有理数混合运算练习题集(有答案解析)一

合集下载

有理数混合运算100题(含答案解析)

有理数混合运算100题(含答案解析)

有理数混合运算100题(含答案解析)1.-(-3)2×22.1/2+(-2/3)+4/5+(-11/2)+(-3)3.(-1.5)+4(1/4)+2.75+(-5 1/2)4.-8×(-5)-635.4-5×(-1/2)3/26.(-2)+(-5/56)-(-4.9)-0.67.(10)2÷5×(-2/5)8.(-5)3×(-3/5)29.5×(-6)-(-4)2÷(-8)10.2 1/472×(-6)÷(-2)11.(-16-50+3/5)÷(-2)12.(-6)×8-(-2)3-(-4)2×513.(-1)2+1×(2-2/233)-214.--(1-0.5)×1/315.-3/2×[-32×(-2/3)2-2]16.(-3/4)2+(-2/3+1)×2-9/1617.-14-(1-0.5)×1/3×[2-(-3)2]18.(-81)÷(2.25)×(-4/9)÷1619.-52-[-4+(1-0.2×1/5)÷(-2)]20.(-5)×(-3/6)+(-7)×(-3/6)+12×(-3/6777)21.(-5/8)×(16)-0.25×(-5)×(64)22.(-3)2-(11/29)×(-6)÷(-3)23.(-1/6-20/3+4/5-12/7)×(-15×4)24.(-18/7)×3/7×(-2.4)25.2÷(-7)×(7)÷(-51/7)26.(-47/8)-(-5/2)+(-4/4)-3/827.[151]÷(-11/2-14÷1/5+3/2)28.(-16-50+3/5)÷(-2)29.1 5/(-5)×(-5/13)30.(-0.5)-(-31/4)+6.75-5 2/331.-29-(-13)×2×(-13)-7×0.34+5.6×(-4)+(-32)÷(-8)-3 3/100-0.34×7+3×2130.计算:(-13)×(-134)×1/13×(-1/67)= 2136.731.删除该段落,因为它没有内容。

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14-1ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba +的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

有理数的混合运算专项训练(100题)(举一反三)(解析版)

有理数的混合运算专项训练(100题)(举一反三)(解析版)

专题2.13 有理数的混合运算专项训练(100题)参考答案与试题解析一.解答题(共25小题,满分100分,每小题4分)1.(4分)(2021春•道里区期末)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(−134)×(−112)÷(−214);(3)76÷(16−13)×314÷35;(4)﹣12×(﹣5)÷[(﹣3)2+2×(﹣5)].【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式先计算括号中的减法运算,再计算乘除运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算即可求出值.【解答过程】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=−74×32×49=−76;(3)原式=76÷(−16)×314×53=76×(﹣6)×314×53=−52;(4)原式=﹣1×(﹣5)÷(9﹣10)=﹣1×(﹣5)÷(﹣1)=5÷(﹣1)=﹣5.2.(4分)(2021春•杨浦区校级期中)计算:(1)(﹣413)﹣(﹣212)+(﹣923)+3.5;(2)(﹣1)÷(0.75)×(﹣113)÷3×(﹣0.5)2;(3)(﹣3)2﹣(112)3×39−6÷23;(4)(12−3+56−712)×(﹣62).【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、乘法分配律可以解答本题.【解答过程】解:(1)(﹣413)﹣(﹣212)+(﹣923)+3.5=(﹣413)+212+(﹣923)+3.5=[(﹣413)+(﹣923)]+(212+3.5)=(﹣14)+6=﹣8;(2)(﹣1)÷(0.75)×(﹣113)÷3×(﹣0.5)2=(﹣1)×43×(−43)×13×14=1×43×43×13×14=427;(3)(﹣3)2﹣(112)3×39−6÷23=9−278×39−6×32=9−98−9=−98;(4)(12−3+56−712)×(﹣62)=(12−3+56−712)×(﹣36)=12×(﹣36)﹣3×(﹣36)+56×(﹣36)−712×(﹣36)=(﹣18)+108+(﹣30)+21=81.3.(4分)(2020秋•卫辉市期末)计算:(1)|3﹣8|﹣|14|+(−34);(2)(﹣1)2021+2×(−13)2÷16;(3)123×(0.5−23)÷119;(4)(﹣48)×[(−12)−58+712].【解题思路】(1)先计算绝对值,再计算加减即可;(2)先计算乘方、除法转化为乘法,再计算乘法,最后计算加减即可;(3)先计算括号内减法、将除法转化为乘法,再计算乘法即可;(4)利用乘法的交换律计算即可.【解答过程】解:(1)原式=5−14−34=5﹣1=4;(2)原式=﹣1+2×19×6=﹣1+43=13;(3)原式=53×(−16)×910=−14;(4)原式=(﹣48)×(−12)﹣(﹣48)×58+(﹣48)×712=24+30﹣28=26.4.(4分)(2020秋•门头沟区期末)计算:(1)(+4)×(+3)÷(−32);(2)(+10)﹣(+1)+(﹣2)﹣(﹣5);(3)(﹣24)×(23−58+12);(4)﹣12+(﹣6)×(−12)﹣8÷(﹣2)3.【解题思路】(1)先计算乘法、将除法转化为乘法,再计算乘法即可;(2)减法转化为加法,再进一步计算即可;(3)利用乘法分配律展开,再进一步计算即可;(4)根据有理数的混合运算顺序和运算法则计算即可.【解答过程】解:(1)原式=12×(−23)=﹣8;(2)原式=10﹣1﹣2+5=12;(3)原式=(﹣24)×23−(﹣24)×58+(﹣24)×12=﹣16+15﹣12=﹣13;(4)原式=﹣1+3﹣8÷(﹣8)=﹣1+3+1=3.5.(4分)(2020秋•西城区期末)计算:(1)13+(﹣24)﹣25﹣(﹣20);(2)25÷5×(−15)÷(−34);(3)(−79+56−34)×(﹣36);(4)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|.【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=13﹣24﹣25+20=﹣16;(2)原式=25×15×15×43=43;(3)原式=−79×(﹣36)+56×(﹣36)−34×(﹣36)=28﹣30+27=25;(4)原式=﹣1﹣0.5×13×24=﹣1﹣4=﹣5.6.(4分)(2020秋•呼和浩特期末)计算、求解:(1)(﹣8)×(12−114+18);(2)16×(﹣6)÷(−17)×7;(3)(﹣2)3÷45+113×|1﹣(﹣4)2|;(4)﹣12﹣(12−23)÷13×[﹣2+(﹣3)2].【解题思路】(1)原式利用乘法分配律计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣8×12+8×54−8×18=﹣4+10﹣1=5;(2)原式=﹣1×(﹣7)×7=49;(3)原式=﹣8×54+43×|1﹣16|=﹣10+43×15=﹣10+20=10;(4)原式=﹣1+16×3×(﹣2+9)=﹣1+12×7=﹣1+7 2=52.7.(4分)(2020秋•金塔县期末)计算:(1)﹣28+(﹣13)﹣(﹣21)+13;(2)16÷(﹣2)3﹣4×(−1 8);(3)(512+23−34)×(−12);(4)2×(﹣3)2﹣33﹣6÷(﹣2).【解题思路】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方,然后计算乘法、除法,最后计算减法,求出算式的值是多少即可.(3)应用乘法分配律,求出算式的值是多少即可.(4)首先计算乘方,然后计算乘法、除法,最后从左向右依次计算,求出算式的值是多少即可.【解答过程】解:(1)﹣28+(﹣13)﹣(﹣21)+13=﹣41+21+13=﹣20+13=﹣7.(2)16÷(﹣2)3﹣4×(−1 8)=16÷(﹣8)+1 2=﹣2+1 2=−32.(3)(512+23−34)×(−12)=512×(﹣12)+23×(﹣12)−34×(﹣12)=﹣5﹣8+9=﹣4.(4)2×(﹣3)2﹣33﹣6÷(﹣2)=18﹣27+3=﹣9+3=﹣6.8.(4分)(2020秋•二道区期末)计算:(1)(﹣15)﹣(﹣25);(2)|﹣7.5|﹣|−12|;(3)(−34+712−58)×(﹣24);(4)﹣991315×15.【解题思路】(1)先把减法转化为加法,然后根据有理数的加法即可解答本题;(2)先去掉绝对值,然后根据有理数的减法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据乘法分配律可以解答本题.【解答过程】解:(1)(﹣15)﹣(﹣25)=(﹣15)+25=10;(2)|﹣7.5|﹣|−12|=7.5﹣0.5=7;(3)(−34+712−58)×(﹣24)=−34×(﹣24)+712×(﹣24)−58×(﹣24)=18+(﹣14)+15=19;(4)﹣991315×15=(﹣100+215)×15=﹣100×15+215×15=﹣1498.9.(4分)(2020秋•虎林市期末)计算:(1)(﹣8)+(+9)﹣(﹣5)+(﹣3);(2)(23+49−56)×18;(3)(23−12)÷(−76)×145;(4)﹣42+(﹣20)÷(﹣5)﹣6×(﹣2)3.【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算括号中的运算,再计算乘除运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣8+9+5﹣3=1+2=3;(2)原式=23×18+49×18−56×18=12+8﹣15=5;(3)原式=16×(−67)×145=−25;(4)原式=﹣16+4﹣6×(﹣8)=﹣16+4+48=36.10.(4分)(2020秋•北碚区期末)计算下列各题(1)(﹣2)3﹣|2﹣5|﹣(﹣15);(2)(−12+56−38+512)÷(−124);(3)﹣32﹣[(112)3×(−29)﹣6÷|−23|];(4)2×(﹣137)﹣234×13+(﹣137)×5+14×(﹣13).【解题思路】(1)根据有理数的乘方、有理数的加减法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据乘法分配律可以解答本题.【解答过程】解:(1)(﹣2)3﹣|2﹣5|﹣(﹣15)=(﹣8)﹣3+15=(﹣8)+(﹣3)+15=4;(2)(−12+56−38+512)÷(−124)=(−12+56−38+512)×(﹣24)=−12×(﹣24)+56×(﹣24)−38×(﹣24)+512×(﹣24)=12+(﹣20)+9+(﹣10)=﹣9;(3)﹣32﹣[(112)3×(−29)﹣6÷|−23|]=﹣9﹣[(32)3×(−29)﹣6÷23]=﹣9﹣[278×(−29)﹣6×32]=﹣9﹣(−34−9)=﹣9+34+9=34;(4)2×(﹣137)﹣234×13+(﹣137)×5+14×(﹣13)=(2+5)×(﹣137)+[(﹣234)+(−14)]×13=7×(−107)+(﹣3)×13=(﹣10)+(﹣39)=﹣49.11.(4分)(2020秋•南山区校级期中)计算题(1)12﹣(﹣18)+(﹣7)+(﹣12);(2)(﹣18)×(12−19+16);(3)16÷|﹣2|3﹣|﹣8|×(−14);(4)﹣12﹣(﹣10)÷12×2+(﹣4)2.【解题思路】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)12﹣(﹣18)+(﹣7)+(﹣12)=12+18+(﹣7)+(﹣12)=[12+(﹣12)]+[18+(﹣7)]=0+11=11;(2)(﹣18)×(12−19+16)=(﹣18)×12−(﹣18)×19+(﹣18)×16=(﹣9)+2+(﹣3)=﹣10;(3)16÷|﹣2|3﹣|﹣8|×(−14)=16÷8﹣8×(−14)=2+2=4;(4)﹣12﹣(﹣10)÷12×2+(﹣4)2=﹣1﹣(﹣10)×2×2+16=﹣1+40+16=55.12.(4分)(2020秋•定陶区期中)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)(﹣134)﹣(+613)﹣2.25+103;(3)214×(−67)÷(12−2);(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114).【解题思路】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答过程】解:(1)23﹣6×(﹣3)+2×(﹣4)=23+18+(﹣8)=33;(2)(﹣134)﹣(+613)﹣2.25+103=(﹣134)+(﹣613)+(﹣214)+313=[(﹣134)+(﹣214)]+[(﹣613)+313]=(﹣4)+(﹣3)=﹣7;(3)214×(−67)÷(12−2)=94×(−67)÷(−32)=94×67×23=97;(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114)=(﹣125)×(−35)+32÷(﹣4)×(−54)=75+(﹣8)×(−54)=75+10=85.13.(4分)(2020秋•武昌区校级月考)计算:(1)(−813)+(+412)−123;(2)(﹣32)÷(﹣4)﹣(﹣25)×4;(3)(−214)÷412×(−118)÷(−98);(4)[1124−(38+16−34)×24]÷(−5).【解题思路】(1)根据有理数加减法则进行计算,即可得出答案;(2)根据有理数混合运算法则:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,进行计算即可得出答案.(3)解法同(2);(4)解法同(2).【解答过程】解:(1)(−813)+(+412)−123=−253+92−53 =﹣10+92=−112;(2)(﹣32)÷(﹣4)﹣(﹣25)×4=8﹣(﹣100)=8+100=108;(3)(−214)÷412×(−118)÷(−98)=−94÷92×(−98)×(−89) =−12×1 =−12;(4)[1124−(38+16−34)×24]÷(−5)=[2524−(38×24+16×24−34×24)]÷(﹣5)=[2524−(9+4﹣18)]÷(﹣5) =[2524−(﹣5)]÷(﹣5)=2524×(−15)−(−5)×(−15) =−524−1 =−2924.14.(4分)(2020秋•秀洲区月考)计算下列各题:(1)﹣3﹣(﹣9)+5;(2)|−110|×(﹣5)﹣|﹣312|;(3)(−12)×(−8)+(−6)÷(−13);(4)(﹣5)×(﹣7)+(512+23−34)×(﹣12).【解题思路】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算绝对值运算,再计算乘法运算,最后算减法运算即可求出值;(3)原式先计算乘除运算,再计算加法运算即可求出值;(4)原式先计算乘法运算,再计算加减运算即可求出值.【解答过程】解:(1)原式=﹣3+9+5=﹣3+14=11;(2)原式=110×(﹣5)﹣312=−12−312=﹣4;(3)原式=12×8+6×3=4+18=22;(4)原式=5×7+512×(﹣12)+23×(﹣12)−34×(﹣12)=35﹣5﹣8+9=31.15.(4分)(2020秋•新都区校级月考)(1)(−52)÷(﹣15)×(−115);(2)﹣745×(﹣856)﹣(﹣7.8)×(﹣434)−4912÷539;(3)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣(−12)2];(4)(﹣24)×(18−13+14)+(﹣2)3.【解题思路】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用乘法分配律计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接利用乘法分配律计算得出答案.【解答过程】解:(1)(−52)÷(﹣15)×(−115)=52×115×(−115)=−190;(2)﹣745×(﹣856)﹣(﹣7.8)×(﹣434)−4912÷539=﹣7.8×(﹣856)﹣(﹣7.8)×(﹣434)−4912×7.8=7.8×(856−434−4112)=7.8×(81012−4912−4112)=7.8×0=0;(3)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣(−12)2]=﹣8﹣12×(−14)=﹣8+3=﹣5;(4)(﹣24)×(18−13+14)+(﹣2)3=﹣24×18+(﹣24)×(−13)+(﹣24)×14−8=﹣3+8﹣6﹣8=﹣9.16.(4分)(2020秋•侯马市期中)计算:(1)﹣3.5÷78×(−34);(2)﹣124849×7;(3)25×34−(﹣25)×12+25×(−14);(4)﹣32﹣3×22﹣(﹣3×2)3.【解题思路】(1)原式从左到右依次计算即可求值;(2)原式变形后,利用乘法分配律计算即可求出值;(3)原式逆用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=−72×87×(−34)=72×87×34=3;(2)原式=(﹣13+149)×7=﹣91+17=﹣9067;(3)原式=25×(34+12−14)=25×1=25;(4)原式=﹣9﹣3×4﹣(﹣6)3=﹣9﹣12+216=195.17.(4分)(2020秋•沈北新区期中)计算:(1)[115+(−56)﹣(−712)]×(﹣60);(2)﹣22÷49×(−23)2;(3)﹣1﹣(1﹣0.5)×13×[2﹣(﹣3)2];(4)﹣32﹣(﹣2﹣5)2﹣|−14|×(﹣2)4.【解题思路】(1)利用乘法分配律计算即可;(2)先计算乘方,将除法转化为乘法,再进一步计算即可;(3)根据有理数的混合运算顺序和运算法则计算即可;(4)根据有理数的混合运算顺序和运算法则计算即可.【解答过程】解:(1)原式=(115−56+712)×(−60)=−4+50﹣35=11;(2)原式=−4×94×49=−4;(3)原式=−1+76×(−7)=−1+76=16;(4)原式=−9−49−14×16=−58−4=−62.18.(4分)(2020秋•资中县期中)计算下列各题:(1)23﹣17﹣(﹣7)+(﹣16).(2)(﹣20)×(﹣1)9﹣0÷(﹣4).(3)(﹣36)×(−49+56−712).(4)﹣22﹣(﹣2)2﹣(﹣3)2×(−23)﹣42÷|﹣4|.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答过程】解:(1)23﹣17﹣(﹣7)+(﹣16)=23+(﹣17)+7+(﹣16)=(23+7)+[(﹣17)+(﹣16)]=30+(﹣33)=﹣3;(2)(﹣20)×(﹣1)9﹣0÷(﹣4)=(﹣20)×(﹣1)﹣0=20﹣0=20;(3)(﹣36)×(−49+56−712)=(﹣36)×(−49)+(﹣36)×56+(﹣36)×(−712) =16+(﹣30)+21=7;(4)﹣22﹣(﹣2)2﹣(﹣3)2×(−23)﹣42÷|﹣4|=﹣4﹣4﹣9×(−23)﹣16÷4=﹣4﹣4+6﹣4=﹣6.19.(4分)(2020秋•广州期中)计算:(1)12﹣(﹣18)﹣21;(2)﹣81÷(﹣214)×49÷(﹣16); (3)(﹣7.03)×40.16+(﹣0.16)×(﹣7.03)+7.03×(﹣60);(4)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2020.【解题思路】(1)从左往右计算即可求解;(2)将带分数变为假分数,除法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【解答过程】解:(1)12﹣(﹣18)﹣21=30﹣21=9;(2)﹣81÷(﹣214)×49÷(﹣16) =﹣81×(−49)×49×(−116)=﹣1;(3)(﹣7.03)×40.16+(﹣0.16)×(﹣7.03)+7.03×(﹣60)=7.03×(﹣40.16+0.16﹣60)=7.03×(﹣100)=﹣703;(4)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2020=﹣8+6+3﹣1=0.20.(4分)(2020秋•孝义市期中)计算:(1)(﹣15)+(+3)﹣(﹣5)﹣(+7);(2)−12+23+56−34;(3)(−23)×58÷(﹣0.25);(4)﹣12+3×(﹣2)2×(13−1)÷83.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)(﹣15)+(+3)﹣(﹣5)﹣(+7)=(﹣15)+3+5+(﹣7)=[(﹣15)+(﹣7)]+(3+5)=(﹣22)+8=﹣14;(2)−12+23+56−34=−612+812+1012−912=14;(3)(−23)×58÷(﹣0.25)=23×58÷14=23×58×4=53;(4)﹣12+3×(﹣2)2×(13−1)÷83=﹣1+3×4×(−23)×38=﹣1﹣3×4×23×38=﹣1﹣3=﹣4.21.(4分)(2020秋•叶县期中)计算:(1)12+(﹣8)﹣(﹣7)﹣15;(2)(1+23−34)×(﹣12);(3)|﹣5|÷(﹣127)×0.8×214;(4)﹣23÷(−12)2+9×(−13)3﹣(﹣1)2020.【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)根据绝对值、有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答过程】解:(1)12+(﹣8)﹣(﹣7)﹣15=12+(﹣8)+7+(﹣15)=(12+7)+[(﹣8)+(﹣15)]=19+(﹣23)=﹣4;(2)(1+23−34)×(﹣12)=1×(﹣12)+23×(﹣12)−34×(﹣12)=(﹣12)+(﹣8)+9=(﹣20)+9=﹣11;(3)|﹣5|÷(﹣127)×0.8×214=5×(−79)×45×94=﹣7;(4)﹣23÷(−12)2+9×(−13)3﹣(﹣1)2020=﹣8÷14+9×(−127)﹣1=﹣8×4+(−13)+(﹣1)=﹣32+(−13)+(﹣1)=﹣3313.22.(4分)(2020秋•南岸区校级月考)计算:(1)9+(﹣8)+10﹣2+(﹣9);(2)(−35)×|﹣312|÷45÷7;(3)﹣32÷214×(−23)2+4﹣22×(−13);(4)991225×(﹣2)+(﹣991225)×(﹣27).【解题思路】(1)利用加法运算律,将和为0的数结合,再计算即可;(2)先化简绝对值,再算乘除法即可;(3)先算乘方,再算乘除,最后算加减即可;(4)利用分配律计算即可.【解答过程】解:(1)9+(﹣8)+10﹣2+(﹣9)=[9+(﹣9)]+[(﹣8)+10﹣2]=0+0=0;(2)(−35)×|﹣312|÷45÷7=(−35)×72×54×17=−38;(3)﹣32÷214×(−23)2+4﹣22×(−13)=﹣9×49×49+4﹣4×(−13)=−169+4+43=329;(4)991225×(﹣2)+(﹣991225)×(﹣27)=991225×(﹣2)+991225)×27=991225×(﹣2+27)=(100−1325)×25=2500﹣13=2487.23.(4分)(2020秋•原阳县月考)计算:(1)12﹣(﹣18)+(﹣7)﹣20;(2)6.14+(−234)−(−5.86)−(+14);(3)(−12)×(14−16−12)−|−5|;(4)(29−14+118)÷(−136).【解题思路】(1)根据有理数的加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据乘法分配律和有理数的加减法可以解答本题;(4)先把除法转化为乘法,然后利用乘法分配律即可解答本题.【解答过程】解:(1)12﹣(﹣18)+(﹣7)﹣20=12+18+(﹣7)+(﹣20)=(12+18)+[(﹣7)+(﹣20)]=30+(﹣27)=3;(2)6.14+(−234)−(−5.86)−(+14)=6.14+(﹣234)+5.86+(−14)=(6.14+5.86)+[(﹣234)+(−14)]=12+(﹣3)=9;(3)(−12)×(14−16−12)−|−5|=(﹣12)×14−(﹣12)×16−(﹣12)×12−5=(﹣3)+2+6﹣5=﹣1+6﹣5=5﹣5=0;(4)(29−14+118)÷(−136)=(29−14+118)×(﹣36)=29×(﹣36)−14×(﹣36)+118×(﹣36)=(﹣8)+9+(﹣2)=﹣1.24.(4分)(2020秋•临汾月考)计算:(1)﹣(﹣2.5)+(+2.2)﹣3.1+(﹣0.5)﹣(+1.1);(2)﹣0.5﹣314+(−2.75)+712;(3)(−34−56+78)×(−24);(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137.【解题思路】(1)直接根据有理数的加减运算法则即可;(2)先把小数化成分数,然后根据交换律和结合律进行简便运算;(3)利用乘法的分配律进行简便运算;(4)提取公因式进行简便运算.【解答过程】解:(1)原式=2.5+2.2﹣3.1﹣0.5﹣1.1=4.7﹣4.7=0;(2)原式=−12+712−(314+234)=7﹣6=1;(3)原式=−34×(﹣24)−56×(﹣24)+78×(﹣24)=18+20﹣21=17;(4)原式=(﹣8﹣7+15)×(﹣1137)=0.25.(4分)(2020秋•立山区期中)计算题(1)﹣81÷(﹣214)×49÷(﹣16);(2)(−124)÷(123−54+76);(3)﹣32÷(﹣2)3×|﹣113|×6+(﹣2)4;(4)﹣(23)2×18﹣2×(−15)÷25+|﹣8|×0.52+179×(﹣112)2.【解题思路】(1)原式从左到右依次计算即可求出值;(2)原式被除式与除式调换求出值,即可求出所求;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答过程】解:(1)原式=﹣81×49×49×116=﹣1;(2)(123−54+76)÷(−124)=(123−54+76)×(﹣24)=53×(﹣24)−54×(﹣24)+76×(﹣24)=﹣40+30﹣28=﹣38,则原式=−1 38;(3)原式=﹣9÷(﹣8)×43×6+16=98×43×6+16=9+16=25;(4)原式=−49×18﹣2×(−15)×52+8×0.25+169×94=﹣8+1+2+4=﹣1.。

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】(七年级数学)92267(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数运算练习(一) 【加减混合运算】一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5); (5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68; (3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37); (5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12; (7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1; (4))432()413(-+-;(5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-; (4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2);(5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18); (3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ --(-)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算(1)-7+13-6+20; (2)-+-+10; (3)(-53)+51-54;(4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)-+(-); (2)(-)-21+(-51); (3)21-(-)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)-(-)+(-); (2)(-8)-(-15)+(-9)-(-12);(3)+(-41)-(-)+21; (4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-; (2)(-)+3-+(-52); (3)31+(-45)+; (4)7-(-21)+; (5)49-(-)-53; (6)(-56)-7-(-)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨; (8)(- )+ 1098 + +(- 1098)13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678; (2)-+++(-)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)--(-413)+-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2) (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-12、【答案】 (1)51; (2)-25; (3)-1516; (4); (5)74; (6)0;(7)-2043(8)-1287、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-或-1016 9、【答案】 (1)20; (2); (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1); (2)10; (3)27; (4)-1213; (5)152; (6)65;12、【答案】 (1); (2)-; (3)30; (4)9; (5)69; (6)-6; (7); (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313。

有理数加减混合计算题100道含答案(七年级数学)

有理数加减混合计算题100道含答案(七年级数学)

有理数运算练习(一)【加减混合运算】一、有理数加法.1、【基础题】计算:(1)2+(-3);(2)(-5)+(-8);(3)6+(-4);(4)5+(-5);(5)0+(-2);(6)(-10)+(-1);(7)180+(-10);(8)(-23)+9;(9)(-25)+(-7);(10)(-13)+5;(11)(-23)+0;(12)45+(-45).2、【基础题】计算:(1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25;(4)45+(-23);(5)(-45)+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65);(2)(-64)+17+(-23)+68;(3)(-42)+57+(-84)+(-23);(4)63+72+(-96)+(-37);(5)(-301)+125+301+(-75);(6)(-52)+24+(-74)+12;(7)41+(-23)+(-31)+0;(8)(-26)+52+16+(-72).4、【综合Ⅰ】计算: (1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1;(4))432()413(-+-; (5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-;(4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.【基础题】计算: (1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0;(5)3-5; (6)3-(-5); (7)(-3)-5 (8)(-3)-(-5);(9)(-6)-(-6); (10)(-6)-6.【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52;(4)521-(-7.2); (5)0-(-74); (6)(-21)-(-21);(7)525413- ; (8)-64-丨-64丨【基础题】填空: (1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-40 8、【基础题】计算:(1)(-72)-(-37)-(-22)-17;(2)(-16)-(-12)-24-(-18);(3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31);(6)(-2112)-[ -6.5-(-6.3)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算 (1)-7+13-6+20; (2)-4.2+5.7-8.4+10;(3)(-53)+51-54; (4)(-5)-(-21)+7-37;(5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)4.7-3.4+(-8.3); (2)(-2.5)-21+(-51);(3)21-(-0.25)-61; (4)(-31)-15+(-32);(5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算: (1)33.1-(-22.9)+(-10.5); (2)(-8)-(-15)+(-9)-(-12);(3)0.5+(-41)-(-2.75)+21; (4)(-32)+(-61)-(-41)-21; (5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-3.4; (2)(-21.6)+3-7.4+(-52);(3)31+(-45)+0.25; (4)7-(-21)+1.5;(5)49-(-20.6)-53; (6)(-56)-7-(-3.2)+(-1); (7)11512+丨-11611丨-(-53)+丨212丨;(8)(- 9.9)+ 1098 + 9.9 +(- 1098) 13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678;(2)-0.5+1.75+3.25+(-7.5)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)-0.5-(-413)+2.75-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30. 4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2)4.25 (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-126.1、【答案】 (1)51; (2)-25; (3)-1516; (4)4.1; (5)74; (6)0;(7)-2043(8)-128 7、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-6.1或-10169、【答案】 (1)20; (2)3.1; (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-3.2; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1)45.5; (2)10; (3)27; (4)-1213; (5)152; (6)65; 12、【答案】 (1)1.6; (2)-26.4; (3)30; (4)9; (5)69; (6)-6;(7)27.1; (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313(注:文档可能无法思考全面,请浏览后下载,供参考。

有理数混合运算习题(含答案)300道

有理数混合运算习题(含答案)300道

有理数的混合运算(一)填空4.23-17-(+23)=______.5.-7-9+(-13)=______.6.-11+|12-(39-8)|=______.7.-9-|5-(9-45)|=______.8.-5.6+4.7-|-3.8-3.8|=______.9.-|-0.2|+[0.6-(0.8-5.4)]=______.12.9.53-8-(2-|-11.64+1.53-1.36|)=______.13.73.17-(812.03-|219.83+518|)=______.36.38×(-7)+5[(-2)3(-32)-(-22)]-38×339÷(-3)38=______.48.(-2)×{(-3)×[(-5)+2×(0.3-0.3)÷83-3]+4}=______.112.413-74-(-5+26).116.-84-(16-3)+7.118.-0.182+3.105-(0.318-6.065).119.-2.9+[1.7-(7+3.7-2.1)].121.34.23-[194.6-(5.77-5.4)].125.23.6+[3.9-(17.8-4.8+15.4)].134.(-3)2÷2.5.135.(-2.52)×(-4).136.(-32)÷(-2)2.173.(-1)2×5+(-1)×52-12×5+(-1×5)2.174.(-2)(-3)(-36)+(-1)20×63.178.(-32)÷(3×2)×(-3-2).180.3×(-2)2+(-2×3)2+(-2+3)2.188.2+42×(-8)×16÷32.190.[5.78+3.51-(0.7)2]÷(0.2)3×11.191.(1.25)4÷(0.125)4×0.0036-(0.6)2.194.(-42×26+132×2)÷(-3)7×(-3)5.195.(3-9)4×23×(-0.125)2.201.741×[(-30)2-(-402)]3÷(1250)2.211.[(-5)3+3.4×2-2×4+53]2.213.(24-5.1×3-3×5+33)2.234.(-5)×(-3)×(-4)2+(-2)3×(-8)×(-3)-(-12)×3÷24.240.-18-23×[(-4)3÷(-43)+0.2×8+(-3)2÷(-32)].(四)用符号“>”,“<”,“≥”,“≤”,“=”之一填空241.当两个数和的绝对值______这两个数差的绝对值时,这两个数同号.242.一个正数与一个负数差的绝对值______这两个数绝对值的和.243.一个正数与一个负数和的绝对值______这两个数绝对值的差.244.一个正数与一个负数差的绝对值______这两个数绝对值的差.245.一个正数与一个负数和的绝对值______这两个数绝对值的和.246.当两个数和的绝对值______这两个数差的绝对值时,这两个数异号.247.当两数和的绝对值______这两个数差的绝对值时,这两个数至少有一个是零.248.当两数和的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.249.当两数差的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.250.当两个数和的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.251.当两个数差的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.252.欲使两个数的绝对值的和等于这两个数的和的绝对值,这两个数必须是怎样的数?253.欲使两个数和的绝对值不小于这两个数的差的绝对值,这两个数必须是怎样的数?254.欲使两数和的绝对值不大于这两数差的绝对值,这两个数必须是怎样的数?255.欲使两数和的绝对值不小于这两个数的绝对值的和,这两个数必须是怎样的数?256.一个盛有水的圆柱形水桶,其底面半径为1.6分米①.现将一个半径为1.2分米的铁球沉没在桶内水面下,问桶内水面升高多少分米?(列综合算式计算,球的体积公式为,其中V表示体积,R表示球的半径)257.一个盛有水的长方体状容器,它的底面是边长为2.4分米的正方形,现将一个半径是1.2分米的铁球放在容器内,正好铁球体积的1/3在水面下,问放入铁球后,水面升高了多少分米?(列综合算式计算,球的体积公式为V表示体积,R表示球的半径,π取3.14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
( - 1) - (1 3-
1 ) ÷ 3× [3 ― ( ― 3) 2] 2
18、(1)已知 |a|=7 , |b|=3 ,求 a+b 的值。
( 2)已知 a、 b 互为相反数, m 、 n 互为倒数, x 绝对值为 2 ,求 2mn

则(
2
A、 1 6
B、 8
C、 1 8
D、 3 2
二、填空
9、吐鲁番盆地低于海平面
155 米,记作 — 155m,南岳衡山高于海平面
1900 米,则衡山比吐鲁番盆地高
m
10、比 — 1 大 1 的数为
11、— 9、 6、 — 3 三个数的和比它们绝对值的和小
12、两个有理数之积是 —
1,已知一个数是
一、选择
1、已知两个有理数的和为负数,则这两个有理数(
A、均为负数
B、均不为零
C、至少有一正数
2 、计算 2
2 ( 2)
3
的结果是
3(

) D、至少有一负数
A、— 21
B、 35
C、 — 35
D、 — 29
3 、下列各数对中,数值相等的是(

A、 +3
2 与 +2
3
B、

2 3


—2)
3 3
C、— 2
1 2 ,则另一个数 是
7
13、计算(- 2.5 )× 0.37 × 1.25 × ( — 4)×( — 8)的值为
14、一家电脑公司仓库原有电脑 台,调
100 台,一个星期调入、调出的电脑记录是:调入
38 台,调出 42 台,调入 27
出 33 台,调出 40 台,则这个仓库现有电脑

15、小刚学学习了有理数运算法则后,编了一个计算程序,当他输入任意一个有理数时,显示屏上出现的结果总等于所
一、计算题
2 ( 3) 2
有理数混合运算练习题
( 有答案 )
1
24
1
1
()
( )( )
2
35
2
3
1
1
( 1.5) 4 2.75
(5 )
4
2
8 ( 5) 63
1 3
45( ) 2
2 () 0.6
5
5 ()
6
( 4.9)
2 ( 10)
2 5( )
5
3 ( 5)
32 ()
5
5 ( 6) ( 8)
2 ( 4)
2
与( —3 )
( 3× 2)
4、某地今年 1 月 1 日至 4 日每天的最高气温与最低气温如下表:
日期
1 月1 日
1月2 日
最高气温
5℃
4℃
最低气温
0℃
2℃
D、 3× 2 2 与
1月3 日 0℃ 4℃
其中温差最大的是( A、 1月 1日
) B、 1月 2 日
C、 1 月 3 日
D、 1月 4 日
5、已知有理数 a、 b 在数轴上的位置如图所示,下列结论正确的是(
,再算
,最算
;如果有括号,那么先算

2.一个数的 101 次幂是负数,则这个数是

3. 7.2 0.9 5.6 1.7

***
2
3
4. 2 ( 1)
5.
2
1
1
6.
(
)
1
7
2
2

。 7.
***
6
7
(
)(
)5

13
13
73
7
(
)( )

84
8
***
21
0.3( 2 50) (
)

5 10
有理数加、减、乘、除、乘方测试
输入的有理数的平方与
1 的和,当他第一次输入
2,然后又将所得的结果再次输入后,显示屏上出现的结果应是
16、若 │a— 4│+ │b+5 │=0,则 a — b=
;
若 (a 1) 2 | b 2 | 0 ,则a b =_____ ___。_
三、解答
1
1
1
1
1
15
17、计算: ( 1 ) ( 1 ) ( 2 ) ( 3 ) ( 1 )
1 × (— 7) =100× 7×( —
7 7)
1
D、
× ( — 7)
7 =100× 7× 7
A、 6 个— 5 相乘的积
B、- 5 乘以 6 的积 C、 5 个— 6 相乘的积
D、 6 个— 5 相加的和
***
8、现规定一种新运算
“*”:a*b= a b ,如 3*2= 3 2 =9 , 1 ) *3= (
A、 a> b
B、 ab< 0 C、 b— a> 0
D、 a+b > 0
b

a 0
2
1 月4 日 4℃ 3℃
6 、下列等式成立的是(

A、 100÷
C、 100÷
7、
1
1
7 ×( — 7) =100÷ 7
( 7)
1 × (— 7)
7 =100×
1 ×7
7 100÷
6 ( 5) 表示的意义是


B、 100÷
3 ( 2)
C.
4
3
2
2 ( 2) ( 2)
D.
0.30
4 2
(பைடு நூலகம்
2 2) 的结果是
()

3
4
2
( 2)
2
( 2)
2
3
4
( 2) ( 3)
2
A.4
B. - 4
C.2
D. - 2
0.31
如果
a 1 0,(b
A. - 2 B.- 3
b 2 3) 0 ,那么
C.- 4
a D.4
1
的值是 ()
四 . 填空题
1.有理数的运算顺序是先算
1)
9
0 4
3
2
1
5 [ 4 (1 0.2 )
5
( 2)]
6 ( 5) ( 3 ) (3)
7
( 7)
6 ( 3)
7
6 12
7
5
() 8
2 ( 4)
3 0.25 ( 5) ( 4)
12 ( 3)
1
2
(1 ) 29 2
2
6 3
1 34
1 8 43
5
( 8) ( 7. 2) ( 2.5)

12
7.8 ( 8.1) 0 19.6
24
1
5 ( 1)
(2) 7
75
4
1
0.25 ( 5) 4 (
)
25
3
1
1
( ) ( 3) ( 1) 3
5
2
4
1
1
4
(
2
2
)2
二、 1、已知 x 2
15
y 3 0, 求 2 x
y 4xy 的值。
23
***
2、若 a,b 互为相反数, c,d 互为倒数, m 的绝对值是 1,求 (a b)cd 2009 m的值。
三.选择题
0.26
计算
3 ( 2 5) ()
A.1000
0.27

计2
(
B. - 1000
2
2
3 ( 2 3)
)
C.30
D.- 30
A.0
B. - 54
C. - 72
D. - 18
0.28
计算
1 ( 5) 5
5
1 ()
5
A.1
B.25
C. - 5
D.35
0.29 下列式子中正确的是(
A.
4 2
B.
2 ( 2)
1
61
2 ( ) ( 2)
4
72
2 ( 16 50 3 )
5
( 2)
3 ( 6) 8 ( 2) 5
2 ( 4)
1
1 22
2
()
(
2)
2
2 33
1997
1
(1
1 0.5)
3
3 2
[3
2] 2
2 2
()
3
***
4
1
1 (1 0.5)
[2
3
2 ( 3) ]
4
3
2
( 81) ( 2.25) ( )
2
16
()(
2
4
2
4
4
8
10
15
( 10) (
)(
)
3
4
2 ( 2) 2
2 (―
( 2) 2 ( 2)
3
32
1 ) ― 5― ( ― 0.25 ) 8+ 4
1
7
3 ÷ ( - 9+ 19)
× 1 25×
24
3
1+
1)
+( ― 25) × 25× ( - 4
4
2
***
(- 79) ÷ 2
1+ 4
4 × ( - 29)
相关文档
最新文档