苏教版高中数学高一必修二必修二限时训练17

合集下载

苏教版数学高一-16-17苏教版数学必修2检测 第2章2.1-2.1.2直线的方程

苏教版数学高一-16-17苏教版数学必修2检测 第2章2.1-2.1.2直线的方程

第2章平面解析几何初步2.1 直线与方程2.1.2 直线的方程A组基础巩固1.直线x+y-3=0的倾斜角的大小是()A.45°B.135°C.1 D.-1解析:直线x+y-3=0,即y=-x+3,它的斜率等于-1,故它的倾斜角为135°.答案:B2.直线y=mx-3m+2(m∈R)必过定点()A.(3,2) B.(-3,2)C.(-3,-2) D.(3,-2)解析:由y=mx-3m+2,得y-2=m(x-3).所以直线必过点(3,2).答案:A3.经过点(-1,1),斜率是直线y=22x-2的斜率的2倍的直线方程是()A.x=-1 B.y=1C.y-1=2(x+1) D.y-1=22(x+1)解析:由方程知,已知直线的斜率为22,所以所求直线的斜率是2,由直线方程的点斜式可得方程为y -1=2(x +1).答案:C4.直线x a +y b=1过第一、第二、第三象限,则( ) A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0解析:因为直线l 在x 轴上的截距为a ,在y 轴上的截距为b ,且经过第一、第二、第三象限,故a <0,b >0.答案:C5.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角为45°,则m 的值为( )A .-2B .2C .-3D .3解析:由已知得m 2-4≠0,且2m 2-5m +2m 2-4=1, 解得m =3或m =2(舍去).答案:D6.已知直线ax +by -1=0在y 轴上的截距为-1,且它的倾斜角是直线3x -y -3=0的倾斜角的2倍,则a ,b 的值分别为( )A.3,1B.3,-1 C .-3,1 D .-3,-1解析:原方程化为x 1a +y 1b=1,所以1b =-1.所以b =-1.又因为ax +by -1=0的斜率k =-a b=a ,且3x -y -3=0的倾斜角为60°,所以k =tan 120°.所以a =- 3.答案:D7.直线ax +3my +2a =0(m ≠0)过点(1,-1),则直线的斜率k 等于( )A .-3B .3 C.13 D .-13解析:由点(1,-1)在直线上可得a -3m +2a =0(m ≠0),解得m =a ,故直线方程为ax +3ay +2a =0 (a ≠0),所以x +3y +2=0,其斜率k =-13. 答案:D8.下列三个说法中正确的有________(填序号).①任何一条直线在y 轴上都有截距;②直线在y 轴上的截距一定是正数;③直线的斜截式方程可以表示任何不垂直于x 轴的直线.解析:因为当直线垂直于x 轴时,直线在y 轴上的截距不存在,所以①错误.直线在y 轴上的截距是直线与y 轴交点的纵坐标,截距是一个数值,可正、可负、可为0,所以②错误.不垂直于x 轴的任何直线都有斜率,所以都能用直线的斜截式方程表示,所以③正确.答案:③9.直线3x-2y-4=0的截距式方程是________.解析:直线方程化为3x-2y=4,所以34x-y2=1.所以x43+y-2=1.答案:x43+y-2=110.已知三角形的顶点是A(8,5),B(4,-2),C(-6,3),求经过每两边中点的三条直线的方程.解:设AB,BC,CA的中点分别为D,E,F,如图所示.根据中点坐标公式得D⎝⎛⎭⎪⎫6,32,E⎝⎛⎭⎪⎫-1,12,F(1,4).由两点式得DE的直线方程为y-3212-32=x-6-1-6,整理得2x-14y+9=0,这就是直线DE的方程.由两点式得EF的直线方程为y-124-12=x-(-1)1-(-1),整理得7x-4y+9=0,这就是直线EF的方程.由两点式得DF 的直线方程为y -324-32=x -61-6, 整理得x +2y -9=0,这就是直线DF 的方程.11.设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6,根据下列条件分别确定实数m 的值.(1)在x 轴上的截距是-3;(2)斜率是-1.解:(1)令y =0,所以2m -6m 2-2m -3=-3. 所以2m -6=-3m 2+6m +9,即3m 2-4m -15=0.所以m =-53或m =3. 当m =3时,m 2-2m -3=0.此时方程为y =0不符合题设条件,从而m =-53. (2)由m 2-2m -32m 2+m -1=1,所以m 2+3m +2=0. 所以m =-2或m =-1(舍去).故m =-2.B 级 能力提升12.过点A (3,-1),B (5,4)的直线方程的两点式为__________,一般式为__________________.答案:y -(-1)4-(-1)=x -35-35x -2y -17=0 13.已知△ABC 的一个顶点为A (3,-1),AB 被y 轴垂直平分,AC 被直线y =x 垂直平分,则直线BC 的方程是________.解析:A (3,-1)关于y 轴的对称点为B (-3,-1),A (3,-1)关于直线y =x 的对称点为C (-1,3),所以BC 的方程为y +13+1=x +3-1+3,即2x -y +5=0. 答案:2x -y +5=014.过点P (1,1)作直线l 与两坐标轴相交,所得三角形面积为2,则这样的直线l 有________条.解析:设l 为y =k (x -1)+1即为y =kx -k +1,则12×(k -1)2|k |=2,解得k =3±22或k =-1. 答案:315.过点 (a ,0),(0,b ),(1,3),且a ,b 均为正整数的直线方程为________________________.解析:设所求直线方程为:x a +y b=1, 则1a +3b=1(a ,b ∈N *), 所以a =b b -3∈N *,故⎩⎨⎧a =4,b =4或⎩⎨⎧a =2,b =6.所求方程为x +y -4=0或3x +y -6=0.答案:x +y -4=0或3x +y -6=016.某地长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)与行李重量x(kg)之间的关系用直线AB的方程表示.如图所示,试求:(1)直线AB的方程;(2)旅客最多可免费携带多少行李.解:(1)由题图知,点A(60,6),B(80,10).所以直线AB的方程是x-5y-30=0.(2)依题意,令y=0,得x=30.故旅客最多可免费携带30 kg行李.。

2020年(苏教版)高中数学必修2配套练习+章节检测卷汇总(vip专享)

2020年(苏教版)高中数学必修2配套练习+章节检测卷汇总(vip专享)

(苏教版)高中数学必修2配套练习+章节检测卷全集第1章立体几何初步1.1 空间几何体1.1.1 棱柱、棱锥和棱台A级基础巩固1.下列图中属于棱柱的有()A.2个B.3个C.4个D.5个解析: 根据棱柱的定义, 第一行中前两个和第二行中后两个为棱柱.答案: C2.五棱柱中, 不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线, 那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析: 由题意五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线, 因为不同在任何侧面内, 故从一个顶点出发的对角线有2条, 五棱柱的对角线共有2×5=10(条).答案: D3.下面图形所表示的几何体中, 不是棱锥的为()解析: 判断一个几何体是否是棱锥, 关键看它是否满足以下条件: 有一个面是多边形, 其余各面都是三角形, 且是有一个公共顶点的三角形.故A不是棱锥; B是四棱锥; C, D是五棱锥.答案: A4.关于棱柱的下列说法中正确的是________(填序号).①所有的棱都相等;②至少有两个面的形状完全相同;③相邻两个面的交线叫作侧棱.解析: ①错误, 因为侧棱与底面上的棱不一定相等; ②正确, 根据棱柱的结构特征知, 棱柱的两个底面一定是全等的, 故棱柱中至少有两个面的形状完全相同; ③错误, 因为底面和侧面的公共边不是侧棱.答案: ②5.观察如图所示的正六棱柱, 共有________对平行平面, 能作为棱柱底面的有________对.解析: 观察图中的正六棱柱, 可知共有4对平行平面, 其中能作为棱柱底面的只有1对.答案: 4 16.下列说法正确的是________(填序号).①底面是正方形的棱锥是正四棱锥;②各条侧棱都相等的棱锥是正棱锥;③底面是正三角形, 其余各个面是等腰三角形的三棱锥一定是正三棱锥;④正四面体是正三棱锥.解析: 根据定义判定.答案: ④7.在四棱锥的四个侧面中, 直角三角形最多有______个.解析: 从长方体中寻找四棱锥模型.答案: 48.有一个面是多边形, 其余各面都是三角形的几何体一定是棱锥吗?解: 不一定, 因为“其余各面都是三角形”并不等价于“其余各面是有一个公共顶点的三角形”, 如图所示的几何体并不是棱锥.9.下列三个命题, 其中正确的有________个.①用一个平面去截棱锥, 棱锥底面和截面之间的部分是棱台;②两个底面平行且相似, 其余各面都是梯形的多面体是棱台;③有两个面互相平行, 其余四个面都是等腰梯形的六面体是棱台.解析: 由棱台定义知3个命题均不正确.答案: 0B级能力提升10.某同学制作了一个对面图案相同的正方体礼品盒(如图所示), 则这个正方体礼品盒的表面展开图应该为()解析: 两个☆不能并列相邻, B、D错误; 两个※不能并列相邻, C错误, 故选A.也可通过实物制作检验来判定.答案: A11.下列说法不正确的是________(填序号).①有些棱台的侧棱都相等;②四棱锥有五个顶点;③三棱台的上、下底面是相似三角形;④有两个面平行且相似, 其余各面都是梯形的几何体是棱台.解析: 根据棱锥顶点的定义可知, 四棱锥仅有一个顶点, 则②不正确; 显然①③正确; 举反例: 将两个相同的四棱台的上底面重合上下放置, 得到的几何体不是棱台, ④不正确.答案: ②④12.下列图中的几何体是棱台的是________(填序号).解析: ①③都不是由棱锥截成的, 不符合棱台的定义, 故①③不满足题意.②中的截面不平行于底面, 不符合棱台的定义, 故②不满足题意.④符合棱台的定义.答案: ④13.如图所示是一个正方体的表面展开图, 把它折回成正方体后, 下列命题中, 正确命题的序号是________.①点H与点C重合;②点D, M与点R重合;③点B与点Q重合;④点A与点S重合.解析: 把面EFNM作为该正方体的底面, 将展开图还原为正方体, 如图所示, 然后逐个检验, 便可得到命题②④是正确的.答案: ②④14.一个长方体过同一顶点的三个面的面积分别为2, 3, 6, 这个长方体的对角线的长是________.解析: 设三边分别为a, b, c, 则ab=2, bc=3, ca=6, 解得: a=2, b=1, c=3, 所以对角线长为a2+b2+c2=1+2+3= 6.答案: 615.两个完全相同的长方体, 长、宽、高分别为5 cm, 4 cm, 3 cm, 把它们重叠在一起组成一个新长方体, 在这些新长方体中, 求最长的对角线的长度.解: 当一个长方体放在另一个长方体的上方时, 这时新的长方体的对角线长d1=52+42+(3+3)2=77(cm);当一个长方体放在另一个长方体的右边时, 这时新的长方体的对角线长d2=(5+5)2+42+32=55(cm);当一个长方体放在另一个长方体的前方时, 这时新的长方体的对角线长d3=52+(4+4)2+32=72(cm).综上可知, 新长方体中, 最长的对角线的长度为5 5 cm.16.如图所示, 已知正四棱锥V-ABCD的底面面积为16, 一条侧棱长为211, 点E是BC的中点, 计算它的高和斜高.解: 因为正方形ABCD的面积为16,所以边长为4, OB=2 2.又侧棱长为211,所以VO=(211)2-(22)2=6.又OE=2, 所以斜高VE=62+22=210.故它的高为6, 斜高为210.第1章立体几何初步1.1 空间几何体1.1.2 圆柱、圆锥、圆台和球A级基础巩固1.下列说法正确的是()A.直角三角形绕一边所在直线旋转得到的旋转体是圆锥B.夹在圆柱的两个截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点, 有无数条母线解析: 圆锥是直角三角形绕直角边所在直线旋转得到的, 如果绕斜边旋转就不是圆锥, A不正确; 夹在圆柱两个平行于底面的截面间的几何体才是旋转体, 故B不正确; 通过圆台侧面上一点, 有且只有一条母线, 故D不正确.答案: C2.下列说法正确的是()A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行, 其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的解析: 两直线平行时, 直线绕定直线旋转才形成柱面, 故A不正确; 半圆以直径所在直线为轴旋转形成球体, 故B不正确; C不符合棱台的定义.答案: D3.下列命题中, 正确的是()A.平行于圆锥的一条母线的截面是等腰三角形B.平行于圆台的一条母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台一个底面中心的截面是等腰梯形解析: A中的截面是抛物面, 故错误; B中截面只过一个底面时, 不成立; 而D中截面不过另一个底面时, 也不成立; 因为圆锥的母线相等, 所以过圆锥顶点的截面是等腰三角形, 故C成立.答案: C4.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面, 下底面圆心为顶点的圆锥而得到的组合体, 现用一个竖直的平面去截这个组合体, 则截面图形可能是()A.①②B.①③C.①④D.①⑤解析: 一个圆柱挖去一个圆锥后, 剩下的几何体被一个竖直的平面所截后, 圆柱的轮廓是矩形除去一条边, 圆锥的轮廓是三角形除去一条边或抛物线的一部分.答案: D5.给出以下命题:①空间中到定点的距离等于定长r的点的集合, 构成半径为r的球;②空间中到定点的距离等于定长r的点的集合, 构成半径为r的球面;③一个圆面绕其直径所在直线旋转180°所形成的曲面围成的几何体是球;④球面的对称轴有无数条, 对称中心有无数个.其中正确的是________(填序号).解析: 由球的定义知, ①错误, ②正确, ③正确; ④错误, 因为球面的对称中心只有一个, 即球心.答案: ②③6.半圆绕着直径所在直线旋转一周所得的几何图形是______.解析: 注意球与球面、半圆与半圆面的区别.答案: 球面7.如图所示, 一个圆环面绕着过圆心的直线l旋转180°, 想象并说出它形成的几何体的结构特征.试着说出它的名称为________.解析: 旋转形成的几何体是由两个同心球构成的, 即大球中挖去一个同心的小球.答案: 空心球8.一个正方体内接于一个球, 过球心作一截面, 如下图所示, 则截面的可能图形是________(填图序).解析: 当截面平行于正方体的一个侧面时得③, 当截面过正方体对角线时得②, 当截面不平行于任何侧面也不过对角线时得①, 但无论如何都不能得出④.答案: 图①、图②、图③B级能力提升9.下面平面图形中能旋转而形成如图所示的几何体的是()解析: 此几何体自上向下是由一个圆锥、两个圆台和一个圆柱构成, 是由A中的平面图形旋转而形成的.答案: A10.用一个平面截半径为25 cm的球, 截面圆的面积是49π cm2, 则球心到截面的距离为________.解析: 球的半径R=25(cm), 截面圆的半径r=7(cm), 则球心到截面的距离d=252-72=24(cm).答案: 24 cm11.若一个圆锥的轴截面是等边三角形, 其面积为3, 则这个圆锥的母线长为________.解析: 如图所示, 设等边三角形ABC为圆锥的轴截面, 由题意易知其母线长即△ABC的边长, 且S△ABC=34AB2, 所以3=34AB2.所以AB=2.故所求圆锥的母线长为2.答案: 212.指出图中的几何体是由哪些简单几何体构成的.图①图②解: (1)图中的几何体是由六棱柱中挖去一个圆柱构成的.(2)图中的几何体是由圆锥、圆柱、圆台构成的.13.已知圆柱的底面圆的半径是20 cm, 高是15 cm, 则平行于圆柱的轴且与此轴相距12 cm的截面面积是________cm2.解析: 圆柱的底面如图所示,设所求截面的底边长为x cm ,由题意得⎝ ⎛⎭⎪⎫x 22=202-122, 解得x =32, 所以S 截面=32×15=480(cm 2).答案: 48014.把四个半径为R 的小球放在桌面上, 使下层三个, 上层一个, 两两相切, 求上层小球最高处离桌面的距离.解: 如图所示, 由于四个半径为R 的球两两相切, 故四个球的球心构成一个棱长为2R 的正四面体O 4-O 1O 2O 3, 因为底面等边三角形O 1O 2O 3的高为32×2R , 所以该棱锥的高OO 4=(2R )2-⎝ ⎛⎭⎪⎫233R 2=263R . 所以上层小球最高处离桌面的距离d =263R +R +R =⎝⎛⎭⎪⎫2+263R .第1章 立体几何初步1.1 空间几何体1.1.3 中心投影和平行投影A级基础巩固1.已知△ABC, 若选定的投影面与△ABC所在平面平行, 则经过中心投影后所得三角形与△ABC()A.全等B.相似C.不相似D.以上都不对解析: 根据中心投影的概念判断是相似.答案: B2.下列命题正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点解析: 因为当平面图形与投射线平行时, 所得投影是线段, 故A, B错.又因为点的平行投影仍是点, 所以相交直线的投影不可能平行, 故C错.由排除法可知, 选项D正确.答案: D3.(2014·福建卷)某空间几何体的正视图是三角形, 则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱解析: 由三视图知识, 知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形, 而圆柱的正视图不可能为三角形.答案: A4.下列几何体各自的三视图中, 有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析: 在各自的三视图中: ①正方体的三个视图都相同; ②圆锥有两个视图相同; ③三棱台的三个视图都不同; ④正四棱锥有两个视图相同.答案: D5.将长方体截去一个四棱锥, 得到的几何体如图所示, 则该几何体的侧视图为()解析: 所给几何体的侧视图是矩形, 里面从右上到左下加对角线.答案: D6.一个图形的平行投影是一条线段, 这个图形不可能是下列图形中的________(填序号).①线段; ②直线; ③圆; ④梯形; ⑤长方体.解析: ①的平行投影是线段或点; ②的平行投影是直线或点; 对于③④, 当图形所在面与投影面垂直时, 其正投影为线段; ⑤的平行投影显然不可能是线段.故填②⑤.答案: ②⑤7.两条相交直线的平行投影是___________________________.解析: 当两条相交直线所在平面与投影线不平行时, 平行投影是两条相交直线; 当平行时, 其投影是一条直线.答案: 两条相交直线或一条直线8.图①和图②为两个几何体的三视图, 根据三视图可以判断这两个几何体分别为________、________.解析: 根据三视图的形状联想几何体的结构.答案: 圆台四棱锥9.如图所示的长方体和圆柱的三视图是否正确?解: 均不正确.画一个物体的三视图, 不仅要确定其形状, 而且要确定线段的长短关系.长方体和圆柱的正确三视图如图所示:B级能力提升10.(2014·江西卷)一几何体的直观图如图所示, 下列给出的四个俯视图中正确的是()解析: 该几何体是组合体, 上面的几何体是一个五面体, 下面是一个长方体, 且五面体的一个面即为长方体的一个面, 五面体最上面的棱的两端点在底面的射影距左右两边距离相等, 故选B.答案: B11.画简单组合体的三视图时, 下列说法错误的是________(填序号).①主视图与俯视图长相同;②主视图与左视图高平齐;③俯视图与左视图宽相等;④俯视图画在左视图的正下方.解析: 由画图时遵循“长对正、高平齐、宽相等”, 易知①②③正确.答案: ④12.下列实例中, 不是中心投影的是________(填序号).①工程图纸; ②小孔成像; ③相片; ④人的视觉.解析: 由中心投影和平行投影的定义知, 小孔成像、相片、人的视觉为中心投影, 工程图纸为平行投影.答案: ①13.一个几何体的三视图如图所示, 则该几何体的直观图可以是________(填图序).解析: 由三视图可知该几何体上部分是一个圆台, 下部分是一个圆柱, 故填图④.答案: 图④14.若一个正三棱柱的三视图如下图所示, 则这个正三棱柱的高和底面边长分别为________、________.解析: 从左视图中得到高为2, 正三棱柱的底面正三角形的高为23, 可得边长为4.答案: 2 415.已知正方体的棱长为1, 其俯视图是一个面积为1的正方形, 左视图是一个面积为2的矩形, 则该正方体的主视图的面积等于________.解析: 由题意可知, 该正方体是斜放的, 其俯视图恰好是正方形, 而左视图和主视图都是正方体的对角面, 故该正方体的主视图的面积等于 2.答案: 216.在一个仓库里堆放着若干个相同的正方体货箱, 仓库管理员将这堆货箱的三视图画了出来, 如图所示, 则这堆正方体货箱共有________个.解析: 由主视图可知货箱有3层, 由左视图可知货箱前后有3排, 由俯视图可知货箱有3列, 则货箱的具体分布情况如图所示, 其中小正方形的数字表示此位置上面货箱的个数.因此这堆正方体货箱共有3+1+1+2+1+1=9(个).答案: 9第1章立体几何初步1.1 空间几何体1.1.4 直观图画法A组基础巩固1.用斜二测画法画水平放置的平面图形的直观图, 对其中的线段说法错误的是()A.原来相交的线段仍相交B.原来垂直的线段仍垂直C.原来平行的线段仍平行 D.原来共点的线段仍共点解析: 根据斜二测画法可知, 原来垂直的线段未必垂直.答案: B2.建立坐标系, 得到的两个正三角形ABC的直观图不是全等三角形的一组是()解析: 由斜二测画法规则易知A、B、D中的直观图全等.答案: C3.利用斜二测画法画边长为1 cm的正方形的直观图, 正确的是()解析: 正方形的直观图应为平行四边形且平行于y′轴的线段的长度减半, 故只有C正确.答案: C4.下图为一平面图形的直观图, 因此平面图形可能是()解析: 根据直观图, 平面图形的一边在x′轴上, 另一边与y′轴平行, 故此平面图形是左边为直角腰的直角梯形.答案: C5.如图所示, △A′B′C′是△ABC的直观图, 其中A′C′=A′B′, 那么△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形解析: 由直观图看出, 三角形中有两边分别和两轴平行且相等, 由斜二测画法知原图中相应两边与两轴平行, 即有两边垂直且不等, 所以原三角形为直角三角形.答案: B6.利用斜二测画法得到的:①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④菱形的直观图是菱形; ⑤梯形的直观图是梯形.以上结论, 正确的是________(填序号).解析: 因平行性不改变, 故②正确, ①也正确, 梯形的两底保持平行且不相等, 故⑤也正确; 平行于y轴的线段, 长度变为原来的一半, 故③④不正确.答案: ①②⑤7.如图所示, 用斜二测画法画一个水平放置的平面图形的直观图为一个正方形, 则原来图形的形状是________(填序号).①②③④解析: 根据斜二测画法知, 在y轴上的线段长度为直观图中相应线段长度的2倍, 可知①正确.答案: ①B级能力提升8.如图所示, Rt△O′A′B′是一平面图形的直观图, 直角边O′B′=1, 则这个平面图形的面积是()A .2 2B .1 C. 2 D .4 2解析: 设这个平面图形为△OAB .因为O ′B ′=1, 所以O ′A ′=2.所以在Rt △OAB 中, ∠AOB =90°, OB =1, OA =22, 所以S△AOB =12×1×22= 2. 答案: C9.如图所示, 正方形O ′A ′B ′C ′的边长为1 cm, 它是水平放置的一个平面图形的直观图, 则原图的周长是( )A.8 cm B.6 cmC.2(1+3)cm D.2(1+2)cm解析: 根据直观图的画法, 原几何图形如图所示,四边形OABC为平行四边形, OB=22, OA=1, AB=3, 从而原图周长为8 cm.答案: A10.有一个长为5 cm, 宽为4 cm的矩形, 则其直观图的面积为________.解析: 该矩形的面积为S=5×4=20(cm2), 由平面图形的面积与直观图的面积间的关系, 可得直观图的面积为S′=24S=52cm2.答案: 5 211.画出水平放置的等腰梯形的直观图.解: 等腰梯形及其直观图如图①和图②所示.(1)如图①所示, 取AB所在直线为x轴, AB的中点O为原点, AB的中垂线为y轴建立直角坐标系, 画出对应的直观图中的坐标系x′O′y′, 使∠x′O′y′=45°(或135°).(2)以O′为中点在x′轴上取A′B′=AB, 在y′轴上取O′E′=1 2OE, 以E′为中点画C′D′∥x′轴并使C′D′=CD.(3)连接B′C′, D′A′, 如图②所示, 所得到的四边形A′B′C′D′即是水平放置的等腰梯形ABCD的直观图.12.下图是已知几何体的三视图, 用斜二测画法画出它的直观图.解: (1)画轴, 如图①所示, 画x轴、y轴、z轴, 三轴相交于点O, 使∠xOy=45°, ∠xOz=90°.(2)画圆台的两底面.画出底面⊙O假设交x轴于A, B两点, 在z轴上取点O′, 使OO′等于三视图中相应高度, 过点O′作Ox的平行线O′x′, Oy的平行线O′y′.利用O′x′与O′y′画出底面⊙O′, 设⊙O′交x′轴于A′, B′两点.(3)成图, 连接A′A, B′B.去掉辅助线, 将被遮挡的部分改为虚线, 即得到给出三视图所表示的直观图, 如图②所示.13.如果一个水平放置的图形的斜二测画法得到的直观图是一个底角为45°, 腰和上底均为1的等腰梯形, 那么原平面图形的面积是多少?解: 由题意, 知原图形为直角梯形, 且上底为1, 下底为1+2,高为2, 所以实际图形的面积=(1+1+2)×22=2+ 2.第1章立体几何初步1.2 点、线、面之间的位置关系1.2.1 平面的基本性质A组基础巩固1.下列有关平面的说法正确的是()A.平行四边形是一个平面B.任何一个平面图形都是一个平面C.平静的太平洋面就是一个平面D.圆和平行四边形都可以表示平面解析: 我们用平行四边形表示平面, 但不能说平行四边形就是一个平面, 故A项不正确; 平面图形和平面是两个概念, 平面图形是有大小的, 而平面无法度量, 故B项不正确; 太平洋面是有边界的, 不是无限延展的, 故C项不正确; 在需要时, 除用平行四边形表示平面外, 还可用三角形、梯形、圆等来表示平面.答案: D2.如图所示, 用符号语言可表示为()A.α∩β=m, n⊂α, m∩n=AB.α∩β=m, n∈a, m∩n=AC.α∩β=m, n⊂α, A⊂m, A⊂nD.α∩β=m, n∈a, A∈m, A∈n解析: α与β交于m, n在α内, m与n交于A.答案: A3.下列说法正确的是()A.经过三点确定一个平面B.两条直线确定一个平面C.四边形确定一个平面D.不共面的四点可以确定4个平面解析: 对于A, 若三点共线, 则错误; 对于B项, 若两条直线既不平行, 也不相交, 则错误; 对于C项, 空间四边形就不只确定一个平面.答案: D4.一条直线和直线外的三点所确定的平面有()A.1个或3个B.1个或4个C.1个, 3个或4个D.1个, 2个或4个解析: 若三点在同一直线上, 且与已知直线平行或相交, 或该直线在由该三点确定的平面内, 则均确定1个平面; 若三点有两点连线和已知直线平行时可确定3个平面; 若三点不共线, 且该直线在由该三点确定的平面外, 则可确定4个平面.答案: C5.如图所示, 平面α∩平面β=l, A, B∈α, C∈β, C∉l, 直线AB∩l =D, 过A, B, C三点确定的平面为γ, 则平面γ, β的交线必过点________.解析: 根据公理判定点C和点D既在平面β内又在平面γ内, 故在β与γ的交线上.答案: C和D6.空间任意四点可以确定________个平面.解析: 若四点共线, 可确定无数个平面; 若四点共面不共线, 可确定一个平面; 若四点不共面, 可确定四个平面.答案: 1个或4个或无数7.下列命题说法正确的是________(填序号).①空间中两两相交的三条直线确定一个平面;②一条直线和一个点能确定一个平面;③梯形一定是平面图形.解析: 根据三个公理及推论知①②均不正确.答案: ③8.下列各图的正方体中, P, Q, R, S分别是所在棱的中点, 则使这四个点共面的图形是________(把正确图形的序号都填上).解析: ①中PS∥RQ, ③中SR∥PQ, 由推论3知四点共面.答案: ①③9.点A在直线l上但不在平面α内, 则l与α的公共点有__________个.答案: 0或110.根据下列条件, 画出图形: 平面α∩平面β=AB, 直线CD⊂α, CD∥AB, E∈CD, 直线EF∩β=F, F∉AB.解: 由题意画出图形如图所示.B级能力提升11.如图所示, 在正方体ABCD-A1B1C1D1中, 设A1C∩平面ABC1D1=E, 则B, E, D1三点的关系是________________________.解析: 连接AC、A1C1、AC1, (图略)则E为A1C与AC1的交点,故E为AC1的中点.又ABC1D1为平行四边形, 所以B, E, D1三点共线.答案: 共线12.下列叙述中, 正确的是________(填序号).①若点P在直线l上, 点P在直线m上, 点P在直线n上, 则l, m, n共面;②若点P在直线l上, 点P在直线m上, 则l, m共面;③若点P不在直线l上, 点P不在直线m上, 点P不在直线n上, 则l, m, n不共面;④若点P不在直线l上, 点P不在直线m上, 则l, m不共面;⑤若点P在直线l上, 点P不在直线m上, 则l, m不共面.解析: 因为P∈l, P∈m, 所以l∩m=P.由推论2知, l, m共面.答案: ②13.如图所示, 在正方体ABCD-A1B1C1D1中, 点M, N, E, F分别是棱CD, AB, DD1, AA1上的点, 若MN与EF交于点Q, 求证: D, A, Q 三点共线.证明: 因为MN∩EF=Q,所以Q∈直线MN, Q∈直线EF.又因为M∈直线CD, N∈直线AB,CD⊂平面ABCD, AB⊂平面ABCD,所以M, N⊂平面ABCD.所以MN⊂平面ABCD.所以Q∈平面ABCD.同理, 可得EF⊂平面ADD1A1.所以Q∈平面ADD1A1.又因为平面ABCD∩平面ADD1A1=AD,所以Q∈直线AD, 即D, A, Q三点共线.14.如图所示, 正方体ABCD-A1B1C1D1中, E, F分别是棱AA1, AB 的中点, 求证: D1E, CF, DA三线共点.证明: 如图所示, 连接EF, A1B, D1C,因为E, F为AA1, AB的中点,所以EF綊12A1B.又因为A1B綊D1C, 所以EF綊12D1C.故直线D1E, CF在同一个平面内, 且D1E, CF不平行, 则D1E, CF必相交于一点, 设该点为M.又因为M∈平面ABCD且M∈平面ADD1A1,所以M∈AD, 即D1E、CF、DA三线共点.15.如图所示, 在四面体ABCD中, E, G, H, F分别为BC, AB, AD, CD上的点, EG∥HF, 且HF<EG.求证: EF, GH, BD交于一点.证明: 因为EG∥HF,所以E, F, H, G四点共面,又HF<EG, 所以四边形EFHG是一个梯形.如图所示, 延长GH和EF交于一点O,因为GH在平面ABD内, EF在平面BCD内,所以点O既在平面ABD内, 又在平面BCD内.所以点O在这两个平面的交线上, 而这两个平面的交线是BD, 且交线只有这一条.所以点O在直线BD上.所以GH和EF的交点在BD上,即EF, GH, BD交于一点.16.已知: 如图所示, a∥b∥c, 直线l∩a=A, l∩b=B, l∩c=C. 求证: a, b, c, l四线共面.证明: 因为a∥b, 所以a, b确定一个平面α.因为A∈a, B∈b, 所以A∈α, B∈α.所以AB⊂α, 即l⊂α.同理,由b∥c, 得b, c确定一个平面β, 可证l⊂β.所以l, b⊂α, l, b⊂β.因为l∩b=B, 所以l, b只能确定一个平面.所以α与β重合.故c在平面α内.所以a, b, c, l四线共面.第1章立体几何初步1.2 点、线、面之间的位置关系1.2.2 空间两条直线的位置关系A组基础巩固1.分别和两条异面直线平行的两条直线的位置关系是()A.一定平行B.一定相交C.一定异面D.相交或异面解析: 可能相交也可能异面, 但一定不平行(否则与条件矛盾).答案: D2.a, b为异面直线是指()①a∩b=∅, 且a不平行于b; ②a⊂平面α, b⊄平面α, 且a∩b=∅; ③a⊂平面α, b⊂平面β, 且α∩β=∅; ④不存在平面α能使a⊂α, 且b⊂α成立.A.①②③B.①③④C.②③D.①④解析: ②③中的a, b有可能平行, ①④符合异面直线的定义.答案: D3.下列选项中, 点P, Q, R, S分别在正方体的四条棱上, 并且是所在棱的中点, 则直线PQ与RS是异面直线的一个图是()解析: 易知选项A, B中PQ∥RS, 选项D中RS与PQ相交, 只有选项C中RS与PQ是异面直线.答案: C4.下列命题中, 其中正确的为________(填序号).①若两条直线没有公共点, 则这两条直线互相平行;②若两条直线都和第三条直线相交, 那么这两条直线互相平行;③若两条直线都和第三条直线平行, 则这两条直线互相平行;④若两条直线都和第三条直线异面, 则这两条直线互相平行;⑤若两条直线都和第三条直线有公共点, 那么这两条直线不可能互相平行.解析: 根据两条直线的位置关系, 知只有③正确.答案: ③5.已知AB∥PQ, BC∥QR, 若∠ABC=30°, 则∠PQR=______.解析: 由等角定理可知, 当∠ABC的两边和∠PQR的两边分别平行并且方向相同时, ∠PQR=30°; 当∠ABC的两边和∠PQR的两边分别平行并且方向相反时, ∠PQR=150°.故填30°或150°.。

苏教版高中数学必修二第二学期阶段考试高一数学试题.doc

苏教版高中数学必修二第二学期阶段考试高一数学试题.doc

第二学期阶段考试高一数学试题一、填空题:(每小题5分计70分)1、已知直线b a ,和平面α,若αα⊥⊥b a ,,则a 与b 的位置关系是 ▲2、若长方体三个面的面积分别是6,3,2,则体积是 ▲3、下列四个命题: ①若αα⊂b a ,//则b a // ②若αα//,//b a 则b a // ③若α⊂b b a ,//则α//a ④若b a a //,//α则α//b 或α⊂b其中为真命题的序号有 ▲ (填上所有真命题的序号)4、过点)2,1(-且在坐标轴上的截距相等的直线的一般式方程是 ▲5、已知直线a 和平面α,则平面α内必有一直线与直线a ▲ (从“相交,平行,异面,垂直”中选填)baα6、用一张长cm 12,宽cm 8的矩形铁皮围成圆柱体的侧面,则这个圆柱体的体积= ▲ 7、点Q P ,分别在直线0962,043=-+=-+y x y x 上,则线段PQ 长度的最小值是 ▲ 8、直线012=+-y x 关于点)2,1(-的对称直线的一般式方程是 ▲9、过点)2,1(且到点)1,3(),1,1(--B A 距离相等的直线的一般式方程是 ▲ 10、底面边长为2,高为1的正三棱锥的内切球半径= ▲11、三条直线053,082,01=-+=+-=++y ax y x y x 能围成三角形, 则a 的取值范围是 ▲12、圆012222=+-++y x y x 关于直线03=+-y x 对称圆的标准方程是 ▲ 13、圆)0(022≠=++++C C By Ax y x 与直线0=++C By Ax 的位置关系是 ▲ 14、已知三棱锥BCD A -.平面α满足条件:到D C B A ,,,的距离相等.记满足条件的平面α的个数为p .平面α将三棱锥BCD A -分成的两部分体积之比为nm(为既约分数nmN n m ,,*∈),则n m p ++的所有可能取值为 ▲ 二、解答题:15、(本小题14分)已知:直线//a 平面α,直线⊥b 平面α,求证:b a ⊥ 16、(本小题14分)D CBAD 1C 1B 1A 1C D B A建立适当的直角坐标系证明:平行四边形四条边的平方和等于两条对角线的平方和17、(本小题14分)在正方体1111D C B A ABCD -中,(1)求证:⊥C A 1面1BDC (2)求二面角C BD C --1的正切值18、(本小题16分)已知:无论a 取何值,直线0)1()2(=++++a y a x a 始终平分半径为2的圆C (1)求圆C 的标准方程(2)自点)4,1(-A 作圆C 的切线l ,求切线l 的方程CD BA P19、(本小题16分)如图:四棱锥ABCD P -中,(1)若E 为线段PC 上一点,且2:1:=EC PE ,底面ABCD 为平行四边形,则线段AB 上是否存在点F ,使得直线//EF 面PAD ,若存在,指出该点的位置并证明;若不存在,请说明理由(2)若⊥PD 面ABCD ,底面ABCD 为矩形,2=AB ,M 为线段AB 上一点,且PM CM ⊥,求线段BC 长度的范围20、(本小题16分)已知:圆122=+y x O :,和点)0,2(-P ,过点P 的直线l 交圆O 与B A ,, (1)求OAB ∆面积最大时的直线l 的方程;(2)平面上是否存在异于点P 的定点Q ,使得圆O 上任意一点M ,满足MQMP为常数,若存在,求出Q 点的坐标,若不存在,请说明理由参考答案1、b a //2、63、④4、02=+y x 或01=-+y x5、垂直6、33192288cm cm ππ或7、2010 8、092=+-y x 9、05201=-+=-y x x 或 10、31 11、 6331-≠≠≠a a a 且且 12、1)2()2(22=-++y x 13、相离 14、9或1515、 过直线a 作平面β交平面α于直线c ,……………4分ba cbc b c a c a a ⊥∴⊥∴⊂⊥∴=⋂⊂βαβαβα,又,//,,//Q………………………………………………14分16、在平行四边形ABCD 中,以A 为原点,以直线AB 为x 轴,建立直角坐标系…………………2分设),,(),0,(n m D a B 则),(n m a C +,……………………5分则222222)0()()0()0(-+-+-+-+=+n a m n m a BD AC222222n m a ++=……………………………………9分而22222222222222n m a AD AB DA CD BC AB ++=+=+++……………13分所以=+22BD AC 2222DA CD BC AB +++命题得证…………14分17、(1)联结AC ,在正方体1111D C B A ABCD -中BD C A AC A BD AC BD BD AA ABCD AA ⊥∴⊥∴⊥⊥∴⊥1111,,面又面同理∴⊥11BC C A ⊥C A 1面1BDC …………………………7分(2)联结AC 交BD 于点O ,联结O C 1,在正方体1111D C B A ABCD -中OC C BD CO BD O C CD CB OD OB D C B C 1111,,∠∴⊥⊥∴===,即为二面角C BD C --1的平面角,其正切值为2…………………14分18、(1)直线过定点)2,1(-……………………4分据题意知圆心)2,1(-C ,…………………………6分故圆C 的标准方程为4)2()1(22=++-y x ……8分(2)直线l 垂直于x 轴时,合题,方程为1-=x ………10分直线l 不垂直于轴时,设方程为)1(4+=-x k y 即04=++-k y kx由214)2(2=+++--k k k 得34-=k 此时方程为0834=-+y x ……15分综上,所求直线方程为1-=x 或0834=-+y x …16分19、(1)线段AB 上存在点F 满足2:1:=FB AF 时,使得直线//EF 面PAD证明如下:在PD 取点Q 使得2:1:=DQ PQ 连接EQ AQ ,,则DC AF DC AF DC EQ DC EQ 31,//,31,//==又PAD EF PAD AQ PAD EF 面面面//,∴⊂⊄……8分(2)DM CM PDM CM PM CM CM PD ABCD PD ⊥∴⊥∴⊥⊥∴⊥面又面,Q所以,以CD 为直径的圆与AB 有公共点,所以BC 的范围是(]1,0…………………16分20、(1)设圆心O 到直线l 的距离为d ,则22)1(21d d d AB s ABC ⋅-=⋅=∆ 当22=d 时ABC ∆面积最大,显然l 与x 轴不垂直,故可设直线l 方程为02)2(=+-+=k y kx x k y 即据7722122±==+=k k k d 得 故所求直线的方程为:)2(77+±=x y ……………………………8分 设存在异于点P 的定点Q ),(t s 使得圆O 上任意一点),(y x M ,满足MQMP为常数, 则为常数)(12254)()()2(22222222k t s ty sx x t y s x y x MQ MP =+++--+=-+-++= ⎪⎩⎪⎨⎧==-=⎪⎪⎩⎪⎪⎨⎧==-=⎪⎩⎪⎨⎧++=-=-=∴)(1024021)1(5202422舍或得k t s k t s t s k tk sk 故所求点Q 坐标为)0,21(-…16分。

最新苏教版高中数学必修2全册单元练习题(共4份)及解析.docx

最新苏教版高中数学必修2全册单元练习题(共4份)及解析.docx

(新课标)2018-2019学年苏教版高中数学必修二必修2练习题(一)(时间:60分钟,满分:100分)班别 座号 姓名 成绩 一、选择题(本大题共10小题,每小题5分,共50分)1.下列命题中,正确的是( )A .一个平面把空间分成两部分落千丈 B. 两个平面把空间分成三部分 C. 三个平面把空间分成四部分 D. 四个平面把空间分成五部分 2.下列函数中,奇函数是( )A. y = ( 1- x )( 1 + x )B. 31x y =C.x1x x y 2--= D.)1lg(2x x x y ++=3.||2)(2x x x f -=的单调递增区间为( )A. (-1,0)B.(0,1)C.(1,+∞)D.(-1,0)和(1,+∞) 4.函数xx x f 2ln )(-=的零点所在的大致区间是( ) A.(1,2) B.(2,3) C.和,⎪⎭⎫⎝⎛e 11(3,4) D.)(∞+,e 5.一个正方体的顶点都在球面上,此球与正方体的表面积之比是( ) A. π:3 B.π:4 C. π:2 D. π:16. 4、设f (x)是奇函数,且当x > 0时,f (x) = x -1. 则当x < 0时,有 (A) f (x) < 0 (B) f (x) > 0 (C) f (x)f (-x) < 0 (D) f (x)f (-x) < 07.两个球的表面积之差为48π,它们的大圆周长之和为12 π,这两个球的半径之差为A 4B 3C 2D 18.如图所示的直观图,其平面图形的面积为A 3B 6 C23D2239.圆锥和圆柱的底面半径和高都是R ,则圆锥的全面积与圆柱的全面积之比为( ) (A )2:2 (B )4:)21(+(C )1:2 (D )2:)21(+10.正六棱台的两底面的边长分别为a 和2a ,高为a ,则它的体积为A32321a B 3233a C 337a D 3237a 选择题答题表 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题共4小题,每小题5分,共20分)11.一个平面的斜二测图形是边长为2的正方形,则原图形的高是 . 12. 棱长都是1的三棱锥的表面积为 . 13. 函数 定义域是3lg x y = .14.已知y a =<log 341,那么a 的取值范围是: .三、解答题(本大题共3小题,每小题10分,共30分)15.有一个几何体的三视图及其尺寸如下 16.一个三棱柱的底面是3的正三角形,侧棱45032(单位cm ),求该几何体的表面积及体积: 垂直于底面,它的三视图如图所示。

苏教版数学高一-高中 必修2训练 模块综合检测卷

苏教版数学高一-高中 必修2训练 模块综合检测卷

数学·必修2(苏教版)模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x-3=0的倾斜角是()A.45°B.60°C.90°D.不存在答案:C2.已知点A(x,1,2)和点B(2,3,4),且|AB|=26,则实数x的值是()A.-3或4 B.-6或2C.3或-4 D.6或-2答案:D3.圆x2+y2-2x=0与圆x2+y2-2x-6y-6=0的位置关系是()A.相交B.相离C.外切D.内切答案:D4.在同一个直角坐标系中,表示直线y=ax与y=x+a正确的是()答案:C5.(2013·广东卷)某四棱台的三视图如图所示,则该四棱台的体积是()A.4 B.143 C.163D.6答案:B6.(2013·重庆卷)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.52-4 B.17-1C.6-2 2 D.17解析:先求出圆心坐标和半径,再结合对称性求解最小值,设P(x,0),设C1(2,3)关于x轴的对称点为C1′(2,-3),那么|PC1|+|PC2|=|PC1′|+|PC2|≥|C′1C2|=(2-3)2+(-3-4)2=5 2.而|PM|=|PC1|-1,|PN|=|PC2|-3,∴|PM|+|PN|=|PC1|+|PC2|-4≥52-4.答案:A7.如图,已知AB⊥平面BCD,BC⊥CD,则图中互相垂直的平面有()A.4对B.3对C.2对D.1对答案:B8.(2013·辽宁卷)已知点O (0,0),A (0,b ),B (a ,a 3).若△AOB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0 D .|b -a 3|+⎪⎪⎪⎪⎪⎪b -a 3-1a =0解析:根据直角三角形的直角的位置求解.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a =-1,所以a (a 3-b )=-1,即b -a 3-1a =0.以上两种情况皆有可能,故只有C 满足条件. 答案:C9.一个圆柱的轴截面为正方形,其体积与一个球的体积之比是3∶2,则这个圆柱的侧面积与这个球的表面积之比为( )A .1∶1B .1∶ 2C.2∶ 3 D .3∶2 答案:A10.(2013·广东卷)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列,命题中正确的是( )A .若α⊥β,m ⊂α,n ⊂β,则m ⊥nB .若α∥β,m ⊂α,n ⊂β,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则α⊥β 答案:D二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上)11.若M 、N 分别是△ABC 边AB 、AC 的中点,MN 与过直线BC 的平面β(不包括△ABC 所在平面)的位置关系是________.答案:平行12.设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为________.解析:圆心到直线的距离为d =1+m 2,圆半径为m ,∵d -r =1+m 2-m =12(m -2m +1)=12(m -1)2>0,∴直线与圆的位置关系是相离.答案:相离13.两条平行线2x +3y -5=0和x +32y =1间的距离是________.答案:3131314.(2013·大纲卷)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.解析:根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到直角三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则AB =R .取AB 中点M ,连接OM 、KM ,由圆的性质知OM ⊥AB ,KM ⊥AB ,所以∠KMO 为圆O 与圆K 所在平面所成的一个二面角的平面角,则∠KMO =60°.在Rt △KMO 中,OK =32,所以OM =OKsin 60°= 3.在Rt △OAM 中,因为OA 2=OM 2+AM 2,所以R 2=3+14R 2,解得R 2=4,解得R 2=4,所以球O 的表面积为4πR 2=16π.答案:16π三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程及演算步骤)15.(本小题满分12分)已知两点A (-1,2),B (m,3).(1)求直线AB 的斜率;解析:当m =-1时,直线AB 的斜率不存在, 当m ≠-1时,k =1m +1.(2)已知实数m ∈⎣⎢⎡⎦⎥⎤-33-1,3-1,求直线AB 的倾斜角α的范围.解析:当m =-1时,α=π2,当m ≠-1时,k =1m +1∈⎝⎛⎦⎤-∞,-3∪⎣⎢⎡⎭⎪⎫33,+∞, 则α∈⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3,综上,α∈⎣⎢⎡⎦⎥⎤π6,2π3.16.(2013·上海卷)(本小题满分12分)如图,在正三棱柱ABCA 1B 1C 1中,AA 1=6,异面直线BC 1与AA 1所成角的大小为π6,求该三棱柱的体积.解析:因为CC 1∥AA 1,所以∠BC 1C 为异面直线BC 1与AA 1所成的角,即∠BC 1C =π6,在Rt △BC 1C 中,BC =CC 1·tan ∠BC 1C =6×33=23,从而S △ABC =34BC 2=33,因此该三棱柱的体积为V=S △ABC ·AA 1=33·6=18 3.17.(2013·江西卷)(本小题满分14分)过点(2,0)引直线l与曲线y=1-x2相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,求直线l的斜率.解析:根据三角形的面积公式和圆的弦的性质求解.由于y=1-x2,即x2+y2=1(y≥0),直线l与x2+y2=1(y≥0)交于A,B两点,如图所示,S△AOB=12·sin∠AOB≤12,且当∠AOB=90°时,S△AOB取得最大值,此时AB=2,点O到直线l的距离为2 2,则∠OCB=30°,所以直线l的倾斜角为150°,则斜率为-3318.(本小题满分14分)下图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.解析:此几何体是一个组合体,下半部是长方体,上半部是半圆柱,其轴截面的大小与长方体的上底面大小一致.表面积为S,则S=32+96+48+4π+16π=176+20π,体积为V,则V=8×4×6+12×8π=192+16π,2×2所以几何体的表面积为176+20π(cm2),体积为192+16π(cm3).19.(本小题满分14分)如图,△ABC中,AC=BC=22AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.(1)求证:GF∥平面ABC;证明:连EA交BD于F,∵F是正方形ABED对角线BD的中点,∴F是EA的中点.∴FG∥AC.又FG⊄平面ABC,AC⊂平面ABC,∴FG∥平面ABC.(2)求BD与平面EBC所成角的大小;解析:∵平面ABED ⊥平面ABC ,BE ⊥AB ,∴BE ⊥平面ABC .∴BE ⊥AC .又∵AC =BC =22AB , ∴BC ⊥AC ,又∵BE ∩BC =B ,∴AC ⊥平面EBC .由(1)知,FG ∥AC ,∴FG ⊥平面EBC ,∴∠FBG 就是线BD 与平面EBC 所成的角.又BF =12BD =2a 2,FG =12AC =2a 4, sin ∠FBG =FG BF =12. ∴∠FBG =30°.(3)求几何体EFBC 的体积.答案:V EFBC =V FEBC =13S △EBC ·FG =13·12·a ·2a 2·12·2a 2=a 324.20.(2013·江苏卷)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l 上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;解析:由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在,设过A(0,3)的圆C的切线方程为y=kx+3.由题意,得|3k+1|k2+1=1,解得k=0或k=-34,故所求切线方程为y=3或3x+4y-12=0.(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.解析:因为圆心在直线y=2x-4上,设圆心C,所以圆C 的方程为(x -a )2+2=1.设点M (x ,y ),因为MA =2MO , 所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.整理,得-8≤5a 2-12a ≤0.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.。

苏教版高中数学必修二高一综合练习题.doc

苏教版高中数学必修二高一综合练习题.doc

高一数学必修2综合练习题一.选择题1、若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( )A 、 相交B 、 异面C 、 平行D 、异面或相交2、如图:直线L 1 的倾斜角α1=300,直线 L 1⊥L 2 ,则L 2的斜率为( )A、33- B、 33 C、3- D、3 3、三个平面把空间分成7部分时,它们的交线有( )A、1条 B、2条 C、3条 D、1或2条4、若A(-2,3),B(3,-2),C(21,m)三点共线 则m的值为( ) A、21 B、21- C、-2 D、2 5、直线032=--y x 与圆9)3()2(22=++-y x 交于E、F 两点,则∆EOF (O 为原点)的面积为( )A 、 23B 、 43C 、 52D 、 5566、下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为( )A 、 0B 、 1C 、 2D 、 37、棱台上、下底面面积之比为1∶9,则棱台的中截面分棱台成两部分的体积之比是( )A 、 1∶7B 、2∶7C 、 7∶19D 、 5∶ 168、直线032=--y x 与圆9)3()2(22=++-y x 交于E 、F 两点,则∆EOF (O 是原点)的面积为( )A、23 B、43 C、52 D、556 9、一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( )A、8Лcm2 B、12Лcm2 C、16Лcm2 D、20Лcm210、已知在四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角为( )A、900 B、450 C、600 D、30011、圆:06422=+-+y x y x 和圆:0622=-+x y x 交于A 、B 两点,则AB 的垂直平分线的方程是( )A. x+y+3=0 B 、2x-y-5=0 C 、 3x-y-9=0 D 、4x-3y+7=012、圆:012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A 、 2 B 、21+ C 、221+D 、221+ 二.填空题 13、与直线5247=+y x 平行,并且距离等于3的直线方程是14、已知:A (1,2,1),B (-1,3,4,),C (1,1,1,),PB AP 2=,则PC 长为15、四棱锥V-ABCD 中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧棱长为5的等腰三角形,则二面角V-AB-C 的平面角为 度16、已知点M (a ,b )在直线1543=+y x 上,则22b a +的最小值为三.解答题17、如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点。

最新苏教版高中数学必修二全册同步课时练习

最新苏教版高中数学必修二全册同步课时练习

苏教版高中数学必修二全册同步课时练习棱柱 棱锥 棱台(建议用时:60分钟)[合格基础练]一、选择题1.下列说法中正确的是( ) A .棱柱的面中,至少有两个面互相平行 B .棱柱中两个互相平行的平面一定是棱柱的底面 C .棱柱中一条侧棱的长叫做棱柱的高D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形.A [棱柱的面中,有两个底面,所以至少有两个面互相平行,故A 正确.棱柱中两个互相平行的平面可能是棱柱的侧面,B 错误.棱柱中一条侧棱的长不一定是棱柱的高,C 错误.棱柱的侧面是平行四边形,但它的底面可能是平行四边形,D 错误.]2.如图所表示的几何体中,不是棱锥的为( )A B C DA [结合棱锥的定义可知,A 不符合其定义,故选A.] 3.如图所示,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =2,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1C [根据棱台是由棱锥截成的进行判断.A 中A 1B 1AB ≠ B 1C 1BC ,故A 不正确;B 中B 1C 1BC ≠A 1C 1AC,故B 不正确;C 中A 1B 1AB =B 1C 1BC =A 1C 1AC,故C 正确;D 中满足这个条件的可能是一个三棱柱,不是三棱台,故选C.]4.一个无盖的正方体盒子展开后的平面图形如图所示,A ,B ,C 是展开图上的三点,在正方体盒子中三角形ABC 的形状为( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形B[由题图知,分别连接A,B,C三点,AB,BC,CA是正方体盒子的面对角线,所以△ABC 为等边三角形.]5.某同学制作了一个对面图案相同的正方体礼品盒(如图所示),则这个正方体礼品盒的表面展开图应该为________.A BC DA[两个☆不能并列相邻,B、D错误;两个※不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.]二、填空题6.在正方体上任意选择4个顶点,它们可以确定的几何图形或几何体为________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.①③④⑤[在正方体ABCD­A1B1C1D1上任意选择4个顶点,它们可以确定:①矩形,如四边形ACC1A1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A­A1BD;④每个面都是等边三角形的四面体,如A­CB1D1;⑤每个面都是直角三角形的四面体,如A­A1DC,所以填①③④⑤.]7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________ cm.12[由棱柱有10个顶点知此棱柱有5条侧棱,又棱柱侧棱长相等,故每条侧棱长为12 cm.]8.所有棱长都相等的正四棱锥和正三棱锥的一个面重合后暴露的面的个数为________个.7[如图(1)(2)所示分别是所有棱长都相等的正四棱锥和正三棱锥.图(3)是它们拼接而成的一个几何体.故暴露的面数为7个.(1) (2) (3)]三、解答题9.观察图中的几何体,分析它们是由哪些基本几何体组成的.(1) (2) (3)[解]图(1)是由一个四棱柱在它的上、下底面上向内挖去一个三棱柱组成的几何体.图(2)是由一个四棱柱和一个底面与四棱柱上底面重合的四棱锥组成.图(3)是由一个三棱台和一个上底面与三棱台的下底面重合的三棱柱组成.10.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?[解](1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE 和△DPF均为直角三角形.(3)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =S 正方形ABCD -S △PEF -S △DPF -S △DPE =(2a )2-12a 2-a 2-a 2=32a 2.[等级过关练]1.一个截面经过棱锥各条侧棱的中点,则截得棱台的上、下底面积之比是( ) A .1∶2 B .1∶3 C .1∶4 D .1∶8C [如图,由于A 1是SA 的中点, 则SA 1SA =12=A 1B 1AB, 故S 上底面S 下底面=⎝ ⎛⎭⎪⎫A 1B 1AB 2=14.] 2.在正五棱柱中,不在同一侧面且不在同一底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线条数有( )A .5B .6C .8D .10D [正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,5个平面共可得到10条对角线.]3.用一个平行于底面的平面去截一个几何体,如果截面是三角形,则这个几何体可能是__________.三棱锥、三棱柱、三棱台等(答案不唯一) [用平行于底面的平面去截三棱柱,截面是三角形,用同样的方法去截三棱锥、三棱台,所得截面均为三角形.]4.如图,M 是棱长为2 cm 的正方体ABCD ­A 1B 1C 1D 1的棱CC 1的中点,沿正方体表面从点A 到点M 的最短路程是________ cm.13 [由题意,若以BC 为轴展开,则A ,M 两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1 cm,4 cm,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.]5.如图所示,已知三棱台ABC­A′B′C′.(1)把它分成一个三棱柱和一个多面体,并用字母表示;(2)把它分成三个三棱锥并用字母表示.[解](1)如图①所示,三棱柱是棱柱A′B′C′­AB″C″,多面体是B′C′­BCC″B″.(2)如图②所示,三个三棱锥分别是A′­ABC,B′­A′BC,C′­A′B′C.①②圆柱圆锥圆台和球(建议用时:60分钟)[合格基础练]一、选择题1.下列说法正确的是( )A.平行于圆锥某一母线的截面是等腰三角形B.平行于圆台某一母线的截面是等腰梯形C.过圆锥顶点与底面圆心的截面是等腰三角形D.过圆台上底面中心的截面是等腰梯形C[由圆柱、圆锥、圆台的性质知③正确.]2.正方形绕其一条对角线所在直线旋转一周,所得几何体是( )A.圆锥B.圆台C.圆柱D.两个圆锥组合体D[连结正方形的两条对角线知对角线互相垂直,故绕其一条对角线旋转一周形成两个圆锥的组合体.]3.一个正方体内接于一个球,过球心作一截面,则截面不可能的图形是( )A B C DD[当截面平行于正方体的一个侧面时得C,当截面过正方体的体对角线时得B,当截面不平行于任何侧面也不过对角线时得A,但无论如何都不能截出D.]4.线段y=2x(0≤x≤2)绕x轴旋转一周所得的图形是( )A.圆台B.圆锥C.圆锥侧面D.圆台侧面C[由线段y=2x(0≤x≤2)绕x轴旋转一周,得到的是圆锥侧面,不含底面.]5.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径为( )A.9 B.3C. 5 D.2 2B[如图所示,∵两个平行截面的面积分别为5π,8π,∴两个截面圆的半径分别为r1=5,r2=22.∵球心到两个截面的距离d1=R2-r21,d2=R2-r22,∴d1-d2=R2-5-R2-8=1,∴R2=9,∴R=3.]二、填空题6.在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是________.一个六棱柱中挖去一个圆柱[一个六棱柱中挖去一个等高的圆柱.]7.如图所示,将梯形ABCD绕底边AB所在直线旋转一周,由此形成的几何体是由简单几何体__________构成的.圆锥、圆柱[旋转体要注意旋转轴,可以想象一下旋转后的几何体,由旋转体的结构特征知它中间是圆柱,两头是圆锥.]8.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是__________.πS[因为圆柱的轴截面的一边是底面直径,另一邻边为圆柱的高,所以应满足4S=2r(r为底面圆半径),∴r=S,故底面面积为πS.]三、解答题9.轴截面为正方形的圆柱叫做等边圆柱.已知某等边圆柱的轴截面面积为16 cm2,求其底面周长和高.[解]如图所示,作出等边圆柱的轴截面ABCD,由题意知,四边形ABCD为正方形,设圆柱的底面半径为r,则AB=AD=2r.其面积S=AB×AD=2r×2r=4r2=16 cm2,解得r=2 cm.所以其底面周长C=2πr=2π×2=4π(cm),高h=2r=4 cm.10.从一个底面半径和高都是R的圆柱中挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如图所示的几何体,如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积.[解] 轴截面如图所示,被平行于下底面的平面所截的圆柱的截面圆的半径O1C=R,设圆锥的截面圆的半径O1D为x.因为OA=AB=R,所以△OAB是等腰直角三角形.又CD∥OA,则CD=BC,所以x=l,故截面面积S=πR2-πl2=π(R2-l2).[等级过关练]1.下列命题中正确的是( )A.圆柱上底面圆上任一点与下底面上任一点的连线都是圆柱的母线B.一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台C.圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形D.在空间中,到定点的距离等于定长的点的集合是球C[A错,由圆柱母线的定义知,圆柱的母线应平行于轴;B错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的几何体;C正确;D错,点的集合应为球面.]2.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是( ) A.圆锥B .两个圆锥组合体C .圆台D .一个大圆锥挖去一个同底的小圆锥D [如图,以AB 为轴旋转所得的几何体是一个大圆锥挖去一个同底的小圆锥.]3.边长为5 cm 的正方形EFGH 是圆柱的轴截面,则从E 点沿圆柱的侧面到点G 的最短距离是________cm.52π2+4 [如图所示,E ′F =12×2π×52=52π(cm), ∴最短距离E ′G =52+⎝ ⎛⎭⎪⎫52π2=52π2+4(cm).]4.在半径为13的球面上有A ,B ,C 三点,其中AC =6,BC =8,AB =10,则球心到经过这三个点的截面的距离为________.12 [由线段的长度知△ABC 是以AB 为斜边的直角三角形,所以其外接圆的半径r =AB2=5,所以d =R 2-r 2=12.]5.如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .求:(1)绳子的最短长度的平方f (x ); (2)绳子最短时,顶点到绳子的最短距离; (3)f (x )的最大值. [解]将圆锥的侧面沿SA 展开在平面上,如图所示,则该图为扇形,且弧AA ′的长度L 就是圆O 的周长,∴L =2πr =2π.∴∠ASM =L 2πl ×360°=2π2π×4×360°=90°.(1)由题意知绳子长度的最小值为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4).f (x )=AM 2=x 2+16(0≤x ≤4).(2)绳子最短时,在展开图中作SR ⊥AM ,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离,在△SAM 中,∵S △SAM =12SA ·SM =12AM ·SR ,∴SR =SA ·SM AM =4xx 2+16(0≤x ≤4), 即绳子最短时,顶点到绳子的最短距离为4xx 2+16(0≤x ≤4).(3)∵f (x )=x 2+16(0≤x ≤4)是增函数, ∴f (x )的最大值为f (4)=32.中心投影与平行投影及直观图画法(建议用时:60分钟)[合格基础练]一、选择题1.利用斜二测画法画水平放置的平面图形的直观图,得到下列结论,其中正确的是( ) A .正三角形的直观图仍然是正三角形 B .平行四边形的直观图一定是平行四边形 C .正方形的直观图是正方形 D .圆的直观图是圆B [由斜二测画法可知,平面图形中的垂直关系变成相交关系,故A 、C 错误;又圆的直观图为椭圆,故D 错误.]2.如图为一平面图形的直观图的大致图形,则此平面图形可能是( )A B C DC [根据该平面图形的直观图,该平面图形为一个直角梯形且在直观图中平行于y ′轴的边与底边垂直.]3.如图所示,△A ′B ′C ′是水平放置的△ABC 的直观图,则在△ABC 的三边及中线AD 中,最长的线段是( )A .AB B .ADC .BCD .ACD [由题图可知,在△ABC 中,AB ⊥BC ,AC 为斜边,AD 为直角边上的一条中线,显然斜边AC 最长.]4.如图所示,△A ′O ′B ′表示水平放置的△AOB 的直观图,B ′在x ′轴上,A ′O ′与x ′轴垂直,且A ′O ′=2,则△AOB 的边OB 上的高为( )A .2B .2 2C .4D .4 2D [由直观图与原图形中边OB 长度不变,得S 原图形=22S直观图,得12·OB ·h =22×12×2·O ′B ′,∵OB =O ′B ′,∴h =4 2.]5.如图所示,为水平放置的正方形ABCO ,它在直角坐标系xOy 中点B 的坐标为(2,2),则在用斜二测画法画出的它的直观图中,顶点B ′到x ′轴的距离为( )A.22B .1 C. 2D .2A [在直观图中,BC 对应B ′C ′,且B ′C ′=1,∠B ′C ′x ′=45°,故顶点B ′到x ′轴的距离为22.]二、填空题6.如图所示,正方形O ′A ′B ′C ′的边长为 1 cm ,它是一个水平放置的平面图形的直观图,则原图形的周长为________cm.8 [由于平行性不变,O ′A ′∥B ′C ′,故在原图形中,OABC ,∴四边形OABC 为平行四边形,且对角线OB ⊥OA ,对角线OB =22,则AB =12+(22)2=3.∴原图形的周长为l =3×2+1×2=8.]7.如图是△AOB 用斜二测画法画出的直观图△A ′O ′B ′,则△AOB 的面积是________.16 [由题图易知△AOB 中,底边OB =4, 又因为底边OB 的高线长为8, 所以面积S =12×4×8=16.]8.如图所示,平行四边形O ′P ′Q ′R ′是四边形OPQR 的直观图,若O ′P ′=3,O ′R ′=1,则原四边形OPQR 的周长为________.10 [由四边形OPQR 的直观图可知该四边形是矩形,且OP =3,OR =2,所以原四边形OPQR 的周长为2×(3+2)=10.]三、解答题9.用斜二测画法画长、宽、高分别是4 cm ,3 cm ,2 cm 的长方体ABCD ­A ′B ′C ′D ′的直观图.[解] 画法:第一步,画轴,如图(1),画x ′轴、y ′轴、z ′轴,三轴相交于点O ′,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°.(1) (2)第二步,画底面,以点O ′为中点,在x ′轴上取线段MN ,使MN =4 cm ;在y ′轴上取线段PQ ,使PQ =32 cm ,分别过点M 和N 作y ′轴的平行线,过点P 和Q 作x ′轴的平行线,设它们的交点分别为A ,B ,C ,D ,四边形ABCD 就是长方体的底面.第三步,画侧棱,过A ,B ,C ,D 各点分别作z ′轴的平行线,并在这些平行线上分别截取2 cm 长的线段AA ′,BB ′,CC ′,DD ′.第四步,成图,顺次连结A ′,B ′,C ′,D ′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就可以得到长方体的直观图(如图(2)).10.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形,如图所示,∠A ′B ′C ′=45°,D ′C ′⊥A ′D ′,A ′B ′=A ′D ′=1,D ′C ′⊥B ′C ′,求这块菜地的面积.[解] 在直观图①中,过点A ′作A ′E ′⊥B ′C ′,垂足为E ′,①则在Rt △A ′B ′E ′中,A ′B ′=1, ∠A ′B ′E =45°, ∴B ′E ′=22,而四边形A ′E ′C ′D ′为矩形,A ′D ′=1,②∴E ′C ′=A ′D ′=1. ∴B ′C ′=B ′E ′+E ′C ′=22+1. 由此可得原图形如图②,在原图形中,AD =1,AB =2,BC =22+1, 且AD ∥BC ,AB ⊥BC ,∴这块菜地的面积S =12(AD +BC )·AB =12×⎝ ⎛⎭⎪⎫1+1+22×2=2+22.[等级过关练]1.利用斜二测画法画边长为1 cm 的正方形的直观图,正确的是图中的( )A B C DD [正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.故D 正确.] 2.如图,△A ′B ′C ′是水平放置的△ABC 的斜二测直观图,其中O ′C ′=O ′A ′=2O ′B ′,则以下说法正确的是( )A .△ABC 是钝角三角形B .△ABC 是等腰三角形,但不是直角三角形 C .△ABC 是等腰直角三角形D .△ABC 是等边三角形C [将其恢复成原图,设A ′C ′=2,则可得OB =2O ′B ′=1,AC =A ′C ′=2,故△ABC 是等腰直角三角形.]3.如图,在直观图中,四边形O ′A ′B ′C ′为菱形且边长为2 cm ,则在xOy 坐标系中原四边形OABC 为________(填形状),面积为________ cm 2.矩形 8 [由题意,结合斜二测画法可知,四边形OABC 为矩形,其中OA =2 cm ,OC =4 cm ,所以四边形OABC 的面积S =2×4=8(cm 2).]4.在平面直角坐标系xOy 中,O (0,0),B (4,0),C (0,22),用斜二测画法把△OBC 画在对应的x ′O ′y ′中时,B ′C ′的长是________.10 [由题设知OB =4,OC =22,∠COB =90°.根据斜二测画法的规则可得O ′B ′=4,O ′C ′=222=2,∠C ′O ′B ′=45°,在△C ′O ′B ′中,由余弦定理, 得B ′C ′=(2)2+42-2×2×4×22=10.] 5.已知△ABC 的面积为62a 2,它的水平放置的直观图为△A ′B ′C ′是一个正三角形,根据给定的条件作出△A ′B ′C ′的原图形,并计算△A ′B ′C ′的面积.[解] (1)取B ′C ′所在的直线为x ′轴,过B ′C ′中点O ′与O ′x ′成45°的直线为y ′轴,建立坐标系x ′O ′y ′;(2)过A ′点作A ′M ′∥y ′轴交x ′轴于M ′点,在△A ′B ′C ′中,设它的边长为x ,∵O ′A ′=32x ,∠A ′M ′O ′=45°,∴O ′A ′=O ′M ′=32x ,故A ′M ′=62x ;(3)在直角坐标系xOy 中,在x 轴上O 点左右两侧, 取到点O 距离为x2的点B ,C ,在x 轴O 点左侧取到原点O 距离为32x 的点M ,过M 在x 轴上方作y 轴的平行线并截取MA =6x ,连结AB ,AC ,则△ABC 为△A ′B ′C ′的原图形,由S △ABC =62a 2,得12x ×6x =62a 2,∴x =a ,故△A ′B ′C ′的面积为34a 2.平面的基本性质(建议用时:60分钟)[合格基础练]一、选择题1.下面是四个命题的叙述(其中A ,B 表示点,a 表示直线,α表示平面),其中叙述方式和推理都正确的是( )A.Aα,Bα,∴ABαB.∵A∈α,B∈α,∴AB∈αC.∵Aα,aα,∴A aD.∵ABα,∴AαC[A错,应写为A∈α,B∈α;B错,应写为ABα;C对.D错,A有可能在α内.] 2.空间四点A,B,C,D共面而不共线,那么这四点中( )A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线B[如图(1)(2)所示,A、C、D均不正确,只有B正确,如图(1)中A,B,D不共线.(1) (2)]3.如图所示,ABCD­A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论错误的是( )A.A,M,O三点共线B.A,M,O,A1四点共面C.A,O,C,M四点共面D.B,B1,O,M四点共面D[因为A,M,O三点既在平面AB1D1内,又在平面AA1C内,故A,M,O三点共线,从而易知A、B、C均正确.]4.下列图形均表示两个相交平面,其中画法正确的是( )A B C D[答案] D5.如图所示的正方体中,P,Q,M,N分别是所在棱的中点,则这四个点共面的图形是( )A B C DA[图形A中,连结MN,PQ,则由正方体的性质得MN∥PQ.根据推论3可知两条平行直线可以确定一个平面,故图形A正确.分析可知图形B、C、D中这四点均不共面.]二、填空题6.经过空间任意三点可以作________个平面.一个或无数[若三点不共线,只可以作一个平面;若三点共线,则可以作出无数个平面.] 7.设平面α与平面β相交于l,直线aα,直线bβ,a∩b=M,则M________l.∈[因为a∩b=M,aα,bβ,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.] 8.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,则O,C,D三点的位置关系是________.共线[∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=CD.∵l∩α=O,∴O∈α.又∵O∈ABβ,∴O∈直线CD,∴O,C,D三点共线.]三、解答题9.如图所示,点A平面BCD,E,F,G,H分别是AB,BC,CD,DA上的点,EH与FG交于点K,求证:点K在直线BD上.[证明]∵EH∩FG=K,∴K∈EH,K∈FG.∵E∈AB,H∈AD,∴EH平面ABD,∴K∈平面ABD.同理,K∈平面BCD.又∵平面ABD∩平面BCD=BD,∴K在直线BD上.10.如图所示,在正方体ABCD­A1B1C1D1中,点E,F分别是AA1,CC1的中点,求证:D1,E,F,B共面.[证明]因为D1,E,F三点不共线,所以D1,E,F三点确定一个平面α.由题意得,D1E 与DA共面于平面A1D且不平行,如图.分别延长D1E与DA相交于G,所以G∈直线D1E,所以G∈平面α.同理设直线D1F与DC 的延长线交于H,则H∈平面α.又点G,B,H均在平面AC内,且点E是AA1的中点,AA1∥DD1,所以AG=AD=AB,所以△AGB 为等腰直角三角形,所以∠ABG=45°.同理∠CBH=45°.又∠ABC=90°,所以G,B,H共线于GH,又GH平面α,所以B∈平面α,所以D1,E,F,B共面.[等级过关练]1.下列命题中是假命题的为( )A.若A∈l,A∈α,B∈l,B∈α,则lαB.若A∈α,A∈β,B∈α,B∈β,则α∩β=ABC.若lα,A∈l,则A∈αD.若A,B,C∈α,A,B,C∈β,且A,B,C不共线,则α与β重合C[C中A是l和α交点时,A∈α.]2.平面α∩平面β=l,点M∈α,N∈α,点P∈β且P l,又MN∩l=R,过M,N,P三点所确定的平面记为γ,则β∩γ=( )A.l B.PRC.PN D.PMB[如图,MNγ,R∈MN,∴R∈γ.又R∈l,∴R∈β.又P∈γ,P∈β,∴β∩γ=PR.]3.如图所示,已知D,E是△ABC的边AC,BC上的点,平面α经过D,E两点,若直线AB与平面α的交点是P,则点P与直线DE的位置关系是________.P∈DE[因D,E两点都在α内,也都在平面ABC内,故DE是平面ABC与平面α的交线.又∵P在α内,也在平面ABC内,故P点在平面ABC与平面α的交线DE上.]4.正方体ABCD­A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么过P,Q,R的截面图形是__________.正六边形[如图所示,取C1D1的中点E,连结RE,RE PQ,∴P,Q,E,R共面.再取BB1,DD1的中点F,G.∵PF∥AB1∥QR且GE∥C1D∥QR,∴GE∥PF,综上E,G,F,P,Q,R共面,又∵QP=PF=FR=ER=EG=GQ=22 AB,∴截面图形为正六边形.]5.在棱长是a的正方体ABCD­A1B1C1D1中,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体的下底面相交于直线l.(1)画出交线l;(2)设l∩A1B1=P,求PB1的长;(3)求点D1到l的距离.[解](1)如图,延长DM 交D 1A 1的延长线于点Q ,则点Q 是平面DMN 与平面A 1B 1C 1D 1的一个公共点.连结QN ,则直线QN 就是两平面的交线l .(2)∵M 是AA 1的中点,MA 1∥DD 1, ∴A 1是QD 1的中点. 又∵A 1P ∥D 1N ,∴A 1P =12D 1N .∵N 是D 1C 1的中点,∴A 1P =14D 1C 1=a4,∴PB 1=A 1B 1-A 1P =34a .(3)过点D 1作D 1H ⊥PN 于点H ,则D 1H 的长就是点D 1到l 的距离. ∵QD 1=2A 1D 1=2a ,D 1N =a2,∴QN =QD 21+D 1N 2=172a , ∴D 1H =D 1Q ·D 1NQN =2a ·a2172a =21717a ,即点D 1到l 的距离是21717a .空间两条直线的位置关系(建议用时:60分钟)[合格基础练]一、选择题1.下列说法正确的有( )A .两条异面直线指的是不同在一个平面内的两条直线B .两条异面直线指的是分别在某两个平面内的两条直线C .两条异面直线指的是既不平行又不相交的两条直线D .两条异面直线指的是平面内的一条直线和平面外的一条直线C [A 只说明两直线不同在一个平面内,没有说明平面的任意性;B 把两条直线放到特定的两个平面内,也不具有任意性;C 从反面肯定了两直线的异面;D 中的两条直线可能在同一平面内.故选C.]2.如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示GH,MN是异面直线的图形有( )①②③④A.①②B.①③C.②③D.②④D[①中GH∥MN,③中GM∥HN且GM≠HN,∴GH,MN必相交.]3.如果l和n是异面直线,那么和l,n都垂直的直线条数为( )A.0 B.1C.2 D.无数D[l和n是异面直线,则和l,n都垂直相交的直线有一条m,与m平行的直线和l,n 都垂直.]4.空间四边形的两条对角线相互垂直,顺次连结四边中点的四边形的形状是( ) A.平行四边形B.矩形C.梯形D.正方形B[易证四边形EFGH为平行四边形,又∵E,F分别为AB,BC的中点,∴EF∥AC,又FG∥BD,∴∠EFG或其补角为AC与BD所成的角.而AC与BD所成的角为90°.∴∠EFG=90°,故四边形EFGH为矩形.]5.如图,三棱柱ABC­A1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线 B .C 1C 与AE 共面 C .AE ,B 1C 1是异面直线D .AE 与B 1C 1所成的角为60°C [CC 1与B 1E 共面,CC 1与AE 异面,故A 、B 错;AE 与BC 垂直,BC ∥B 1C 1,∴AE ⊥B 1C 1,故D 错.]二、填空题6.如图,A 是△BCD 所在平面外一点,M ,N 分别是△ABC 和△ACD 的重心,若MN =6,则BD =________.18 [连结AM 并延长交BC 于E ,连结AN 并延长交CD 于F ,则E ,F 分别为BC ,CD 的中点,连结EF .由题意知,AM AE =MN EF =23,∴EF =32×6=9,∴BD =2EF =18.]7.如图,四棱柱ABCD ­A 1B 1C 1D 1中,底面是梯形,AB ∥CD ,则所有与∠A 1AB 相等的角是________.∠D 1DC ,∠D 1C 1C ,∠A 1B 1B [因四棱柱ABCD ­A 1B 1C 1D 1中AA 1∥DD 1.又AB ∥CD ,所以∠A 1AB 与∠D 1DC 相等.又由于侧面A 1ABB 1,D 1DCC 1为平行四边形,所以∠A 1AB 与∠A 1B 1B ,∠D 1C 1C 也相等.]8.如图,过正方体ABCD ­A 1B 1C 1D 1的顶点A 作直线l ,使l 与棱AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作________条.4[连结AC1(图略),则AC1与棱AB,AD,AA1所成的角都相等;过点A分别作正方体的另外三条体对角线的平行线,则它们与棱AB,AD,AA1所成的角也都相等.故这样的直线l可以作4条.]三、解答题9.如图,E,F分别是长方体ABCD­A1B1C1D1的棱A1A,C1C的中点.求证:四边形B1EDF是平行四边形.[证明]如图,设Q是DD1的中点,连结EQ,QC1.∵E是AA1的中点,∴EQ A1D1.又在矩形A1B1C1D1中,A1D1B1C1,∴EQ B1C1(平行公理),∴四边形EQC1B1为平行四边形,∴B1E C1Q.又∵Q,F是矩形DD1C1C的两边的中点,∴QD C1F,∴四边形DQC1F为平行四边形,∴C1Q DF.又∵B1E C1Q,∴B1E DF,∴四边形B1EDF是平行四边形.10.如图所示,AB是圆O的直径,点C是弧AB的中点,D,E分别是VB,VC的中点,求异面直线DE与AB所成的角.[解]因为D,E分别是VB,VC的中点,所以BC∥DE,因此∠ABC是异面直线DE与AB 所成的角,又因为AB是圆O的直径,点C是弧AB的中点,所以△ABC是以∠ACB为直角的等腰直角三角形,于是∠ABC=45°,故异面直线DE与AB所成的角为45°.[等级过关练]1.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.A.①③B.②④C.②③D.③④A[把正方体平面展开图还原为原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB ∥CM,MN⊥CD,只有①③正确.]2.如图,在正方体ABCD­A1B1C1D1中,M、N分别为棱C1D1,CC1的中点,有以下四个结论错误的是( )A.直线DM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线B[B中AM和BN是异面直线.]3.如图,正方体ABCD­A1B1C1D1中,E,F分别是棱C1C与BC的中点,则直线EF与直线D1C 所成的角的大小是__________.60°[如图,连结BC1,A1B.∵BC1∥EF,A1B∥CD1,则∠A1BC1即为EF与D1C所成的角.又∵∠A1BC1为60°,∴直线EF与D1C所成的角为60°.]4.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是________.相交或异面[如图,在长方体ABCD­A1B1C1D1中,AA1与BC是异面直线,又AA1∥BB1,AA1∥DD1,显然BB1∩BC=B,DD1与BC是异面直线.]5.如图所示,△ABC和△A′B′C′的对应顶点的连线AA′,BB′,CC′交于同一点O,且OAOA′=OBOB′=OCOC′=23.(1)求证:A′B′∥AB,A′C′∥AC,B′C′∥BC;(2)求S△ABCS△A′B′C′的值.[解](1)证明:∵AA′∩BB′=O,且AOA′O=BOB′O=23,∴AB∥A′B′,同理AC∥A′C′,BC∥B′C′.(2)∵A′B′∥AB,A′C′∥AC且边AB和A′B′,AC和A′C′方向都相反,∴∠BAC=∠B′A′C′,同理∠ABC=∠A′B′C′,∠ACB=∠A′C′B′,∴△ABC∽△A′B′C′且ABA′B′=AOOA′=23,∴S△ABCS△A′B′C′=⎝⎛⎭⎪⎫232=49.直线与平面平行(建议用时:60分钟)[合格基础练]一、选择题1.在梯形ABCD中,AB∥CD,ABα,CDα,则CD与平面α内的直线的位置关系只能是( )A.平行B.异面C.相交D.平行或异面D[由条件知CD∥α,故CD与α内的直线平行或异面.]2.若直线l不平行于平面α,且lα,则下列四个命题正确的是( )A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l相交B[依题意,直线l∩α=A(如图),α内的直线若经过点A,则与直线l相交;若不经过点A,则与直线l是异面直线.]3.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB∥平面MNP的图形是( )A.①②B.②④C.②③D.①④D[过AB的体对角面与面MNP平行,故①成立;④中易知AB∥NP,故④也成立.]4.P是△ABC所在平面外一点,E,F,G分别是AB,BC,PC的中点,则图中与过E,F,G的截面平行的线段条数是( )A.1 B.2C.3 D.4B[由题意知EF∥AC,FG∥PB,∴AC∥平面EFG,PB∥平面EFG,即有2条与平面EFG平行的线段.]5.如图,α∩β=CD,α∩γ=EF,β∩γ=AB,若AB∥α,则CD与EF的位置关系是( )A .平行B .相交C .异面D .平行或相关A [∵⎭⎪⎬⎪⎫AB ∥αα∩β=CD AB β⇒AB ∥CD ,同理可证AB ∥EF ,∴EF ∥CD .] 二、填空题6.如图,三棱锥A ­BCD 中E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的点,它们共面,并且AC ∥平面EFGH ,BD ∥平面EFGH ,AC =m ,BD =n ,则当EFGH 是菱形时,AE ∶EB =________.m ∶n [∵AC ∥平面EFGH ,∴EF ∥AC ,HG ∥AC . ∴EF =HG =BEBA·m . 同理,EH =FG =AE AB·n , ∴BE AB ·m =AEAB·n , ∴AE ∶EB =m ∶n .]7.正方体ABCD ­A 1B 1C 1D 1的棱长为a ,M 是A 1B 1的中点,N 是AB 上的点,且AN ∶NB =1∶2,过D 1,M ,N 的平面交AD 于点G ,则NG =__________.53a[由题意易知GN ∥D 1M ,由AN ∶NB =1∶2,M 为A 1B 1的中点得AN =13AB =13A 1B 1=23A 1M .∴GN D 1M =AN A 1M =23, ∴GN =23D 1M =23a 2+⎝ ⎛⎭⎪⎫12a 2=53a .] 8.如图,四边形ABCD 是矩形,P 平面ABCD ,过BC 作平面BCFE 交AP 于E ,交DP 于F ,则四边形BCFE 的形状一定是______.梯形 [∵四边形ABCD 为矩形,∴BC ∥AD .∵AD 平面PAD ,∴BC ∥平面PAD .∵平面BCFE ∩平面PAD =EF , ∴BC ∥EF .∵AD =BC ,AD ≠EF , ∴BC ≠EF ,∴四边形BCFE 为梯形.] 三、解答题9.如图,已知A 1B 1C 1­ABC 是正三棱柱,D 是AC 的中点.求证:AB 1∥平面DBC 1.[证明] ∵A 1B 1C 1­ABC 是正三棱柱, ∴四边形B 1BCC 1是矩形.连结B 1C 交BC 1于点E , 则B 1E =EC .连结DE ,在△AB 1C 中, ∵AD =DC ,B 1E =EC , ∴DE ∥AB 1.又∵AB 1平面DBC 1,DE 平面DBC 1, ∴AB 1∥平面DBC 1.10.如图,在正方体ABCD ­A 1B 1C 1D 1中,E 为BB 1上不同于B ,B 1的任一点,AB 1∩A 1E =F ,B 1C。

苏教版数学高一-16-17苏教版数学必修2检测 第2章2.2-2.2.1圆的方程

苏教版数学高一-16-17苏教版数学必修2检测 第2章2.2-2.2.1圆的方程

第2章 平面解析几何初步2.2 圆与方程2.2.1 圆的方程A 组 基础巩固1.圆心是O (-3,4),半径长为5的圆的方程为( )A .(x -3)2+(y +4)2=5B .(x -3)2+(y +4)2=25C .(x +3)2+(y -4)2=5D .(x +3)2+(y -4)2=25解析:将O (-3,4),r =5代入圆的标准方程可得.答案:D2.以点(2,- 1)为圆心,且与直线3x -4y +5=0相切的圆的标准方程为( )A .(x -2)2+(y +1)2=3B .(x +2)2+(y -1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9解析:由已知,得圆的半径长r =|3×2+4×1+5|32+(-4)2=155=3, 故所求圆的标准方程为(x -2)2+(y +1)2=9.答案:C3.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .(x -1)2+(y +2)2=5B .(x +1)2+(y +2)2=5C .(x +1)2+(y -2)2=5D .(x -1)2+(y -2)2=5解析:直线方程变为(x +1)a -x -y +1=0.由⎩⎨⎧x +1=0,-x -y +1=0,得⎩⎨⎧x =-1,y =2,所以C (-1,2),所以所求圆的方程为(x +1)2+(y -2)2=5.答案:C4.方程x 2+y 2+2ax +2by +a 2+b 2=0表示的图形是( )A .以(a , b )为圆心的圆B .以(-a ,-b )为圆心的圆C .点(a ,b )D .点(-a ,-b )解析:配方,得(x +a )2+(y +b )2=0,所以方程表示点(-a ,-b ).答案:D5.圆x 2+y 2+4x -6y -3=0的圆心和半径长分别为( )A .(4,-6),16B .(2,-3),4C .(-2,3),4D .(2,-3),16解析:由x 2+y 2+4x -6y -3=0,得(x +2)2+(y -3)2=16,故圆心为(-2,3),半径长为4.答案:C6.点(1,1)在圆(x -a )2+(y +a )2=4的内部,则a 的取值范围为________.解析:由(1-a )2+(1+a )2<4,所以2+2a 2<4.所以a 2<1.答案:(-1,1)7.若点(1,-1)在圆x 2+y 2-x +y +m =0外,则m 的取值范围是________.解析:由题意可知⎩⎨⎧(-1)2+12-4m >0,1+(-1)2-1-1+m >0,解得0<m <12. 答案:⎝ ⎛⎭⎪⎫0,12 8.点P (a ,10)与圆(x -1)2+(y -1)2=2的位置关系是________. 解析:(a -1)2+92>2,即点P (a ,10)在圆外.答案:在圆外9.点P ⎝ ⎛⎭⎪⎫2t 1+t 2,1-t 21+t 2与圆x 2+y 2=1的位置关系是________. 解析:将点P 坐标代入得⎝ ⎛⎭⎪⎪⎫2t 1+t 22+⎝ ⎛⎭⎪⎫1-t 21+t 22=4t 2+(1-t 2)2(1+t 2)2=(1+t 2)2(1+t 2)2=1,所以点P 在圆上. 答案:在圆上10.△ABC 的三个顶点坐标分别为A (-1,5),B (-2,- 2),C (5,5),求其外接圆的方程.解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,因圆过A ,B ,C 三点,故得⎩⎪⎨⎪⎧-D +5E +F +26=0,-2D -2E +F +8=0,5D +5E +F +50=0.解得D =-4,E =-2,F =-20,所以△ABC 的外接圆的方程为x 2+y 2-4x -2y -20=0.B 级 能力提升11.若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值范围是( )A .m <12B .m <0C .m >12D .m ≤12解析:由D 2+E 2-4F >0,得(-1)2+12-4m >0,即m <12. 答案:A12.圆x 2+y 2-2x -1=0关于直线2x -y +3=0对称的圆的方程为( )A .(x +3)2+(y -2)2=12B .(x -3)2+(y +2)2=12 C .(x +3)2+(y -2)2=2D .(x -3)2+(y +2)2=2解析:由x 2+y 2-2x -1=0,得(x -1)2+y 2=2,则圆心为(1,0),半径长r = 2.设圆心(1,0)关于直线2x -y +3=0的对称点为P ′(x 1,y 1),则由⎩⎪⎨⎪⎧y 1x 1-1=-12,2×1+x 12-y 12+3=0,解得⎩⎨⎧x 1=-3,y 1=2. 故x 2+y 2-2x -1=0关于直线2x -y +3=0对称的圆的方程为(x +3)2+(y -2)2=2.答案:C13.设A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线且|PA |=1,则P 点的轨迹方程是________.解析:设P (x ,y )是轨迹上任一点,圆(x -1)2+y 2=1的圆心为B (1,0),则|PA |2+1=|PB |2,所以(x -1)2+y 2=2.答案:(x -1)2+y 2=214.已知点M 与两个定点A (1,0),B (3,2)的距离的比值为13,求点M 的轨迹.解:在给定的坐标系中,设M (x ,y )是满足条件的任意一点,则MA MB =13.由两点间的距离公式,得(x -1)2+y 2(x -3)2+(y -2)2=13. 两边平方并化简,得x 2+y 2-32x +12y -12=0, 配方得⎝ ⎛⎭⎪⎫x -342+⎝ ⎛⎭⎪⎫y +142=98. 所以所求轨迹是圆心为⎝ ⎛⎭⎪⎫34,-14,半径为324的圆. 15.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为________. 解析:因为所求圆的圆心与圆(x +2)2+y 2=5的圆心(-2,0)关于原点(0,0)对称,所以所求圆的圆心为(2,0),半径为5,故所求圆的方程为(x -2)2+y 2=5.答案:(x -2)2+y 2=516.已知圆:x 2+y 2-2(m -1)x +2(m -1)y +2m 2-6m +4=0过坐标原点,求实数m 的值.解:将原点坐标(0,0)代入圆的方程,得2m 2-6m +4=0,即m 2-3m +2=0,解得m =1或m =2.当m =1时,原方程为x 2+y 2=0,不表示圆,故舍去.当m =2时,原方程为x 2+y 2-2x +2y =0表示圆,故所求的实数m 的值为2.17.如图所示,已知点A (0,2)和圆C :(x -6)2+(y -4)2=8,M 和P 分别是x 轴和圆C 上的动点,求|AM |+|MP |的最小值.解:如图所示,先作点A关于x轴的对称点A′(0,-2),连接A′和圆心C,A′C交x轴于点M,交圆C于点P,这时|AM|+|MP|最小.因为A′(0,-2),C(6,4),所以|A′C|=(6-0)2+(4+2)2=6 2.所以|A′P|=|A′C|-R=62-22=42(R为圆的半径).所以|AM|+|MP|的最小值是4 2.。

苏教版数学高一-16-17苏教版数学必修2检测 第2章2.1-两条直线的平行与垂直

苏教版数学高一-16-17苏教版数学必修2检测 第2章2.1-两条直线的平行与垂直

第2章平面解析几何初步2.1 直线与方程2.1.3 两条直线的平行与垂直A组基础巩固1.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=0解析:由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y=12(x-1),即x-2y-1=0.答案:A2.已知▱ABCD的三个顶点的坐标分别是A(0,1),B(1,0),C(4,3),则顶点D的坐标为()A.(3,4) B.(4,3)C.(3,1) D.(3,8)解析:设D(m,n),由题意得AB∥DC,AD∥BC,则有k AB=k DC,k AD=k BC,所以⎩⎪⎨⎪⎧0-11-0=3-n4-m,n-1m-0=3-04-1.解得⎩⎨⎧m=3,n=4,所以点D 的坐标为(3,4).答案:A3.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =( )A .-1B .1 C.12 D .-12解析:由两直线垂直,得12×⎝ ⎛⎭⎪⎫-2m =-1,解得m =1. 答案:B4.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是( )A .y =12x +4 B .y =2x +4 C .y =-2x +4 D .y =-12x +4 解析:因为直线y =2x +1的斜率为2,所以与其垂直的直线的斜率是-12. 所以直线的斜截式方程为y =-12x +4. 答案:D5.以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( )A .锐角三角形B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形解析:k AB =-1-12+1=-23,k AC =4-11+1=32, 所以k AB ·k AC =-1.所以AB ⊥AC ,∠A 为直角.答案:C6.已知过点A (-2,m )和B (m ,4)的直线与直线2x +y -1=0平行,则m 的值为________.解析:k AB =4-m m +2,因为过AB 的直线与2x +y -1=0平行, 所以4-m m +2=-2,解得m =-8. 答案:-87.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +5=0平行,则k =________.解析:因为l 1∥l 2,所以-2(k -3)-2(4-k )(k -3)=0,解得k =3或k =5.经检验k =3或k =5时,l 1∥l 2.答案:3或58.已知点A (-4,2),B (6,-4),C (12,6),D (2,12),下面四个结论中正确的是________(填序号).①AB ∥CD; ②AB ⊥AD; ③AB ⊥BD; ④AC ⊥BD .解析:由题意得k AB =-35,k AD =53,k CD =-35,k AC =14,k BD =-4,所以k AB =k CD ,k AB ·k AD =-1,k AC ·k BD =-1.所以AB ∥CD ,AB ⊥AD ,AC ⊥BD ,①②④正确.又k AB ·k BD ≠-1,所以③错误.答案:①②④9.已知直线l 1经过点A (-2,0)和点B (1,3a ),直线l 2经过点M (0,-1)和点N (a ,-2a ),若l 1⊥l 2,试确定实数a 的值.解:(1)当直线l 1,l 2的斜率都存在,即a ≠0时,直线l 1,l 2的斜率分别是k 1=a ,k 2=1-2a a. 因为l 1⊥l 2,所以a ·1-2a a=-1.所以a =1. (2)当a =0时,k 1=0,k 2不存在,此时l 1⊥l 2.综合(1)(2)知,若l 1⊥l 2,则实数a 的值为1或0.10.若已知直线l 1上的点满足ax +2y +6=0,直线l 2上的点满足x +(a -1)y +a 2-1=0(a ≠0),当a 为何值时:(1)l 1∥l 2;(2)l 1⊥l 2.解:k 1=-a 2,k 2=-1a -1. (1)l 1∥l 2时,k 1=k 2,即-a 2=-1a -1, 解得a =2或a =-1.当a =2时,l 1的方程为2x +2y +6=0,即x +y +3=0,l 2的方程为x +y +3=0,则l 1与l 2重合.所以a =-1.(2)l 1⊥l 2时,由k 1k 2=-1,得⎝ ⎛⎭⎪⎫-a 2⎝ ⎛⎭⎪⎪⎫-1a -1=-1,解得a =23. 综上可知,a =-1时,l 1∥l 2;a =23时,l 1⊥l 2. B 级 能力提升11.在直角坐标平面内有两个点A (4,2),B (1,-2),在x 轴上有点C ,使∠ACB =90°,则点C 的坐标是________.解析:设C (x 0,0),由AC ⊥BC ,得0-2x 0-4·0+2x 0-1=-1, 所以x 0=0或x 0=5.答案:(0,0)或(5,0)12.若点A (1,2)在直线l 上的射影为B (-1,4),则直线l 的方程是________________.解析:因为AB ⊥l ,k AB =4-2-1-1=-1,所以k l =1. 又l 过点B ,所以l :y -4=x +1,即直线l 的方程为x -y +5=0.答案:x -y +5=013.已知两点A (2,0),B (3,4),直线l 过点B ,且交y 轴于点C (0,y ),O 是坐标原点,且O ,A ,B ,C 四点共圆,那么y 的值是________.解析:由题意知,AB ⊥BC ,所以k AB ·k BC =-1,即4-03-2·4-y 3-0=-1,解得y =194.答案:19414.过点A ⎝ ⎛⎭⎪⎫0,73与B (7,0)的直线l 1与过点(2,1),(3,k +1)的直线l 2和两坐标轴围成的四边形内接于一个过原点的圆,则实数k 为________.解析:若l 1和l 2与坐标轴围成的四边形内接于一个过原点的圆,则l 1⊥l 2,而kl 1=73-7=-13, kl 2=k +1-13-2=k .而kl 1·kl 2=-1,得k =3.答案:315.已知直线l 1:x +y -1=0,现将直线l 1向上平移到直线l 2的位置,若l 1,l 2和两坐标轴围成的梯形的面积是4,求l 2的方程.解:因为l 1∥l 2,所以设l 2的方程为x +y -m =0. 设l 1与x 轴,y 轴分别交于点A ,D ,l 2与x 轴,y 轴分别交于点B ,C ,易得:A (1,0),D (0,1),B (m ,0),C (0,m ).又l 2在l 1的上方,所以m >0.S 梯形=S Rt △OBC -S Rt △OAD ,所以4=12m ·m -12×1×1. 所以m 2=9,m =3.故l 2的方程是x +y -3=0.。

全册苏教版高中数学必修2全册同步练习及单元检测含答案

全册苏教版高中数学必修2全册同步练习及单元检测含答案

苏教版高中数学必修2 全册同步练习及检测第1章立体几何§1.1空间几何体1.1.1 棱柱、棱锥和棱台1.1.2 圆柱、圆锥、圆台和球【课时目标】认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.1.一般地,由一个________________沿某一方向平移形成的空间几何体叫做棱柱.平移起止位置的两个面叫做棱柱的________,多边形的边平移所形成的面叫做棱柱的________,两侧面的公共边叫________.2.当棱柱的一个底面__________________时,得到的几何体叫做棱锥(如图所示).3.棱台是棱锥被平行于底面的一个平面所截后,______和________之间的部分.4.将________、________________、______________分别绕着它的________、______________、____________________所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台,这条直线叫做______,垂直于轴的边旋转而成的圆面叫做________,不垂直于轴的边旋转而成的曲面叫做________,无论旋转到什么位置,这条边都叫做________.5.________绕着它的______所在的直线旋转一周所形成的曲面叫做球面,球面围成的几何体叫做______,简称______.一、填空题1.将梯形沿某一方向平移形成的几何体是________.2.有下列命题:①棱柱的底面一定是多边形;②棱台的底面一定是梯形;③棱柱被平面截成的两部分可以都是棱柱;④棱锥被平面截成的两部分不可能都是棱锥.其中正确命题的序号是________.3.棱台具备的性质是________(填序号).①两底面相似;②侧面都是梯形;③侧棱都相等;④侧棱延长后都交于一点.4.下列命题中正确的是________(填序号).①有两个面平行,其余各面都是四边形的几何体叫棱柱;②有两个面平行,其余各面都是平行四边形的几何体叫棱柱;③有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;④用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台.5.以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是________.6.右图所示的几何体是由下列哪个平面图形通过旋转得到的________(填序号).7.下列叙述中错误的是________.(填序号)①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.8.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是______(填序号).9.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图?其序号是______.二、解答题10.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.11.如图所示,已知△ABC,以AB为轴,将△ABC旋转360°.试指出这个旋转体是由怎样的简单几何体构成的?画出这个旋转体的直观图.能力提升12.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面是下列______图形.(填序号)13.如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A 点爬到B点,问蚂蚁爬行的最短距离是多少?1.学习本节知识,要注意结合集合的观点来认识各种几何体的性质,还要注意结合动态直观图从运动变化的观点认识棱柱、棱锥和棱台的关系.2.在讨论旋转体的性质时轴截面具有极其重要的作用,它决定着旋转体的大小、形状,旋转体的有关元素之间的关系可以在轴截面上体现出来.轴截面是将旋转体问题转化为平面问题的关键.3.几何体表面距离最短问题需要把表面展开在同一平面上,然后利用两点间距离的最小值是连结两点的线段长求解.第1章立体几何初步§1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球答案知识梳理1.平面多边形底面侧面侧棱2.收缩为一个点3.截面底面4.矩形直角三角形直角梯形一边一直角边垂直于底边的腰轴底面侧面母线5.半圆直径球体球作业设计1.四棱柱 2.①③3.①②④解析用棱台的定义去判断.4.③解析①、②的反例图形如图所示,④显然不正确.5.球体 6.①7.①②③④8.(1)(5)解析一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.9.①②10.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.11.解这个旋转体可由一个大圆锥挖去一个同底面的小圆锥而得到,直观图如图所示.12.②13.解把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连结AB′,则AB′即为蚂蚁爬行的最短距离.∵AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π,∴AB′=A′B′2+AA′2=4+(2π)2=21+π2,即蚂蚁爬行的最短距离为21+π2.1.1.3中心投影和平行投影【课时目标】1.了解中心投影和平行投影.2.能画出简单空间图形(柱、锥、台、球及其组合体)的三视图.3.能识别三视图所表示的立体模型.1.平行投影与中心投影的不同之处在于:平行投影的投影线是________,而中心投影的投影线________.2.三视图包括__________、__________和__________,其中几何体的____________和__________高度一样,__________与____________长度一样,__________与__________宽度一样.一、选择题1.人在灯光下走动,当人逐渐远离灯光时,其影子的长度将________.2.两条相交直线的平行投影是________.3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是(填序号)________.4.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是________(填序号).5.某几何体的三视图如图所示,那么这个几何体是________________________________.6.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.7.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体的个数最多为________个.8.根据如图所示俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.9.如图1所示,E,F分别为正方体的面AD1,BC1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图2中的________.(填上可能的序号)二、解答题10.在下面图形中,图(b)是图(a)中实物画出的主视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出左视图(尺寸不作严格要求).11.如图是截去一角的长方体,画出它的三视图.能力提升12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.13.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?在绘制三视图时,要注意以下三点:1.若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓都用实线画出,不可见轮廓用虚线画出.2.一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度和主视图一样.左视图放在主视图的右面,高度和主视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”.3.在画物体的三视图时应注意观察角度,角度不同,往往画出的三视图不同.1.1.3中心投影和平行投影答案知识梳理1.平行的交于一点2.主视图左视图俯视图左视图主视图俯视图主视图左视图俯视图作业设计1.变长解析中心投影的性质.2.两条相交直线或一条直线3.②④解析在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.4.① 5.四棱锥6.2 4解析三棱柱的高同左视图的高,左视图的宽度恰为底面正三角形的高,故底边长为4.7.78.(1)D(2)A(3)E(4)C(5)B9.②③解析图②为四边形BFD1E在正方体前后及上下面上的正投影,③为其在左右侧面上的正投影.10.解图(a)是由两个长方体组合而成的,主视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),左视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.11.解该图形的三视图如图所示.12.解该物体是由一个正六棱柱和一个圆柱组合而成的,主视图反映正六棱柱的三个侧面和圆柱侧面,左视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.13.解由于主视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.1.1.4直观图画法【课时目标】1.了解斜二测画法的概念.2.会用斜二测画法画出一些简单的平面图形和立体图形的直观图.用斜二测画法画水平放置的平面图形直观图的步骤:(1)在空间图形中取互相________的x轴和y轴,两轴交于O点,再取z轴,使∠xOz =________,且∠yOz=________.(2)画直观图时把它们画成对应的x′轴、y′轴和z′轴,它们相交于O′,并使∠x′O′y′=______(或______),∠x′O′z′=________,x′轴和y′轴所确定的平面表示水平面.(3)已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x′轴、y′轴或z′轴的线段.(4)已知图形中平行于x轴或z轴的线段,在直观图中保持原长度________;平行于y 轴的线段,长度为原来的________.一、填空题1.下列结论:①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行.其中正确的有__________(填序号).2.具有如图所示直观图的平面图形ABCD的形状是____________.3.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图的周长是________ cm.4.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是______(填序号).5.△ABC面积为10,以它的一边为x轴画出直观图,其直观图的面积为________.6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于__________.7.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是______________.8.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为____________.9.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为______.二、解答题10.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.11.如图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD =3 cm,试画出它的直观图.能力提升12.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为________.13.在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.直观图与原图形的关系1.斜二测画法是联系直观图和原图形的桥梁,可根据它们之间的可逆关系寻找它们的联系;在求直观图的面积时,可根据斜二测画法,画出直观图,从而确定其高和底边等;而求原图形的面积可把直观图还原为原图形;此类题易混淆原图形与直观图中的垂直关系而出错,在原图形中互相垂直的直线在直观图中不一定垂直,反之也是.所以在求面积时应按照斜二测画法的规则把原图形与直观图都画出来,找出改变量与不变量.用斜二测画法画出的水平放置的平面图形的直观图的面积是原图形面积的24倍.2.在用斜二测画法画直观图时,平行线段仍然平行,所画平行线段之比仍然等于它的真实长度之比,但所画夹角大小不一定是其真实夹角大小.1.1.4直观图画法答案知识梳理(1)垂直90°90°(2)45°135°90°(4)不变一半作业设计1.①②⑤解析由斜二测画法的规则判断.2.直角梯形3.8解析根据直观图的画法,原几何图形如图所示,四边形OABC 为平行四边形,OB =22,OA =1,AB =3,从而原图周长为8 cm .4.③ 5.522 解析 设△ABC 面积为S , 则直观图面积S ′=24S =522. 6.2+ 2解析 如图1所示,等腰梯形A ′B ′C ′D ′为水平放置的原平面图形的直观图,作D ′E ′∥A ′B ′交B ′C ′于E ′,由斜二测直观图画法规则,直观图是等腰梯形A ′B ′C ′D ′的原平面图形为如图2所示的直角梯形ABCD ,且AB =2,BC =1+2,AD =1,所以S ABCD =2+2.图1 图27.①②解析 斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形. 8.2.5解析 由直观图知,原平面图形为直角三角形,且AC =A ′C ′=3,BC =2B ′C ′=4,计算得AB =5,所求中线长为2.5.9.22 解析画出直观图,则B ′到x ′轴的距离为22·12OA =24OA =22.10.解 (1)作出长方体的直观图ABCD -A 1B 1C 1D 1,如图a 所示;(2)再以上底面A 1B 1C 1D 1的对角线交点为原点建立x ′,y ′,z ′轴,如图b 所示,在z ′上取点V ′,使得V ′O ′的长度为棱锥的高,连结V ′A 1,V ′B 1,V ′C 1,V ′D 1,得到四棱锥的直观图,如图b ;(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c .11.解 (1)如图a 所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy .如图b 所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°. (2)在图a 中,过D 点作DE ⊥x 轴,垂足为E .在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =323≈2.598 cm ;过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm .(3)连结A ′D ′、B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图c 所示,则四边形A ′B ′C ′D ′就是所求作的直观图.12.62a 2解析 画△ABC 直观图如图(1)所示:则A ′D ′=32a ,又∠x ′O ′y ′=45°,∴A ′O ′=62a . 画△ABC 的实际图形,如图(2)所示,AO =2A ′O ′=6a ,BC =B ′C ′=a , ∴S △ABC =12BC·AO =62a 2.13.解四边形ABCD的真实图形如图所示,∵A′C′在水平位置,A′B′C′D′为正方形,∴∠D′A′C′=∠A′C′B′=45°,∴在原四边形ABCD中,DA⊥AC,AC⊥BC,∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=22.§1.2 点、线、面之间的位置关系1.2.1 平面的基本性质【课时目标】 1.了解平面的概念及表示法.2.了解公理1、2、3及推论1、2、3,并能用文字语言、图形语言和符号语言分别表述.1.公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内.用符号表示为:________________.2.公理2:如果________________________________,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的______________.用符号表示为:⎭⎪⎬⎪⎫P ∈αP ∈β⇒α∩β=l 且P ∈l . 3.公理3:经过不在同一条直线上的三点,________________________.公理3也可简单地说成,不共线的三点确定一个平面.(1)推论1 经过________________________________________,有且只有一个平面. (2)推论2 经过____________,有且只有一个平面. (3)推论3 经过____________,有且只有一个平面.一、填空题 1.下列命题: ①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚; ③有一个平面的长是50 m ,宽是20 m ;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念. 其中正确命题的个数为________. 2.若点M 在直线b 上,b 在平面β内,则M 、b 、β之间的关系用符号可记作____________. 3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有________条.4.已知α、β为平面,A 、B 、M 、N 为点,a 为直线,下列推理错误的是__________(填序号).①A ∈a ,A ∈β,B ∈a ,B ∈β⇒a ⊂β;②M ∈α,M ∈β,N ∈α,N ∈β⇒α∩β=MN ; ③A ∈α,A ∈β⇒α∩β=A ;④A 、B 、M ∈α,A 、B 、M ∈β,且A 、B 、M 不共线⇒α、β重合. 5.空间中可以确定一个平面的条件是________.(填序号) ①两条直线; ②一点和一直线; ③一个三角形; ④三个点. 6.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有__________个.7.把下列符号叙述所对应的图形(如图)的序号填在题后横线上.(1)AD/∈α,a ⊂α________.(2)α∩β=a,PD/∈α且PD/∈β________.(3)a⊄α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.8.已知α∩β=m,a⊂α,b⊂β,a∩b=A,则直线m与A的位置关系用集合符号表示为________.9.下列四个命题:①两个相交平面有不在同一直线上的三个公共点;②经过空间任意三点有且只有一个平面;③过两平行直线有且只有一个平面;④在空间两两相交的三条直线必共面.其中正确命题的序号是________.二、解答题10.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.11.如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.能力提升12.空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明三条直线必相交于一点.13.如图,在正方体ABCD -A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于点O ,AC 、BD 交于点M ,E 为AB 的中点,F 为AA 1的中点.求证:(1)C 1、O 、M 三点共线; (2)E 、C 、D 1、F 四点共面; (3)CE 、D 1F 、DA 三线共点.1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点,或先由某两点作一直线,再证明其他点也在这条直线上.2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.§1.2 点、线、面之间的位置关系1.2.1 平面的基本性质答案知识梳理1.两点⎭⎪⎬⎪⎫A ∈αB ∈α⇒AB ⊂α 2.两个平面有一个公共点 一条直线 3.有且只有一个平面 (1)一条直线和这条直线外的一点 (2)两条相交直线 (3)两条平行直线作业设计 1.1解析 由平面的概念,它是平滑、无厚度、可无限延展的,可以判断命题④正确,其余的命题都不符合平面的概念,所以命题①、②、③都不正确.2.M∈b⊂β3.1,2或34.③解析∵A∈α,A∈β,∴A∈α∩β.由公理可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.5.③6.1或4解析四点共面时有1个平面,四点不共面时有4个平面.7.(1)C(2)D(3)A(4)B8.A∈m解析因为α∩β=m,A∈a⊂α,所以A∈α,同理A∈β,故A在α与β的交线m上.9.③10.解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,AC⊂平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连结SE,直线SE是平面SBD和平面SAC的交线.11.证明因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.12.证明∵l1⊂β,l2⊂β,l1l2,∴l1∩l2交于一点,记交点为P.∵P∈l1⊂β,P∈l2⊂γ,∴P∈β∩γ=l3,∴l1,l2,l3交于一点.13.证明(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,∴C1、O、M三点共线.(2)∵E,F分别是AB,A1A的中点,∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.∴E、C、D1、F四点共面.(3)由(2)可知:四点E、C、D1、F共面.又∵EF=12A1B.∴D1F,CE为相交直线,记交点为P.则P∈D1F⊂平面ADD1A1,P∈CE⊂平面ADCB.∴P∈平面ADD1A1∩平面ADCB=AD.∴CE、D1F、DA三线共点.1.2.2空间两条直线的位置关系【课时目标】1.会判断空间两直线的位置关系.2.理解两异面直线的定义及判定定理,会求两异面直线所成的角.3.能用公理4及等角定理解决一些简单的相关证明.1.空间两条直线的位置关系有且只有三种:________、____________、____________.2.公理4:平行于同一条直线的两条直线____________.3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.4.异面直线(1)定义:________________________的两条直线叫做异面直线.(2)判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是______________.5.异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使__________,__________,我们把a′与b′所成的________________叫做异面直线a与b所成的角.如果两条直线所成的角是________,那么我们就说这两条异面直线互相垂直,两条异面直线所成的角α的取值范围是____________.一、填空题1.若空间两条直线a,b没有公共点,则其位置关系是____________.2.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是______________.3.在正方体ABCD—A1B1C1D1中,与对角线AC1异面的棱共有________条.4.空间四边形的两条对角线相互垂直,顺次连结四边中点的四边形的形状是________.5.给出下列四个命题:①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.其中假命题的个数是________.6.有下列命题:①两条直线和第三条直线成等角,则这两条直线平行;②四条边相等且四个角也相等的四边形是正方形;③经过直线外一点有无数条直线和已知直线垂直;④若∠AOB=∠A1O1B1,且OA∥O1A1,则OB∥O1B1.其中正确命题的序号为________.7.空间两个角α、β,且α与β的两边对应平行且α=60°,则β为________.8.已知正方体ABCD—A′B′C′D′中:(1)BC′与CD′所成的角为________;(2)AD与BC′所成的角为________.9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确结论的序号为________.二、解答题10.已知棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD、AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.11.如图所示,在空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E、F 分别是BC、AD的中点,求EF与AB所成角的大小.能力提升12.如图所示,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填序号).13.如图所示,在正方体AC1中,E、F分别是面A1B1C1D1和AA1D1D的中心,则EF 和CD所成的角是______.1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.另外,我们解决空间有关线线问题时,不要忘了我们生活中的模型,比如说教室就是一个长方体模型,里面的线线关系非常丰富,我们要好好地利用它,它是我们培养空间想象能力的好工具.2.在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角α的范围为0°<α≤90°,解题时经常结合这一点去求异面直线所成的角的大小.作异面直线所成的角,可通过多种方法平移产生,主要有三种方法:①直接平移法(可利用图中已有的平行线);②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).1.2.2空间两条直线的位置关系答案知识梳理1.相交直线平行直线异面直线2.互相平行3.相等4.(1)不同在任何一个平面内(2)异面直线5.a′∥a b′∥b锐角(或直角)直角0°<α≤90°作业设计1.平行或异面2.相交、平行或异面解析异面直线不具有传递性,可以以长方体为载体加以说明a、b异面,直线c的位置可如图所示.3.64.矩形解析易证四边形EFGH为平行四边形.又∵E,F分别为AB,BC的中点,∴EF∥AC,又FG∥BD,∴∠EFG或其补角为AC与BD所成的角.而AC与BD所成的角为90°,∴∠EFG=90°,故四边形EFGH为矩形.5.2解析①④均为假命题.①可举反例,如a、b、c三线两两垂直.④如图甲时,c、d与异面直线l1、l2交于四个点,此时c、d异面,一定不会平行;当点A在直线a上运动(其余三点不动),会出现点A与B重合的情形,如图乙所示,此时c、d共面相交.6.③7.60°或120°8.(1)60°(2)45°解析连结BA′,则BA′∥CD′,连结A′C′,则∠A′BC′就是BC′与CD′所成的角.由△A′BC′为正三角形,知∠A′BC′=60°,由AD∥BC,知AD与BC′所成的角就是∠C′BC.易知∠C′BC=45°.9.①③解析把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.10.。

(完整word版)苏教版高中数学必修二练习及答案

(完整word版)苏教版高中数学必修二练习及答案

苏教版高中数学必修二练习及答案一、选择题(每题3分,共54分)1、在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6πB .3π C .65π D .32π 2、若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y x B .1)1()2(22=-+-y x C .1)2()1(22=++-y xD .1)2()1(22=-++y x3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab4、已知直线221:1+=x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为ο45,则直线2l 的方程是( ) A .1-=x y B .5331+=x y C .73+-=x y D .73+=x y5、不等式062>--y x 表示的平面区域在直线062=--y x 的() A .左上方B .右上方C .左下方D .左下方6、直线0943=--y x 与圆422=+y x 的位置关系是() A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为c b a 、、的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8、过两点)9,3()1,1(和-的直线在x 轴上的截距是()A .23-B .32-C .52 D .29、点)5,0(到直线x y 2=的距离为()A .25B .5C .23 D .25 10、下列命题中,正确的是()A .点)0,0(在区域0≥+y x 内B .点)0,0(在区域01<++y x 内C .点)0,1(在区域x y 2>内D .点)1,0(在区域01<+-y x 内11、由点)3,1(P 引圆922=+y x 的切线的长是 ()A .2B .19C .1D .412、三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .113、已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为ο60,则k 的值是 ( )A .03或B .03或-C .3D .3-14、如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于()A .1B .31-C .32-D .2-15、若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于()A .3-B .6-C .23-D .32 16、由422=+=y x x y 和圆所围成的较小图形的面积是() A .4πB .πC .43πD .23π 17、动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是()A .4)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y xD .21)23(22=++y x 18、参数方程⎩⎨⎧+-=+=θθsin 33cos 33y x 表示的图形是( ) A .圆心为)3,3(-,半径为9的圆 B .圆心为)3,3(-,半径为3的圆 C .圆心为)3,3(-,半径为9的圆D .圆心为)3,3(-,半径为3的圆二、填空题(每题3分,共15分)19、以点)1,5()3,1(-和为端点的线段的中垂线的方程是 20、过点023)4,3(=+-y x 且与直线平行的直线的方程是 21、直线y x y x 、在0623=+-轴上的截距分别为22、三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23、若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是 三、解答题(第24、25两题每题7分,第26题8分,第27题9分,共31分) 24、若圆经过点)2,0(),0,4(),0,2(C B A ,求这个圆的方程。

苏教版高中数学必修二练习及答案

苏教版高中数学必修二练习及答案

苏教版高中数学必修二练习及答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-苏教版高中数学必修二练习及答案一、 选择题(每题3分,共54分)1、在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6πB .3π C .65πD .32π2、若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是()A .1)1()2(22=++-y xB .1)1()2(22=-+-y xC .1)2()1(22=++-y xD .1)2()1(22=-++y x3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab4、已知直线221:1+=x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为 45,则直线2l 的方程是() A .1-=x yB .5331+=x yC .73+-=x yD .73+=x y5、不等式062>--y x 表示的平面区域在直线062=--y x 的( ) A .左上方B .右上方C .左下方D .左下方6、直线0943=--y x 与圆422=+y x 的位置关系是( ) A .相交且过圆心 B .相切C .相离D .相交但不过圆心7、已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为c b a 、、的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8、过两点)9,3()1,1(和-的直线在x 轴上的截距是()A .23-B .32-C .52D .29、点)5,0(到直线x y 2=的距离为() A .25B .5C .23D .25 10、下列命题中,正确的是( )A .点)0,0(在区域0≥+y x 内B .点)0,0(在区域01<++y x 内C .点)0,1(在区域x y 2>内D .点)1,0(在区域01<+-y x 内 11、由点)3,1(P 引圆922=+y x 的切线的长是 () A .2B .19C .1D .412、三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( ) A .2-B .1-C .0D .113、已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为 60,则k 的值是 ()A .03或B .03或-C .3D .3-14、如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31-C .32-D .2-15、若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于()A .3-B .6-C .23-D .32 16、由422=+=y x x y 和圆所围成的较小图形的面积是()A .4πB .πC .43πD .23π17、动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y xB .1)3(22=+-y xC .14)32(22=+-y xD .21)23(22=++y x18、参数方程⎩⎨⎧+-=+=θθsin 33cos 33y x 表示的图形是( )A .圆心为)3,3(-,半径为9的圆B .圆心为)3,3(-,半径为3的圆C .圆心为)3,3(-,半径为9的圆D .圆心为)3,3(-,半径为3的圆二、填空题(每题3分,共15分)19、以点)1,5()3,1(-和为端点的线段的中垂线的方程是 20、过点023)4,3(=+-y x 且与直线平行的直线的方程是 21、直线y x y x 、在0623=+-轴上的截距分别为22、三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23、若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是 三、解答题(第24、25两题每题7分,第26题8分,第27题9分,共31分) 24、若圆经过点)2,0(),0,4(),0,2(C B A ,求这个圆的方程。

苏教版高中数学必修二高一直线题组练习.doc

苏教版高中数学必修二高一直线题组练习.doc

高一数学(必修2)直线题组练习高一数学必修2 (平行与垂直的判定)一、选择题1、直线l 1:ax+y=3;l 2:x+by-c=0,则ab=1是l 1||l 2的A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件2、两条直线mx+y-n=0和x+my+1=0互相平行的条件是A m=1B m=±1C ⎩⎨⎧-≠=11n mD ⎩⎨⎧≠-=⎩⎨⎧-≠=1111n m n m 或 3、直线xsin α+ycos α+1=0与xcos α-ysin α+2=0直线的位置关系是A 平行B 相交但不垂直C 相交垂直D 视α的取值而定4、已知P(a,b)与Q(b-1,a+1)(a ≠b-1)是轴对称的两点,那么对称轴方程是A x+y=0B x-y=0C x+y-1=0D x-y+1=05、已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足坐标为(1,p),则m-n+p=A 24B 20C 0D -46、由三条直线3x-4y+12=0,4x+3y-9=0,14x-2y-19=0所围成的三角形是A 锐角不为450的直角三角形B 顶角不为900的等腰三角形C 等腰直角三角形D 等边三角形7、已知△ABC 中,A (2,4),B (-6,-4),C (5,-8),则∠C 等于A 2740arctanB -2740arctanC +π2740arctan D -π2740arctan 8、直线3x+3y+8=0直线xsin α+ycos α+1=0)24(παπ<<的角是 A 4πα- B απ-4 C 43πα- D απ-45 二、填空题1、与直线2x+3y+5=0平行,且在两坐标轴上截距之和为10/3的直线的方程为________;2、与直线2x-y+4=0的夹角为450,且与这直线的交点恰好在x 轴上的直线方程为_____;3、直线过点A (1,)33且与直线x-y 3=0成600的角,则直线的方程为__三、解答题1、直线过P (1,2)且被两条平行直线4x+3y+1=0和4x+3y+6=0截得的线段长为2,求这条直线的方程。

苏教版高中数学高一必修二必修二限时训练5

苏教版高中数学高一必修二必修二限时训练5
第5练 班级姓名
1.经过点 (6,3),且圆心为(2,-2)的圆的方程为
2.如果圆 表示圆,则实数 的取值范围
3.若方程 关于直线 对称的圆的标准方程为
4. 若点 到直线 的距离不大于3,则 的取值范围是
5.直线 与圆 在第一象限内有两个不同的交点,则 的取值范围是
6.已知直线的斜率 满足 ,则直线的倾斜角 的范围是_____________;若已知直线的倾斜角 满足 ,则直线的斜率 的取值范围是_______
(2)当圆M截l所得弦最短时,求k的值,并求l的直线方程
7.若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)与圆的位置是
8.圆x2+yBiblioteka +2x+6y+9=0与圆x2+y2-6x+2y+1=0的位置关系是
9.求过点P(6,-4)且被圆 截得长为 的弦所在的直线方程.
10.已知直线l:kx-y-3k=0,圆M:x2+y2-8x-2y+9=0
(1)求证:直线l与圆M必相交;

最新苏教版江苏省新课标数学限时训练17(必修2)

最新苏教版江苏省新课标数学限时训练17(必修2)

第17练 班级 姓名 1.在△ABC 中,已知030,35,5===A c b ,则面积S 为 .
2.已知点),2,5(),2,2(-N M 且点A 在x 轴上,,90
=∠MAN 则点A 的坐标为 .
3.在等差数列{n a }中, 已知3a +4a +5a +6a +7a =450,则=9S .
4.能表示图中阴影部分的不等式组为 .
5.已知圆()2222210x y ax y a +--+-=(0<a <1),则原点O 与圆的位置关系为 .
6. 如图,矩形''''C B A O 是水平放置的一个平面图形的直观图,其中''A O =6, ''C O =2,则原
图形的面积为 .
7.已知2sin(3)cos()πθπθ+=+,则222sin 3sin cos cos θθθθ+-的值
为 .
8.直线l :3x -y +m =0与圆C :x 2+y 2-2x -2=0相切,则直线l 在x 轴上的截距是 .
9.正四棱台上,下底面边长为a ,b ,侧棱长为c ,求它的高和斜高.
O ' A ' C ' B ' x ' y '
10.已知曲线22:2(410)10200C x y kx k y k ++++++=,其中1k ≠-;
(1)求证:曲线C 都是圆,并且圆心在同一条直线上;
(2)证明:曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值;。

苏教版高中数学高一必修二必修二限时训练9

苏教版高中数学高一必修二必修二限时训练9
第9练 班级姓名
1.等差数列 中, , ,则 =.
2.等比数列 中, , ,则 =.
3.无论 取何实数时,直线( -1) -( +3) -( -11)=0恒过定点,则定点的坐标为.
4.给出如下四个命题:①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个共同的公共点;③多面体至少有四个面;④棱台的侧棱所在直线均相交于同一点,其中正确的命题是.
5.圆心在直线 上且与轴相切于点(1,0)的圆的方程为.
6.不等式组 的点中,目标函数 的最大值为.
7.两圆相交于两点 和 ,且两圆的圆心都在直线 上,则 的值为.
8.已知圆
的取值范围.
9.已知圆 的一条直径通过直线 被圆所截弦的中点,求该直径所在的直线的方程.
10.过点P(1,4),作直线与两坐标轴的正半轴相交,当直线在两坐标轴上的截距之和最小时,求此直线方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

打印版
打印版 第17练 班级 姓名
1.在△ABC 中,已知030,35,5===A c b ,则面积S 为 .
2.已知点),2,5(),2,2(-N M 且点A 在x 轴上,,90 =∠MAN 则点A 的坐标
为 .
3.在等差数列{n a }中, 已知3a +4a +5a +6a +7a =450,则=9S .
4.能表示图中阴影部分的不等式组为 .
5.已知圆()2
222210x y ax y a +--+-=(0<a <1),则原点O 与圆的位置关系为 .
6. 如图,矩形''''C B A O 是水平放置的一个平面图形的直观图,其中''A O =6, ''C O =2,则原图形的面积为 .
7.已知2sin(3)cos()πθπθ+=+,则2
22sin 3sin cos cos θθθθ+-的值为 .
8.直线l :3x -y +m =0与圆C :x 2+y 2-2x -2=0相切,则直线l 在x 轴上的截距是 .
9.正四棱台上,下底面边长为a ,b ,侧棱长为c ,求它的高和斜高.
10.已知曲线22
:2(410)10200C x y kx k y k ++++++=,其中1k ≠-;
(1)求证:曲线C 都是圆,并且圆心在同一条直线上;
(2)证明:曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值;
O ' A ' C ' B '
x ' y '。

相关文档
最新文档