的性质,正确得出∠EAD=∠BCD 是解题关键.10.如图,P 是给定△ABC 边AB 上一动点,D 是CP 的延长线上一点,且2DP=PC ,连结DB ,动点P 从点B 出发,沿BA 方向匀速运动到终点A ,则△APC 与△DBP 面积的差的变化情况是( )A .始终不变B .先减小后增大C .一直变大D .一直变小【考点】动点问题的函数图象.【分析】根据题意可得S △APC ﹣S △DBP =S △ABC ﹣﹣S △DBC =S △APC +S △BPC ﹣S △DBP ﹣S △BPC ,根据等底的三角形面积比等于高之比,可得S △DBP +S △BPC 变大,再根据等量关系即可求解.【解答】解:∵S △APC ﹣S △DBP =S △ABC ﹣﹣S △DBC =S △APC +S △BPC ﹣S △DBP ﹣S △BPC ,∵S △APC +S △BPC 不变,S △DBP +S △BPC 变大,∴S △APC ﹣S △DBP 一直变小.故选:D .【点评】考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(共8小题,每小题3分,满分24分)11.抛物线y=x 2﹣4x ﹣1的对称轴为 直线x=2 .【考点】二次函数的性质.【分析】根据抛物线y=ax2+bx+c的对称轴公式为x=﹣,此题中的a=1,b=﹣4,将它们代入其中即可.【解答】解:x=﹣=﹣=2.故答案为直线x=2.【点评】本题考查二次函数对称轴公式的应用,熟练掌握对称轴公式是解题的关键.12.将抛物线y=x2﹣2向左平移1个单位后所得抛物线的表达式为y=(x+1)2﹣2 .【考点】二次函数图象与几何变换.【分析】根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,把抛物线y=x2﹣2向左平移1个单位,则平移后的抛物线的表达式为y=(x+1)2﹣2,故答案为:y=(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.13.某单位工会组织内部抽奖活动,共准备了100张奖券,设特等奖1个,一等奖10个,二等奖20个,三等奖30个.已知每张奖券获奖的可能性相同,则一张奖券中一等奖或二等奖的概率是.【考点】概率公式.【专题】计算题.【分析】直接利用概率公式求解.【解答】解:一张奖券中一等奖或二等奖的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.二次函数y=a (x+3)2+k 的图象如图所示,已知点A (﹣1,y 1),B (﹣2,y 2)和C (﹣6.5,y 3)都在该图象上,则y 1,y 2,y 3的大小关系是 y 2>y 1>y 3. .【考点】二次函数图象上点的坐标特征.【分析】根据函数解析式的特点为顶点式,其对称轴为x=﹣3,图象开口向下;根据二次函数图象的对称性,利用y 随x 的增大而减小,可判断y 2>y 1>y 3.【解答】解:由二次函数y=a (x+3)2+k 可知对称轴为x=﹣3,根据二次函数图象的对称性可知,C (﹣6.5,y 3)与D (0.5,y 3)对称,∵点A (﹣1,y 1),B (﹣2,y 2),D (0.5,y 3)在对称轴的右侧,y 随x 的增大而减小, ∵﹣2<﹣1<0.5,∴y 2>y 1>y 3,故答案是:y 2>y 1>y 3. 【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.15.如图,水平放置的圆柱形排水管道的截面直径是1m ,排水管内水的最大深度CD 是0.8m ,则水面宽AB 为 0.8 m .【考点】垂径定理的应用.【分析】连接OB ,根据OB=OD 可得出OC 的长,再由勾股定理求出BC 的长,进而可得出结论.【解答】解:连接OB ,∵排水管道的截面直径是1m ,CD=0.8m ,∴OB=OD=0.5m ,∴OC=0.8﹣0.5=0.3m,∴BC===0.4m,∴AB=2BC=0.8m.故答案为:0.8.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.16.如图,P是△ABC的重心,过点P作PE∥AB交BC于点E,PF∥AC交BC于点F,若△PEF的周长是6,则△ABC的周长为18 .【考点】三角形的重心;平行线的性质.【专题】计算题.【分析】延长AP交BC于Q,如图,根据三角形重心性质得=,再证明△QPE∽△QAB得到===,即AB=3PE,QB=3EQ,同理可得AC=3PF,GC=3QF,然后可得△ABC的周长=AB+AC+BC=3(PE+PF+EF)=18.【解答】解:延长AP交BC于Q,如图,∵P是△ABC的重心,∴=2,∴=,∵PE∥AB,∴△QPE∽△QAB,∴===,∴AB=3PE,QB=3EQ,同理可得AC=3PF,GC=3QF,∴△ABC的周长=AB+AC+BC=3PE+3PF+3EF=3(PE+PF+EF)=3×6=18.故答案为18.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.17.如图,点A,B,C均在⊙O上,点O在∠ACB的内部,若∠A+∠B=56°,则为112 度.【考点】圆周角定理.【分析】连接OC,则由圆的半径都相等可求得∠A=∠OCA、∠B=∠OCB,则可求得∠ACB,再利用圆周角定理可求得∠AOB.【解答】解:如图,连接OC,∵OA=OB=OC,∴∠A=∠OCA、∠B=∠OCB,∴∠ACB=∠OCA+∠OCB=∠A+∠B=56°,∴∠AOB=2∠ACB=112°,∴为112度,故答案为:112.【点评】本题主要考查圆周角定理,利用整体思想求得∠ACB的大小是解题的关键.18.如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,则PE的长为.【考点】圆周角定理;角平分线的性质.【分析】易证CB=BE,设PE=x,在直角△ABC中利用勾股定理即可列方程,求得PE的长.【解答】解:∵∠PAE=∠CAB,∠CAB+∠C=∠PAE+∠PEA,∴∠PEA=∠C.∵∠PEA=∠CEB,∴∠C=∠CEB,∴CB=BE=2=AB.设PE=x,PA=2x.(x+2)2+(2x)2=16,解得:x=或﹣2(舍去).则PE=.故答案是:.【点评】本题考查了圆周角定理和等腰三角形的判定定理,以及勾股定理,正确证明CB=BE是关键.三、解答题(共6小题,满分46分)19.如图1,在8×8方格纸中,△ABC的三个顶点都在小方格的顶点上,按要求画一个三角形,使它的顶点都在方格的顶点上.(1)请在图2中画一个三角形,使它与△ABC相似,且相似比为2:1;(2)请在图3中画一个三角形,使它与△ABC相似,且相似比为:1.【考点】作图—相似变换;勾股定理.【分析】(1)利用已知三角形的三边长进而结合相似比得出所求三角形的边长,进而得出答案;(2)利用已知三角形的三边长进而结合相似比得出所求三角形的边长,进而得出答案.【解答】解:(1)如图2所示:△A1B1C1即为所求;(2)如图3所示:△A2B2C2即为所求.【点评】此题主要考查了相似变换,正确得出相似三角形的边长是解题关键.20.一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取出若干个红球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率是,问取出了多少个红球?【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同,直接利用概率公式求解即可求得答案;(2)首先设取出了x 个红球,由概率公式可得方程: =,解此方程即可求得答案.【解答】解:(1)∵一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同,∴从袋中摸出一个球是红球的概率为:=;(2)设取出了x 个红球,根据题意得:=, 解得:x=6,答:取出了6个红球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,抛物线y=﹣(x ﹣1)2+4与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,CD ∥x 轴交抛物线另一点D ,连结AC ,DE ∥AC 交边CB 于点E .(1)求A ,B 两点的坐标;(2)求△CDE 与△BAC 的面积之比.【考点】相似三角形的判定与性质;抛物线与x 轴的交点.【分析】(1)直接把y=0代入求出x 的值即可;(2)先根据CD ∥AB ,DE ∥AC 得出△CDE ∽△BAC ,求出CD 的长,再由相似三角形的性质即可得出结论.【解答】解:(1)∵令y=0,则﹣(x ﹣1)2+4=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0);(2)∵CD∥AB,DE∥AC,∴△CDE∽△BAC.∵当y=3时,x1=0,x2=2,∴CD=2.∵AB=4,∴=,∴=()2=.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图,点C,P均在⊙O上,且分布在直径AB的两侧,BE⊥CP于点E.(1)求证:△CAB∽△EPB;(2)若AB=10,AC=6,BP=5,求CP的长.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)根据两角相等的三角形相似可得出结论;(2)先根据勾股定理求出BC的长,再由相似三角形的性质得出PE及BE的长,由勾股定理得出CE 的长,进而可得出结论.【解答】(1)证明:∵AB是⊙O的直径,BE⊥CP,∴∠ACB=∠BEP.∵∠CAB=∠BPC,∴△CAB∽△EPB;(2)解:∵AB=10,AC=6,∴BC==8.∵△CAB∽△EPB,BP=5,∴==,即==,∴PE=3,BE=4,∴CE==4,∴CP=4+3.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.23.某农场拟建三件矩形饲养室,饲养室一面靠现有墙(墙可用长≤20m),中间用两道墙隔开,已知计划中的建筑材料可建围墙的总长为60m,设饲养室宽为x(m),总占地面积为y(m2)(如图所示).(1)求y关于x的函数表达式,并直接写出自变量x的取值范围;(2)三间饲养室占地总面积有可能达到210m2吗?请说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)设饲养室宽为x(m),则长为(60﹣4x)m,根据长方形面积公式即可得,由墙可用长≤20m可得x的范围;(2)令y=210求出x,根据(1)中x的范围即可判断.【解答】解:(1)设饲养室宽为x(m),则长为(60﹣4x)m,∴y=x(60﹣4x)=﹣4x2+60x,∵0<60﹣4x≤20,∴10≤x<15;(2)不能,理由如下:当y=210时,﹣4x2+60x=210,解得:x=或x=,∵x=<10,且x=<10,∴不能.【点评】本题主要考查二次函数的应用,解题的关键是将实际问题转化为数学问题以后,准确列出二次函数关系式,正确运用二次函数的有关性质来解题.24.如图,点A,B的坐标分别为(0,8),(﹣3,0),点P从点A出发,以2单位/秒的速度沿射线AO方向运动,同时点E从点B出发,以1单位/秒的速度沿射线BO方向运动,以PE为斜边构造Rt△PEC(字母按逆时针顺序),且EC=2PC,抛物线y=﹣2x2+bx+c经过点(0,4),(﹣1,﹣2),设运动时间为t秒.(1)求该抛物线的表达式;(2)当t=2时,求点C的坐标;(3)①当t<3时,求点C的坐标(用含t的代数式表示);②在运动过程中,若点C恰好落在该抛物线上,请直接写出所有满足条件的t的值.【考点】二次函数综合题.【分析】(1)把(0,4),(﹣1,﹣2)代入抛物线解析式y=﹣2x2+bx+c,列方程组即可解决问题.(2)如图1中,t=2时,EO=1,OP=4,设C(x,y),作CH⊥x轴于H,PQ⊥HC于Q,由△PCQ∽△CEH,得==,列出方程组,解方程组即可解决问题.(3)①如图1中,设C(x,y),则PO=8﹣2t,EH=3﹣t+x,CH=y,QC=8﹣2t﹣y,PQ=x,由△PCQ∽△CEH,得==,由EC=2PC,可得==,用t表示x、y即可解决问题.②分三种情形①t<3时,列出方程即可解决问题.②3≤t<4时,显然不存在这样的点C在抛物线上.③t>4时,如图2中,作CH⊥x轴于H,PQ⊥HC于Q.设C(x,y),则PO=2t﹣8,EH=t﹣3﹣x,CH=﹣y,QC=2t﹣8+y,PQ=﹣x,由△PCQ∽△CEH,得到==,解方程组即可得到点C 坐标,代入抛物线即可解决问题.【解答】解:(1)∵抛物线y=﹣2x2+bx+c经过点(0,4),(﹣1,﹣2),∴∴,∴抛物线的解析式为y=﹣2x2+4x+4.(2)如图1中,t=2时,EO=1,OP=4,设C(x,y),作CH⊥x轴于H,PQ⊥HC于Q.∵∠PCQ+∠CPQ=90°,∠ECH+∠PCQ=90°,∴∠CPQ=∠ECH,∵∠Q=∠CHE=90°,∴△PCQ∽△CEH,∴==∵EC=2PC,∴==,∴x=,y=,∴点C坐标(,).(3)①如图1中,设C(x,y),则PO=8﹣2t,EH=3﹣t+x,CH=y,QC=8﹣2t﹣y,PQ=x,∵△PCQ∽△CEH,∴==∵EC=2PC,∴==,∴x=,y=,∴点C坐标(,).②当t<3时,如果点C在抛物线上,则有=﹣2()2+4•+4,解得t=1或6(舍弃),∴t=1时,点C在抛物线上.当3≤t<4时,由图象可知,不存在这样的点C在抛物线上,当t>4时,如图2中,作CH⊥x轴于H,PQ⊥HC于Q.设C(x,y),则PO=2t﹣8,EH=t﹣3﹣x,CH=﹣y,QC=2t﹣8+y,PQ=﹣x,∵△PCQ∽△CEH,∴==∵EC=2PC,∴==,∴x=,y=,∴点C坐标(,),如果点C在抛物线上,则有=﹣2()2+4•+4,解得t=6或1(舍弃),∴t=6时,点C在抛物线上,综上所述t=1或6s时,点C 抛物线上.【点评】本题考查二次函数综合题、待定系数法、相似三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.。
九年级上册湖州数学期末试卷测试卷 (word版,含解析)
九年级上册湖州数学期末试卷测试卷 (word 版,含解析)一、选择题1.下列方程中,是关于x 的一元二次方程的为( ) A .2210x x+= B .220x x --=C .2320x xy -=D .240y -=2.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 3.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .234.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .16 5.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定6.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤7.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月8.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 9.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个 10.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2 B .2C .-3D .311.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的12.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题13.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.14.一元二次方程290x 的解是__.15.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.16.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.17.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 18.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.19.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.20.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.21.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.22.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.23.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分方差众数中位数甲组89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.24.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题25.二次函数y=ax2+bx+c中的x,y满足下表x…-1013…y…0310…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质:(1);(2);(3).26.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cm B.6cm×4.5cm C.7cm×4cm D.7cm×4.5cm27.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.28.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标; (2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.29.从甲、乙两台包装机包装的质量为300g 的袋装食品中各抽取10袋,测得其实际质量如下(单位:g )甲:301,300,305,302,303,302,300,300,298,299 乙:305,302,300,300,300,300,298,299,301,305 (1)分别计算甲、乙这两个样本的平均数和方差; (2)比较这两台包装机包装质量的稳定性.30.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y 2x 80=-+. 设这种产品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? 31.在平面直角坐标系中,直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线y =a 2x +bx +c (a <0)经过点A ,B ,(1)求a、b满足的关系式及c的值,(2)当x<0时,若y=a2x+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为32?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,32.如图,AB是⊙O的弦,OP OA⊥交AB于点P,过点B的直线交OP的延长线于点C,且BC是⊙O的切线.(1)判断CBP∆的形状,并说明理由;(2)若6,2OA OP==,求CB的长;(3)设AOP∆的面积是1,S BCP∆的面积是2S,且1225SS=.若⊙O的半径为6,45BP=tan APO∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.221xx+=,是分式方程,B.220x x--=,正确,C.2320x xy-=,是二元二次方程,D.240y-=,是关于y的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.2.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .3.D解析:D 【解析】 【分析】根据概率公式直接计算即可. 【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D . 【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.4.D解析:D 【解析】 【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案. 【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12,∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4, ∴△ABC 的面积为:16, 故选D . 【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.5.C解析:C 【解析】 【分析】点到圆心的距离大于半径,得到点在圆外. 【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4, ∴点P 在圆外. 故选:C. 【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.6.D解析:D 【解析】 【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围. 【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴42x ±=∵15x << ∴54t -<≤ 故答案为D . 【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.7.D解析:D【解析】【分析】【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D8.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.9.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 10.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.11.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12-)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题13.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m14.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.15.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.16.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:解析:9【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵AB=∴AO=故答案为:9【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.17.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5 m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.18.【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的410分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,22x=,解得:x=4 3∴22410AD DF+=410.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,19.25%【解析】【分析】设每次降价的百分比为x,根据前量80,后量45,列出方程,解方程即可得到【详解】设每次降价的百分比为x ,,解得:x1=0.25=25%,x2=1.75(不合解析:25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可得到答案.【详解】设每次降价的百分比为x , 280(1)45x ,解得:x 1=0.25=25%,x 2=1.75(不合题意舍去)故答案为:25%.【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1±x )2=后量,即可解答此类问题.20.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4 根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,22CM r =∴NC=ND -CD=42r根据勾股定理可得:NC 2+PN 2=CP 2 即()222422r r -+= 解得:124223,4223r r +==DM >OD ,点M 不在射线OB 上,故舍去) 故答案为:23.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.21.【解析】【分析】过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出. 41383+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AOAE=,进而求得6AE=,再通过证明AEB AOC∆∆,可得出23OC BE=,根据三角形三边关系可得:BE OE OB≤+,由勾股定理可得213OE=,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵13sin13B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AOAE=,又∵4AO=,∴6AE=,∵90,90EAB BAO OAC BAO∠+∠=︒∠+∠=︒,∴=EAB OAC∠∠,又∵AC AOAB AE=,∴AEB AOC∆∆,∴23OC ACBE AB==,∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE的最大值为:4,∴OC的最大值为:()284333=+. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 22.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高,∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.23.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.24.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 三、解答题25.(1)抛物线与x 轴交于点(-1,0)和(3,0);与y 轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x <1时,y 随x 的增大而增大【解析】【分析】根据表格中数据,可得抛物线与x 轴交点坐标,与y 轴交点坐标,抛物线的对称轴直线以及抛物线在对称轴左侧的增减性,从而进行解答.【详解】解:由表格数据可知:当x=0时,y=3;当y=0时,x=-1或3∴该函数三条不同的性质为:(1)抛物线与x 轴交于点(-1,0)和(3,0);与y 轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x <1时,y 随x 的增大而增大【点睛】本题考查二次函数性质,数形结合思想解题是本题的解题关键.26.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3180n π⨯ 解得:n=240°, 如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm , 故选:B .【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.27.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7,∴3437DB BD =++, ∴BD =9,BF =9+3=12,∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.28.(1)y=﹣(x ﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0)【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)设直线AC 的解析式为y =kx +b ,与x 轴交于D ,得到y =2x−1,求得BD 于是得到结论;(3)设出N 点坐标,可表示出M 点坐标,从而可表示出MN 、ON 的长度,当△MON 和△ABC 相似时,利用三角形相似的性质可得MN ON AB BC =或MN ON BC AB=,可求得N 点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1, 即y=﹣x 2+2x ,联立抛物线和直线解析式可得22-2y x x y x ⎧=+⎨=⎩﹣, 解得20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴B (2,0),C (﹣1,﹣3); (2)设直线AC 的解析式为y=kx+b ,与x 轴交于D ,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b =+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N 点坐标为(53,0)或(73,0); ②当或MN ON BC AB =时,∴=,即|x||﹣x+2|=3|x|, ∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N 、M 的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.29.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x 甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301, x 乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301, 2s 甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2; 2s 乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2; (2)∵2s 甲<2s 乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键.30.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.31.(1)b=3a+1;c=3;(2)103a -≤<;(3)点P,12). 【解析】【分析】(1)求出点A 、B 的坐标,即可求解;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥,而b=3a+1,即:3102a a+-≥,即可求解; (3)过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,由S △PAB =32,则P Q y y -=1,即可求解.【详解】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=3-,故点A 、B 的坐标分别为(-3,0)、(0,3),则c=3,则函数表达式为:y=ax 2+bx+3,将点A 坐标代入上式并整理得:b=3a+1;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大, 则函数对称轴02b x a =-≥, ∵31b a =+, ∴3102a a+-≥, 解得:13a ≥-,∴a 的取值范围为:103a -≤<; (3)当a=1-时,b=3a+1=2-二次函数表达式为:223y x x =--+,过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,∵OA=OB ,∴∠BAO=∠PQH=45°,S △PAB =12×AB ×PH=12×32PQ ×22=32, 则PQ=P Q y y -=1,在直线AB 下方作直线m ,使直线m 和l 与直线AB 等距离,则直线m 与抛物线两个交点,分别与点AB 组成的三角形的面积也为32, ∴1P Q y y -=,设点P (x ,-x 2-2x+3),则点Q (x ,x+3),即:-x 2-2x+3-x-3=±1, 解得:35x -±=313x -±=; ∴点P 35-+55+35--55-313-+,1132+)或(3132--,1132-). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.32.(1)CBP ∆是等腰三角形,理由见解析;(2)BC 的长为8;(3)3tan 2APO ∠=. 【解析】【分析】(1)首先连接OB ,根据等腰三角形的性质由OA =OB 得A OBA ∠=∠,由点C 在过点B 的切线上,且OP OA ⊥,根据等角的余角相等,易证得∠PBC =∠CPB ,即可证得△CBP 是等腰三角形;。
浙江湖州2018-2019学年第一学期九年级数学教学质量检测一含答案
2018-2019学年第一学期九年级数学教学质量检测(一)一、单选题(共10 题,共30 分)1.抛物线y =-(x-1)2+ 2 的顶点坐标是( )A.(1,2) B.(-1,2) C.(1,-2) D.(-1,-2) 2.抛物线y =x2 - 2x +m2 + 2 (m 是常数)的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限3.抛物线y =x2 +bx +c 的图象向右平移2 个单位再向下平移3 个单位,所得图象的解析式为y =x2 - 2x - 3 ,则b、c 的值为( )A.b=2,c=2 B.b=2,c=0 C.b=-2,c=-1 D.b=-3,c=2 4.已知(-1,y1),(-2,y2),(-4,y3)是抛物线y =-2x2 -8x +m 上的点,则( ) A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y15.一次函数y =ax +b 与反比例函数y =cx在同一平面直角坐标系中的图象如图所示,则二次函数y =ax2 +bx +c 的图象可能是( )A.B. C.D.第5 题图第6 题图第7 题图6.抛物线y =ax2 +bx +c 的顶点为(1,-4),与x 轴的一个交点在(3,0)和(4,0)之间,其部分图象如图所示,则以下论断中:①4a+2b+c>0;②4a-2b+c<0;③a-c=4;④方程ax2 +bx +c =m(m <-4)没有实数根.正确的有( )A.①②B.③④C.②③④D.①②③④7 .如图为抛物线y =ax2 +bx +c 的图象,A 、B 、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是( )A.a+b=-1 B.ac<0 C.b<2a D.a-b=-1 8.矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x2 ,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为( )A.y =x2 + 8x +14 B.y =x2 -8x +14C.y =x2 + 4x +3 D.y =x2 - 4x +39.已知抛物线y =14x2 +1上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等.如图,点M 的坐标为3),P 是抛物线y =14x2 +1上一个动点,则△PMF 周长的最小值是( )A.3 B.4 C.5 D.6第9 题图第10 题图10.已知图中的每个小方格都是边长为1 的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81 个格点中的多少个?( ) A.6 B.7 C.8 D.9二、填空题(共6 题,共24 分)11.抛物线y =(x-1)2- 2 与y 轴的交点坐标是.12.已知抛物线经过点(-3,0)和(1,0),则该抛物线的对称轴是.13.若抛物线 y = ax 2 - x + c 与y = 2( x - 3)2+ 1 对称轴相同,且两抛物线的顶点相距 3 个单 位长度,则 c 的值为.14.在同一直角坐标系中,抛物线 y 1= x 2 和双曲线 y 2=1x的两个图象如图,则由图象可知 不等式 x 2 >的解是 .第 14 题图 第 15 题图第 16 题图15.在同一直角坐标系中,二次函数 y = x 2 与反比例函数 y =1x( x > 0) 的图象如图所示,若 两个函数图象上有三.个.不.同.的点 A (x 1,m ),B (x 2,m ),C (x 3,m ),其中 m 为常数,令ω = x 1 + x 2 + x 3 ,则 ω 的值为.16.已知二次函数 y = ( x - 2a ) 2 +a -1(a 为常数),当 a 取不同的值时,其图象构成一个“抛物线系”.如图分别是当 a =-1,a =0,a =1,a =2 时二次函数的图象.它们的顶点 在一条直线上,这条直线的解析式是 y = .三、解答题(共 8 题,共 66 分)17.(6 分)已知抛物线 y = ax 2 + bx - 3(a ≠ 0) 经过点(-1,0),(3,0),求 a ,b 的值. 18.(6 分)已知二次函数解析式 y = -2x 2 + 12x -18 .(1)通过配方变形,把函数关系式转化为 y = a ( x - h )2+ k (a ,h ,k 是常数,a ≠0)的 形式.(2)写出这个函数图象的开口方向和对称轴.19.(6 分)已知抛物线 y = - 12x 2 + bx + c 经过点(1,0),对称轴为 x =-1.(1)求抛物线的函数解析式; (2)将抛物线 y = -12x 2+ bx + c 平移,使其顶点恰好落在原点,请写出一种平移的方法及 平移后的函数表达式.20.(8 分)设抛物线 y = mx 2 - 2mx + 3(m ≠ 0) 与 x 轴交于点 A (a ,0),B (b ,0).(1)若 a =-1,求 m ,b 的值;(2)若 2m +n =3,求证:抛物线的顶点在直线 y =mx +n 上;(3)抛物线上有两点 P (x 1,p )和 Q (x 2,q ),若 x 1 < 1 < x 2 ,且 x 1 + x 2 > 2 ,试比较 p 与 q 的 大小.21.(8 分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的 50%标价.已知按标价九折销售该型号自行车 8 辆与将标价直降 100 元销售 7 辆获利相同. (1)求该型号自行车的进价与标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出 51 辆;若每 辆自行车每降价 20 元,每月可多售出 3 辆,求该型号自行车降价多少元时,每月获 利最大?最大利润是多少?22.(10 分)设二次函数 y = ax 2 + bx - (a + b ) (a ,b 是常数,a ≠0)(1)判断该二次函数图象与 x 轴交点的个数,说明理由.(2)若该二次函数的图象经过 A (-1,4),B (0,-1),C (1,1)三个点中的其中两个点,求该二次函数的表达式; (3)若 a +b <0,点 P (2,m )(m >0)在该二次函数图象上,求证:a >0. 23.(10 分)如图,某一物体运动路径如图所示,水平方向为 x 轴,竖直方向为 y 轴,抛物 线 OA 段、抛物线 AB 段和抛物线 BC 段 开 口 方 向 和 开 口 大 小 均 相 同 , 且 OA =2AB =4BC .(1)若抛物线 OA 段的顶点为(4,8),请求出抛物线 BC 段的函数表达式.(2)记三段抛物线最高点到 x 轴的距离分别为 m , n ,p (从左往右),请探索 m ,n ,p 三个值之 间的数量关系.24 . ( 12 分) 如 图 , 已 知 在 平 面 直 角 坐 标 系 xOy 中, O 是 坐 标 原 点 , 抛 物 线y = -x 2 + bx + c (c > 0) 的顶点为 D ,与 y 轴的交点为 C ,过点 C 作 CA ∥x 轴交抛物线于点 A ,在 AC 延长线上取点 B ,使 BC =12AC ,连结 OA ,OB ,BD 和 AD .(1)若点 A 的坐标是(-4,4). ①求 b ,c 的值;②试判断四边形 AOBD 的形状,并说明理由.(2)是否存在这样的点 A ,使得四边形 AOBD 是矩形,若存 在,请直接写出一.个.符合条件的点 A 的坐标;若不存 在,请说明理由.yDAC BO x2018-2019学年第一学期九年级教学质量检测(一)数学参考答案及评分标准一、单选题(共 10 题 共 30 分) 1. A 2. A【解析】()22222211y x x m x m =-++=-++,其顶点坐标为(1,21m +)在第一象限 3. B 4. C 5. A 6. B 7. D 8. A【解析】∵点A 的坐标为(2,1),∴点C 的坐标为(-2,-1),再次平移透明纸,使这个点与点C 重合时,此时抛物线的顶点坐标为(-4,-2),所以抛物线的函数表达式为y =(x +4)2-2=x 2+8x +14.9. C解析:如图,作PA ⊥x 轴于点A ,由题意知PA =PF .由“两点之间线段最短”知:当点M 、P 、A 共线时PM +PA =MA 最小,即PF +PM 最小,又因为MF 为定值,可得此时△PMF 周长最小.作FN ⊥MA 于点N .在Rt △MFN 中,2MF =, 又MA =PM +PA =3,所以△PMF 周长最小值是PM +PF +MF =MA +MF =5.10.C解析:根据抛物线的对称性,取顶点不是格点的抛物线。
2019年湖州市吴兴区九年级上期末数学检测题(一)有答案
浙江省湖州市吴兴区九年级(上)期末数学检测题(一)一.选择题(共10小题,满分30分,每小题3分)1.在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是()A.B.C.D.2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.抛物线y=3(﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)4.下列说法正确的是()A.矩形都是相似图形B.各角对应相等的两个五边形相似C.等边三角形都是相似三角形D.各边对应成比例的两个六边形相似5.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.D.26.如图,在△ABC中,D、E分别为AB,AC上的点,若DE∥BC,=,则=()A.B.C.D.7.如图,圆上有A,B,C,D四点,其中∠BAD=80°,若圆的半径为9,则的长度为()A.4πB.8πC.10πD.15π8.已知抛物线y=a2+b+c上部分点的横坐标与纵坐标y的对应值如表:…﹣10123…y…30﹣1m3…有以下几个结论:①抛物线y=a2+b+c的开口向下;②抛物线y=a2+b+c的对称轴为直线=﹣1;③方程a2+b+c=0的根为0和2;④当y>0时,的取值范围是<0或>2;其中正确的是()A.①④B.②④C.②③D.③④9.将抛物线y=2+2+3绕点(﹣1,0)旋转180°,得到的新抛物线的解析式为()A.y=2﹣2+3B.y=﹣2+2﹣3C.y=﹣2﹣2﹣1D.y=﹣2﹣2﹣310.已知A(1,2002),B(2,2002)是二次函数y=a2+b+5(a≠0)的图象上两点,则当=1+2时,二次函数的值是()A.B.C.2002D.5二.填空题(共6小题,满分24分,每小题4分)11.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.12.有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.13.如图,在扇形铁皮AOB中,OA=10,∠AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为.14.如图,AB是⊙O的直径,AB=4,∠BAP=40°,点Q为PB的中点,点C是直径AB上的一个动点,则PC+QC的最小值为.15.某居民楼紧挨一座山坡AB,经过地质人员勘测,当坡度不超过45°时,可以确保山体不滑坡,如图所示,已知AE∥BD,斜坡AB的坡角∠ABD=60°,为防止滑坡,现对山坡进行改造,改造后,斜坡BC与地面BD成45°角,AC=10米.则斜坡BC=米.16.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,tanA=,那么BD=.三.解答题(共8小题,满分54分)17.(6分)﹣2sin45°.18.(6分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB?AD;(2)求证:△AFD∽△CFE.19.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.(8分)如图,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.(精确到1mm,参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.(8分)如图,一、二、三、四这四个扇形的面积之比为1:3:5:1.(1)请分别求出它们圆心角的度数.(2)一、二、四这三个扇形的圆心角的度数之和是多少?22.(10分)某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图中的图象是抛物线的一段,它刻画了该软件上市以累积利润S(万元)与销售时间t(月)之间的函数关系(即前t个月的利润总和S与t之间的函数关系),根据图象提供的信息,解答下列问题:(1)该种软件上市第几个月后开始盈利?(2)求累积利润S(万元)与时间t(月)之间的函数表达式;(3)截止到几月末,公司累积利润达到30万元.23.(10分)杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第个月的维修保养费用累计为y(万元),且y=a2+b;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于的二次函数;(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于的解析式;(2)求纯收益g关于的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大;几个月后,能收回投资?24.如图,二次函数y=﹣2++2的图象与轴交于点A,B,与y轴交于点C.点P是该函数图象上的动点,且位于第一象限,设点P的横坐标为.(1)写出线段AC,BC的长度:AC=,BC=;(2)记△BCP的面积为S,求S关于的函数表达式;(3)过点P作PH⊥BC,垂足为H,连结AH,AP,设AP与BC交于点,探究:是否存在四边形ACPH为平行四边形?若存在,请求出的值;若不存在,请说明理由,并求出的最大值.参考答案一.选择题1.解:∵∠C=90°,AC=4,AB=5,∴BC==3,∴tanA==,故选:C.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:∵抛物线y=3(﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.4.解:A.矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;B.各角对应相等的两个五边形相似,对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;C.等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D.各边对应成比例的六边形对应角不一定相等,所以不一定是相似六边形,故本选项错误;故选:C.5.解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故选:D.6.解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:B.7.解:如图,设圆心为O,连结OB、OD.∵圆上有A,B,C,D四点,其中∠BAD=80°,∴∠C=180°﹣80°=100°,∴所对的圆心角=2∠C=200°,∵圆的半径为9,∴的长度为:=10π.故选:C.8.解:设抛物线的解析式为y=a2+b+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=2﹣2=(﹣2)=(﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线=1,故②错误;当y=0时,(﹣2)=0,解得=0或=2,∴方程a2+b+c=0的根为0和2,故③正确;当y>0时,(﹣2)>0,解得<0或>2,故④正确;故选:D.9.解:y=2+2+3,=(2+2)+3,=(2+2+1﹣1)+3,=(2+2+1)﹣1+3,=(+1)2+2,∴抛物线的顶点坐标为(﹣1,2),∵点(﹣1,2)关于(﹣1,0)中心对称的点的坐标为(﹣1,﹣2),∴抛物线绕着点(﹣1,0)旋转180°后,所得到的新抛物线的解析式为y=﹣(+1)2﹣2,即y=﹣2﹣2﹣3.故选:D.10.解:∵A(1,2002),B(2,2002)是二次函数y=a2+b+5(a≠0)的图象上两点,又∵点A、B的纵坐标相同,∴A、B关于对称轴=﹣对称,∴=1+2=﹣,∴a+b(﹣)+5=5;故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.12.【解答】解:由题意可知,设草坪的实际面积为,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.13.解:当OA第1次落在l上时:点O所经过的路线长=++==12π.则当OA第5次落在l上时:点O所经过的路线长=12π×5=60π.故答案是:60π.14.解:作出Q关于AB的对称点D′,连接OP,OD′,QD′.又∵点C在⊙O上,∠BAP=40°,Q为PB的中点,即=,∴∠BAD′=∠BAP=20°..∴∠PAD′=60°∴∠POD′=120°,∵OP=OD′=AB=4,∴PD′=2.故答案为:2.15.解:作AM⊥BD于点M,作CN⊥BD于点N,如右图所示,∵∠ABD=60°,∠CBD=45°,∴BN=,BM=,BC=,∵CN=AM,AC=BN﹣BM,AC=10米,∴BC=≈33.4米,即斜坡BC的长是33.4米.故答案为:33.416.解:∵在Rt△ABC中,∠C=90°,BC=8,tanA=,∴AC===6,∴AB==10,cosB===.∵边AB的垂直平分线交边AB于点E,∴BE=AB=5.∵在Rt△BDE中,∠BED=90°,∴cosB==,∴BD===.故答案为.三.解答题(共8小题,满分54分)17.解:原式=2﹣﹣2=﹣.18.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB?AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.19.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.20.解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°﹣∠BAD=180°﹣90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴mm在Rt△ADF中,cos,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.21.解:(1)∵一、二、三、四这四个扇形的面积之比为1:3:5:1.,∴各个扇形的面积分别占整个圆面积的,∴各个扇形的圆心角的度数分别为,,(2)一、二、四这三个扇形的圆心角的度数之和是36°+36°+108°=180°.22.解:(1)由图象可得,该种软件上市第4个月后开始盈利;(2)设S=a(t﹣2)2﹣2,∵函数图象过点(0,0),∴0=a(0﹣2)2﹣2,得a=,∴累积利润S(万元)与时间t(月)之间的函数表达式是:S=(t﹣2)2﹣2;(3)由题意,当S=30时,30=(t﹣2)2﹣2,解得,t1=10,t2=﹣6(舍去),即截止到10月末,公司累积利润达到30万元;23.解:(1)由题意得:=1时y=2;=2时,y=2+4=6代入得:解之得:∴y=2+;(2)由题意得:g=33﹣150﹣(2+)=﹣2+32 ﹣150;(3)g=﹣2+32 ﹣150=﹣(﹣16)2+106,∴当=16时,g最大值=106,即设施开放16个月后,游乐场的纯收益达到最大,又∵当0<≤16时,g随的增大而增大;当≤5时,g<0;而当>6时,g>0,∴6个月后能收回投资.24.解:(1)二次函数y=﹣2++2,当=0时,y=2,∴C(0,2),∴OC=2,当y=0时,﹣2++2=0,解得:1=4,2=﹣1,∴A(﹣1,0),B(4,0),∴OA=1,OB=4,由勾股定理得:AC==,BC==2;故答案为:,2;(2)∵B(4,0),C(0,2),∴直线BC的解析式为:y=﹣+2,如图1,过P作PD∥y轴,交直线BC于D,设P(,﹣2++2),则D(,﹣+2),∴PD=(﹣2++2)﹣(﹣+2)=﹣2+2,有S=PD?OB=×4(﹣+2)=﹣2+4(0<<4);(6分)(3)不存在,如图2,∵AC2+BC2==25=AB2,∴△ABC为直角三角形,即AC⊥BC,∵PH⊥BC,∴AC∥PH,要使四边形ACPH为平行四边形,只需满足PH=AC=,(10分)∴S=BC?PH=×2×=5,∵而S=﹣2﹣4=﹣(﹣2)2+4≤4,所以不存在四边形ACPH为平行四边形,∵AC∥PH,∴△AC∽△PH,∴===S≤;∴的最大值是.(12分)(说明:写出不存在给1分,其他说明过程酌情给分)。
每日一学:浙江省湖州市吴兴区2019届九年级上学期数学期末考试试卷_压轴题解答
答案:
解析:
~~ 第2题 ~~
答案: 解析:
~~ 第3题 ~~
答案:~ 第3题 ~~ (2019吴兴.九上期末) 如图,探究:用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中 M、P、H三点的圆弧与AH交于R,则弧HR的弧长为( )
A. B. C. D.
浙 江 省 湖 州 市 吴 兴 区 2019届 九 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题 解 答
每日一学:浙江省湖州市吴兴区2019届九年级上学期数学期末考试试卷_压轴
题解答
浙 江 省 湖 州 市 吴 兴 区 2019届 九 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题
~~ 第1题 ~~ (2019吴兴.九上期末) 如图,在平面直角坐标系中,抛物线 点为 ,抛物线对称轴与 轴交点为 .
交 轴于 两点,交 轴于点 ,顶
(1) 求直线 的解析式.
(2) 点
,
为 轴上两点,其中
,
线 于点 .试求:当 为何值时,
的值最大.
考点: 二次函数图象与坐标轴的交点问题;轴对称的应用-最短距离问题;
分别垂直于 轴交抛物线于
,交直 答案
~~ 第2题 ~~ (2019吴兴.九上期末) ⊙C经过坐标原点,且与两坐标轴分别交于点A、B,点A的坐标为 O=150°.则圆心C的坐标为________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省湖州市吴兴区2018-2019学年九年级(上)期末数学检测题(一)一.选择题(共10小题,满分30分,每小题3分)1.在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是()A.B.C.D.2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)4.下列说法正确的是()A.矩形都是相似图形B.各角对应相等的两个五边形相似C.等边三角形都是相似三角形D.各边对应成比例的两个六边形相似5.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.D.26.如图,在△ABC中,D、E分别为AB,AC上的点,若DE∥BC,=,则=()A .B .C .D .7.如图,圆上有A ,B ,C ,D 四点,其中∠BAD=80°,若圆的半径为9,则的长度为( )A .4πB .8πC .10πD .15π8.已知抛物线y=ax 2+bx +c 上部分点的横坐标x 与纵坐标y 的对应值如表:有以下几个结论:①抛物线y=ax 2+bx +c 的开口向下;②抛物线y=ax 2+bx +c 的对称轴为直线x=﹣1; ③方程ax 2+bx +c=0的根为0和2;④当y >0时,x 的取值范围是x <0或x >2; 其中正确的是( ) A .①④B .②④C .②③D .③④9.将抛物线y=x 2+2x +3绕点(﹣1,0)旋转180°,得到的新抛物线的解析式为( ) A .y=x 2﹣2x +3B .y=﹣x 2+2x ﹣3C .y=﹣x 2﹣2x ﹣1D .y=﹣x 2﹣2x ﹣310.已知A (x 1,2002),B (x 2,2002)是二次函数y=ax 2+bx +5(a ≠0)的图象上两点,则当x=x 1+x 2时,二次函数的值是( )A .B .C .2002D .5二.填空题(共6小题,满分24分,每小题4分)11.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有 个.12.有一块多边形草坪,在设计图纸上的面积为300cm 2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.13.如图,在扇形铁皮AOB中,OA=10,∠AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为.14.如图,AB是⊙O的直径,AB=4,∠BAP=40°,点Q为PB的中点,点C是直径AB上的一个动点,则PC+QC的最小值为.15.某居民楼紧挨一座山坡AB,经过地质人员勘测,当坡度不超过45°时,可以确保山体不滑坡,如图所示,已知AE∥BD,斜坡AB的坡角∠ABD=60°,为防止滑坡,现对山坡进行改造,改造后,斜坡BC与地面BD成45°角,AC=10米.则斜坡BC=米.16.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,tanA=,那么BD=.三.解答题(共8小题,满分54分)17.(6分)﹣2sin45°.18.(6分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB 的中点,(1)求证:AC2=A B•AD;(2)求证:△AFD∽△CFE.19.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.(8分)如图,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.(精确到1mm,参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.(8分)如图,一、二、三、四这四个扇形的面积之比为1:3:5:1.(1)请分别求出它们圆心角的度数.(2)一、二、四这三个扇形的圆心角的度数之和是多少?22.(10分)某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图中的图象是抛物线的一段,它刻画了该软件上市以来累积利润S(万元)与销售时间t(月)之间的函数关系(即前t个月的利润总和S与t之间的函数关系),根据图象提供的信息,解答下列问题:(1)该种软件上市第几个月后开始盈利?(2)求累积利润S(万元)与时间t(月)之间的函数表达式;(3)截止到几月末,公司累积利润达到30万元.23.(10分)杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数;(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大;几个月后,能收回投资?24.如图,二次函数y=﹣x2+x+2的图象与x轴交于点A,B,与y轴交于点C.点P是该函数图象上的动点,且位于第一象限,设点P的横坐标为x.(1)写出线段AC,BC的长度:AC=,BC=;(2)记△BCP的面积为S,求S关于x的函数表达式;(3)过点P作PH⊥BC,垂足为H,连结AH,AP,设AP与BC交于点K,探究:是否存在四边形ACP H为平行四边形?若存在,请求出的值;若不存在,请说明理由,并求出的最大值.参考答案一.选择题1.解:∵∠C=90°,AC=4,AB=5,∴BC==3,∴tanA==,故选:C.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.4.解:A.矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;B.各角对应相等的两个五边形相似,对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;C.等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D.各边对应成比例的六边形对应角不一定相等,所以不一定是相似六边形,故本选项错误;故选:C.5.解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故选:D.6.解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:B.7.解:如图,设圆心为O,连结OB、OD.∵圆上有A,B,C,D四点,其中∠BAD=80°,∴∠C=180°﹣80°=100°,∴所对的圆心角=2∠C=200°,∵圆的半径为9,∴的长度为:=10π.故选:C.8.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.9.解:y=x2+2x+3,=(x2+2x)+3,=(x2+2x+1﹣1)+3,=(x2+2x+1)﹣1+3,=(x+1)2+2,∴抛物线的顶点坐标为(﹣1,2),∵点(﹣1,2)关于(﹣1,0)中心对称的点的坐标为(﹣1,﹣2),∴抛物线绕着点(﹣1,0)旋转180°后,所得到的新抛物线的解析式为y=﹣(x+1)2﹣2,即y=﹣x2﹣2x﹣3.故选:D.10.解:∵A(x1,2002),B(x2,2002)是二次函数y=ax2+bx+5(a≠0)的图象上两点,又∵点A、B的纵坐标相同,∴A、B关于对称轴x=﹣对称,∴x=x1+x2=﹣,∴a+b(﹣)+5=5;故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.12.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.13.解:当OA第1次落在l上时:点O所经过的路线长=++==12π.则当OA第5次落在l上时:点O所经过的路线长=12π×5=60π.故答案是:60π.14.解:作出Q关于AB的对称点D′,连接OP,OD′,QD′.又∵点C在⊙O上,∠BAP=40°,Q为PB的中点,即=,∴∠BAD′=∠BAP=20°.∴∠PAD′=60°.∴∠POD′=120°,∵OP=OD′=AB=4,∴PD′=2.故答案为:2.15.解:作AM⊥BD于点M,作CN⊥BD于点N,如右图所示,∵∠ABD=60°,∠CBD=45°,∴BN=,BM=,BC=,∵CN=AM,AC=BN﹣BM,AC=10米,∴BC=≈33.4米,即斜坡BC的长是33.4米.故答案为:33.416.解:∵在Rt△ABC中,∠C=90°,BC=8,tanA=,∴AC===6,∴AB==10,cosB===.∵边AB的垂直平分线交边AB于点E,∴BE=AB=5.∵在Rt△BDE中,∠BED=90°,∴cos B==,∴BD===.故答案为.三.解答题(共8小题,满分54分)17.解:原式=2﹣﹣2=﹣.18.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.19.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.20.解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°﹣∠BAD=180°﹣90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴mm在Rt△ADF中,cos,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.21.解:(1)∵一、二、三、四这四个扇形的面积之比为1:3:5:1.,∴各个扇形的面积分别占整个圆面积的,∴各个扇形的圆心角的度数分别为,,(2)一、二、四这三个扇形的圆心角的度数之和是36°+36°+108°=180°.22.解:(1)由图象可得,该种软件上市第4个月后开始盈利;(2)设S=a(t﹣2)2﹣2,∵函数图象过点(0,0),∴0=a(0﹣2)2﹣2,得a=,∴累积利润S(万元)与时间t(月)之间的函数表达式是:S=(t﹣2)2﹣2;(3)由题意,当S=30时,30=(t﹣2)2﹣2,解得,t1=10,t2=﹣6(舍去),即截止到10月末,公司累积利润达到30万元;23.解:(1)由题意得:x=1时y=2;x=2时,y=2+4=6代入得:解之得:∴y=x2+x;(2)由题意得:g=33x﹣150﹣(x2+x)=﹣x2+32 x﹣150;(3)g=﹣x2+32 x﹣150=﹣(x﹣16)2+106,值=106,∴当x=16时,g最大即设施开放16个月后,游乐场的纯收益达到最大,又∵当0<x≤16时,g随x的增大而增大;当x≤5时,g<0;而当x>6时,g>0,∴6个月后能收回投资.24.解:(1)二次函数y=﹣x2+x+2,当x=0时,y=2,∴C(0,2),∴OC=2,当y=0时,﹣x2+x+2=0,解得:x1=4,x2=﹣1,∴A(﹣1,0),B(4,0),∴OA=1,OB=4,由勾股定理得:AC==,BC==2;故答案为:,2;(2)∵B(4,0),C(0,2),∴直线BC的解析式为:y=﹣x+2,如图1,过P作PD∥y轴,交直线BC于D,设P(x,﹣x2+x+2),则D(x,﹣x+2),∴PD=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,有S=PD•OB=×4(﹣+2x)=﹣x2+4x(0<x<4);(6分)(3)不存在,如图2,∵AC2+BC2==25=AB2,∴△ABC为直角三角形,即AC⊥BC,∵PH⊥BC,∴AC∥PH,要使四边形ACPH为平行四边形,只需满足PH=AC=,(10分)∴S=BC•PH=×2×=5,∵而S=﹣x2﹣4x=﹣(x﹣2)2+4≤4,所以不存在四边形ACPH为平行四边形,∵AC∥PH,∴△AKC∽△PHK,∴===S≤;∴的最大值是.(12分)(说明:写出不存在给1分,其他说明过程酌情给分)。