电池管理系统BMS讲解学习29页PPT

合集下载

电池管理系统BMS课件

电池管理系统BMS课件
巡检生产源数据 已不具备可比性 无法用于维护管理: —终端用户电池性能评估; —电池维护数据支撑。
PPT学习交流
18
8、电压ADC数据的有效性
单体电池电压ADC
电池1 R1
电池2
R2 —电池 3
电池1电压=电池1电压+IR1 还存在安全问题
PPT学习交流
19
巡检数据不能用于维护管理
性能良好
过充电
PPT学习交流
14
探索SOC应交由学生去训练想象力 不应成为解决技术瓶颈的难题。
首要任务应首先解决:
防止发生:单体电池过充电
单体电池过放电;
温度超过允许值;
电流超过允许值;
PPT学习交流
15
5、安全和可信度差
• 单纯的A/D数字采样,不能解决安全问题。 理由:采样失调不可识别
A/D
输入电阻



电动汽车蓄电池管理系统 (BMS)
PPT学习交流
1
一、对蓄电池管理系统的 理解
PPT学习交流
2
背景和目的
不均衡性是蓄电池的基本属性
PPT学习交流
3
其中:超过平均电压 : 37.3% (发生过充电的几率)
低于平均电压: 48. 0%
等于平均电压: 14.7% (即额定充电电压)
PPT学习交流
4
新电池组同样可能存在问题
过放电
性能下降
PPT学习交流
20
巡检数据不能用于质量 评估
PPT学习交流
21
培育系我国统集成商
事关大局
PPT学习交流
22
《规划》明确了: 立足于自主创新, 掌握握核心技术
当前衣顿和艾里逊的系统 不仅仅是对自主创新的巨大冲击; ——创新环境面临挑战

电动汽车电池管理系统BMS知识培训课件

电动汽车电池管理系统BMS知识培训课件

烟雾报警、绝缘检测方法
烟雾报警
在车辆行驶过程中由于路况复杂及电池本身的工艺问题,可能由于过热、挤压和碰撞等原因而导致电池出现冒烟或着火等极端恶劣的事故,若不能即使发现并得到有效处理,势必导致事故的进一步扩大,对周围电池、车辆以及车上人员构成威胁,严重影响带车辆运行的安全性。动力电池管理系统中烟雾报警的报警装置应安装于驾驶员控制台,在接收到报警信号时,迅速发出声光报警和故障定位,保证驾驶员能够及时发现,能接收报警器发出的报警信号。
02电池管理系统内部主控板与检测板之间的通信。
04在有参数设定功能的电池管理系统上,还有电池管理系统主控板与上位机的通信。
06RS232、RS485总线等方式在电池管理系统内部通信中也有应用。
01数据通信是电池管理系统的重要组成部分之一。
03电池管理系统与车载主控制器、非车载充电机等设备间的通信
05CAN通信方式是现阶段电池管理系统通信应用的主流
能量转移式均衡利用电感或电容等储能元件,把电池组中容量高的单体电池,通过储能元件转移到容量比较低的电池上。
能量转换式均衡通过开关信号,将电池组整体能量对单体电池进行能量补充,或者将单体电池能量向整体电池组进行能量转换。
非能量耗散型均衡管理
动力电池热管理系统的功能电池内传热的基本方式电池组热管理系统设计实现
新建和编辑工步文件动态验证电池管理系统。
12
13
操作步骤及工作要点
14
测试完毕后按下“启动/停止测试”按钮,停开关。
关闭上位机电脑。
整理、清洁实验室。
断开电源柜电源线,断开采样柜与动力电池的接线。
通过电源管理系统确认电池状态,如果电池电量不足,则使用充电机进行补充充电。
均衡系统的分类

《BMS系统简介》课件

《BMS系统简介》课件

智能化控制
BMS系统通过集中控制和自动化管理,实现对建 筑设备的精确控制,提高效率和便利性。
安全管理
BMS系统能够通过监测火灾、安防设备等,及时 预警并采取相应措施,提高建筑的安全性和保 护性。
能耗优化
通过实时监测和调整建筑设备的运行状态和能 耗,BMS系统可以实现能源的合理利用,降低能 耗成本。
舒适性提升
总结和展望
BMS系统作为实现建筑智能化的重要工具,具有广泛的应用前景和优势。未 来,随着科技的不断进步,BMS系统将进一步发展和完善,为人们创造更智 能和舒适的生活环境。
通过智能化控制和自适应调节,BMS系统可以提 供更加舒适和环保的室内环境,提升居住和工 作的舒适度。
BMS系统的工作原理
1
数据处理Biblioteka 2BMS系统对采集的数据进行实时处理和分
析,形成可视化的信息和控制指令。
3
数据采集
通过传感器、仪表等设备将建筑内各种参 数和数据采集并传送给BMS系统。
控制与管理
根据预设的策略和参数,BMS系统通过控 制终端设备和执行器,实现对建筑设备的 精确控制和管理。
《BMS系统简介》PPT课 件
BMS系统(Building Management System)是一种集中控制和监测建筑物内部 设备和系统的智能化管理系统。
BMS系统的定义
建筑管理系统(BMS)是一种智能化系统,用于集中控制和监测建筑内部各 种设备和系统,以实现能耗优化、安全管理和舒适性提升。
BMS系统的功能与优势
BMS系统的组成部分
传感器与仪表
用于采集建筑内部各种参数和 数据,如温度、湿度、能耗等。
控制器与执行器
用于接收并执行BMS系统的控 制指令,实现对建筑设备的精 确控制。

BMS系统介绍课件

BMS系统介绍课件

BMU技术参数
编号项目最小值典型值最大值备注 13 开关量输出数量2 BMU 14 开关量驱动能力 (A) 0.5 1 额定驱动电流, 寿 命100000次 15 开关量稳定时间 (ms) 10 30 16 对外通讯接口数量1 2 1路CAN
17 CAN总线波特率 (KHZ) 125 250 500 支持标
单体电池电压检测: 分布式支持最多12串、24串、 36串、 48串、 60串电池的单 体电压检测。订制式可以支持高达300串。精度达 到±10mV以内。
温度检测: 采用NTC温度传感器, 0-8个/板可配 置, 传感器独立编号和实现自检和 故障定位功能。
电流检测: 采用全范围、等精度的分流器和高精 度集成芯片, 满足电流检测和能量累积 的需要, 使电流检测的精度达到1%。
SOC估算: 通过分流器对电流采样, 完成电流的 测量, 包括AH计量和SOC估算。
BMU技术参数
编号项目最小值典型值最大值备注 1 供电电源 (V) 8 24 36 2 工作功耗 (W) 2.5 3 BMU自身功耗, 不含驱动 外围设备 (如风机、继 电器) 电流 3 动力电池泄漏电流 (uA) 10 100 4 各电压检测模块通道数量12 60 每个电压检测模 块接入电池串联数量 5 电压巡检周期 (ms) 30 60 每个通道时间, 采 用巡检方式, 不包括上传到 BCU的时间 6 电压检测精度 (%FSR) ±0.2
BCU功能与接口
电流检测: 采用全范围、等精度的分流器和高精度 集成芯片, 满足电流检ห้องสมุดไป่ตู้和能量累积 的需要, 使电流检测的精度达到1%。
绝缘检测: 检测动力电池与车体之间的绝缘电阻, 并按照GB/T 18384.1~ 18384.

电动汽车电池管理系统BMSPPT教学课件

电动汽车电池管理系统BMSPPT教学课件

13
电池温度采集方法
(2)热电偶采集法
原理:采集双金属体在不同温度下产生不同的热电动 势,通过查表得到温度的值。 特点:由于热电动势的值仅和材料有关,所以热电偶 的准确度很高。但是由于热电动势都是毫伏等级的信 号,所以需要放大,外部电路比较复杂。
14
电池温度采集方法
(3)集成温度传感器采集法
4
第7章 电动汽车电源管理系统
7.1动力电池管理系统功能及参数采集方法 7.2 动力电池电量管理系统
7.3 动力电池的均衡管理
7.4 动力电池的热管理 7.5 动力电池的电安全管理及数据通讯
5
7.1 动力电池管理系统功能及参数采集方法
1
2
掌握电池管理系统的功能 掌握单体电压采集方法
3
4 5
6
掌握电池温度采集方法
基于线性光耦合元件TIL300的电池单体电压采集电路原理图
12
电池温度采集方法
(1)热敏电阻采集法
原理:利用热敏电阻的阻值随温度的变化而变化的特 性,用一个定值电阻和热敏电阻串联起来构成一个分 压器,从而把温度的高低转化为电压信号,再通过模 数转换得到温度的数字信息。 特点:热敏电阻成本低,但线性度不好,而且制造误 差一般也比较大。
18
电池SOC估算精度的影响因素
(1)充放电电流
大电流可充放电容量低于额定容量,反之亦然。
(2)温度
不同温度下电池组的容量存在着一定的变化。
(3)电池容量衰减
电池的容量在循环过程中会逐渐减少。
(4)自放电
自放电大小主要与环境温度有关,具有不确定性。
(5)一致性
电池组的一致性差别对电量的估算有重要的影响。

电池管理系统BMS ppt课件

电池管理系统BMS  ppt课件

ppt课件
3
项目研发目标
热管理:实时采集每个电池箱内电池测点温度,通过对散热风扇的控
制防止电池温度过高。
均衡控制:由于电池个体的差异以及使用状态的不同等原因,电池在
使用过程中不一致性会越来越严重,系统应能判断并自动进行均衡处理。
故障诊断:电动汽车电池的工作电压一般都比较高(90V-700V),系
统应监测供电短路,漏电等可能对人身和设备产生危害的状况。
ppt课件
13
显示单元
ppt课件
14
显示单元
显示单元选用7”带 触摸屏真彩显示,系统 采用SAM9263B为主芯 片的ARM9方案,重新 设计电源;CAN总线以 及与上位PC机之间通 讯用485总线系统采用 光耦隔离;主板和核心 板分开设计,以及采用 汽车级别的相关芯片, 系统稳定性高,保证该 系统能在汽车这样的恶 劣环境下工作。
屏蔽双绞线;
4)PCB板制作尽量加大线间距,以降低导向间的分布电容并使其导向垂
直,以减小磁场耦合,减小电源线走线有效面积及选用性价比高的器件等。
ppt课件
18
硬件设计特点
主控单元
与采集单元一样,硬件设计增加了多种抗干扰措施,以保证在恶 劣电磁环境下可靠运行;
ppt课件
2
项目研发目标
实时跟踪电池运行状态及参数检测:实时采集电池充放电状
态,采集数据有电池总电压,电池总电流,每个电池箱内电池测点 温度以及单体模块电池电压等。由于动力电池都是串联使用的,所 以这些参数的实时,快速,准确的测量是电池管理系统正常运行的 基础。
剩余电量估算:电池剩余能量相当于传统车的油量。荷电状态
由于电动汽车用电环境复杂,有很强的电磁干扰!从而影响信号在线检测

BMS系统介绍ppt课件

BMS系统介绍ppt课件

2



适用电池类型 磷酸铁锂电池、三元锂电池、钛酸锂电池、锰 酸锂电池、镍氢电池(12串/通道) 适用应用场合 适用于各种车型:乘用车、商用车、特种车、 低速车等 适用于多种动力配置模式:纯电动、混合动力
3



主要性能 电压检测 电压输入范围:0-5VDC 电压检测精度:±0.5%FSR 电压巡测周期:30ms 温度检测 温度数量0~8可配置且可定位 温度检测范围:-40℃~125℃ 温度检测精度:±1℃ 电流检测 1路电流检测通道(分流器) 分流器类型:50-1000A可选 电流采样时间:≤100ms 采样精度:±1%FSR 在线均衡 基于电池SOC差异均衡 多种均衡模式可选 均衡电流:≮100mA(被动)—推荐 均衡电流:≮1000mA(主动)
10
11



单体电池电压检测:分布式支持最多12串、24串、36串、 48串、 60串电池的单 体电压检测。订制式可以支持高达300串。精度达到±10mV以内。 温度检测:采用NTC温度传感器,0-8个/板可配置,传感器独立编号和实现自检和 故障定位功能。 电流检测:采用全范围、等精度的分流器和高精度集成芯片,满足电流检测和能量累积 的需要,使电流检测的精度达到1 %。 SOC估算:通过分流器对电流采样,完成电流的测量,包括AH计量和SOC估算。 均衡控制:基于电池的SOC差异,采用电阻旁路的方式以不小于100mA电流实施均 衡。 继电器控制:具备2路额定驱动电流为1A/24V(峰值电流可达到2A,持续1S)的继电 器控制通道2路(仅支持控负方式),可配置为散热风机控制或/与加热控制或/与继电器 控制。 通讯功能: CAN通信:提供1路高速CAN通讯接口(用于电池管理系统内部各个单元之间的数 据传输,独立运行时可作为对外通讯接口)。

电池管理系统综述PPT课件

电池管理系统综述PPT课件
BMS专用芯片主要优势在于多单体高精度信号采集, 以及单体均衡、故障报警等功能的集成,但通用性 差,一般只能应用于特定类型的电池组。
第10页/共29页
• BMS发展现状
课题研究背景
第11页/共29页
课题研究背景
▪ 国内BMS发展
• 科研方面主要是清华大学、同济大学、北京交 通大学及北京理工大学等几所高校取得成果较 多。
三段式充电波形图
第17页/共29页
电池端电压(V)
BMS综述
• 2.蓄电池荷电状态(SOC)估计
SOC广义描述: 电池当前可用的剩余容量与 电池实际可放出总容量的比值。(%) SOC估算技术难点: A 电池内部电化学过程复杂; B 电池工作特性呈非线性,且受多因素影响; C 建立准确的电池模型困难; D 单体间的不一致性处理较复杂。
单体2
单体3
第23页/共29页
Q1
L1 Q2
L2 Q3
L3
Qr Cr Lr
单体1 单体2 单体3 A
DC B
BMS综述
▪ 5.上位机
上位机主界面
主要功能: 状态实时显示; 参数调整; 历史数据记录; 主回路控制; 故障、报警等。
第24页/共29页
上位机监控平台
▪ 5.上位机
参数设置子界面第25页/共29页
课题研究背景
• BMS发展现状
国外在BMS方面的研究成果相对显著,主要是以集 成化芯片化为特点。典型产品有美国Linear Technology公司产的LTC/LTM系列电池管理芯片, 美国TI公司推出的bq系列电池管理芯片以及美国O2 Micro公司开发的OZ890电池管理芯片等,其主要特 点为体积小,集成度高,具有较强的针对性。

电池管理系统BMSppt课件

电池管理系统BMSppt课件
电动汽车蓄电池管理系统 (BMS)
一、对蓄电池管理系统的理解
背景和目的
不均衡性是蓄电池的基本属性
其中:超过平均电压 : 37.3% (发生过充电的几率) 低于平均电压: 48. 0% 等于平均电压: 14.7% (即额定充电电压)
新电池组同样可能存在问题
锂离子蓄电池充放电效率 可高达98%以上;
巡检数据不能用于质量评估
培育系我国统集成商
事关大局
《规划》明确了: 立足于自主创新, 掌握握核心技术 当前衣顿和艾里逊的系统 不仅仅是对自主创新的巨大冲击; ——创新环境面临挑战 更重要的是对新能源战略的战略目标的挑战 —能否取得主导权 —自主的技术路线。
后面内容直接删除就行 资料可以编辑修改使用 资料可以编辑修改使用
影响允许充放电电流和功率的, 主要是电池内阻和回路阻抗;
而蓄电池内阻,与SOC
并没有具有一般和普遍性的函数关系;
数据模型仅具有特殊性和时域性;
依据SOC对锂电池进行能量管理 只是一种对其缺乏基本了解的意想。
探索SOC应交由学生去训练想象力 不应成为解决技术瓶颈的难题。
首要任务应首先解决:
防止发生:单体电池过充电 单体电池过放电; 温度超过允许值; 电流超过允许值;
高效率同时产生了极差的 抗不均衡性特性;
管理系统的基本目的: 在最优化蓄电池组效能的同时; 防止发生单体电池的 过充电 过放电 超温 过流 必要时,提供相关信息。
定义—四个系统的集成
充 电 系 统
蓄电池管理系统
充电 控制 模块 充电 控制 模块 放电 控制 模块 放电 控制 模块
控制系统数据支撑 维护系统数据支撑
5、安全和可信度差

单纯的A/D数字采样,不能解决安全问题。 理由:采样失调不可识别

电池管理系统PPT课件

电池管理系统PPT课件

报文显示
显示当前日期,接收原报 文时间和代码,观察报文 接收实时性。
数据存储
系统信息、 状态
BMU 电池信息
新建文件用于保存CAN接 收的信息数据。完成后才 能激活启动CAN功能。
实时显示BMS数据(总电 压、电流、SOC,绝缘电 阻、最高最低电压、最高 最低温度,允许的最大电 流和功率)
电池状态:充放、继电 器、自检、风扇及系统故 障等系统状态
价格便宜,不需要供 电。只能检测直流, 精度随温度变化大。
14
第14页/共38页
功能介绍
3.电压、电流、温度采集
温度采集: 热敏电阻:PTC/NTC 温度传感器:DS18B20
15
第15页/共38页
功能介绍
4.SOC估算
SOC: State of charge.荷电状态。 剩余电量的一个衡量指标 。
SOC = Ce ×100% Ca
其中:Ce为剩余容量,Ca为可用容量。 计算方法一:安时积分法
t1
C0 +∫i(t)dt
SOC = t0 Ca
×100%
0.5C Discharge and Different Current
Voltage(V)
00000000001111111111222222222233333333334.........................................66660123457890123457890123457890123457890
技术 特点
1.具有选择性的存储 CAN信息。 2.CAN报文选择性存 储。
31
第31页/共38页
项目介绍—数据记录仪
原理框图
实物图
32

电池管理系统BMSppt课件

电池管理系统BMSppt课件
17
巡检生产源数据 已不具备可比性 无法用于维护管理: —终端用户电池性能评估; —电池维护数据支撑。
18
单体电池电压ADC
电池1
R1
电池2
R2
—电池 3
电池1电压=电池1电压+IR1 还存在安全问题
19
过放电
过充电 性能良好 性能下降
20
21
事关大局
22
《规划》明确了: 立足于自主创新, 掌握握核心技术 当前衣顿和艾里逊的系统 不仅仅是对自主创新的巨大冲击; ——创新环境面临挑战 更重要的是对新能源战略的战略目标的挑战 —能否取得主导权 —自主的技术路线。
电动汽车蓄电池管理系统 (BMS)
1
2
背景和目的
不均衡性是蓄电池的基本属性
3
其中:超过平均电压 : 37.3% (发生过充电的几率) 低于平均电压: 48. 0% 等于平均电压: 14.7% (即额定充电电压)
4
5
锂离子蓄电池充放电效率 可高达98%以上;
高效率同时产生了极差的 抗不均衡性特性;
13
影响允许充放电电流和功率的, 主要是电池内阻和回路阻抗;
而蓄电池内阻,与SOC
并没有具有一般和普遍性的函数关系;
数据模型仅具有特殊性和时域性;
依据SOC对锂电池进行能量管理 只是一种对其缺乏基本了解的意想。
14
首要任务应首先解决:
防止发生:单体电池过充电 单体电池过放电; 温度超过允许值; 电流超过允许值;
6
管理系统的基本目的: 在最优化蓄电池组效能的同时;
防止发生单体电池的
过充电 过放电 超温 过流 必要时,提供相关信息。
7
定义—四个系统的集成

电动汽车电池管理系统BMSPPT教学课件

电动汽车电池管理系统BMSPPT教学课件

基于线性光耦合元件TIL300的电池单体电压采集电路原理图
12
电池温度采集方法
(1)热敏电阻采集法
原理:利用热敏电阻的阻值随温度的变化而变化的特 性,用一个定值电阻和热敏电阻串联起来构成一个分 压器,从而把温度的高低转化为电压信号,再通过模 数转换得到温度的数字信息。 特点:热敏电阻成本低,但线性度不好,而且制造误 差一般也比较大。
SOC
22
Q M idt
0
t
QM
SOC估计常用的算法
(3)电池内阻法 电池内阻有交流内阻(常称交流阻抗)和直流内阻 之分,它们都与SOC有密切关系。准确测量电池 单体内阻比较困难,这是直流内阻法的缺点。在 某些电池管理系统中,内阻法与Ah计量法组合使 用来提高SOC估算的精度。
25
7.3 动力电池的均衡管理
1
掌握能量耗散型均衡管理
2
掌握非能量耗散型均衡管理
3
电池均衡管理系统应用中存在的问题
26
引入
宝马公司 ActiveE 混合动力汽车即采用了由 Preh GmbH 公司提供的带有能量耗散式均衡 系统的 BMS。 均衡系统的目的是什么?
为了平衡电池组中单体电池的容量和能量差异,提高 电池组的能量利用率。
13
电池温度采集方法
(2)热电偶采集法
原理:采集双金属体在不同温度下产生不同的热电动 势,通过查表得到温度的值。 特点:由于热电动势的值仅和材料有关,所以热电偶 的准确度很高。但是由于热电动势都是毫伏等级的信 号,所以需要放大,外部电路比较复杂。
14
电池温度采集方法
(3)集成温度传感器采集法
35
动力电池热管理系统的功能

电池管理系统BMS知识讲座

电池管理系统BMS知识讲座
95AH
电池第一类不一致性
#2
实际容量
100AH
#3
实际容量
105AH
第一类不一致性:电池自身容量的 差异导致的不一致性。第一类不一 致性由电池生产制造工艺不完善导 致,同一批次电池容量有一定的离 散性。
假设#1, #2 和 #3三支100AH串联电 池的实际容量分别为95AH, 100AH, 105AH, 即存在第一类不一致性,容 量差异为10AH; 三支电池的初始电 量为均为 60AH, 此情况下纯粹由第 一类不一致性导致的SOC最大差异将 为9%(充放电末端达到最大值), SOC最小差异为5%左右。
实例:GENASUN GLD, Elithion Lithiumate BMS。
BMS拓扑结构---Centralized
定义:电压、温度采集以 及均衡等所有功能均由主 控完成(无从控),主控 与电池无总线通信,直接 导线相连。
优点:设计、构造简单。 缺点:连线长、连线多,
可靠性不高,管理电池数 量不能太多。 实例: Flex BMS48 , JustPower BMS 系列某 产品(BattMind C series) 。
如何解决电池存在的不一致性
BMS可以通过均衡功能解决电池组使用过程 中 存在的第一类不一致性和第二类不一致 性。
均衡分为主动均衡和被动均衡。被动均衡 以电阻能耗法为代表,该方法可以实现充 电均衡。主动均衡DC/DC变换器为代表,基 于此主动均衡又可以分为以下四种方式, 每种方式均可以实现充电均衡和放电均衡 :
SoH = (measured capacity) /(rated capacity) 1 > SoH > 0 A battery is at its end of lifetime at SoH of 0.8 . (Energy Institute Battery Research Group)

电动汽车电池管理系统BMSppt

电动汽车电池管理系统BMSppt
电池能量管理算法还应考虑充电效率、充电时 间、电池安全性等因素,以实现最优的电池使 用效果。
05
电池管理系统优化与改进 建议
提通过智能充电和放电策略,避免电池过度 充电和过度放电,从而延长电池使用寿命 。
电池安全防护
采用先进的电池安全技术,如热管理、过 载保护和短路保护等,确保电池在使用过 程中不受损害。
电池热管理技术通过使用散热器、冷却系统等设备,控制电池的温度和散热效果。这有助于保证电池 的安全性和稳定性,避免电池因过热而发生燃烧或爆炸等危险。
03
电池管理系统硬件设计
硬件架构设计
01
分布式电池管理系 统
采用分布式架构,由主控制器和 多个子控制器组成,实现数据共 享和协同控制。
02
中央集中式电池管 理系统
电池能量管理技术
总结词
电池能量管理技术是优化电池使用效率和使用寿命的关键技术。
详细描述
电池能量管理技术通过控制电池的充电和放电过程,优化电池的使用效率和使用寿命。这包括避免电池过充和 过放,以及合理分配和管理电池的能量。
电池热管理技术
总结词
电池热管理技术是控制电池温度和保证电池安全的关键技术。
详细描述
采用中央控制器,对电池组进行 集中管理和控制,实现高效管理 和维护。
03
混合式电池管理系 统
结合分布式和中央集中式架构, 实现数据共享、协同控制和高效 管理。
传感器选型与设计
温度传感器
监测电池温度,确保电池在适宜的温度范 围内工作。
电流传感器
监测电池电流,计算电池的能量消耗和充 电状态。
电压传感器
BMS的主要功能包括监测电池状态、控制电池充电、管理电池放电、保护电池安 全等。

电动汽车电池管理系统BMS专题培训课件

电动汽车电池管理系统BMS专题培训课件
应用特点:所需要测量的电池单体电压较高而且对精 度要求也高的场合使用
单体电压采集方法
(2)恒流源法
组成:运放和场效应管组合构成减法运算恒流源电路 应用特点:结构较简单,共模抑制能力强,采集精度
高,具有很好的实用性。
单体电压采集方法
(3)隔离运放采 集法
组成:隔离运算 放大器、多路选 择器等
目录
第1章 电动汽车与动力电池发展历程 第2章 电动汽车动力电池基本知识 第3章 铅酸动力电池及其应用 第4章 碱性动力电池及其应用 第5章 锂离子动力电池及其应用 第6章 用于电动汽车的其他动力源 第7章 电动汽车电源管理系统
本章学习目标
1.掌握动力电池管理系统的功能 2.掌握动力电池管理系统电压、电流、温度等参
电动汽车电池管理系统BMS
引入
电池管理系统( Battery Management System, BMS)是用来对蓄电池组进行安全监 控及有效管理,提高蓄电池使用效率的装置。对 于电动车辆而言,通过该系统对电池组充放电的 有效控制,可以达到增加续驶里程,延长使用寿 命,降低运行成本的目的,并保证动力电池组应 用的安全性和可靠性。动力电池管理系统已经成 为电动汽车不可缺少的核心部件之一。本章将重 点介绍动力电池管理系统的构成、功能和工作原 理。
数采集方法 3.掌握动力电池电量管理、电安全管理、均衡管
理、热管理等的实现方法
第7章 电动汽车电源管理系统 7.1动力电池管理系统功能及参数采集方法 7.2 动力电池电量管理系统 7.3 动力电池的均衡管理 7.4 动力电池的热管理 7.5 动力电池的电安全管理及数据通讯
7.1 动力电池管理系统功能及参数采集方法
应用特点:系统 采集精度高,可 靠性强,但成本 较高
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档