2.3.2二次函数与一元一次方程的联系(第一课时)

合集下载

二次函数与一元一次方程的关系

二次函数与一元一次方程的关系

二次函数与一元一次方程的关系一元一次方程与二次函数是数学中两个不同的概念,但它们之间存在着紧密的联系。

理解这种联系可以帮助我们更好地理解这两个概念,并更好地解决与它们相关的问题。

首先,一元一次方程是一类只含有一个未知数的方程,其最高次幂为一次。

例如,方程(2x + 3 = 0) 就是一个一元一次方程。

解这个方程,我们可以找到未知数(x) 的值。

二次函数是指未知数的最高次数为2的函数。

例如,函数(y = ax^2 + bx + c) 是一个二次函数,其中(a)、(b) 和(c) 是常数,且(a \neq 0)。

现在我们来探讨一元一次方程与二次函数之间的关系。

考虑一元一次方程(2x + 3 = 0),我们可以通过移项得到(2x = -3),进而解得(x = -\frac{3}{2})。

这个解对应于二次函数(y = ax^2 + bx + c) 在(x = -\frac{3}{2}) 处的值。

换句话说,如果我们把一元一次方程的解代入二次函数中,函数的值应该等于0。

这是因为一元一次方程的解就是使方程成立的未知数的值,而二次函数的值在这一点上应该为0。

更一般地,对于任意一元一次方程(ax + b = 0)(其中(a \neq 0)),其解为(x = -\frac{b}{a})。

将这个解代入二次函数(y = ax^2 + bx + c) 中,我们得到(y = a(-\frac{b}{a})^2 + b(-\frac{b}{a}) + c = 0)。

这说明一元一次方程的解是二次函数值为0的点。

反过来,如果我们在二次函数(y = ax^2 + bx + c) 中找到一个点,使得函数的值为0,那么这个点的横坐标就是一元一次方程的解。

这是因为一元一次方程的解是使方程成立的未知数的值,而在这个点上,函数的值正好为0。

综上所述,一元一次方程与二次函数之间的关系可以概括为:一元一次方程的解是二次函数值为0的点,而二次函数值为0的点对应着一元一次方程的解。

《二次函数与一元二次方程》说课稿

《二次函数与一元二次方程》说课稿

《二次函数与一元二次方程(第1课时)》说课稿一、教材分析《二次函数与一元二次方程》是人教版九年级上册第22章第二节的第1课时的内容。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

用函数的观点看方程,可以把方程看成函数值为某个定值时的情况,所以,研究函数与方程的关系是对函数的进一步深化。

学生在一次函数时已经了解了一次函数与一元一次方程、一元一次不等式、二元一次不等式组之间的联系,本章专设一节,通过探讨二次函数与一元二次方程的联系,再次展示函数与方程之间的联系。

这样既深化学生对一元二次方程的认识,又可以运用二次函数解决一元二次方程的相关问题,体现了知识之间的联系。

二、学情分析学生已经学习了一元一次方程和一次函数,一元二次方程,二次函数的图像和性质等知识,对函数与方程的关系已有初步认识。

但是运用函数的思想解决问题的意识还不够,仍习惯于孤立地看待方程与不等式的问题。

本节学习可以帮助学生进一步建立函数与方程的联系,提升用函数思想解决问题的意识和能力。

三、教学目标1.了解一元二次方程的根的几何意义;理解抛物线与横轴的三种位置关系对应一元二次方程的根的三种情况.2.经历探索二次函数与一元二次方程关系的过程,结合图象,进一步体会函数与方程之间的联系。

3.运用函数思想解决问题,体会事物之间的转化,提升思维品质。

四、教学重难点重点:二次函数与一元二次方程的联系,利用函数解决方程的有关问题.难点:将方程问题转化为函数问题,运用函数的思想解决问题。

五、教学策略由一次函数与一元一次方程的关系说起,采用类比的方法研究二次函数与一元二次方程的关系。

以实际问题为情境从数与形两个角度理解函数与方程之间的联系。

_2.3 二次函数与一元二次方程、不等式第1课时教案- 高一上学期数学人教A版(2019)必修第一册

_2.3 二次函数与一元二次方程、不等式第1课时教案- 高一上学期数学人教A版(2019)必修第一册

2.3 二次函数与一元二次方程、不等式第1课时教案一、内容和内容解析1.内容一元二次不等式的定义、解法,二次函数与一元二次方程、不等式的联系.2.内容解析函数、方程和不等式都是中学数学中非常重要的内容,用函数理解方程和不等式是数学的基本思想方法.用二次函数函数观点看一元二次方程、一元二次不等式,可以让学生在初中的相关内容的基础上,进一步理解函数、方程与不等式之间的联系,逐步形成用函数统领方程和不等式的意识,进而体会数学的整体性.从函数的观点来看一元二次方程,当二次函数值为0时就得到一个一元二次方程,解方程就是求“自变量为何值时,函数值为0”.如果二次函数y=a x2+bx+c的图象与x轴有交点,从函数的角度来看,交点的横坐标就是函数的零点,从方程的角度来看,交点的横坐标就是一元二次方程a x2+bx+c=0的根.同时,函数图象与x轴的交点又将x轴分成几部分,每一部分(不含交点)对应的函数图象都在x轴同侧,也就是函数值都为正或者都为负,即a x2+bx+c>0或者a x2+bx+c<0. 因此,从函数的观点看一元二次不等式,当二次函数值大于0(或者小于0)就得到一个一元二次不等式,不等式的解集就是使得函数值大于0(或者小于0)的自变量x的取值范围.因此,可以利用二次函数的图象来判断一元二次方程根的存在性和根的个数,以及求解一元二次不等式.借助二次函数的图象研究一元二次方程与一元二次不等式,使研究方程和不等式的方法更具一般性和代表性.因此,从函数的角度来研究方程和不等式,体现数学的整体性,凸显函数的重要地位,其中涉及的数形结合、函数思想等都是数学中重要的思想方法.基于以上分析,得到本节课的教学重点:用二次函数的观点统一认识一元二次方程和一元二次不等式,根据三者的联系,利用数形结合推导出求解一元二次不等式的方法.二、目标和目标解析1.目标(1)经历从实际情境中抽象出一元二次不等式模型的过程,了解一元二次不等式的现实意义;(2)借助二次函数的图象,探究一元二次不等式与相应函数、方程的联系,体会数学的整体性;(3)对于给定的一元二次不等式,能够借助二次函数,准确求解一元二次不等式,提升数学运算素养.2.目标解析达成上述目标的标志是:(1)通过从实际情境中抽象出一元二次不等式模型的过程,体会一元二次不等式的现实意义,能说出一元二次不等式的定义.(2)能类比“一次函数与一次方程、一次不等式”的研究经验,得到二次函数与一元二次方程、不等式的关系,体会运动变化、特殊与一般,以及数形结合等数学思想方法,体会数学的整体性.(3)能通过具体实例的归纳与概括得到用函数方法求一元二次不等式解集的基本过程.三、教学问题诊断分析本节用二次函数的观点看一元二次方程、不等式,需要借助二次函数图象,数形结合地理解二次函数与一元二次方程、不等式的联系。

21.3《二次函数与一元二次方程第1课时》教案

21.3《二次函数与一元二次方程第1课时》教案

21.3二次函数与一元二次方程
第1课时
一、教学目标
1.理解二次函数图象与X轴交点的横坐标与一元二次方程的根之间的联系.
2 .经历探索二次函数与一元二次方程的关系的过程,渗透数形结合的思想方法.
3 .通过共同探究的方式,培养学生的合作交流意识,以及观察问题和解决问题的能力.
4 .在探索二次函数与一元二次方程的关系的过程中,让学生感受数学知识之间的内在联系,认识到事物之间的联系与转化.
二、教学重难点
重点:理解二次函数图象与X轴交点的横坐标就是一元二次方程的根难点:探索二次函数与一元二次方程之间的关系.
三、教学用具
多媒体课件
四、教学过程设计
函数值等于O时自变量X的一个值,即二次函数的图象与X轴一个交点的横坐标.
即:
二次函败「必7丫,2, 二一元二次方程>J3x+20,
:)。

时,图象与簿!有两个交点11Δ^40c>0,有两个不相等的实败根」
2 .如果函数值y等于-5又会怎样呢?
首先,在图象上画出直线产-5此时这条直线与二次函数的图象有一个交点(-T,-》;再求解其对应的一元二次方程f+3x+2=-;,得到方程的解是M=X2=
结合上边的分析及其图象,我们得到:
:二痴由y⅛r÷2,U -元二次方程H=/
:图粼与直线r4只有一个交点::A='*=C,有两个相等的实数《1:
3 .如果函数值y等于-2,又会怎样呢?
同样,先在图象上画出直线产-2,此时这条直线与二次函数的图象无交点;再求解其对应的一元二次方程f+3x+2=-2,此方程无解.。

2.3+二次函数与一元二次方程不等式(共2课时)(教学课件)高一数学必修第一册(人教A版2019)

2.3+二次函数与一元二次方程不等式(共2课时)(教学课件)高一数学必修第一册(人教A版2019)

(1)若此不等式的解集是 1,2 ,求a 的值;
(2)讨论此不等式的解集.
详解
(2) x2 x a2 a 0 就是 x2 x aa 1 0 ,即 x a 1 x a 0 .
方程 x a 1 x a 0 的两根是 x1 a 1, x2 a .
(①1)当由a题意1知a,,即1,a2是 1时x2 , x此 a不2 等a式 0的的解两集根是,a 1, a .
能力提升
题型一:不含参一元二次不等式的解法 【练习 1】解下列不等式:
(1)-2x2+x-6<0;(2)-x2+6x-9≥0;(3)x2-2x-3>0.
解 (3)方程 x2-2x-3=0 的两根是 x1=-1,x2=3. 函数 y=x2-2x-3 的图象是开口向上的抛物线, 与 x 轴有两个交点(-1,0)和(3,0),如图所示. 结合图象可得不等式的解集为{x|x<-1 或 x>3}.
函数的零点
ax2+bx+c>0;ax2+bx+c<0 ax2+bx+c≥0;ax2+bx+c≤0
其中a、b、c为常数,a≠0.
方程的根
2.使一元二次不等式成立的的所有解 x 组成的集合叫做 一元二次不等式的解集(用集合的描述法表示).
函数图象与x 轴交点横坐标
3.方程ax2+bx+c=0的实数解x叫做二次函数y=ax2+bx+c的零点.
注:使得 ax2 bx c 0 成立的实数x(方程 ax2 bx c 0 的解)即为二次函 数 y ax2 bx c 的零点.
学习新知
观察一元二次不等式x2-12x+20<0与二次函数y=x2-12x+20间有何关系?
二次函数y=x2-12x+20 的两个零点x1=2,x2=10将x轴分成三段.

二次函数与一元二次方程(第一课时)教案

二次函数与一元二次方程(第一课时)教案

Being with positive people can make us feel good.(页眉可删)
二次函数与一元二次方程(第一课时)教案【教学目标】
1、知识与技能:
(1)体会函数与方程之间的联系,初步体会利用函数图象研究方程问题的方法;
(2)理解二次函数图象与x轴(横轴)交点的个数与一元二次方程的根的个数之间的关系,理解方程有两个不等的`实根、两个相等的实根和没有实根的函数图象特征;(3)理解一元二次方程的根就是二次函数与y=h(h是实数)图象交点的横坐标。

2、过程与方法:
(1)由一次函数与一元一次方程根的联系类比探求二次函数与一元二次方程之间的联系;(2)经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学思想和数形结合的数学思想。

3、情感、态度与价值观:
培养学生类比与猜想、不完全归纳、认识到事物之间的联系与转化、体验探究的乐趣和学会用辨证的观点看问题的思维品质。

【重点与难点】
重点:经历“类比--观察--发现--归纳”而得出二次函数与一元二次方程的关系的探索过程。

难点:准确理解二次函数与一元二次方程的关系。

【教法与学法】
教法(=):命题课,采用“发现式学习”的方式,注重“最近发展区”,寻根问源,以旧知识为基础创设问题情境,引导学生经历“类比—猜想—观察—发现—归纳—应用”的探究过程。

学法:探究式学习。

【课前准备】
多媒体、PPT课件。

【教学过程】
附:板书设计:。

二次函数与一元一次方程关系

二次函数与一元一次方程关系

图像的关系
二次函同 的形状,如开口向上或向下。
一元一次方程的图像
一元一次方程的图像是一条直线,它可以通过两 个点来确定。
解的联系
二次函数和一元一次方程的解也有着联系。通过解方程,我们可以找到二次 函数和一元一次方程的交点,从而获得二者的共同解。
实际问题
二次函数与一元一次方程 关系
二次函数和一元一次方程是数学中常见的两个概念。通过研究它们的定义、 图像和解的联系,我们可以深入理解二次函数与一元一次方程的关系,并将 其应用到实际问题中。让我们一起探索吧。
二次函数的定义
二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数,且a不等于 0。二次函数的图像是一个抛物线。
一元一次方程的定义
一元一次方程是形如ax + b = 0的方程,其中a、b是已知实数,且a不等于0。一元一次方程的解是使得 方程成立的未知数的值。
二次函数与一元一次方程的联系
二次函数与一元一次方程有着紧密的联系。一元一次方程可以看作是二次函数在特定条件下的情况,特 别是当a=0时,二次函数退化为一元一次方程。
二次函数
二次函数可以描述抛物线的轨迹,因此在物理学和工程学等领域中具有广泛的应用。
一元一次方程
一元一次方程常用于解决线性关系问题,如速度与时间之间的关系。
结论
通过研究二次函数与一元一次方程的定义、图像和解的联系,我们可以更好地理解数学中的这两个概念, 并将其应用到实际问题中。它们是数学学习的重要基础,也是解决各种问题的有力工具。

2.3二次函数与一元二次方程、不等式(第一课时)课件(人教版)

2.3二次函数与一元二次方程、不等式(第一课时)课件(人教版)
(2)x2-4x+4≤0;
(3)-x2-3x+4<0.
1
答案:(1){x|x<- ,或
2
x>2}
(3){x|x<-4,或x>1}
(2){x|x =2}
特别的,若一元二次不等式情势如下,则可直接写相
应解集:
1)(x-x1)(x-x2)>0(x1<x2)解集为 {x|x<x1 ,或 x>x2} ;
2)(x-a)2<b (b>0)解集为 {x|a- <x<a+ } .
数据分析
逻辑推理
数学运算
课堂小结
三、本节课训练的数学思想方法
函数结合
方程思想
转化与化归
分类讨论
基础作业:
.
02 能力作业:
.
01
03
拓展延伸:(选做)
例3. 求不等式-x2+2x-3 > 0 的解集 .
解:原不等式可化为x2-2x+3 < 0
因为判别式△=-8<0,
方程x2-2x+3 =0无实根.
原不等式的解集为.
方法总结:二次系数为负,先要化为正,再由判别式及函数
图像情况作出判断.
一元二次不等式求解流程图
练一练
求下列不等式的解集:
(1)2x2-3x>2;
a2-4<0,且判别式△=(a+2)2+4(a2-4)<0.
6
解得:-2≤a<
5




当二次系数含参变量时,要考虑它是否为零,
故需要分类讨论.
2.3.1 二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式(第1课时)教案 高一上学期数学人教A版(2019)必修第一册

二次函数与一元二次方程、不等式(第1课时)教案 高一上学期数学人教A版(2019)必修第一册

必修第一册第二章一元二次函数、方程和不等式2.2.3 二次函数与一元二次方程、不等式(第1课时)教材分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第二章第3节《二次函数与一元二次方程、不等式》第1课时。

从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。

从思想层面看,本节课突出体现了数形结合思想。

同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。

学情分析学生在初中已经学习了一元一次不等式、一元二次方程和二次函数的相关知识,对不等式的性质有了初步了解,但因我校学生基础普遍较差,逻辑推理和抽象思维能力仍需提高,还需依赖具体形象的内容理解抽象的逻辑关系。

教学目的1. 理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2. 经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。

教学重点一元二次不等式的解法教学难点理解一元二次方程、一元二次不等式及二次函数三者之间的关系教学过程一、情境导入问题园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?设这个矩形的一条边长为xm,则另一条边长为(12-x)m.由题意,得:(12-x)x>20(0<x<12)整理得x2-12x+20<0(0<x<12)。

①求得不等式①的解集,就得到了问题的答案。

思考:类比一元一次不等式,这个不等式有什么特点?能否给这类不等式起个名字,并写出它的一般形式?由此导出课题。

一元二次不等式的定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0 或ax2+bx+c<0 ,其中a,b,c均为常数,a≠0.思考:为什么要规定a≠0?二、探索新知探究1:回顾一次函数与一元一次方程、不等式的关系请学生画出一次函数y=2x-6的图象,并回答下列问题:1.函数y=2x-6与x轴的交点为;2.方程2x-6=0的根为;3.不等式2x-6>0的解为;4.不等式2x-6<0的解为;师生完成上述问题后小结:三个“一次”的关系。

二次函数与一元二次方程、不等式课件(第一课时)-2024-2025学年高一上学期数学必修第一册

二次函数与一元二次方程、不等式课件(第一课时)-2024-2025学年高一上学期数学必修第一册

y=x2-12x+20
P(x,y)
P(x,y)
x
一元二次不等式的解法
问题2: 基于三个“一次”的思想方法.类似地,要解一元二次不等式,首先要了解这三个
“二次”的关系.
方时, P点纵坐标y的符号是怎样的?
P在x轴上方时: 纵坐标y>0
纵坐标y=0
P在x轴上时:
P在x轴下方时: 纵坐标y<0
y
O
我们在平面直角坐标系中画出二次函数 y=x2-12x+20的图象(右图)
方程x2-12x+20=0的根2和10就是二次函数y=x2-12x+20上纵坐标为0点的横坐标
一元二次不等式的解法
问题2: 基于三个“一次”的思想方法.类似地,要解一元二次不等式,首先要了解这三个
“二次”的关系.
我们在平面直角坐标系中画出二次函数 y=x2-12x+20的图象(右图)
y=x2-12x+20
y
思考4: 一元二次方程x²-12x+20=0的实数根就是二次函数y=x²-12x+20图象
二次函数零点的定义:
对于二次函数y=ax²+bx+c,我们把使ax²+bx十c=0的实数x叫做二次函数
y=ax²+bx十c 的零点,二次函数y=x2-12x+20 的两个零点是2和10.
注意:零点是实数不是点,是函数对应方程的根!
2
10
x
一元二次不等式的解法
问题3: 上述方法可以推广到求一般的一元二次不等式ax²+bx+c>0(a>0) 和ax2+ bx+c<0 (a>0) 的

人教版高中数学必修课 二次函数与一元二次方程、不等式 教学PPT课件(1)

人教版高中数学必修课 二次函数与一元二次方程、不等式 教学PPT课件(1)

(3)
(4) R
课堂小结
1.“三个二次”的关系
二次函数
图象
一元二次方程的根
一元二次不等式的解
2.一元二次不等式解法的步骤:零点(方程的根)、图 像、解集
3.数学思想方法: 数形结合、分类讨论、转化与化归
ax2+bx+c<0 x x1 x x2
(a>0)的解集 x1 x2x
Φ
x1=x2 xLeabharlann Φx典例解析
例1:解不等式: x2-2x-15≥0
解:原不等式变形为(x+3)(x-5) ≥0
先求方程的根
方程(x+3)(x-5)=0 的 两根为: x=-3,或x=5 ∴ 不等式的解集 为:{x│ x ≤-3 或x ≥5}。
的解集是什么?
归纳总结
“三个二次”的关系(要牢记)
数(缺一元形二时次不少等直式的观解集与一元二次方程、二次函数的图象的关系)
小组活动:
形 数少 形 数 结 b时 合2 难 百4ac入 般微 好y 0
隔y离(=a>a分x02)家+的b图万x+象事c 非xx11O
xx22 x
1、仿照上述过程讨 论填写“三个二次” 之间的关系表格。
类比一次函数与一元一次方程、不等式,x轴 将函数图像分成了哪几个部分
y y x2 12 x 20
由图象可知:
2 10 x
不等式 x2 12x 20 0 的解集为
;
不等式 x2 12x 20 0 的解集为
.
不等式 ax2 + bx + c > 0或ax2 + bx + c < 0(a > 0)

231 二次函数与一元二次方程不等式第一课时 课时教学设计

231 二次函数与一元二次方程不等式第一课时 课时教学设计

课题:第一课时«23.1二次函数与一元二次方程、不等式》(一)教学内容一元二次不等式的定义、解法和应用,二次函数与一元二次方程、不等式的联系。

(二)教学目标1 .知识目标:熟练掌握一元二次不等式解法,理解三个"二)欠"之间的关系。

2 .能力目标:①借助二;欠函数图象,数形结合地理解三个"二次"之间的关系;②具体操作,学会借助已有经验,有意识的进行降维处理(将解一元二次不等式问题转化为一元一次不等式组问题。

)3 .素养目标:数学建模的能力,使学生经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;(三)教学重点及难点4 .重点用二次函数的观点统一认识一元二次方程和一元二次不等式,能够利用数形结合推导出求解一元二次不等式的方法。

5 .难点建立二次函数与一元二次不等式的联系以及含参数的一元二次不等式的解法。

(四)教学过程设计(主体内容)用问题分解教学目标新知探究问题1园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?师生活动教师提出问题,要求学生设立未知数,尽可能少引入柳量,建立不等式关系:x2-12x+20<0*追问(1)不等式左边的式子有什么特点(与一元一次不等式做类比)?能否给这个新的不等式起个名字?并做表达?设计意图打造学生建模能力,经历从实际情景中抽象出一元二次不等式的过程,引出新知识的定义和形式。

师生共同总结一元二次不等式的概念1 .一元二次不等式的概念一般地,我们把只含有未知数,并且未知数的最高次数是—的不等式,称为一元二次不等式.一元二次不等式的一般形式是或,其中B,6,c均为常数,a≠0.自我检测1:下列不等式中是一元二次不等式的是()A.a2x2+2x≥0B/<3C-X2+X-4<0D.x3+x2-4x+1>0问题2什么是二次函数的零点?2 .二次函数的零点一般地,对于二次函数y=ax i-+bx+c1我们把使a*+bx+c=0的叫做二次函数%a*+b*+c的零点.注意:(1)二)欠函数的零点不是点,是二;欠函数与X轴交点的横坐标.(2)一元二次方程的根是相应一元二次函数的零点.自我检测2:1.函数V=足-4的零点是()A.χ1-O,x24B.(0,0),(0,4.C.(0t0),<4,0,JD.4探究“三个二次”之间的关系问题3一元二次方程加+Zzx+c=0(α≠0)∖一元二)欠不等式以2+法+c>θ(α=θ)与其对应的一元二次函数y=0r2+bx+c(a≠0)图像的关系是怎样的?研究路径的类比:研究1:初中,具备了从一次函数的观点看一元一次方程、一元一次不等式的思想。

22.2_第1课时二次函数与一元一次方程之间的关系

22.2_第1课时二次函数与一元一次方程之间的关系

没有实数根 O x
讨论点拨
课堂练习
• 课本47页 1、2、5
课堂小结
二次函数与一元二次方程
二次函数y=ax2+bx+c的图象和x轴交点有三 种情况: b2 – 4ac > 0 (1)有两个交点 b2 – 4ac= 0 (2)有一个交点 2 – 4ac< 0 b (3)没有交点
若抛物线y=ax2+bx+c与x轴有交点,则
20.5 h
你能结合图形指出 为什么球不能达到 20.5m的高度?
O
t
讨论点拨
?
(4)球从飞出到落地要用多少时间?
h
你能结合图形指出
为什么在两个时间 球的高度为0m吗?
O t
讨论点拨
?
从以上可以看出,
讨论点拨
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变量x 的值. 就是求方程3=-X2+4x的解, 例如,解方程X2-4x+3=0
问题 如图,以40m/s的速度将小球沿与地面成300角的方向击出时, 球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行 h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,
考虑以下问题:
(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?
(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间? (3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
b2 – 4ac ≥0
课堂小结
二次函数y=ax2+bx+c的图象和x轴交点 Y △<0
△=0

二次函数与一元二次方程、不等式(第一课时)-课件全文

二次函数与一元二次方程、不等式(第一课时)-课件全文
目录
新知理解
Δ>0
Δ=0
Δ<0
y=ax2+bx+c(a>0)的图象
ax2+bx+c=0(a>0)的根
有两个不相等的实数 有两个相等的实数
根 x1,x2(x1<x2)
根 x1=x2=-2ba
没有实数根
ax2+bx+c>0(a>0)的解集 {x|x<x1 或 x>x2}
xx≠-2ba
R
ax2+bx+c<0(a>0)的解集
计算判别式=(-12)2-4×1×20 = 64 >0,
求根公式:a1=12-2
64 =
2,a2
12+ =2
64 =
10,
所以边界值为:a1= 2,a2= 10,
所以不等式的解集为{a│2 <a < 10}.
答:这个矩形苗圃的边长 a 取大于 2 且小于 10 的数时,苗圃的
面积会大于 20 平方关于 x 的一元二次不等式: (1)x2-5x + 6 > 0; (2)2x-x2 +3 <0. 解(2)整理为一般式 x2-2x-3>0, 法二:设二次函数 y=x2 -2x-3, 其图象开口向上, 解一元二次方程 x2-2x-3=0, 得到二次函数的零点:x1=-1,x2=3, 看函数的图象,得到不等式的解集为 {x│x>3 或 x<-1}
{x|x1<x<x2}


目录
巩固与练习 例 2 求不等式 9x2-6x+1>0 的解集.
解:
对于方程 9x2-6x+1=0,因为=0,
所以它有两个相等的实数根,解得

《2.3 二次函数与一元二次方程、不等式》公开课优秀教案教学设计(高中必修第一册)

《2.3 二次函数与一元二次方程、不等式》公开课优秀教案教学设计(高中必修第一册)

2.3 二次函数与一元二次方程、不等式教学设计三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。

课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。

2. 使学生能够运用二次函数及其图像,性质解决实际问题.3. 渗透数形结合思想,进一步培养学生综合解题能力。

数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。

重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集; 难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题.类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探. 二、 预习课本,引入新课阅读课本50-52页,思考并完成以下问题1. 二次函数与一元二次方程、不等式的解的对应关系.2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.一元二次不等式与相应的一元二次函数及一元二 次方程的关系如下表:判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y=ax 2+bx+c (a>0)的图象一元二次方程ax 2+bx+c=0 (a>0)的根 有两相异 实根x 1,x 2 (x 1<x 2)有两相等实根 x 1=x 2没有实数根ax 2+bx+c>0 (a>0)的解集{x|x >x 2或x <x 1}{x|x ≠−2b a} Rax 2+bx+c<0 (a>0)的解集{x|x 1<x <x 2}∅∅ab 2-=2.一元二次不等式ax 2+bx+c>0 (a>0)的求解的算法.(1)解ax 2+bx+c=0;(2)判断开口方向;(3)根据开口方向和两根画草图;(4)不等式>0,看草图上方,写对应x的结果;不等式<0,看草图下方,写对应x的结果.四、典例分析、举一反三题型一解不等式例1求下列不等式的解集(1)x2−5x+6>0(2)9x2−6x+1>0(3)−x2+2x−3>0【答案】(1){x|x<2,或x>3}(2){x|x≠13}(3)∅解题方法(解不等式)(1)解ax 2+bx+c=0;(2)判断开口方向;(3)根据开口方向和两根画草图;(4)不等式>0,看草图上方,写对应x的结果;不等式<0,看草图下方,写对应x的结果;跟踪训练一1、求下列不等式的解集(1)(x+2)(x−3)>0;(2)3x2−7x≤10;(3)−x2+4x−4<0(4)x2−x+14≤0【答案】(1){x|x<−2,或x>3}(2){x|x≤−3,或x≥103}(3) {x|x ≠2} (4) {x|x =12}题型二 一元二次不等式恒成立问题 例2 (1). 如果方程20ax bx c ++=的两根为2-和3且0a <,那么不等式20ax bx c ++>的解集为____________.(2).已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤C .k 0<或1k >D .0k ≤或1k >【答案】(1){}|23x x -<< (2)A【解析】(1)由韦达定理得231236bac a⎧-=-+=⎪⎪⎨⎪=-⨯=-⎪⎩,6b a c a =-⎧∴⎨=-⎩,代入不等式20ax bx c ++>,得260ax ax a -->,0a <,消去a 得260x x --<,解该不等式得23x -<<,因此,不等式20ax bx c ++>的解集为{}|23x x -<<,故答案为:{}|23x x -<<.(2)当0k =时,不等式为80≥恒成立,符合题意;当0k >时,若不等式2680kx kx k -++≥对任意x ∈R 恒成立, 则2364(8)0k k k ∆=-+≤,解得01k <≤;当k 0<时,不等式2680kx kx k -++≥不能对任意x ∈R 恒成立。

二次函数与一元二次不等式(第一课时)教学设计

二次函数与一元二次不等式(第一课时)教学设计

2.3.1二次函数与一元二次方程、不等式(第一课时)(人教A版普通高中教科书数学必修第一册第二章)一、教学目标1.从函数观点看一元二次方程会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系。

2.从函数观点看一元二次不等式。

经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义。

能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集。

3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系。

二、教学重难点1.判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系。

2.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集。

三、教学过程从函数观点看一元二次方程和一元二次不等式用函数理解方程和不等式是数学的基本思想方法。

可以帮助学生用一元二次函数认识一元二次方程和一元二次不等式。

通过梳理初中数学的相关内容,理解函数、方程和不等式之间的联系,体会数学的整体性。

1.一元二次不等式的概念1.1创设情境,引发思考二次函数与一元二次方程、不等式在初中,我们从一次函数的角度看一元一次方程、一元次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题对于二次函数、一元二次方程和一元二次不等式,是否也有这样的联系呢? 问题1:【数学情境】园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的20m,则这个矩形的边长为多少米?矩形区域的面积要大于2【设计意图】通过实际问题,让学生感受“求不等式”这样的问题是客观存在的,是源于实际生活的.同时引发学生思考.1.2探究典例,形成概念问题2: 【数学情境】在初中,我们学习了从一次函数的观点看一元二次方程、一元一次不等式的思想方法.类似地,能否从二次函数的观点看一元二次不等式,进而得到一元二次不等式的求解方法呢?【活动预设】通过图象解决不等式求解问题,分析二次函数与一元二次函数不等式之间的关系【设计意图】从引例中的具体问题入手,树立学生数形结合的数学思想,为推广一元二次不等式求解做准备。

二次函数与一元二次方程、不等式(第一课时)示范教学方案

二次函数与一元二次方程、不等式(第一课时)示范教学方案

《2.3 二次函数与一元二次方程、不等式(第一课时)》教学设计◆教学目标1.经历从实际情境中抽象出一元二次不等式模型的过程,了解一元二次不等式的现实意义,提升数学抽象素养;2.能用二次函数的观点,看一元二次方程和一元二次不等式,并能求解二次方程和二次不等式问题,感悟数学知识的整体性和关联性,提升逻辑推理、几何直观和数学运算等核心素养.◆教学重难点◆教学重点:从实际问题中抽象出一元二次不等式模型,并会借助二次函数求解一元二次不等式,体会函数思想、化归思想及数形结合的思想.教学难点:理解二次函数、一元二次方程与一元二次不等式解集之间的关系.◆课前准备GEOGEBRA、PPT课件.◆教学过程一、情境引入★资源名称:【情景演示】二次函数与一元二次方程、不等式★使用说明:本资源类比一次函数与一元一次方程、不等式的联系,提出对二次函数与一元二次方程、不等式之间联系的思考,引发学生以类比的视角来学习函数、方程、不等式之间的关系.注:此图片为视频截图,如需使用资源,请于资源库调用.问题1:园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24 m ,围成的矩形区域的面积要大于20 m 2,则这个矩形的边长为多少米?师生活动:学生独立思考,把实际问题中的数量关系用数学模型表示出来. 预设的答案:1.因为学生已经学习过基本不等式,所以部分学生会令矩形的一边长为x ,另一边为y ,可以得到⎩⎨⎧>=+.20,12xy y x 此时还需要消元从而转化为一元二次不等式求解.2.部分学生用一个未知数x 即可表示问题中的不等式20)-12>x x (,但学生容易忘记自变量x 的取值范围.追问:不等式20)-12>x x (即020122<+-x x ,与我们学习过的一元一次不等式有什么不同?你能再举出一些类似的不等式吗?师生活动:学生可以回答这个问题.之后学生阅读课本获得定义,或者教师给出一元二次不等式的定义,一元二次不等式的一般形式:0022<++>++c bx ax c bx ax 或,并且强调二次项的系数a ≠0.设计意图:通过具体问题抽象出一元二次不等式的过程,明确一元二次不等式的定义和一般形式,体会一元二次不等式的现实意义.二、探究新知1.探究一元二次不等式的解法问题2:在初中,我们学习了从一次函数的观点看一元一次方程、一元一次不等式的思想方法.那么这三个“一次”之间的关系是什么?师生活动:教师引导学生回答问题,并强调从代数和几何两方面的理解,注意数形结合的思想.师生共同总结如下:设计意图:通过对三个“一次”的关系的总结,帮学生梳理函数和相应的方程、不等式之间的关系,为下面的探索做好铺垫.★资源名称: 【数学探究】二次函数与一元二次方程、不等式的关系★使用说明:本资源动态展示了二次函数的零点与一元二次方程的根、一元二次不等式的解集之间的关系,使用时可通过滑动条改变二次函数中的系数,直观观察三者之间的关系.注:此图片为动画截图,如需使用资源,请于资源库调用.问题3:类似地,能否从二次函数的观点看一元二次不等式,进而得到一元二次不等式的求解方法呢?以函数20122+-=x x y 为例.师生活动:学生类比研究,应该有一部分学生可以获得思路.教师设计追问,引导学生思考.追问1:教师用信息技术画出函数20122+-=x x y 的图象,图象与x 轴有两个交点,并在函数图象上任取一点P (x ,y ).当点P 在抛物线上移动时,请你观察:随着点P 的移动,它的纵坐标的符号怎样变化?师生活动:学生观察思考后回答.预设的答案:当点P 移动到x 轴上时,它的纵坐标等于0(即0=y );当点P 移动到x 轴上方时,它的纵坐标大于0(即0>y );当点P 移动到x 轴下方时,它的纵坐标小于0(即0<y ).追问2:当点P 的纵坐标y =0时、y >0时、y <0时所对应的横坐标x 的取值范围分别是什么?师生活动:学生独立获得答案.师生活动:学生思考并对上述方法进行了归纳、概括,获得求解一般一元二次不等式的解法.预设的答案:求解一元二次不等式的关键是利用二次函数的图象与x 轴的相关位置确定不等式对应的x 的取值范围,而确定x 的取值范围需要先求出相应一元二次方程的根.这种关系体现在下表中.Δ>0Δ=0Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0(a>0)的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集 {x |x <x 1,或x >x 2}{x |x ≠-b2a}Rax 2+bx +c <0(a>0)的解集{x |x 1<x <x 2}∅ ∅设计意图:通过问题引导学生从具体的“三个二次”的关系,归纳、概括、获得一般的一元二次不等式的解法.在这个过程中培养学生数学抽象概括的能力,以及从具体到抽象,从特殊到一般的研究问题的基本方法.并体会数形结合和函数思想的应用.3.应用举例例1 求下列不等式的解集:(1)0652>+-x x (2)01692>+-x x (3)03-2-2>+x x追问:求解不等式的依据是什么?步骤是什么?第(3)题与(1)(2)题有何异同?能否转化为(1)(2)题.师生活动:学生独立完成后展示交流,师生总结求解思路.对于二次项系数是负数(即0<a )的不等式,可以先把二次项系数化成正数,再求解.预设的答案:(1)解:对于方程0652=+-x x ,因为∆>0, 所以它有两个实数根,解得3,221==x x ,画出二次函数652+-=x x y 的图象(图2.3-2)结合图象得不等式0652>+-x x 的解集为}{3,2><x x x 或.(2)解:对于方程01692=+-x x ,因为∆=0,所以它有两个相等的实数根,解得3121==x x ,画出二次函数169y 2+-=x x 的图象(图2.3-3),结合图象得不等式01692>+-x x 的解集为}31|{≠x x .(3)解:不等式可化为032-2<+x x ,因为∆=-8<0,所以方程032-2=+x x 无实数根,画出二次函数32y 2+-=x x 的图象(图2.3-4),结合图象得不等式032-2<+x x 的解集为∅.因此原不等式的解集为∅.追问:通过这三道题的学习,请你试着总结一下:解一元二次不等式的一般步骤是什么?师生活动:学生总结,教师完善.预设的答案:步骤是:(1)先把二次项系数化为正数;(2)求判别式的值;(3)求相应方程的实数根;(4)结合函数图象写出一元二次不等式的解集.设计意图:这三道例题对应的三个二次函数的图象分别与x 轴有两个交点、有一个交点和没有交点,再次巩固了利用二次函数解二次不等式的方法.并要注重代数问题的求解程序的提炼总结,以便学生有序地思考,规范地求解,提升学生的数学运算素养.注重数形结合思想方法的应用,培养学生思维的严谨性.例 2 已知一元二次不等式02<++c bx ax 的解集为{}53-><x x x ,或,则02<+-c bx ax 的解集为________.追问:如何利用“三个二次”的关系求解?能大致画出不等式对应的函数的草图吗? 师生活动:学生先独立思考,画出函数的草图,从而可以确定a 0<.并利用方程的根与函数零点的关系,及韦达定理求出a ,b ,c 之间的关系(而不是具体的值),再化简求值.预设的答案:解:根据题意可知a 0<.图2-3-5令)0(02≠=++a c bx ax .由根与系数的关系得⎪⎪⎩⎪⎪⎨⎧⨯-=+-=,53,53-ac a b解得⎩⎨⎧-=-=.15,2a c a b 代入所求不等式得01522<-+a ax ax .①又∵0<a ,∴①化为01522>-+x x . 对于方程015-22=+x x ,因为∆>0,所以它有两个实数根,解得3,-521==x x ,画出二次函数15-22x x y +=的图象(图2-3-5),结合图象得不等式15-22>+x x 的解集为}{53-<>x x x ,或.设计意图:进一步理解三个“二次”之间的关系,在较复杂的情境中应用新知识,提高学生分析问题的能力.三、归纳小结,布置作业★资源名称: 【知识点解析】二次函数与一元二次方程、不等式★使用说明:本资源为二次函数与一元二次方程、不等式的知识讲解视频,主要以二次函数为视角讨论了三个“二次”之间的关系,让学生明确二次函数的零点、一元二次方程的根和一元二次不等式的解集之间的统一性.注:此图片为微课截图,如需使用资源,请于资源库调用.问题4:这节课我们学习了解一元二次不等式,那么我们是如何去研究一元二次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题2.3.2 二次函数与一元一次方程的联系(第一课时)
预习指导:
请同学们认真预习课本P 43-P 45,并完成讲学稿 学习要求:
1. 会求抛物线与x 轴的交点的横坐标
2. 弄清抛物线c bx ax y ++=2与x 轴什么时候有两个不同的交点坐标,一个交点坐标、没有交点坐标
3. 激情投入,培养认真细致、严谨的学习态度。

【一】自主学习
(1) 知识回眸
1、 在直角坐标系中,x 轴上点的特点是_________________
2、 一元二次方程()002≠=++a c bx ax 的求根公式是________________
3、 一元二次方程()002≠=++a c bx ax 的根的判别式是_________,=∆当,0_____=∆时, 一元二次方程有两个不同的实数根,当0=∆时,一元二次方程_______________________ 当_____=∆时,一元二次方程没有实数根。

(2)预习自测 解下列方程
(1)051242
=++x x (2)0122
=++x x (3)0120
94012=++-x x (4)0222=++x x
(5)2120
94012=++-
x x 【二】经典例题:
例1. 投铅球时,铅球在空中经过的路线是抛物线。

已知某运动员掷铅球时,铅球在空中
经过的抛物线的解析式为120
9
4012++
-=x x y ,其中x 是铅球离初始位置的水平距离,y 是铅球地面的高度。

(1) 铅球能掷出多少米?
(2) 当铅球离地面高度为2m 时,它离初始位置的水平距离是多少m
(精确到01.0米。

已知41.641≈)
例2、求下列抛物线与x 轴的交点的横坐标 (1) 51242++=x x y
(2) 122++=x x y ;
(3) 222++=x x y
【三】合作交流
(1)当ac b 42-分别满足什么条件时,抛物线c bx ax y ++=2与x 轴有两个不同的交点,两个重合的交点,没有交点?
(2)当t 取什么值时,抛物线12142
2-⎪⎭

⎝⎛++=t x x y 与x 轴的重合的两个交点?
【拓展提升】若直线x+2y=a 与直线3x+4y=15的交点在第一象限,且a 为整数,求a 的值。

【四】课外作业
P47练习题1题,3题。

相关文档
最新文档