二重积分的计算小结

合集下载

归纳二重积分的计算方法

归纳二重积分的计算方法

归纳二重积分的计算方法摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限.关键词 :函数极限;计算方法;洛必达法则; 四则运算前言二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧.1. 预备知识1.1二重积分的定义]1[设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有()1,niiii f J ξησε=∆-<∑,则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),DJ f x y d σ=⎰⎰,其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域.1.2二重积分的若干性质1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),Dkf x y d σ⎰⎰(),Dk f x y d σ=⎰⎰.1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且()()[,,]Df x yg x y d σ±⎰⎰()(),,DDf x y dg x y d σσ=±⎰⎰⎰⎰.1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且()12,D D f x y d σ⎰⎰()()12,,D D f x y d f x y d σσ=±⎰⎰⎰⎰1.3在矩形区域上二重积分的计算定理设(),f x y 在矩形区域D [][],,a b c d =⨯上可积,且对每个[],x a b ∈,积分(),dcf x y dy ⎰存在,则累次积分(),b dacdx f x y dy ⎰⎰也存在,且(),Df x y d σ⎰⎰(),b dacdx f x y dy =⎰⎰.同理若对每个[],y c d ∈,积分(),baf x y dx ⎰存在,在上述条件上可得(),Df x y d σ⎰⎰(),d bcady f x y dx =⎰⎰2.求的二重积分的几类理论依据二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法.2.1在直角坐标系下,对一般区域二重积分的计算X -型区域: ()()(){}12,,D x y y x y y x a x b =≤≤≤≤Y -型区域: ()()(){}12,,D x y x y x x y c y d =≤≤≤≤定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则(),Df x y d σ⎰⎰()()()21,by x ay x dx f x y dy =⎰⎰即二重积分可化为先对y ,后对x 的累次积分.同理在上述条件下,若区域为Y -型,有(),Df x y d σ⎰⎰()()()21,dx y cx y dx f x y dy =⎰⎰例1求两个底面半径相同的直交圆柱所围立体的体积V . 解:设圆柱底面半径为a ,两个圆柱方程为 222x y a +=与222x z a +=.只要求出第一卦限部分的体积,然后再乘以8即得所求的体积.第一卦限部分的立体式以z =,以四分之一圆域D :00,y x a ⎧⎪≤≤⎨≤≤⎪⎩为底的曲顶柱体,所以2230012()83a a DV dx a x dx a σ===-=⎰⎰于是3163V a =. 另外,一般常见的区域可分解为有限个X -型或Y -型区域,用上述方法求得各个小区域上的二重积分,再根据性质1.23求得即可.2.2 二重积分的变量变换公式定理: 设(),f x y 在有界闭域D 上可积,变换T : (),x x u v =, (,)y y u v =将平面uv 由按段光滑封闭曲线所围成的闭区域∆一对一地映成xy 平面上的闭区域D,函数(),x x u v =,(,)y y u v =在∆内分别具有一阶连续偏导数且它们的函数行列式()()(),,0,x y J u v u v ∂=≠∂, (),u v ∈∆,则()()()()(),,,,,Df x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰.用这个定理一般有两个目的,即被积函数化简单和积分区域简单化. 例1 求x y x yDedxdy -+⎰⎰,其中D 是由0x =,0y =,1x y +=所围区域.解 为了简化被积函数,令u x y =-,v x y =+.为此作变换T :1()2x u v =+,1()2y u v =-,则()11122,011222J u v ==>-. 即111100111()2224x y u u v x yvvv De e edxdy e dudv dv e du v e e dv ---+-∆-==-=⎰⎰⎰⎰⎰⎰⎰ 例2 求抛物线2y mx =,2y nx =和直线y x β=,y x α=所围区域D 的面积()D μ(0,0)m n αβ<<<<.解D 的面积()DD dxdy μ=⎰⎰.为了简化积分区域,作变换T : 2u x v =,uy v=.它把xy 平面上的区域D 对应到uv 平面上的矩形区域[][],,m n αβ∆=⨯.由于()234212,01uu v v J u v u v vv-==>-,(),u v ∈∆, 所以()()22334433()6n m D n m udv D dxdy dudv udu v v βαβαμαβ∆--====⎰⎰⎰⎰⎰⎰ 2.3 用极坐标计算二重积分定理: 设(),f x y 在有界闭域D 上可积,且在极坐标变换T :cos sin x r y r θθ=⎧⎨=⎩ 0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立()(),cos ,sin (,)Df x y dxdy f r r J r drd θθθθ∆=⎰⎰⎰⎰.其中cos sin (,)sin cos r J r r r θθθθθ-==.当积分区域是源于或圆域的一部分,或者被积函数的形式为()22,f x y 时,采用该极坐标变换.二重积分在极坐标下化累次积分的计算方法:(i )若原点O D ∉,且xy 平面上射线θ=常数与D 边界至多交与两点,则∆必可表示成12()()r r r θθ≤≤,αθβ≤≤,于是有21()()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰类似地,若xy 平面上的圆r =常数与D 的边界多交于两点,则∆必可表示成12()()r r θθθ≤≤,12r r r ≤≤,所以2211()()(,)(cos ,sin )r r r r Df x y dxdy rdr f r r d θθθθθ=⎰⎰⎰⎰.(ii )若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆可表示成0()r r θ≤≤,02θπ≤≤.所以2()(,)(cos ,sin )r Df x y dxdy d f r r rdrπθθθθ=⎰⎰⎰⎰.(iii)若原点O 在D 的边界上,则∆为0()r r θ≤≤,αθβ≤≤, 于是()(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰例1 计算22()xy DI e d σ-+=⎰⎰,其中D 为圆域: 222x y R +≤.解 利用极坐标变换,由公式得2220(1)Rr R I re dr e ππ--==-⎰⎰.与极坐标类似,在某些时候我们可以作广义极坐标变换:T :cos sin x ar y br θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤,cos sin (,)sin cos a ar J r abr b br θθθθθ-==.如求椭球体2222221x y z a b c++≤的体积时,就需此种变换.2.4利用二重积分的几何意义求其积分当(,)0f x y ≥时,二重积分(,)Df x y dxdy ⎰⎰在几何上就表示以(,)z f x y =为曲顶,D 为底的曲顶体积.当(,)1f x y =时,二重积分(,)Df x y dxdy ⎰⎰的值就等于积分区域的面积.例6计算:DI σ=,其中D :22221x y a b +≤.解因为被积函数z =0≥,所以I 表示D为底的z =为顶的曲顶柱体体积.由平行xoy 面的截面面积为()(1)A x ab z π=-,(01)z ≤≤,根据平行截面面积为已知的立体体积公式有101(1)3I ab z dz ab ππ=-=⎰2.5 积分区域的边界曲线是由参数方程表示的二重积分有关计算 2.51利用变量代换计算设D 为有界闭域,它的边界曲线,()t αβ≤≤且{}(,),()D x y a x b c y y x =≤≤≤≤,当x a =时,t α=;当x b =时,t β=。

第十章第二节_二重积分的计算法剖析讲解

第十章第二节_二重积分的计算法剖析讲解

x2 2
]2y
dy
2
(2 y
y3 )dy
11
1
2
8
【例2】 计算 y 1 x2 y2d , D :由y x, x 1,
D
和y 1所围闭区域 .
y
【解】 D既是X—型域又是—Y型域
1
D y=x
[法1] DX
:
1 x 1
x
y
1
-1 x o
1x
上式
1
1
dx y
1 x2 y2dy 1
1. 【预备知识】
(1)[X-型域] a x b, 1( x) y 2( x).
y 2(x)
D
y 1( x)
a
b
y 2(x)
D
y 1( x)
a
b
其中函数1( x、) 在2( x区) 间 上[a连,b续] .
【X—型区域的特点】 穿过区域且平行于y 轴的直 线与区域边界相交不多于两个交点.
先求交点

y2
x
(1,-1) 或 (4,2)
y x2
[法1]
DY
:
1
y2
y x
2 y
2
xyd
2
dy
y2 xydx
D
1
y2
55
8
[法2] 视为X—型域 则必须分割 D D1 D2
0 x 1 D1 : x y
x
D2
:
1
x
x 2
4 y
x
1
x
4
x
xyd
dx xydy dx xydy
0
x
1
x2

二重积分的计算法

二重积分的计算法

二重积分的计算法二重积分(Double integral)是微积分中的一种重要计算方法,用于计算平面区域上一些函数在该区域上的积分值。

在二维平面上,我们可以将区域划分为无数个小矩形,然后计算每个小矩形内函数的函数值乘以其面积,再将所有小矩形的积分值求和,即可得到二重积分的近似值。

为了更好地理解和计算二重积分,我们将其分为三个部分进行讨论:积分区域的确定、积分函数的选择和积分计算方法。

一、积分区域的确定:确定二重积分的积分区域是计算的第一步。

在平面上,积分区域可以是一个有界闭区域、一个有界开区域或者无穷区域。

积分区域的确定需要根据具体问题进行分析、绘图和建立坐标系。

对于有界闭区域,通常可以直接利用给定的区域边界方程建立坐标系,进而确定积分区域。

对于有界开区域,可以通过给定的边界方程建立坐标系,然后再引入限制条件来确定积分区域。

例如,给定条件是$x>0$,$y>0$,则可以建立第一象限坐标系,并按照给定的边界方程绘制积分区域。

对于无穷区域,可以通过适当的变量替换将其转化为有界区域,然后再进行积分计算。

例如,将积分区域$x>0$,$y>0$转换为极坐标系下的∞半径的极坐标区域。

二、积分函数的选择:选择正确的积分函数是二重积分计算的关键。

积分函数的选择需要根据具体问题中函数的性质和所要计算的目的进行合理选择。

常见的积分函数包括多项式函数、三角函数、指数函数和对数函数等。

对于具体问题,可以根据函数的性质选择合适的积分函数。

在选择积分函数时,还需要考虑积分区域的特点。

如果积分区域对称,可以考虑选择合适的奇偶函数进行积分计算,减少计算量。

三、积分计算方法:根据实际情况,二重积分可以采用不同的计算方法。

1.直角坐标系下的二重积分:在直角坐标系下,可以通过定积分的计算方法进行二重积分的计算。

其中,积分区域可以用水平边界和垂直边界的方程表示,从而确定积分的上下限。

如果积分区域为有界区域,可以采用上下限函数的自变量依次固定的方法进行计算。

二重积分计算技巧总结

二重积分计算技巧总结

二重积分计算技巧总结二重积分是微积分中的一个重要概念,是对二元函数在特定区域上的面积进行求解,也可以理解为一个函数在一个平面区域上的平均值。

在实际计算中,可以通过一些技巧来简化计算过程,提高计算效率。

本文将总结一些常用的二重积分计算技巧,帮助读者更加灵活地应用二重积分。

1.利用对称性在计算二重积分时,如果被积函数具有对称性,可以通过利用对称性简化计算过程。

常见的对称性有x轴对称、y轴对称、原点对称等。

对称性可以减少计算量,提高计算效率。

2.变量替换变量替换是处理二重积分的常用方法。

通过合适的变量替换,可以将原来的二重积分转化为更简单的形式。

常见的变量替换包括极坐标变换、矩形坐标变换等。

极坐标变换是将矩形坐标转化为极坐标的过程,从而转化为极坐标上的二重积分。

极坐标变换的公式如下:x = r*cosθy = r*sinθ其中,r是极径,θ是极角。

矩形坐标变换则是将原来的矩形区域映射为一个更简单的区域,从而简化计算过程。

常见的矩形坐标变换包括矩形到正方形的变换、矩形到单位圆的变换等。

3.积分次序交换对于一些特定的被积函数,可以通过交换积分次序来简化计算过程。

一般来说,交换积分次序需要满足一些条件,比如被积函数在给定的积分区域上连续可微。

需要注意的是,交换积分次序可能会改变积分的范围,因此在交换积分次序时需要注意积分区域的变化。

4.多次积分的简化二重积分常常需要进行多次积分,这时可以使用多次积分的简化方式来提高计算效率。

常见的多次积分简化方式包括积分区域分割、积分区域的对称性利用、积分范围的变量替换等。

通过适当地选择简化方式,可以大大减少计算量,提高计算效率。

5.划分区域的选择在计算二重积分时,划分区域的选择对于计算结果具有一定的影响。

对于一些特定的区域,可以选择合适的划分方式来简化计算过程。

常见的划分区域的选择方式包括将区域分为两个相互重叠的子区域、将区域分为若干个均匀分布的子区域等。

通过合适的划分方式,可以简化计算过程,提高计算效率。

二重积分的计算小结

二重积分的计算小结

二重积分的计算小结在数学中,二重积分是一种用来计算平面上曲线下的面积的方法。

它是定积分的扩展,可以用于计算更加复杂的形状的面积,例如圆形、椭圆形和弧形等。

在本文中,我们将详细介绍二重积分的计算方法,并提供一些重要的应用案例和技巧。

同时,我们还将讨论二重积分的性质以及它与其他数学概念的关系。

设 $f(x,y)$ 是定义在闭区域 $D$ 上的实函数,将闭区域 $D$ 分成许多小的矩形区域,其中第 $i$ 个小矩形的面积为 $\Delta A_i$,选择任意一点 $(x_i^*, y_i^*)$ 作为该矩形的代表点,则二重积分的近似值可以表示为:$$\sum_{i=1}^n f(x_i^*, y_i^*) \Delta A_i$$其中,$n$ 是划分区域时小矩形的个数,$\Delta A_i$ 是第 $i$ 个小矩形的面积。

当划分的小矩形越来越小,并且代表点 $(x_i^*, y_i^*)$ 在每个小矩形内部时,这个近似值将趋近于一个常数,即二重积分的值。

我们用符号 $\iint_D f(x,y) dA$ 表示二重积分的值,其中 $dA$ 表示对面积的微元。

接下来,我们将介绍几种计算二重积分的方法。

一、二重积分的计算方法1. 矩形法(Riemann和):将区域 $D$ 划分为若干个小的矩形区域,计算每个矩形的面积和函数值,并将它们相加得到近似值。

2. 二次积分法(Fubini定理):根据 Fubini 定理,我们可以将二重积分转化为两个一重积分的乘积:$$\iint_D f(x,y) dA = \int_a^b \left( \int_c^d f(x,y) dy\right) dx$$3. 极坐标法:当区域 $D$ 的形状具有旋转对称性时,使用极坐标计算二重积分可以更加简便。

通过转化为极坐标系,并利用极坐标下的Jacobian 行列式,可以将原二重积分转化为对一重积分的积分。

4. 线性代换法:对于不规则区域,我们可以通过线性代换将其转换为规则区域,然后再进行计算。

二重积分计算技巧总结

二重积分计算技巧总结
D
4 2 首先 O 在区域内,所以 r 0 ,然后过 O 作射线,射线与 y 1 相交,就将参数方程代入被
O 与区域内点的连线的张角范围为 : 交的曲线得到 r sin 1 r
1 1 ,于是 D : ;0 r sin 4 2 sin
y2 y u u ,v 则 x 2 , y . v v x x
1 v2 J 1 v

2u u v3 4 u v 2 v
于是原区域 D 变换成新区域 D m, n , ,这样原来不规则的区域变成了矩形区域, 方便积分。 面积 S
1dxdy 1 J dudv
1 1 1 (u v) , y (v u ) ,则 J= 2 2 2 D 的边界一一对应得到新区域 D : 1 x 0 u v 0 u v 2 1 y 0 v u 0 u v 2 x
x y 1
1 1 u v v u 1 v 1 2 2
D D


dv n (n 2 m 2 )( 3 3 ) u d u v 4 m 6 3 3
(2)极坐标下的二重积分 极坐标代换法基本格式为:
x r cos y r sin
被积函数 f x, y 化为 f r cos , r sin r , 接下来重要的是讨论 r , 的范围。 其中 r , 的 范围由于积分次序的不同而不同。 若积分次序为先 r 后 ,则对应方法为“张角 射线” ,其中确定张角的方法为,原点与区 域内点的连线的最小、最大夹角;作射线确定 r 的范围:过原点 O 作射线,把先后与所作 射线相交的边界线化成 r r 的形式,就确定出 r 的范围。 比如:求 f x, y dxdy ,其中 D 的范围如图:

二重积分的计算

二重积分的计算

二重积分的计算二重积分的计算,是多元函数积分学的第一个难关,这一关过好了,对于其他类型(三重积分,曲线和曲面积分等)的积分,将开个好头,希望大家真正理解并掌握。

首先需要化点功夫弄明白二重积分的定义以及性质。

这里我就不写过多的内容,因为深入理解需要在具体的计算中才能加深理解,就事论事地背定义是很难有效果的。

二重积分的计算,最基本也是最根本的是要理解转化二重积分为累次积分的原理,即一个二重积分化为两个有先后次序的定积分,这2个定积分一般彼此存在着关系,先积分的那个定积分一般是后一个定积分的被积函数。

转化的前提是需要将被积区域D 表示为不等式形式。

二重积分的被积区域是个平面域,常用两种表示法:1)12()():x y x D a x b ϕϕ≤≤⎧⎨≤≤⎩,这时,累次积分的次序是“先y 后x ”,具体公式为2211()()()()(,)(,)(,)x x bb Da x a x f x y d f x y dy dx dx f x y dy ϕϕϕϕσ⎛⎫== ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰⎰。

2)12()():y x y D c y d ψψ≤≤⎧⎨≤≤⎩,这时,累次积分的次序是“先x 后y ”,具体公式为2211()()()()(,)(,)(,)y y dd Dc y c y f x yd f x y dx dy dy f x y dx ψψψψσ⎛⎫== ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰⎰。

上述公式表示的是在直角坐标系下的计算公式。

在直角坐标系下,对平面区域可以沿平行于坐标轴的直线来分划该区域,所以积分微元d dxdy σ=。

如果被积区域D 是一个矩形区域,则:c y dD a x b≤≤⎧⎨≤≤⎩,而且被积函数可表为(,)()()f x yg xh y =, 此时,二重积分实际变为两个独立定积分的乘积:(,)()()()()b d bdDa c a cf x y dg xh y d y d x g x d x h y d yσ⎛⎫==⎪⎝⎭⎰⎰⎰⎰⎰⎰, 这是二重积分计算中最简单的情况。

第二节二重积分的计算

第二节二重积分的计算

第二节二重积分的计算二重积分是微积分中的重要内容之一,用于计算在二维区域上的函数的平均值、面积、质心等物理量。

本文将介绍二重积分的计算方法,并以具体的例子说明。

在介绍二重积分的计算方法之前,我们先来回顾一下一重积分。

一重积分是对一维区间上的函数进行求和的过程。

对于一维区间[a,b]上的函数f(x),可以将区间[a,b]分成无数个小区间,然后计算每个小区间上的函数值与区间长度的乘积,并将所有结果相加。

数学表示为:∫f(x)dx = lim(n->∞) Σ f(xi)Δx其中lim(n->∞)表示极限,Σ表示求和,xi表示区间的随机点,Δx表示区间的长度。

而二重积分是对二维区域上的函数进行求和的过程。

对于二维区域D 上的函数f(x,y),可以将区域D分成无数个小区域,然后计算每个小区域上的函数值与小区域面积的乘积,并将所有结果相加。

数学表示为:∬f(x,y)dxdy = lim(m,n->∞) Σ Σ f(xi,yj)ΔxΔy其中lim(m,n->∞)表示极限,Σ表示求和,xi和yj表示区域的随机点,Δx和Δy分别表示小区域在x轴和y轴方向上的长度。

二重积分的计算方法有两种:直角坐标系下的二重积分和极坐标系下的二重积分。

首先介绍直角坐标系下的二重积分的计算方法。

在直角坐标系下,二重积分的计算可以通过将区域D投影到x轴和y轴上得到:∬f(x,y)dxdy = ∫[a,b]∫[c,d]f(x,y)dxdy其中[a,b]是区域D在x轴上的投影区间,[c,d]是区域D在y轴上的投影区间。

接下来我们以具体的例子说明直角坐标系下的二重积分的计算方法。

考虑函数f(x,y)=x^2+y^2在区域D:0≤x≤1,0≤y≤2上的二重积分的计算。

首先我们将其投影到x轴和y轴上,得到[a,b]=[0,1]和[c,d]=[0,2]。

然后我们可以计算二重积分:∬f(x,y)dxdy = ∫[0,1]∫[0,2](x^2 + y^2)dxdy内层积分∫(x^2 + y^2)dx的结果为(x^3/3 + xy^2),[0,1] = (1/3 + y^2/3),将其带入到外层积分∫(1/3 + y^2/3)dy中,得到:∫[0,2](1/3 + y^2/3)dy = (y/3 + y^3/9),[0,2] = (2/3 + 8/9)- (0/3 + 0/9) = 2/3 + 8/9 = 26/9所以,函数f(x,y)=x^2+y^2在区域D:0≤x≤1,0≤y≤2上的二重积分的结果为26/9接下来我们介绍极坐标系下的二重积分的计算方法。

直角坐标系下二重积分的计算

直角坐标系下二重积分的计算

直角坐标系下二重积分的计算在直角坐标系下,二重积分是对一个平面区域上的函数进行积分。

它的计算可以通过几何方法或者代数方法来进行,下面我们将介绍二重积分的计算方法以及一些相关的概念和定理。

一、二重积分的概念1.二重积分的定义设函数f(x, y)在平面区域D上有界,D在xOy平面上的投影为Ω,若Ω上有限个点构成的网格P={ (x1,y1), (x2,y2), ..., (xn,yn) },其中每个小区域ΔS1,ΔS2,...,ΔSn(ΔSk的形状和大小可以不一样),则每个ΔS_k上取点(xi_k)Σf(xi_k, yi_k)ΔS_k,称为这些和的极限Σf(xi_k, yi_k)ΔS_k,当格数无穷,网格直径趋于0时,如果此极限存在,则称此极限为平面区域D上函数f(x, y)的二重积分,记为∬D f(x, y)dxdy。

2.二重积分的几何意义从几何意义上理解,二重积分可以表示在平面区域D上函数f(x, y)的值在x轴与y轴所确定的平面区域上的总体积。

通过对平面区域上的小区域求和得到总体积。

3.二重积分的代数意义从代数意义上理解,二重积分可以将一个平面区域上的函数表示为两个单变量函数的积分,即先对y进行积分,再对x进行积分。

这种方法可以简化对复杂函数的积分运算。

二、计算二重积分的方法1.直角坐标系下的二重积分计算在直角坐标系下,二重积分的计算可以通过对x或y进行积分,然后再对另一个变量进行积分来进行。

具体而言,对于函数f(x, y),可以先对y进行积分,再对x进行积分,或者先对x进行积分,再对y 进行积分。

这种计算方法又称为换序积分。

2.计算中间量的选择在进行二重积分计算时,为了简化计算,可以选择合适的中间量来进行变量替换。

例如,可以选择极坐标中的r和θ来替代x和y,从而简化计算过程。

3.区域的划分在计算二重积分时,需要将平面区域D划分为若干小区域,然后对每个小区域进行积分。

可以选择直线或者曲线来进行划分,也可以选择矩形或者圆形等形状的小区域来进行划分。

对二重积分的总结

对二重积分的总结

对二重积分的总结1. 什么是二重积分?二重积分是微积分中的重要概念之一,用于计算平面上某个区域上的二元函数在该区域上的积分值。

在数学中,我们可以将二重积分看作是某个函数在二维平面上的累积效果。

二重积分通常用来计算平面上的面积、质量分布以及物体的质心等。

2. 二重积分的表示方法二重积分的表示方法有两种常见形式:定积分形式和累次积分形式。

定积分形式定积分形式的二重积分表示为:$\\iint_R f(x, y) \\,dx \\,dy$其中R表示被积函数f(x,y)在平面上的积分区域。

累次积分形式累次积分形式的二重积分表示为:$\\int_a^b \\int_c^d f(x, y) \\,dy \\,dx$这种形式先对y进行积分,得到一个含有x的函数,再对x进行积分得到最终结果。

3. 二重积分的计算方法对于二重积分的计算,可以根据具体的情况选择不同的计算方法,主要有以下几种常见的方法:直接计算直接计算是最常见的计算二重积分的方法。

根据被积函数的具体形式和积分区域的特点,可以利用定积分的计算规则直接进行计算。

极坐标转换对于具有圆形对称结构或者与极轴或极角相关的被积函数,使用极坐标转换可以大大简化积分的计算过程。

变量代换是一种常见的数学方法,对于一些复杂的积分问题,可以通过选取适当的变量代换,将原积分问题转化为更简单的形式进行计算。

分割求和对于一些具有复杂形状的积分区域,可以通过将区域进行适当的分割,然后对每个小区域进行积分,再将结果进行求和,从而得到整个区域的积分值。

4. 二重积分的性质二重积分具有一些重要的性质,包括线性性、可加性和保号性等。

线性性二重积分具有线性性,即对于常数c和两个可积函数f(x,y)和g(x,y),有:$\\iint_R (cf(x, y)+g(x, y)) \\,dx \\,dy = c\\iint_R f(x, y) \\,dx \\,dy + \\iint_Rg(x, y) \\,dx \\,dy$可加性若区域R可分为若干个互不相交的子区域 $R_1, R_2, \\ldots, R_n$,则有:$\\iint_R f(x, y) \\,dx \\,dy = \\iint_{R_1} f(x, y) \\,dx \\,dy + \\iint_{R_2} f(x, y) \\,dx \\,dy + \\ldots + \\iint_{R_n} f(x, y) \\,dx \\,dy$保号性如果f(x,y)在区域R上恒大于等于零,即 $f(x, y) \\geq 0$,则有:$\\iint_R f(x, y) \\,dx \\,dy \\geq 0$5. 二重积分的应用二重积分在实际问题中有广泛的应用,主要包括以下几个方面:面积计算二重积分可以用于计算平面上区域的面积。

二重积分的概念和计算

二重积分的概念和计算

二重积分的概念和计算
一、二重积分的概念
二重积分也叫做双重积分,是一类高等数学中的一种重要的概念,它
是指将函数关于两个变量进行积分运算,而且是先计算外层的积分,再计
算内层的积分,也可以称之为“先积分后积分”。

所以,二重积分是指把一个二元函数关于x先积分,再把f(x,y)
关于y积分的过程,最后能够得到B(x,y)函数,通常我们可以采用它
来对双变量函数进行积分运算。

二、二重积分的计算
1、在坐标系上绘制图像,判断积分的界限,即a和b的值,以及R
的值;
2、根据及题目要求,写出积分表达式;
3、根据外层和内层的分界,写出外层的积分表达式;
4、根据内层的分界,写出内层的积分表达式;
5、外层积分根据公式进行求解,把外层积分结果代入到内层积分中,计算内层积分的值;
6、把外层积分的值和内层积分的值相乘,得到最终的二重积分的结果。

此外,在积分运算中,我们还可以通过Green-Haddam公式来把二重
积分转化为一次积分,计算更加快捷方便。

Green-Haddam公式:∫ab∫f(x,y)dxdy=∫(R∫f(x,y)dxdy)dR
三、示例说明
下面通过举例来详细讲解一下二重积分的计算:求解:∫0,3∫0,2x2dy dx。

高等数学二重积分总结

高等数学二重积分总结

第九章二重积分【本章逻辑框架】【本章学习目标】⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。

⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。

熟练掌握直角坐标系和极坐标系下重积分的计算方法。

⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。

9.1 二重积分的概念与性质【学习方法导引】1.二重积分定义为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。

从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ∆∆∆的分法要任意,二是在每个小区域i σ∆上的点(,)i i i ξησ∈∆的取法也要任意。

有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。

2.明确二重积分的几何意义。

(1) 若在D 上(,)f x y ≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以(,)f x y 为曲顶的曲顶柱体的体积。

特别地,当(,)f x y =1时,(,)d Df x y σ⎰⎰表示平面区域D 的面积。

(2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰的值是负的,其绝对值为该曲顶柱体的体积(3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。

归纳二重积分的计算方法

归纳二重积分的计算方法

归纳二重积分的计算方法摘要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限.关键词 :计算方法;极坐标;变量变换二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重要的应用。

重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分。

求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧。

1.求的二重积分的几类理论依据二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型、Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法。

1.1在直角坐标系下,对一般区域二重积分的计算X -型区域: ()()(){}12,,D x y y x y yx a x b =≤≤≤≤Y -型区域: ()()(){}12,,D x y x y x x y c y d =≤≤≤≤定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则(),Df x y d σ⎰⎰()()()21,by x ay xdx f x y dy =⎰⎰即二重积分可化为先对y ,后对x 的累次积分。

同理在上述条件下,若区域为Y -型,有(),Df x y d σ⎰⎰()()()21,dx y cx y dx f x y dy =⎰⎰例1:求两个底面半径相同的直交圆柱所围立体的体积V 。

解:设圆柱底面半径为a ,两个圆柱方程为222x y a +=与222x z a +=.只要求出第一卦限部分的体积,然后再乘以8即得所求的体积。

第一卦限部分的立体式以z =为曲顶,以四分之一圆域D:00y x a ⎧⎪≤≤⎨≤≤⎪⎩为底的曲顶柱体,所以2230012()83a a DV dx a x dx a σ===-=⎰⎰,于是3163V a =。

二重积分计算方法

二重积分计算方法

二重积分计算方法二重积分是微积分中的一种重要概念,用于计算平面上的曲面面积、一些物理量的总量等问题。

在本文中,我将向您介绍二重积分的计算方法。

首先,我们需要了解二重积分的定义。

对于一个定义在闭区域D上的函数f(x,y),其在D上的二重积分可以表示为:∬Df(x,y)dA其中,dA表示微小面积元素,可以看作是一个非常小的正方形区域。

为了计算二重积分,我们需要确定积分区域D以及函数f(x,y)的表达式。

接下来,将介绍几种常用的计算方法。

1.直角坐标系下的二重积分在直角坐标系下,二重积分的计算可以分为两种情况:先积x再积y,或者先积y再积x。

在具体计算时,我们可以采用以下步骤:a)确定积分区域D,并在坐标平面上对其进行准确定位。

b)根据题目给出的条件,写出函数f(x,y)的表达式。

c)根据积分顺序,分别计算内、外积分的上下限,并对函数f(x,y)进行必要的变换(如换元、利用对称性等)。

d)将上下限代入函数f(x,y)的表达式,计算出积分的被积函数。

e)对内、外积分依次进行计算,并最终得出结果。

2.极坐标系下的二重积分在一些问题中,使用直角坐标系来计算二重积分可能比较复杂,此时可以尝试使用极坐标系来简化计算。

计算极坐标系下的二重积分的步骤如下:a)确定积分区域D,并在坐标平面上对其进行准确定位。

b)根据题目给出的条件,写出函数f(r,θ)的表达式,其中r为极径,θ为极角。

c)根据积分顺序,确定被积函数中r和θ的上下限,并对函数f(r,θ)进行必要的变换。

d)将上下限代入函数f(r,θ)的表达式,计算出积分的被积函数。

e)对内、外积分依次进行计算,并最终得出结果。

3.利用对称性简化计算在一些情况下,函数f(x,y)具有一定的对称性,可以通过利用对称性来简化二重积分的计算过程。

常见的对称性包括奇偶性、轮换对称性、中心对称性等。

例如,如果函数f(x,y)是关于y轴对称的,则可以将计算范围限制在x≥0的情况下,并将最终结果乘以24.利用变换简化计算在一些问题中,我们可以通过变换的方法将二重积分转化为其中一种标准形式,然后使用标准形式的计算公式来求解。

重积分总结

重积分总结

多重积分的方法总结计算根据被积区域和被积函数的形式要选择适当的方法处理,这里主要是看被积区域的形式来选择合适的坐标形式,并给区域一个相应的表达,从而可以转化多重积分为多次的积分形式.具体的一些作法在下面给出.一.二重积分的计算重积分的计算主要是化为多次的积分.这里首先要看被积区域的形式, 选择合适的坐标系来进行处理.二重积分主要给出了直角坐标系和极坐标系的计算方法.我们都可以从以下几个方面把握相应的具体处理过程:1.被积区域在几何直观上的表现(直观描述,易于把握);2.被积分区域的集合表示(用于下一步确定多次积分的积分次序和相应的积分限);3.化重积分为多次积分.1. 在直角坐标下: (a) X-型区域几何直观表现:用平行于y 轴的直线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数1()y y x =和2()y y x =;被积区域的集合表示:12{(,),()()}D x y a x b y x y y x =≤≤≤≤; 二重积分化为二次积分:21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰.(b) Y-型区域几何直观表现:用平行于x 轴的直线穿过区域内部,与边界的交点最多两个.从而可以由左右交点位于的曲线确定两个函数1()x x x =和2()x x x =;被积区域的集合表示:12{(,),()()}D x y c y d x x x x x =≤≤≤≤;二重积分化为二次积分:21()()(,)(,)dx y cx y Df x y dxdy dx f x y dx =⎰⎰⎰⎰.2. 在极坐标下:几何直观表现:从极点出发引射线线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数1()r r θ=和2()r r θ=(具体如圆域,扇形域和环域等);被积区域的集合表示:1212{(,),()()}D r r r r θθθθθθ=≤≤≤≤,注意,如果极点在被积区域的内部,则有特殊形式2{(,)02,0()}D r r r θθπθ=≤≤≤≤; 直角坐标下的二重积分化为极坐标下的二重积分,并表示成相应的二次积分:2211()()(,)(cos ,sin )(cos ,sin )r r DDf x y dxdy f r r rdrd d f r r rdr θθθθθθθθθθ==⎰⎰⎰⎰⎰⎰.注:具体处理题目时,首要要能够选择适当的处理方法,并能够实现不同积分次序及直角坐标和极坐标的转化.3. 二重积分的换元法:(,)z f x y =在闭区域D 上连续,设有变换(,),(,)(,)x x u v T u v D y y u v =⎧'∈⎨=⎩将D '一一映射到D 上,又(,),(,)x u v y u v 关于u , v 有一阶连续的偏导数,且(,)0(,)x y J u v ∂=≠∂, (,)u v D '∈ 则有(,)((,),(,))DD f x y dxdy f x u v y u v J dudv '=⎰⎰⎰⎰.二.三重积分的计算三重积分具体的处理过程类似于二重积分,也分为三个步骤来进行处理. 1. 在直角坐标下:空间区域几何直观表现:用平行于z 轴的直线穿过区域内部,与边界曲面的交点最多两个.从而可以由下面和上面交点位于的曲面确定两个函数1(,)z z x y =和1(,)z z x y =,并把区域投影到xoy 面上从而确定(,)x y 的范围,记为xy D ;被积区域的集合表示:12{(,,)(,),(,)(,)}xy V x y z x y D z x y z z x y =∈≤≤, 进一步地, xy D 可以表示成X -型区域或Y -型区域;三重积分化为三次积分:21(,)(,)(,,)(,,)xyz x y z x y VD f x y z dV dxdy f x y z dz =⎰⎰⎰⎰⎰⎰(所谓“二套一”的形式)2211()(,)()(,)(,,)by x z x y ay x z x y dx dy f x y z dz =⎰⎰⎰(xy D 为X -型)2211()(,)()(,)(,,)dx y z x y cx y z x y dy dx f x y z dz =⎰⎰⎰(xy D 为Y -型)注:类似于以上的处理方法,把空间区域投影到 yoz 面或zox 面又可把三重积分转化成不同次序的三次积分.这时区域几何直观表现,区域的集合表示,以及新的三次积分次序如何可见,三重积分最多可以对应六种积分次序.这里还有所谓一套二的处理方法,区域的直观表现为:平行于xoy 面的截面面积容易求得.作为被积函数最好与x ,y 无关,即可表示为为()f z .则区域表示为:{(,,),(,)}z V x y z c z d x y D =≤≤∈,其中z D 表示垂直于z 轴的截面.此时,三重积分化为:(,,)()zdcVD f x y z dV dz f z dxdy =⎰⎰⎰⎰⎰⎰ (所谓“一套二”的形式)()z dD cf z S dz =⎰其中z D S 表示截面z D 的面积,它是关于z 的函数.2. 在柱坐标下:柱坐标与直角坐标的关系:cos sin ,(0,02,)x r y r r z z z θθθπ=⎧⎪=≤<∞≤≤-∞<<+∞⎨⎪=⎩空间区域几何直观表现:用平行于z 轴的直线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个函数1(,)z z x y =和1(,)z z x y =.空间区域在xoy 面上的投影区域易于用参数r 和θ表示范围(具体如圆域,扇形域和环域等),并且1(,)z z x y =和1(,)z z x y =也易于进一步表示z 成关于,r θ较简单的函数形式,比如22x y +可以看成一个整体(具体如上、下表面为旋转面的情形);被积区域的集合表示:121212{(,),()(),(,)(,)}V r r r r z r z z r θθθθθθθθ=≤≤≤≤≤≤;直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:(,,)(cos ,sin ,)VVf x y z dV f r r z rdrd dzθθθ=⎰⎰⎰⎰⎰⎰222111()(,)()(,)(cos ,sin ,)r z r r z r d rdr f r r z dz θθθθθθθθθ=⎰⎰⎰.3. 在球坐标下:球坐标与直角坐标的关系:sin cos sin sin ,(0,02,0)cos x r y r r z ϕθϕθθπϕπϕ=⎧⎪=≤<∞≤≤≤≤⎨⎪=⎩空间区域几何直观表现:从原点出发引射线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个球坐标函数1(,)r r r θ=和2(,)r r r θ=; (具体如球心在原点或z 轴上的球形域)被积区域的集合表示:121212{(,,),,(,)(,)}V r r r r θϕθθθϕϕϕθϕθϕ=≤≤≤≤≤≤;直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:2(,,)(sin cos ,sin sin ,cos )sin VVf x y z dV f r r r rdrd d ϕθϕθθϕθϕ=⎰⎰⎰⎰⎰⎰=212(,)20(,)(sin cos ,sin sin ,cos )sin r r d d f r r r r dr ππθϕθϕθϕϕθϕθθϕ⎰⎰⎰.如球心在原点半径为a 的球形域下:220(,,)(sin cos ,sin sin ,cos )sin aVf x y z dV d d f r r r r dr ππθϕϕθϕθθϕ=⎰⎰⎰⎰⎰⎰.4. 三重积分的换元法:(,,)u f x y z =在闭区域V 上连续,设有变换(,,):(,,),(,,)(,,)x x u v w T y y u v w u v w V z z u v w =⎧⎪'=∈⎨⎪=⎩将V '一一映射到V 上,又(,,),(,,)x u v w y u v w 和(,,)z u v w 关于u , v 和w 有一阶连续的偏导数,且(,,)0(,,)x y z J u v w ∂=≠∂, (,)u v V '∈则有(,,)((,,),(,,),(,,))VVf x y z dV f x u v w y u v w z u v w J dudvdw =⎰⎰⎰⎰⎰⎰.三.重积分的几何和物理应用 1. 几何应用a) 二重积分求平面区域面积;b) 二重积分求曲顶柱体体积;c)三重积分求空间区域的体积;d) 二重积分求空间曲面的面积.求曲面的面积A ,对应着曲面方程为直角坐标系下的二元函数形式和参数方程形式分别有以下公式:i ) 曲面方程 :(,),(,)S z f x y x y D =∈DA =ii )曲面参数方程(,):(,),(,)(,)uv x x u v S y y u v u v D z z u v =⎧⎪=∈⎨⎪=⎩()()uvuvu u u v v v uu u D D vvvij k A x i y j z k x i y j z k dudv x y z dudv x y z =++⨯++=⎰⎰⎰⎰ 注:这里的公式都对函数有相应的微分条件. 2. 物理应用包括求质量、质心、转动惯量和引力等应用,积分是研究物理问题的重要工具.建立物理量对应的积分公式的一般方法是从基本的物理原理出发,找到所求量对应的微元,也就是对应积分的被积表达式了.以上对多重积分的计算方法做了个小结,关键要在具体的情况下要找到对应的适宜的处理方法.处理重积分计算时从几何形式出发,则易于直观把握.注意选择适当的坐标系,注意被积区域的表达,还要注意函数关于区域的对称性.这种对称性包括奇对称和偶对称,从而可以简化计算过程.。

二重积分的计算方法

二重积分的计算方法

二重积分的计算方法在数学的广袤领域中,二重积分是一个重要的概念,它在许多实际问题和理论研究中都有着广泛的应用。

理解和掌握二重积分的计算方法,对于我们解决诸如计算平面区域的面积、物体的质量、重心等问题具有关键意义。

首先,让我们来明确一下二重积分的定义。

二重积分是用来计算在一个平面区域上的函数的累积量。

简单来说,就是把这个区域划分成无数个小的部分,对每个小部分上的函数值乘以小部分的面积,然后把这些乘积加起来。

接下来,我们探讨几种常见的二重积分计算方法。

直角坐标系下的计算方法是基础且重要的。

当积分区域是一个矩形时,计算相对简单。

假设积分区域为$D =\{(x,y) | a \leq x \leq b, c \leq y \leq d\}$,被积函数为$f(x,y)$,则二重积分可以表示为:\\iint_D f(x,y) \,dx\,dy =\int_a^b \left(\int_c^d f(x,y) \,dy \right)dx\这意味着我们先对$y$ 进行积分,把$x$ 看作常数,得到一个关于$x$ 的函数,然后再对$x$ 进行积分。

如果积分区域不是矩形,而是由直线围成的一般区域,比如$D =\{(x,y) |\varphi_1(x) \leq y \leq \varphi_2(x), a \leq x \leq b\}$,那么二重积分可以表示为:\\iint_D f(x,y) \,dx\,dy =\int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) \,dy \right)dx\这种情况下,我们先对$y$ 积分,然后对$x$ 积分。

极坐标系下的计算方法在处理具有圆形或扇形特征的积分区域时非常有用。

在极坐标系中,点的坐标表示为$(r,\theta)$,其中$r$ 表示点到原点的距离,$\theta$ 表示极角。

如果积分区域可以用极坐标表示为$D =\{(r,\theta) |\alpha \leq \theta \leq \beta, \varphi(\theta) \leq r \leq \psi(\theta)\}$,被积函数为$f(x,y) = f(r\cos\theta, r\sin\theta)$,那么二重积分可以表示为:\\iint_D f(x,y) \,dx\,dy =\int_{\alpha}^{\beta} \left(\int_{\varphi(\theta)}^{\psi(\theta)} f(r\cos\theta, r\sin\theta) r \,dr \right)d\theta\这里需要注意的是,多了一个$r$ ,这是因为在极坐标下,面积元素$dx\,dy$ 要换成$r\,dr\,d\theta$ 。

二重积分计算方法总结

二重积分计算方法总结

二重积分计算方法总结二重积分是微积分中的重要概念,用于求解平面区域上的面积、质量、重心等物理量。

本文将总结二重积分的计算方法,并介绍其应用领域和注意事项。

一、二重积分的基本概念二重积分是将一个二元函数在一个有界的平面区域上进行积分运算。

具体地说,对于定义在平面区域D上的函数f(x,y),其二重积分可以表示为:∬D f(x,y) dA其中,dA表示平面区域D上的面积元素。

二重积分的计算方法有多种,下面将分别介绍。

二、二重积分的计算方法1. 基本方法:将平面区域D划分为若干个小矩形,计算每个小矩形上函数值与面积的乘积,再将所有小矩形的乘积求和即可得到二重积分的近似值。

当小矩形的数量无限增加时,近似值趋近于准确值。

2. 极坐标法:对于具有极坐标方程的平面区域D,可以通过转换成极坐标系来简化计算。

具体做法是将二重积分转化为极坐标下的二重积分,并利用极坐标的相关性质进行计算。

3. 变量代换法:对于某些具有特殊形式的平面区域D,可以通过变量代换来简化计算。

常见的变量代换方法有矩形坐标系到极坐标系、直角坐标系到柱坐标系等。

4. 先y后x法:当被积函数的表达式较为复杂时,可以通过先对y 进行积分,再对x进行积分的方法来简化计算。

这种方法常用于计算面积和质心等物理量。

三、二重积分的应用领域二重积分在物理学、工程学、经济学等领域具有广泛的应用。

以下列举几个常见的应用场景:1. 计算平面区域的面积:通过对二维平面区域上的函数进行二重积分,可以得到该区域的面积。

2. 计算平面区域的质量:假设平面区域上每个点的密度为ρ(x,y),则通过对ρ(x,y)与面积元素dA进行二重积分,可以计算出该区域的质量。

3. 计算平面区域的重心:通过对二维平面区域上的函数f(x,y)与x、y的乘积进行二重积分,可以求解出该区域的重心坐标。

4. 计算平面区域的矩:通过对二维平面区域上的函数f(x,y)与x的幂次进行二重积分,可以计算出该区域的各阶矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二重积分的计算小结
一、知识要点回顾
1.二重积分的定义;
2.二重积分的几何意义及其物理模型。

二重积分
⎰⎰)
(σσd y x f ),(的几何意义就是以)(σ为底,以)(s 为顶的曲顶柱体的
体积,其物理模型就是一个曲顶柱体。

3.二重积分在直角坐标系下的计算
(1)若积分区域D 是由两条直线x=a,x=b,以及两条曲线y= φ1(x),y= φ2(x) (φ1(x)
≤φ2(x),a ≤x ≤b)所围成,则
dxdy y)f(x D ⎰⎰)
(, =⎰b
a
dx
dy y)f(x x x ⎰)
2(φφ
)
(1,
(2)若区域D 是由两条直线y=c,y=d 以及两条曲线x=φ1(y),x=φ2(y)(φ1(y)
≤φ2(y),
c ≤y ≤d)所围成,则
⎰⎰
=
D
y)dxdy f(x ,dx y)f(x dy d
c
y y ⎰

)
2()
1(φφ,
4.极坐标下二重积分的计算法
x=θcos r ,y=θsin r
如果区域D 是由从极点出发的两条射线αθ=,βθ=(α<β)和两条曲线
)(2),(1θθr r r r == ()(1θr <)(2θr )所围成,则
dr rd )r f(r y)dxdy f(x D
D
θθθ⎰⎰
⎰⎰=sin ,cos ,
rdr )r f(r d r r ⎰⎰
=
β
α
θθθθθ)
(2)
(1sin ,cos
5.曲线坐标下二重积分的计算法
设函数),(),,(v u y y v u x x ==在直角坐标平面v O u '上的封闭区域D '上连续,有一阶连续偏导数,而且雅克比行列式
)
()()
()()
()()
()
()
,(),(v y u y v x u x v u y x J ∂∂∂∂∂∂∂∂=∂∂=

⎰⎰
=
D
y)dxdy f(x ,⎰⎰
D
dudv J v u y v u f(x )),(),,(
二.二重积分的计算举例
1.. 计算二重积分dxdy y y
D ⎰⎰sin ,其中D 为由直线x
y =与曲线2
y x =所围成的区域.
解:画出积分域如图所示 解方程组
{
2,
x y x y ==
解得图中的两个交点为)1,1(),0,0(,D 可表示为D=},
10|),{(2
y x y y x y
≤≤≤≤, 于是
.
1sin 1sin sin sin )(sin sin 1
10
102102-=-=-==⎰⎰⎰⎰⎰⎰⎰ydy y ydy dy y y y y dx y y dy dxdy y y y y D
图4
2.计算二重积分dxdy D
2
2
y
x y x ⎰⎰
++
2
2
)sin(π
的值,其中积分区域为}41|){(2
2
≤+
≤=y
x y x,D 。

解:由对称性可以只考虑第一象限的积分域 采用极坐标。

则积分区域变为
πθρθρ2≤≤≤≤=0,21|){(,D } 于是
4
)2
(4)sin(4
)
sin()sin(20
221
2
2
-=-===++
⎰⎰
⎰⎰⎰
⎰⎰
θ
θπ
ρ
πρθθ
ρρρ
πρπ
π
π
d d d d d dxdy D
D
2
2
y
x y x
3,计算二重积分dxdy D
x
y x y e
⎰⎰+-的值的大小,其中D 是由x 轴,y 轴以及x+y=2所围成
的封闭区域。

解: 如图1,由题意,可设
x y v x y u +=-=, 则可得
2u v x -=
,2
u
v y += 图1
;
22;0;0=→=+-=→==→=v y x v u y v u x 由由由 图2 D
x
y
o 2
=+y x D '
u
v
o
v
u =v
u -=2=v
所以积分区域变为图2中的封闭区域,从而
=∂∂=v)(u y x,J ,)(
所以
e
e e e e e e vdv du v v v u dv dvdu
dxdy x y x
y D v
u
D 1
)120
21202121(-'-=--=-=-=
+-⎰⎰⎰⎰⎰⎰⎰
4.设⎪⎩⎪⎨⎧≤≤≤≤=其他
当00,21,,2x
y x y y)f(x x ,求
dxdy y)f(x D
⎰⎰
,,其中}2|),{(2
2
x y x D y
x ≥+
=。

解:积分区域为圆
12
2)1(=+
-y
x 以外的部分
设图中阴影区域为 D 0=}2,21|),{(2
x y x x y x x
≤≤-≤≤
于是
20
4912)45()()()]2([2
10,,,3
5
2
1
3
4
2
2
1
22
2212
21
22
2
2
=
-=-=-=--==+=+=⎰⎰⎰
⎰⎰⎰⎰
⎰⎰
⎰⎰
⎰⎰⎰⎰
-
--x x x x x x x x x
x x dx dx x dx x ydy
x
dx dxdy
ydxdy dxdy
y)f(x dxdy y)f(x dxdy
y)f(x x x D D D D D D D
,212
12
121
2
1-=-图6
5.计算二次积分

⎰⎰⎰
-----+=2
22
2
2
2
2
2
y R x R
R y y
x R
y dx
e
dy e
dx e
dy e
I .
分析 若直接计算题目所给的二次积分,将首先遇到求2
x e
-的原函数的问题,它是无法
计算的,因此,应将二次积分先还原为二重积分,再根据积分区域的特点,选择适当的方法.
解 由所给的二次积分,我们得积分区域21D D D ⋃=,其中
12,0: :00y R y D D x x ⎧⎧≤≤⎪⎪≤≤⎨⎨
⎪⎪≤≤≤⎩⎩
D 是一个中心角为4π
,半径为R 的扇形(图5).因此可以采用极坐
标计算,在极坐标系下,有
,
:420.D R ππθρ⎧⎪≤≤⎨≤≤⎪⎩
因此
).1(82
1
)42
(
22
2
2
22
00
24
)
(R R
R
D
D
y x
e e d e
d d d
e dxdy e I ----+--=⎥⎦⎤⎢⎣⎡--
====⎰⎰⎰⎰⎰⎰πππ
ρρθθ
ρρρρπ
πρ
小结
㈠计算在直角坐标系下二重积分的值的过程中,应正确选择积分的形式,是先对X 积分还是先对Y 积分,选择正确的积分形式可以提高解题的效率和准确度。

㈡ 计算极坐标系下二重积分值的步骤: ① 首先把积分区域的边界方程用极坐标表示; ②确定θρ,的范围,即在极坐标系下表示积分区域;
③ 用θρθρsin ,cos 分别代换被积函数中的y x ,,并把面积元素用θρρd d 替代.
㈢ 计算二重积分时,要注意利用积分区域关于坐标轴的对称性,同时被积函数关于某
相应变量的奇偶性简化运算.
图5
.。

相关文档
最新文档