2014年上海海事大学考研真题 高等数学

合集下载

2014年上海海事大学考研真题 管理学

2014年上海海事大学考研真题 管理学

2014年上海海事大学攻读硕士学位研究生入学考试试题(重要提示:答案必须做在答题纸上,做在试题上不给分)考试科目代码810 考试科目名称管理学一、简答题(30分,每题5分)1.管理人员的选拔适合从哪些方面去考虑?2.简述德尔菲法的概念和步骤。

3.影响管理幅度的因素主要有哪些?4.简述前馈控制的优点和难点。

5.明茨伯格的研究显示管理者会扮演哪些角色?6.管理人员应如何进行信息的评估?二、选择题(40分,每题2分)1.霍桑实验表明()A.非正式组织对组织目标的达成是有害的B.正式组织对组织目标的达成是有益的C.企业应采取一切措施来取缔非正式组织D.企业应该正视非正式组织的存在2.预测既是计划工作的前提条件,又是计划工作的()A.组成部分B.基础C.结果D.保证3.授权时应依被授权者的才能和知识水平高低而定,这是授权原则的()A.扬长避短B.因人设职,视能授权C.任人唯贤D.因事设人,视能授权4.因领导者的特殊品格、个性或个人魅力而形成的权力是()A.法定权B.奖励权C.强制权D.统御权5.下列方法中属于风险型决策的方法是()A.决策树法B.线性规划法C.小中取大法D.量本利分析法6.下列各项不属于双因素理论所指的激励因素的是()A.工作本身B.同事关系C.承认D.晋升7.管理控制工作的一般程序是()A.建立控制标准、分析差异产生原因、采取矫正措施B.采取矫正措施、分析差异产生原因、建立控制标准C.建立控制标准、采取矫正措施、分析差异产生原因D.分析差异产生原因、采取矫正措施、建立控制标准8.管理创新的基准和出发点是()A.创新条件B.创新内容C.创新原则D.创新方法9.企业把客户、销售代理商、供应商、协助单位纳入生产体系,同他们建立起利益共享的合作伙伴关系,进而组成一个企业的供应链,这是()A.精益生产B.同步工程C.敏捷制造D.企业流程再造10.一家产品单一的跨国公司在世界许多地区拥有客户和分支机构,该公司的组织结构应该考虑按照什么因素来划分()A.职能B.产品C.地区D.矩阵结构11.采取工作轮换的方式来培养管理人员的最大优点是有助于()A.提供受训者的业务专精能力B.减轻上级领导的工作压力C.增强受训者的综合管理能力D.考察受训者的高层管理能力12.作为公司经理,当你发现公司内部存在许多小团体时,你应该()A.立即宣布这些小团体非法并予以取缔B.深入调查,找出小团体的领导人,向他们发出警告,不要再搞小团体C.只要小团体不影响企业正常运行,可以不闻不问、听之任之D.正视小团体存在的客观性,允许乃至鼓励小团体的存在,对其加以积极引导13.关于组织文化的特征,下列说法中不正确的是()A.组织文化的中心是人本文化B.组织文化的管理方式以柔性管理为主C.组织文化的核心是组织精神D.组织文化的重要任务是增强群体凝聚力14.权变理论的提出者是()A.布莱克B.菲德勒C.勒温D.施米特15.某企业对生产车间的工作条件进行了改善,这是为了更好地满足职工的()A.生理需求B.安全需求C.感情需求D.尊重需求16.向新来的员工支付比最低工资高一些的工资,由此推断该管理者接受的是()A.功利观B.权利观C.公平理论观D.综合社会理论观17.所谓的“跳一跳,摘桃子”指的是目标的()A.可考核性B.可接受性C.挑战性D.层次性18.若较低层次做出的决策比较重要、影响面较大,则该组织的权力划分特征为()A.分权程度较高B.集权程度较高C.集权分权程度相当D.分权程度较弱19.双向网络沟通中,倾向于集权化的沟通方式是()A.圆型B.轮型C.星型D.风车型20.罚款属于管理方法中的()A.法律方法B.经济方法C.教育方法D.行政方法三、论述题(40分,每题10分)1.管理的基本职能有哪些?试述这些基本职能间的关系。

上海海事大学2013-2014复变函数与积分变换A卷

上海海事大学2013-2014复变函数与积分变换A卷

第1页共4页上海海事大学试卷2013—2014学年第一学期期末考试《复变函数与积分变换》(A 卷)班级学号姓名总分一、填空题(共10题,每空3分,共30分)请将正确答案写在题目后面的横线上1.复平面中1Rez 2=所表示的平面曲线为___________.2.方程e 10z --=的解z=________________________________.3.-1的三次根是_____________________________________________.4.3223()33,f z x x yi xy y i z x yi =+--=+其中,则()f z '=______________________.5.2124z dz z z ==++⎰ ________________.6.0z i e dz π--=⎰________________.7.设C 为正向圆周|ζ|=2,c sin 3(z)d -zf πζζ=⎰ ,其中|z|<2,则(1)f '=_______________.8.设100i)(1z +=,则Imz =___________________________.9.已知函数[()](),[()]f t F tf t ω==则F F _________.10.若12120,0;0,0;()()()()=1,0,,0,t t t f t f t f t f t t e t -<<⎧⎧==*⎨⎨≥≥⎩⎩则_____________.题目一二三四五六得分阅卷人--------------------------------------------------------------------------------------装订线------------------------------------------------------------------------------------第2页共4页二、计算下列积分(共2题,其中第1题8分,第2题12分,共20分)1.(1)d cz z -⎰,其中积分路径C 为从点0到点1+i 的直线段.2.dz a z e c 22z⎰+,其中c:|z |=b 正向,且b>|a |.第3页共4页三、(10分)将函数)2)(1(1--z z 分别在区域0<|z -1|<1,1<|z -2|<+∞内展开为洛朗级数四、求下列积分变换(共2题,其中第1题8分,第2题12分,共20分)1.利用定义求函数()tf t e -=的Fourier 变换2.求22233()(1)(3)s s F s s s ++=++的Laplace 逆变换第4页共4页五、(10分)利用拉氏变换解常微分方程的初值问题2e ,(0)(0)(0)0t y y y y y '''''''+====六、(10分)利用留数方法计算()22022d ,0x x a x a +∞>+⎰。

2014年全国硕士研究生入学统一考试数学(二)真题及答案

2014年全国硕士研究生入学统一考试数学(二)真题及答案

2014年全国硕士研究生入学统一考试数学(二)真题及答案(江南博哥)1[单选题]A.(2,+∞)B.(1,2)C.(,1)D.(0,)正确答案:B参考解析:2[单选题]下列曲线中有渐近线的是().A.y=x+sin xB.y=x2+sin xC.y=x+sinD.y=x2+sin正确答案:C参考解析:3[单选题]设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上().A.当f’(x)≥0时,f(x)≥g(x)B.当f'(x)≥0时,f(x)≤g(x)C.当f”(x)≥0时,f(x)≥g(x)D.当f”(x)≥0时,f(x)≤g(x)正确答案:D参考解析:令F(x)=g(x)-f(x)=f(0)(1-x)+f(1)x-f(x),则 F(0)=F(1)=0,F'(x)=-f(0)+f(1)-f’(x),F”(x)=-f”(x).若f”(x)≥0,则F”(x)≤0,此时F(x)在[0,1]上为凸的.又F(0)=F(1)=0,所以当x∈[0,1]时,F(x)≥0,从而g(x)≥f(x).4[单选题]().A.B.C.D.正确答案:C参考解析:5[单选题]().A.1B.C.D.正确答案:D参考解析:6[单选题]A.u(x,y)的最大值和最小值都在D的边界上取得B.u(x,y)的最大值和最小值都在D的内部取得C.u(x,y)的最大值在D的内部取得,最小值在D的边界上取得D.u(x,y)的最小值在D的内部取得,最大值在D的边界上取得正确答案:A参考解析:由题意知,B≠0,A,C互为相反数.由于AC—B2<0,可知u(x,y)在D内无极值.而最值只可能在极值点、不可导点和区间端点(或区域边界)处取得,因此可知u(x,y)的最大值和最小值均在区域D的边界处取得.7[单选题]A.(ad—bc)2B.-(ad—bc)2C.a2d2-b2c2D.b2c2-a2d2正确答案:B参考解析:利用行列式的展开定理,按列步步展开,可得提示:本题也可用特殊值代入,通过排除,从而得出正确答案.令a=d=0,可得行列式值为-(bc)2,排除A、D项;令b=c=0,可得行列式值为-(ad)2,排除C项,故B项正确.8[单选题]设α1,α2,α3均为三维向量,则对任意的常数k,l,向量组α1+kα+lα3,线性无关是向量组α1,α2,α3线性无关的().3,α2A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件正确答案:A参考解析:9[填空题]_______.参考解析:【解析】10[填空题]设f(x)是周期为4的可导奇函数,且f’(x)=2(x-1),x∈[0,2],则f(7)=_______. 参考解析:1【解析】由题意知,当x∈[0,2]时,又f(x)是周期为4的奇函数,可知f(0)=C=0,f(7)=f(-1)=-f(1)=1.11[填空题]_______. 参考解析:【解析】解法一将方程两边对x,y分别求偏导数,得12[填空题]曲线L的极坐标方程是r=θ,则L在点(r,θ)=()处的切线的直角坐标方程是_______.参考解析:【解析】13[填空题]一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度p(x)=-x2+2x+1,则该细棒的质心横坐标=_______.参考解析:【解析】14[填空题]设二次型f(x1,x2,x3)=的负惯性指数是1,则a的取值范围是_______.参考解析:[-2,2]【解析】配方法:f(x1,x2,x3)=(x1+ax3)2-(x2-2x3)2+(4-a2)由于二次型负惯性指数为1,所以4-a2≥0,故-2≤a≤2.15[简答题]参考解析:16[简答题]已知函数y=y(x)满足微分方程x2+y2y’=1-y’,且y(2)=0,求y(x)的极大值与极小值.参考解析:由x2+y2y '=1-y' ,得17[简答题]设平面区域D={(x,y)| 1≤x2+y2≤4,x≥0,y≥0}.参考解析:区域D关于y=x对称,且满足轮换对称性,即18[简答题]参考解析:19[简答题]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(I)(1I)参考解析:20[简答题]参考解析:21[简答题]已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)ln y.求曲线f(x,y)=0所围图形绕直线y=-1旋转所成旋转体的体积.参考解析:22[简答题](I)求方程组Ax=0的一个基础解系; (Ⅱ)求满足AB=E 的所有矩阵B . 参考解析:23[简答题]参考解析:。

2014年普通高等学校招生全国统一考试(上海卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(上海卷)数学试题(文科)解析版

2 0 1 4年 全 国 普 通 高 等 学 校 招 生 统 一 考 试上海 数学试卷(文史类)考生注意:1、本试卷共4页,23道试题,满分150分。

考试时间120分钟。

2、本考试分设试卷和答题纸。

试卷包括试题与答题要求。

作答必须涂(选择题)或写(非选择题)在答题纸上。

在试卷上作答一律不得分。

3、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸正面清楚地填写姓名。

一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1、函数._______)2(cos 212的最小正周期是x y -=1【答案】 2π【解析】2π4π2∴4cos -)2(cos 2-12====T x x y 周期Θ2、若复数z=1+2i ,其中i 是虚数单位,则⎪⎪⎭⎫ ⎝⎛_z 1 +z z ⋅=___________.2【答案】 6 【解析】61)41(1)1(∴21=++=+=•++=z z z zz i z Θ3.设常数a ∈R ,函数2()1f x x x a =-+-。

若(2)1f =,则(1)f =___________. 3【答案】 3 【解析】3.3|4-1|0)1(∴4,1|-4|1)2(∴|-||1-|)(2所以,是解得=+===+=+=f a a f a x x x f Θ4.若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________. 4【答案】 x=-2【解析】2-2-)0,2(2)0,2(159222==∴=∴=+x x px y y x 所以,是其准线方程为焦点为右焦点为ΘΘ5.某校高一、高二、高三分别有学生1600名、1200名、800名。

为了了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样。

若高三抽取20名学生,则高一、高二共需抽取的学生数为___________. 5【答案】 70【解析】按比例进行抽样,设高一高二共抽n 个学生,则(1600+1200):800=n:20,解得n=706.若实数x,y 满足xy=1,则2x +22y 的最小值为______________. 6【答案】 22 【解析】22,2222≥22y ∴1222222所以,是=•+=+=x x x x x xy Θ7.若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为 (结果用反三角函数值表示)。

2014考研数学一真题及答案

2014考研数学一真题及答案

(23) 【答案】 (1) EX
ˆ (2)
(3)存在
1 n X i2 n i 1
6( y )2 y 3 y 2 y 2 yy 2 yy x 2( y )2 x 2 yy 2 y 2 xy 2 xy x 2 y 0 12 y( 1 ) 4 y( 1 ) 4 y( 1 ) 0 9 y( 1 ) 4 y( 1 ) 9 0 4
y 2x 1 x
(12) (13)[-2,2] (14)
2 5n
三、解答题:15—23 小题,共 94 分.请将解答写在答题纸 指定位置上.解答应写出文字说明、 ... 证明过程或演算步骤. (15) 【答案】
2014 年全国硕士研究生入学统一考试数学一
x
lim

x
1
[ t ( e 1 ) t ] dt x 2 ln( 1
2E 2E f ( e x cos y )e 2 x ( 4 E e x cos y )e 2 x x 2 y 2 f ( e x cos y ) 4 f ( e x cos y ) e x cos y
令 e x cos y u , 则 f ( u ) 4 f ( u ) u , 故 f ( u ) C1e 2 u C 2 e 2u 由 f ( 0 ) 0 , f ( 0 ) 0 , 得
(21) 【答案】利用相似对角化的充要条件证明。
0, y 0, 3 y, 0 y 1, 4 (22) 【答案】 (1) FY y 1 1 1 y ,1 y 2, 2 2 1, y 2.
(2)
3 4 1 , EX 2 2
1 x x

2014年数学一真题与答案解析

2014年数学一真题与答案解析

2014年全国硕士研究生入学统一考试数学一2014年全国硕士研究生入学统一考试数学一试题答案一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 下列曲线有渐近线的是 ( )(A)sin y x x =+ (B)2sin y x x =+ (C)1sin y x x =+ (D)21sin y x x=+ 【答案】(C)【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=,又 11lim[sin ]lim sin 0x x x x x x →∞→∞+-==,所以1sin y x x=+存在斜渐近线y x =. 故选(C).(2) 设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥ (D) 当()0f x ''≥时,()()f x g x ≤ 【答案】(D)【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选(D).2014年全国硕士研究生入学统一考试数学一(3) 设()f x 是连续函数,则110(,)ydy f x y dx -=⎰⎰( )(A) 1100010(,)(,)x dx f x y dy dx f x y dy --+⎰⎰⎰ (B)1101(,)(,)xdx f x y dy dx f x y dy --+⎰⎰⎰⎰(C)112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r dr ++⎰⎰⎰⎰ππθθπθθθθθθ(D)112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ++⎰⎰⎰⎰ππθθπθθθθθθ【答案】(D) 【解析】1101101(,)(,)(,)yxdy f x y dx dx f x y dy dx f x y dy ---=+⎰⎰⎰⎰⎰112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr +=+⎰⎰⎰⎰ππθθπθθθθθθ.故选(D). (4) 若{}ππ2211-π-π,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ∈--=--⎰⎰,则11cos sin a x b x +=32260y xy x y +++= ( )(A) 2sin x (B) 2cos x (C) 2sin x π (D) 2cos x π 【答案】(A) 【解析】2222(cos sin )(sin )2cos (sin )cos x a x b x dx x b x a x x b x a x x dx --⎡⎤--=---+⎣⎦⎰⎰ππππ22222(2sin sin cos )x bx x b x a x dx -=-++⎰ππ2222202(sin cos 2sin )x dx b x a x bx x dx -=++-⎰⎰πππ223124()422223a b b =+⋅-⋅+πππ 2232(4)3a b b =+-+ππ2014年全国硕士研究生入学统一考试数学一2232(2)43a b ⎡⎤=+--+⎣⎦ππ当0,2a b ==时,积分最小. 故选(A).(5) 行列式0000000a b abc d c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a dbc - (D)2222b c a d - 【答案】(B)【解析】由行列式的展开定理展开第一列0000000000000000a b a b a b a ba c d cbcd d c d c d=-- ()()ad ad bc bc ad bc =--+- 2()ad bc =--.故选(B).(6) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组()123=B ααα线性无关的 ( )(A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】(A) 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,A . 若123,,ααα线性无关,则2014年全国硕士研究生入学统一考试数学一()()()2r A r BC r C ===,故()0.3P A B -=线性无关.()P B A -= 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数402Q p =-,向量p 线性无关是向量D 线性无关的必要非充分条件. 故选(A).(7) 设随机事件A 与B 相互独立,且()0.5P B =,()0.3P A B -=,则()P B A -= ( ) (A)0.1 (B)0.2 (C)0.3 (D)0.4 【答案】(B)【解析】 已知a =,A 与()2123121323,,24f x x x x x ax x x x =-++独立,a ,()()()()()()P A B P A P AB P A P A P B -=-=-()0.5()0.5()0.3P A P A P A =-==,则 ()0.6P A =,则()()()()()()0.50.50.60.50.30.2P B A P B P AB P B P A P B -=-=-=-⨯=-=.故选(B).(8) 设连续性随机变量1X 与2X 相互独立,且方差均存在,1X 与2X 的概率密度分别为1()f x 与2()f x ,随机变量1Y 的概率密度为1121()[()()]2Y f y f y f y =+,随机变量2121()2Y X X =+,则( )(A) 12EY EY >,12DY DY > (B) 12EY EY =,12DY DY =(C) 12EY EY =,12DY DY < (D) 12EY EY =,12DY DY > 【答案】(D)【解析】 用特殊值法. 不妨设12,(0,1)X X N ,相互独立. 22212221())2y y y Y f y ---==,1(0,1)Y N .2014年全国硕士研究生入学统一考试数学一2121()2Y X X =+,212212111()(()())0,()(()())242E Y E X E X D Y D X D X =+==+=. 12121()()0,()1()2E Y E Y D Y D Y ===>=.故选(D).二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 曲面22(1sin )(1sin )z x y y x =-+-在点(1,0,1)处的切平面方程为__________. 【答案】21x y z --=【解析】由于22(1sin )(1sin )z x y y x =-+-,所以22(1sin )cos x z x y x y '=--⋅,(1,0)2x z '=;2cos 2(1sin )yz x y y x '=-+-,(1,0)1y z '=-. 所以,曲面在点(1,0,1)处的法向量为{2,1,1}n =--. 故切平面方程为2(1)(1)(0)(1)0x y z -+----=,即21x y z --=.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________.【答案】1【解析】由于()f x '2(1)x =-,[0,2]x ∈,所以2()(1)f x x C =-+,[0,2]x ∈.又()f x 为奇函数,(0)0f =,代入表达式得1C =-,故2()(1)1f x x =--,[0,2]x ∈.()f x 是以4为周期的奇函数,故2(7)(18)(1)(1)[(11)1]1f f f f =-+=-=-=---=.(11) 微分方程(ln ln )0xy y x y '+-=满足条件3(1)y e =的解为y =__________.2014年全国硕士研究生入学统一考试数学一【答案】21(0)x y xe x +=>【解析】(ln ln )0xy y x y '+-=ln()y y y x x'⇒=. 令yu x=,则y x u =⋅,y xu u ''=+,代入原方程得 ln xu u u u '+=(ln 1)u u u x-'⇒=分离变量得,(ln 1)du dxu u x=-,两边积分可得 ln |ln 1|ln u x C -=+,即ln 1u Cx -=.故ln1y Cx x -=. 代入初值条件3(1)y e =,可得2C =,即ln 21yx x=+. 由上,方程的解为21,(0)x y xe x +=>.(12) 设L 是柱面221x y +=与平面0y z +=的交线,从A 0x =轴正向往z 轴负向看去为逆时针方向,则曲线积分Lzdx ydz +=⎰ __________.【答案】π【解析】由斯托克斯公式,得0Ldydz dzdx dxdyzdx ydz dydz dzdx x y z z y∑∑∂∂∂+==+∂∂∂⎰⎰⎰⎰⎰xyD dydz dzdx =+=⎰⎰π,其中22{(,)|1}xy D x y x y =+≤.(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-2014年全国硕士研究生入学统一考试数学一【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.(14) 设总体X 的概率密度为()22,2,;30,xx f x ⎧<<⎪=⎨⎪⎩θθθθ其他,其中θ是未知参数,12,,,n X X X 为来自总体X 的简单样本,若221()nii E cX==∑θ,则c =_________.【答案】25n【解析】 222222()(;)3x E X x f x dx x dx +∞-∞==⋅⎰⎰θθθθ 2422215342x =⋅=θθθθ,222215[]()2ni i n E cX ncE X c ===⋅=∑θθ, 25c n∴=. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xtx t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)lim lim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim [(e 1)]xx x x →+∞=--2014年全国硕士研究生入学统一考试数学一12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====. (16)(本题满分10分)设函数()y f x =由方程32260y xy x y +++=确定,求()f x 的极值. 【解析】对方程两边直接求导:2223220y y y xyy x y xy '''++++= ①令1x 为极值点,则由极值必要性知:1()0y x '=,代入①式得:2111()2()0y x x y x +=.即1()0y x =或11()2y x x =-. 将其代入原方程知:1()0y x =(舍去),即11()2y x x =-. 代入,有 33311184260x x x -+-+=,∴11x =. 即(1)2y =-,(1)0y '=.对①式两边再求导:22226()322()222220y y y y yy x y xyy yy xy x y y xy ''''''''''''+++++++++=.将(1)2y =-,(1)0y '=代入得:4(1)09y ''=>. ∴()y f x =在1x =处取极小值,(1)2y f ==-.(17)(本题满分10分)设函数()f u 具有二阶连续导数,()cos xz f e y =满足()222224cos .x xz z z e y e x y∂∂+=+∂∂若()()00,00f f '==,求()f u 的表达式.【解析】由()cos ,xz f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x x zf e y e y e y f e y e y x∂'''=⋅⋅+⋅∂,2014年全国硕士研究生入学统一考试数学一()()()22(cos )sin sin (cos )cos x x x x xz f e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x x z zz e y e x y∂∂=+∂∂,代入得,()()22cos 4[cos cos ]x x x x x f e y e f e y e y e ''⋅=+,即()()cos 4cos 4cos x x x f e y f e y e y ''-=,令cos =,x e y t 得()()44f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+ 设特解*y at b =+,代入方程得1,0a b =-=,特解*y t =- 则原方程通解为()2212=tty f t c e c et -=+-由()()'00,00f f==,得1211,44c c ==-, 则()2211=44u uy f u e e u -=-- (18)(本题满分10分)设∑为曲面22z x y =+(z 1)≤的上侧,计算曲面积分33(1)(1)(1)I x dydz y dzdx z dxdy ∑=-+-+-⎰⎰.【解析】∑非闭,补1∑:平面1z =,被22z x y =+所截有限部分下侧,由Gauss 公式,有 133+(1)(1)(1)x dydz y dzdx z dxdy ∑∑--+-+-⎰⎰223(1)3(1)1x y dV Ω⎡⎤=-+-+⎣⎦⎰⎰⎰ 223()667x y dV xdV ydV dV ΩΩΩΩ=+--+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2014年全国硕士研究生入学统一考试数学一∑和1∑所围立体为Ω,Ω关于yoz 面和zox 面对称,则0xdV ydV ΩΩ==⎰⎰⎰⎰⎰⎰22221221()x y x y x y dV dxdy dz +Ω+≤+=⎰⎰⎰⎰⎰⎰=21220(1)d r r rdr -⎰⎰πθ461011112()2()46466r r =-=-=πππ22112x y zdV dzdxdy zdz Ω+≤===⎰⎰⎰⎰⎰⎰⎰ππ173746222∑+∑∴-=⋅+⋅=+=⎰⎰πππππ 14∑+∑∴-=⎰⎰π又22111(1)(11)0x y z dxdy dxdy ∑∑+≤=-=--=⎰⎰⎰⎰⎰⎰1114I ∑+∑∑∴=-=-⎰⎰⎰⎰π(19)(本题满分10分)设数列{}{},n n a b 满足02n a <<π,02n b <<π,cos cosb n n n a a -=,且级数1nn b∞=∑收敛.(I) 证明:lim 0n n a →∞=.(II) 证明:级数1nn na b ∞=∑收敛. 【解析】(I )1nn b∞=∑收敛 lim 0n n b →∞∴=cos cos 2sinsin 022sin 02n n n n n n n n n a b a ba ab a b+-=-=->-∴<又424nn a b --<< ππ,042n n a b-∴-<<π2014年全国硕士研究生入学统一考试数学一即:n n a b <又0,n n a b << lim 0n n b →∞= lim 0n n a →∞∴=(II )证明:由(I )2sinsin 22n n n n n a b a ba +-=- 2sin sin 22n n n nn n na b a b a b b +--∴= 222222222n n n nn n n n n n n a b b a b a b b b b b +--≤=<= 又 1n n b ∞=∑收敛 ∴12nn b ∞=∑收敛,1n n na b ∞=∑收敛(20)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭, (I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTTe e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ 2Ax e =的通解为()()222226,3,4,06,32,43,TTx k k k k k =+--=--+-+ξ 3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ2014年全国硕士研究生入学统一考试数学一123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(21)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪⎪⎝⎭相似. 【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,()12001B n ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭=, 则A 的特征值为n ,0(1n -重).A 属于n =λ的特征向量为(1,1,,1)T ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0=λ有1n -个线性无关的特征向量,故A 相似于对角阵0=0n ⎛⎫ ⎪⎪Λ ⎪ ⎪⎝⎭. B 的特征值为n ,0(1n -重),同理B 属于0=λ有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B . (22)(本题满分11分)设随机变量X 的概率分布为{}{}112,2P X P X ====在给定X i =的条件下,随机变量Y 服从均匀分布()0,,(1,2)U i i =.(I )求Y 的分布函数()Y F y ; (II )求EY .【解析】(I )设Y 的分布函数为(y)Y F ,则2014年全国硕士研究生入学统一考试数学一{}{}{}{}{}()1|12|2Y F y P Y y P X P Y y X P X P Y y X =≤==≤=+=≤={}{}11|1|222P Y y X P Y y X =≤=+≤= 当0y <时,()0Y F y =;当01y ≤<时,13()(y )224Y y yF y =+=; 当12y ≤<时,1()(1)22Y yF y =+;当2y ≥时,()1Y F y =. 所以Y 的分布函数为0,03,014()1(1),12221,2Y y y y F y y y y <⎧⎪⎪≤<⎪=⎨⎪+≤<⎪⎪≥⎩(II) Y 的概率密度为3,01,41(y),12,40,Y y f y ⎧<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其他.120131()=()d 44Y E Y f y y y dy y dy +∞-∞=+⎰⎰⎰ =31113(41)42424⨯+⨯-=(23)(本题满分11 分)设总体X 的分布函数为21(;)0,0,0,x x x e F x -≥<⎧⎪-=⎨⎪⎩θθ其中θ是未知参数且大于2014年全国硕士研究生入学统一考试数学一零.12,,,n X X X 为来自总体X 的简单随机样本.(I )求()E X ,2()E X ;(II )求θ的最大似然估计量nθ;(III )是否存在实数a ,使得对任何0>ε,都有{}lim 0n n P a →∞-≥=θε?【解析】X 的概率密度为22,0(;)(;)0,xx e x f x F x -⎧⎪>'==⎨⎪⎩θθθθ其它 (I )22()(;)x xE X xf x dx xedx -+∞+∞-∞==⎰⎰θθθ222[]x x x xdexeedx ---+∞+∞+∞=-=--⎰⎰θθθ2x edx -+∞=⎰θ12==22222()(;)x xE X x f x dx x edx -+∞+∞-∞==⎰⎰θθθ222220[2]x x x x dex eexdx ---+∞+∞+∞=-=--⋅⎰⎰θθθ22x xedx -+∞=⎰θθθ=θ2014年全国硕士研究生入学统一考试数学一(II )似然函数2112,0()(;)0,ix n i ni i i x e x L f x -==⎧⎪∏>=∏==⎨⎪⎩θθθθ其它当0(1,,)i x i n >=⋅⋅⋅时,212()i x nii x L e-==∏θθθ,21ln ()[ln 2ln ]ni i i x L x ==--∑θθθ222211ln ()11[][]0n ni i i i x d L x n d ===-+=-=∑∑θθθθθθ 解得 211n i i x n ==∑θ所以,θ的最大似然估计量为211ˆnni i X n ==∑θ (III )依题意,问ˆnθ是否为θ的一致估计量. 2211ˆ()()()nni i E E X E X n ====∑θθ 242211ˆ()()[()()]nD D XE X E X n n==-θ 24442()(;)x xE X x f x dx x edx -+∞+∞-∞==⎰⎰θθθ2224430[4]x x x x dex eex dx ---+∞+∞+∞=-=--⋅⎰⎰θθθ2304x x edx -+∞=⎰θ22222022[2]x x x x dex eexdx ---+∞+∞+∞=-=--⋅⎰⎰θθθθθ2014年全国硕士研究生入学统一考试数学一24x xedx -+∞=⎰θ2222()x x ed -+∞=--⎰θθθ22=θ2221ˆ()[2]nD n n∴=-=θθθθ ˆlim ()0n n D →∞=θˆn∴θ为θ的一致估计量 a ∴=θ。

2014年数学二真题+答案解析

2014年数学二真题+答案解析

2
上,若其线密度 x
2014 年全国硕士研究生入学统一考试数学二
x2 2x 1,则该细棒的质心坐标 x __________.
(14) 设二次型 f x1, x2 , x3 x12 x22 2ax1x3 4x2 x3 的负惯性指数为 1,则 a 的取值范围为
_______. 三、解答题:15~23小题,共 94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证 明过程或演算步骤. (15)(本题满分 10分)
()
(A) 当 f (x) 0 时, f (x) g(x)
(B) 当 f (x) 0 时, f (x) g(x)
(C) 当 f (x) 0 时, f (x) g(x)
(D) 当 f (x) 0 时, f (x) g(x)
(4) 曲 线
x t2 7 上 对 应 于 t 1的 点 处 的 曲 率 半 径 是 y t2 4t 1
()
10 (A) 50
10 (B) 100
(C)10 10
(D)5 10
2
(5)
设函数
f (x) arctan x , 若
f (x) xf ( ) ,

lim x x2
0
()
(A)1
2 (B) 3
(C)1 2
(D)1 3
(6) 设 函 数 u(x, y) 在 有 界 闭 区 域 D 上 连 续 , 在 D 的 内 部 具 有 2 阶 连 续 偏 导 数 , 且 满 足
x t2
1
et
1
t dt
1
求极限 lim
.
x
x2 ln 1
1 x
(16)(本题满分 10分)
已知函数 y y x 满足微分方程 x y y 1 y ,且 y 2 0 ,求 y x 的极大值与极

上海海事大学数据结构及程序设计2014年—2018年考研真题考研试题

上海海事大学数据结构及程序设计2014年—2018年考研真题考研试题

11. 如下图(图 1)所示是一个索引顺序表,如果第一阶段采用顺序查找,则查找元素 42 要进行( ) 元素间的比较。
A. 7 次
B. 6 次
图1
C. 8 次
Hale Waihona Puke D. 9 次12. 循环队列存储在数组 A[0..m]中,则入队时的操作为 ( )。
A. rear=rear+1
B. rear=(rear+1) mod (m-1)
5. 对于一个有向图,若一个顶点的入度为 k1、出度为 k2,则对应逆邻接表中该顶点单链表中的结点数
为 ( )。
A.k2
B.k1
C.k1-k2
D.kl+k2
6. 设栈 S 和队列 Q 的初始状态为空,元素 e1,e2,e3,e4,e5 和 e6 依次通过栈 S,一个元素 出栈后即进队列 Q,若 6 个元素出队的序列是 e2,e4,e3,e6,e5,e1 则栈 S 的容量最少应该是
14. 设有带权分别为 9,2,5,7 的四个叶子所组成的哈夫曼树,那么其带权路径长度是( )。
A. 44
B. 37
C. 23
D. 46
15. 串的长度是( )。 A. 串中不同字符的个数 C. 串中所含字符的个数且字符个数大于 0
B. 串中不同字母的个数 D. 串中所含字符的个数
三、 简答及运算题(共 5 题,每题 10 分,共 50 分)
三.选择题(本题 30 分,每空 2 分)
1.若 int a=1, b=2, c=3, d=4, m=2, n=2; 执行(m=a>b)&&(n=c>d)后 n 的值为(
)。
A.1
B.2
C.0

上海海事大学高等数学A(二)2010-2011(B)船 (1)

上海海事大学高等数学A(二)2010-2011(B)船 (1)

第 1 页 共 8 页上 海 海 事 大 学 试 卷2010 — 2011 学年第二学期期末考试 《 高等数学A (二)》船(B 卷)(本次考试不得使用计算器)班级 学号 姓名 总分一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) (本大题分4小题, 每小题4分, 共16分)1、设yxy x z arcsin)2(2-+=,那么=∂)2,1(x z ∂( A )(A)2 (B)1 (C)π2(D)π4. 2、设Ω是由3x 2+y 2=z , z =1-x 2所围的有界闭区域,且f (x , y , z )在Ω上连续,则C⎰⎰⎰-+-222213410210),,(2)(x y x x dz z y x f dy dx A ⎰⎰⎰----331022),,()(y z y z x xdx z y x f dy dz B⎰⎰⎰-+----2222213212111),,()(x y x y y dz z y x f dx dy C ⎰⎰⎰+-----222223141412121),,()(y x x x x dz z y x f dy dx D3、若x x x e x x x f e x x x f ---==22 22),(,2),(,则f x x y '(,)2=( C ) (A) 2xex- (B) xex x -+-)2(2 (C)24x -e x-(D) xex --)4(4、旋转抛物面4222-+=y x z 在点)1,1,1(--处的法线方程为(B )--------------------------------------------------------------------------------------装订线------------------------------------------------------------------------------------第 2 页 共 8 页(A )114121-+=+=-z y x (B )114121-+=-+=-z y x (C )114121-+=+=--z y x (D )114121--=-=-+z y x二、填空题(将正确答案填在横线上) (本大题分4小题, 每小题4分, 共16分)1、幂级数n n n x n∑∞=12的收敛区域为 ⎪⎭⎫⎢⎣⎡-21,21 2、函数z z x y =(,)由方程xyz z x =所确定,则z x =xy xz yzz z z x x x ---=-1ln 3、以()122=++y c x 为通解的微分方程是2221y y y '+= 4、AB 是连接A (0,2),B ()0,23的直线段,则⎰+AB ds y x )(44 32337三、 计算题(必须有解题过程) (本大题分10小题,共 68分)1、(本小题7分) 设x y z arctan=,求x z ∂∂,yz ∂∂ 设x yz arctan=,求x z ∂∂,y z ∂∂ 解:222222y x yx y y x x z x +-=-⋅+= 4分 222221y x xx y x x z y +=⋅+= 7分2、(本小题6分) 计算曲线积分⎰++++Ly y x x x xy y d )2(d )2(22其中L 是由A (4,0)沿上半圆周24x x y -= 到O (0,0)的半圆周。

2014年全国硕士研究生入学统一考试数学一试题及答案解析

2014年全国硕士研究生入学统一考试数学一试题及答案解析

2014年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)下列曲线中有渐近线的是( )(A )sin y x x =+ (B )2sin y x x =+ (C )1sin y x x =+ (D )21sin y x x=+ 【答案】C【考点】函数图形的渐近线【解析】对于选项A , lim(sin )x x x →∞+ 不存在,因此没有水平渐近线,同理可知,选项A 没有铅直渐近线, 而sinxlimlim x x y x x x→∞→∞+=不存在,因此选项A 中的函数没有斜渐近线; 对于选项B 和D ,我们同理可知,对应的函数没有渐近线;对于C 选项,1siny x x=+.由于1sin lim lim1x x x yx x x→∞→∞+==,又()1lim 1lim sin0x x y x x →∞→∞-⋅==.所以1sin y x x=+存在斜渐近线y x =.故选C. (2)设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]内( ) (A )当()0f x '≥时,()()f x g x ≥ (B )当()0f x '≥时,()()f x g x ≤ (C )当()0f x ''≥时,()()f x g x ≥ (D )当()0f x ''≥时,()()f x g x ≤ 【答案】D【考点】函数图形的凹凸性 【解析】令()()()()(0)(1)(1)F x f x g x f x f x f x =-=---有(0)(1)0F F ==,()()(0)(1)F x f x f f ''=+-,()()F x f x ''''=当()0f x ''≥时,()F x 在[0,1]上是凹的,所以()0F x ≤,从而()()f x g x ≤.选D. (3)设(,)f x y 是连续函数,则21101(,)yy dy f x y dx ---=⎰⎰( )(A )21110010(,)(,)x x dx f x y dy dx f x y dy ---+⎰⎰⎰⎰(B )211011(,)(,)xx dx f x y dy dx f x y dy ----+⎰⎰⎰⎰(C )112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r dr ππθθπθθθθθθ++⎰⎰⎰⎰(D )112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰【答案】D【考点】交换累次积分的次序与坐标系的变换 【解析】画出积分区域.21101(,)yy dy f x y dx ---=⎰⎰21111(,)+(,)x xdx f x y dy dx f x y dy ---⎰⎰⎰⎰或112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰.故选D.(4)若{}2211,(cos sin )min (cos sin )a b Rx a x b x dx x a x b x dx ππππ--∈--=--⎰⎰,则11cos sin a x b x +=( )(A )2sin x (B )2cos x (C )2sin x π (D )2cos x π 【答案】A【考点】定积分的基本性质 【解析】222(cos sin )[2(cos sin )(cos sin )]x a x b x dx xx a x b x a x b x dx ππππ----=-+++⎰⎰22222[2cos 2sin cos 2sin cos sin ]x ax x bx x a x ab x x b x dx ππ-=--+++⎰22222[2sin cos sin ]x bx x a x b x dx ππ-=-++⎰2222202[2sin cos sin ]x bx x a x b x dx π=-++⎰333222222222(2)(4)[(2)4]32233b a b a b b a b ππππππππ=-++=+-+=+--+故当0,2a b ==时,积分最小.故选A.(5)行列式0000000a b abc d cd=( )(A )2()ad bc - (B )2()ad bc -- (C )2222a dbc - (D )2222b c a d - 【答案】B【考点】行列式展开定理 【解析】2141000000(1)0(1)000000000a b a b a b a ba c d cbcd d c d c d++=⨯-+⨯- 3323(1)(1)a b a b a d c b c d c d ++=-⨯⨯--⨯⨯-a b a bad bcc d c d=-+ 2()()a bbc ad ad bc c d=-=--.故选B. (6)设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的( )(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分也非必要条件 【答案】A【考点】向量组的线性无关的充要条件【解析】132312310(,)(,,)01k l k l ααααααα⎛⎫ ⎪++= ⎪ ⎪⎝⎭记132312310(,),(,,),01A k l B C k l ααααααα⎛⎫⎪=++== ⎪ ⎪⎝⎭若123,,ααα线性无关,则1323()()()2,r A r BC r C k l αααα===⇒++线性无关. 由1323,k l αααα++线性无关不一定能推出123,,ααα线性无关.如:123100=0=1=0000ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,1323,k l αααα++线性无关,但此时123,,ααα线性相关.故选A.(7)设随机事件A 与B 相互独立,且3.0)(,5.0)(=-=B A P B P ,则=-)(A B P ( ) (A )0.1 (B)0.2 (C)0.3 (D)0.4 【答案】B【考点】概率的基本公式 【解析】()()()()()()P A B P A P AB P A P A P B -=-=- ()0.5()0.5()0.3()0.6P A P A P A P A =-==⇒=.()()()()()()0.50.50.60.2P B A P B P AB P B P A P B -=-=-=-⨯=.故选B.(8)设连续型随机变量21,X X 相互独立,且方差均存在,21,X X 的概率密度分别为)(),(21x f x f ,随机变量1Y 的概率密度为)]()([21)(211y f y f y f Y +=,随机变量)(21212X X Y +=,则(A )2121,DY DY EY EY >> (B )2121,DY DY EY EY == (C )2121,DY DY EY EY <= (D )2121,DY DY EY EY >= 【答案】D【考点】统计量的数学期望 【解析】2121()2Y X X =+,2121211[()]()22EY E X X EX EX =+=+, 2121211[()]()24DY D X X DX DX =+=+.1121()[()()]2Y f y f y f y =+,1121221[()()]()22y EY f y f y dy EX EX EY +∞-∞=+=+=⎰.2222112121[()()]()22y EY f y f y dy EX EX +∞-∞=+=+⎰, 22222111121211()()()24DY EY EY EX EX EX EX =-=+-+ 2222121212122()()24EX EX EX EX EX EX ⎡⎤=+---⋅⎣⎦ 22121212124DX DX EX EX EX EX ⎡⎤=+++-⋅⎣⎦ 221212121()()24DX DX EX EX EX EX ⎡⎤≥+++-⋅⎣⎦ 2121221()4DX DX EX EX DY ⎡⎤=++-≥⎣⎦ 1212,EY EY DY DY ∴=>二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)曲面)sin 1()sin 1(22x y y x z -+-=在点)1,0,1(处的切平面方程为【答案】210x y z ---= 【考点】曲面的切平面【解析】22(,,)(1sin )(1sin )F x y z x y y x z =-+--22(1sin )cos x F x y x y '=--⋅,2cos 2(1sin )y F y x y x '=-⋅+-,1z F '=-∴(1,0,1)2x F '=,(1,0,1)1y F '=-,(1,0,1)1z F '=-曲面在点)1,0,1(处的切平面方程为2(1)(1)(0)(1)(1)0x y z -+--+--=,即210x y z ---=(10)设)(x f 是周期为4的可导奇函数,且]2,0[),1(2)(∈-='x x x f ,则=)7(f【答案】1【考点】函数的周期性 【解析】由于]2,0[),1(2)(∈-='x x x f ,所以2()(1),[0,2]f x x C x =-+∈又)(x f 是奇函数,(0)0f =,解得1C =-2()(1)1,[0,2]f x x x ∴=--∈)(x f 是以4为周期的奇函数,故2(7)(3)(1)(1)[(11)1]1f f f f ==-=-=---=(11)微分方程0)ln (ln =-+'y x y y x 满足条件3)1(e y =的解为=y【答案】21x y xe+=【考点】变量可分离的微分方程 【解析】(ln ln )0ln 0y xxy y x y y x y''+-=⇒+= ① 令yu x=,则y ux =,y u u x ''=+ 代入①,得ln 0u u x u u '+-=即(ln 1)u u u x-'=分离变量,得(ln 1)(ln 1)ln 1du d u dxu u u x-==--两边积分得1ln ln 1ln u x C -=+,即ln 1u Cx -=即ln 1yCx x-= 代入初值条件3)1(e y =,可得2C =,即ln 12yx x-= 整理可得21x y xe +=.(12)设L 是柱面122=+y x 与平面0=+z y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分⎰=+Lydz zdx【答案】π【考点】斯托克斯公式 【解析】由斯托克斯公式,得0xyLD dydz dzdx dxdyzdx ydz dydz dzdx dydz dzdx x y z z yπ∑∑∂∂∂+==+=+=∂∂∂⎰⎰⎰⎰⎰⎰⎰其中{}22(,)1xy D x y x y =+≤(13)设二次型3231222132142),,(x x x ax x x x x x f ++-=的负惯性指数为1,则a 的取值范围是【答案】]2,2[-【考点】惯性指数、矩阵的特征值、配方法化二次型为标准形 【详解】 【解法一】二次型对应的系数矩阵为:O a a ≠⎪⎪⎪⎭⎫⎝⎛-0221001,记特征值为321,,λλλ则0011)(321=+-==++A tr λλλ,即特征值必有正有负,共3种情况; 故二次型的负惯性指数为⇔1特征值1负2正或1负1正1零;0402210012≤+-=-⇔a a a,即]2,2[-∈a【解法二】2222222212312132311332233(,,)2424f x x x x x ax x x x x ax x a x x x x a x =-++=++-+- 2222222213233123()(2)(4)(4)x ax x x a x y y a y =+--+-=-+-若负惯性指数为1,则240[2,2]a a -≥⇒∈-(14)设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其他,02,32),(2θθθθx xx f ,其中θ是未知参数,n X X X ,,,21 为来自总体X 的简单随机样本,若∑=ni i X c 12是2θ的无偏估计,则=c【答案】n52【考点】统计量的数字特征 【解析】根据题意,有322222112()()()3n ni i i i x E c X c E X ncE X nc dx θθθ=====∑∑⎰4222221523425nc nc x c nθθθθθ=⋅==∴= 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限)11ln(])1([lim2112xx dtt e t xtx +--⎰+∞→【考点】函数求极限、变限积分函数求导、等价无穷小、洛必达法则【详解】11221122((1))((1))limlim11ln(1)xxttx x t e t dt t e t dtx x xx→+∞→+∞----=+⋅⎰⎰1122(1)1lim lim (1)1xx x x x e x x e x→+∞→+∞--==-- 2001111lim lim 22t t t t e t e t x t t ++→→---===令 (16)(本题满分10分)设函数)(x f y =由方程322+60y xy x y ++=确定,求)(x f 的极值【考点】极值的必要条件【解析】对方程两边直接求导:2223220y y x y xy y xyy '''++++= ① 令0y '=,得2y x =-,或0y =(舍去)将2y x =-代入原方程得 3660x -+= 解得1x =,此时2y =-. 对①式两端再求导,得222(32)2(3)()4()20y xy x y y x y y x y y ''''+++++++=将1x =,2y =-,0y '=代入上式,得 409y ''=>,即4(1)09f ''=> ()y f x ∴=在1x =处取极小值,极小值为(1)2f =-.(17)(本题满分10分)设函数)(u f 具有2阶连续导数,)cos (y e f z x=满足22222(4cos )x xz z z e y e x y∂∂+=+∂∂,若0)0(,0)0(='=f f ,求)(u f 的表达式. 【考点】多元函数求偏导、二阶常系数非齐次线性微分方程 【解析】由)cos (y e f z x=,知(cos )cos x x z f e y e y x ∂'=⋅∂,(cos )(sin )x x zf e y e y y∂'=⋅-∂ 22(cos )cos cos (cos )cos x x x x xz f e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, 22(cos )(sin )(sin )(cos )(cos )x x x x xz f e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由22222(4cos )x x z zz e y e x y∂∂+=+∂∂,代入得 22(cos )[4(cos )cos ]x x x x x f e y e f e y e y e ''⋅=+即(cos )4(cos )cos x x x f e y f e y e y ''-= 令cos x u e y =,则()4()f u f u u ''-= 特征方程212402,2r r r -=⇒==- 齐次方程通解为2212uu y C eC e -=+设特解*y au b =+,代入方程得1,04a b =-=,特解*14y u =- 原方程的通解为221214uu y C eC e u -=+-由(0)0,(0)0f f '==,得 1211,1616C C ==- 22111()16164u u y f u e e u -∴==--(18)(本题满分10分)设∑为曲面)1(22≤+=z y x z 的上侧,计算曲面积分dxdy z dzdx y dydz x I )1()1()1(33-+-+-=⎰⎰∑【考点】高斯公式【解析】因∑不封闭,添加辅助面2211:1x y z ⎧+≤∑⎨=⎩,方向向上.133(x 1)(y 1)(z 1)dydz dzdx dxdy ∑+∑-+-+-⎰⎰22(3(1)3(1)1)x y dxdydz Ω=-+-+⎰⎰⎰22(3633631)x x y y dxdydz Ω=++++++⎰⎰⎰ 22(337)x y dxdydz Ω=++⎰⎰⎰1220(z)(337)D dz x y dxdy =++⎰⎰⎰1220(37)4zdz d r rdr πθπ=+=⎰⎰⎰(其中(66)0x y dxdydz Ω+=⎰⎰⎰,因为积分区域关于,xoz yoz对称,积分函数(,)66f x y x y =+分别是,y x 的奇函数.)在曲面1∑上,133(1)(1)(1)0x dydz y dzdx z dxdy ∑-+-+-=⎰⎰故33(1)(1)(1)4x dydz y dzdx z dxdy π∑-+-+-=-⎰⎰ .(19)(本题满分10分) 设数列}{},{n n b a 满足n n n n n b a a b a cos cos ,20,20=-<<<<ππ,且级数1n n b ∞=∑收敛.(I )证明:;0lim =∞→n n a(II )证明:级数∑∞=1n nnb a 收敛. 【考点】级数敛散性的判别【解析】证明:(I )cos cos cos cos n n n n n n a a b a a b -=⇒=-0,022n n a b ππ<<<<,cos cos 00n n n n a b a b ∴->⇒<<级数1n n b ∞=∑收敛,∴级数1n n a ∞=∑收敛,lim 0n n a →∞=.(II )解法1:2sinsin cos cos 22n n n nn n nn nna b a ba ab b b b +---== 02n a π<<,02n b π<<,sin,sin 2222n n n n n n n n a b a b a b a b++--∴≤≤ 222222n n n nn n n nn n a b a b a b a b b b +--⋅-∴≤=222n n n b b b ≤= 02n a π<<,02n b π<<,且级数1nn b∞=∑收敛,∴级数∑∞=1n nnb a 收敛. 解法2:cos cos 1cos n n n nn n na ab b b b b --=≤21cos 1cos 1lim lim 2n n n n n n n b b b b b →∞→∞--== ∵同阶无穷小有相同的敛散性,∴由1n n b ∞=∑⇒ 11cos n n n b b ∞=-∑收敛⇒∑∞=1n n n b a收敛(20)(本题满分11分)设E A ,302111104321⎪⎪⎪⎭⎫⎝⎛----=为3阶单位矩阵.(I )求方程组0=Ax 的一个基础解系; (II )求满足E AB =的所有矩阵B .【考点】齐次线性方程组的基础解系、非齐次线性方程组的通解 【详解】对矩阵()A E 施以初等行变换1234100()01110101203001A E --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭1205412301021310013141--⎛⎫ ⎪→--- ⎪ ⎪--⎝⎭ 100126101021310013141-⎛⎫ ⎪→--- ⎪ ⎪---⎝⎭(I ) 方程组0=Ax 的同解方程组为⎪⎪⎩⎪⎪⎨⎧===-=4443424132x x x x xx x x ,即基础解系为⎪⎪⎪⎪⎪⎭⎫⎝⎛-1321(II )⎪⎪⎪⎭⎫ ⎝⎛=001Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=01312244434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-011213211k⎪⎪⎪⎭⎫ ⎝⎛=010Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=04332644434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-043613212k ⎪⎪⎪⎭⎫ ⎝⎛=100Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=+=+=--=01312144434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-011113213k ,123123123123261212321313431k k k k k k B k k k k k k -+-+--⎛⎫⎪--+ ⎪∴= ⎪--+ ⎪⎝⎭,321,,k k k 为任意常数 (21)(本题满分11分)证明:n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似【考点】矩阵的特征值、相似对角化 【详解】设111111111A ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭,0010020B n ⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭因为()1r A =,()1r B =所以A 的特征值为:n A tr n n ======-)(,0121λλλλB 的特征值为:n B tr n n =='='=='='-)(,0121λλλλ 关于A 的0特征值,因为1)()()0(==-=-A r A r A E r ,故有1-n 个线性无关的特征向量,即A 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00 同理,关于B 的0特征值,因为1)()()0(==-=-B r B r B E r ,故有1-n 个线性无关的特征向量,即B 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n 00 由相似矩阵的传递性可知,A 与B 相似. (22)(本题满分11分)设随机变量X 的概率分布为21}2{}1{====X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布)2,1)(,0(=i i U ,(I )求Y 的分布函数)(y F Y ; (II )求EY【考点】一维随机变量函数的分布、随机变量的数字特征(期望) 【详解】(I )()()y F y P Y y =≤(1)(1)(2)(2)P X P Y y X P X P Y y X ==≤=+=≤=11(1)(2)22P Y y X P Y y X =≤=+≤= ① 当0y < 时,(y)0Y F =② 当01y ≤<时,1113(y)2224Y F y y y =+⨯= ③ 当12y ≤<时,1111(y)22224Y yF y =+⨯=+④ 当2y ≥时,11(y)122Y F =+=综上:003y 014(y)1122412Y y y F y y y <⎧⎪⎪≤<⎪=⎨⎪+≤<⎪⎪≥⎩(II )随机变量Y 的概率密度为'30141(y)(y)1240Y Y y f F y ⎧<<⎪⎪⎪==≤<⎨⎪⎪⎪⎩其他12-013131133()4442424Y EY yf y dy ydy ydy +∞∞==+=⨯+⨯=⎰⎰⎰ (23)(本题满分11分)设总体X 的分布函数21,0(;)00x e x F x x θθ-⎧⎪-≥=⎨⎪<⎩,,其中θ是未知参数且大于零,12,,,n X X X 为来自总体X 的简单随机样本.(Ⅰ)求EX 与2EX ;(Ⅱ)求θ的最大似然估计量ˆnθ;(Ⅲ)是否存在实数a ,使得对任何0ε>,都有{}ˆlim 0nn P a θε→∞-≥=? 【考点】统计量的数字特征、最大似然估计、估计量的评选标准(无偏性) 【解析】(Ⅰ)X 的概率密度为22,0(;)(;)0,0xx e x f x F x x θθθθ-⎧⎪≥'==⎨⎪<⎩222()(;)()x x xE X xf x dx x edx xd eθθθθ--+∞+∞+∞-∞==⋅=-⎰⎰⎰22200012222x x x xeedx edx θθθθπθπ+∞---+∞+∞=-+==⋅=⎰⎰ 22222202()(;)()x x xE X x f x dx x edx x d e θθθθ--+∞+∞+∞-∞==⋅=-⎰⎰⎰2222200222x x x x xx ex edx x edx edx θθθθθθθ+∞----+∞+∞+∞=-+⋅=⋅=⋅=⎰⎰⎰(Ⅱ)设12,,,n x x x 为样本的观测值,似然函数为2112(),0(1,2,,),()(;)0,0ix n n ni i i i i x e x i n L f x x θθθθ-==⎧≥=⎪==⎨⎪<⎩∏∏当0(1,2,,)i x i n ≥= 时,22111122()()()ni i i x nn x nn i i i i L x ex eθθθθθ=--==∑==∏∏两边取对数,得2211112121ln ()lnln lnln nnnni ii ii i i i L n x x n x x θθθθθ=====+-=+-∑∑∑∏两边求导,得221ln ()1nii d L n xd θθθθ==-+∑令ln ()0d L d θθ=,得211n i i x n θ==∑所以,θ的最大似然估计量为211ˆn i i X n θ==∑.(Ⅲ)存在a θ=.因为{}2n X 是独立同分布的随机变量序列,且21EX θ=<+∞,所以根据辛钦大数定律,当n →∞时,211ˆnn i i X n θ==∑依概率收敛于21EX ,即θ. 所以对于任何0ε>都有{}ˆlim 0nn Pθθε→∞-≥=.。

2014年普通高等学校招生全国统一考试(上海卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(上海卷)数学试题(文科)解析版

2
2
所以,是 5 -1 2
2
1
11.若 f (x) x 3 x 2 ,则满足 f (x) 0 的 x 取值范围是

11【答案】 (0,1)
【解析】
2
-- 1
7
7
7
Q x 3 - x 2 0, x 0 x 6 -1 0, x 6 16
0 x 1. (0,1)
12.方程 sin x 3 cos x 1 在区间 0, 2 上的所有解的和等于

14【答案】 [2,3]
【解析】
C图像是半径为2的半个圆,在y轴左侧,x1 ∈[-2,0] AP + AQ = 0,∴ A(m,0)为P(x1, y1),Q(6,t)的中点 2m = 6+ x1, x1 ∈[-2,0]ÙU m∈[2,3].所以,是[2,3]
二、选择题(本大题共有 4 题,满分 20 分)每题有且只有一个正确答案,考生应在答题纸 的 相应编号上,将代表答案的小方格涂黑,选对得 5 分,否则一律得零分。
3、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对 后的条形码贴在指定位置上,在答题纸正面清楚地填写姓名。
一、填空题(本大题共有 14 题,满分 56 分)考生应在答题纸相应编号的空格 内直接填写结果,每个空格填对得 4 分,否则一律得零分。
1、函数 y 1 2 cos2 (2x)的最小正周期是 _______ .
3.设常数 a∈R,函数 f (x) x 1 x 2 a 。若 f (2) 1,则 f (1) ___________.
3【答案】 3 【解析】
f (x) =| x -1| + | x2 - a |∴ f (2) =1+ | 4 - a |=1, 解得a = 4 ∴ f (1) = 0+ |1- 4 |= 3.所以,是3

高等数学试卷与答案 第一学期期末考试 上海海事大学 高等数学A船(A)

高等数学试卷与答案 第一学期期末考试 上海海事大学    高等数学A船(A)

上 海 海 事 大 学 试 卷2009 — 2010 学年第一学期期末考试 《 高等数学A (船) 》(A 卷)班级 学号 姓名 总分(本大题分4小题, 每小题3分, 共12分)或不存在 且 处必有在处连续且取得极大值则在点、函数0)()(0)(0)()(0)()(0)()()()()(10000000='<''='<''='==x f D x f x f C •••x f B x f A •••••x x f x x x f y 2、设F (x)=⎰-x adt t f a x x )(2,其中)(x f 为连续函数,则)(lim x F a x →等于( )(A )、2a (B)、 )(2a f a (C)、 0 (D)、 不存在3、 已知函数)(x f 在1=x 处可导,且导数为2,则 =--→xf x f x 2)1()31(lim0 ( )(A )3 (B) -3 (C )-6 (D )64、xx x ee 1011lim+-→的极限为 ( )(A )1 (B) -1 (C) 1或 -1 (D )不存在 二、填空题(将正确答案填在横线上) (本大题分4小题, 每小题3分, 共12分)1、____________2lim 20的值等于-+-→x xx e e x 2、__________________)sin (cos 2 •232⎰=+ππ-•dx x x --------------------------------------------------------------------------------------装订线------------------------------------------------------------------------------------23、=-+∞→xx x x )1212(lim 4、已知当x x x sin 0-→时,与3ax 是等价无穷小,则=a 三 计算题(必须有解题过程)(本大题分11小题,每小题5分,共55分) 1、(本小题5分))2(lim 2x x x x -++∞→ 计算极限2、(本小题5分)设⎪⎩⎪⎨⎧=≠-+=10111arctan )1()(2x x x x x f 研究f (x )的连续性。

上海海事大学高等代数2014--2015年考研真题/研究生入学考试试题

上海海事大学高等代数2014--2015年考研真题/研究生入学考试试题

六(15 分) 、 设 A 是 n 阶矩阵 n 2 并且 rank( A) n 1 . 证明: rank ( A* ) 1 . 其中 A* 表 示 A 的伴随矩阵。
七(15 分) 、设 * 是 n 元非齐次线性方程组 AX=b 的一个解, 1 ,… n r 是对应的齐次线性方程组的
3 5 2 0
1 1 0 5
1 2 3 4 1 3 1 3
,D 的 (i, j ) 元的代数余子式记作 Aij ,则 A43 A44 =

7.设 A= aij
是一 n 阶正定矩阵,而 , R n ,在线性空间 R 中定义内积; nn
n
n
( , )= A ,则 R 关于这种内积构成一个 Euclid 空间。在此定义下,计算 n 维 向量 (1,
一个基础解系。证明: , 1 ,… n r 线性无关。
*
化成标准形。
a b c 四 (16 分)、 设 R 是实数域, V 0 a b a, b, c R 。 0 0 a
(1) 、证明 V 关于矩阵的加法和数量乘法构成 R 上的线性空间。
a1 (2) 、任意的 A 0 0
1 , 0 ,… 0)' 的长度

8.如果 A 是正交矩阵。若 k 是实数,使得 kA 为正交矩阵,则 k= -------。
T 9 .在 R 中,线性变换 A ( x1 , x2 , x3 )T (3x1 x2 , x2 x3 , x1 )T , 那么 A 在基 e1 (1, 0, 0) ,
2014 年上海海事大学攻读硕士学位研究生入学考试试题
(重要提示:答案必须做在答题纸上,做在试题上不给分)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个基础解系。证明: , 1 ,… n r 线性无关。
*
3
e2 (0,1,0)T , e3 (0,0,1)T 下的矩阵是------------------。
10.设矩阵 A= aij ,其特征多项式为 f | E A | n a1 n1 … an1 an ,若用
nn
A 的元素表示 f 的系数,我们有 a1 =------二(15 分) 、 t 取何值时,非齐次线性方程组
3 5 2 0
1 1 0 5
1 2 3 4 1 3 1 3
,D 的 (i, j ) 元的代数余子式记作 Aij ,则 A43 A44 =

7.设 A= aij
是一 n 阶正定矩阵,而 , R n ,在线性空间 R 中定义内积; nn
n
n
( , )= A ,则 R 关于这种内积构成一个 Euclid 空间。在此定义下,计算 n 维 向量 (1,
3.设 A 是 4 阶方阵, A 3 ,则 2 A2 。

1 1 2 t 的秩最小,则 t 4.要使矩阵 A 1 1 2 3 4

5.设 3 阶矩阵 A 的特征值 1,-2,3,则 | A3 5 A2 7 A | =

6.设 D
化成标准形。
a b c 四 (16 分)、 设 R 是实数域, V 0 a b a, b, c R 。 0 0 a
(1) 、证明 V 关于矩阵的加法和数量乘法构成 R 上的线性空间。
a1 (2) 、任意的 A 0 0
1 , 0 ,… 0)' 的长度

8.如果 A 是正交矩阵。若 k 是实数,使得 kA 为正交矩阵,则 k= -------。
T 9 .在 R 中,线性变换 A ( x1 , x2 , x3 )T (3x1 x2 , x2 x3 , x1 )T , 那么 A 在基 e1 (1, 0, 0) ,
明 V 是欧氏空间。
a2 a1 0
a3 b1 b2 a2 ,B 0 b1 a1 0 0
b3 b2 定义二元函数 ( A, B) a1b1 a2b2 a3b3 。证 b1
五 (15 分)、 证明:如果 是 n 维欧氏空间的一个正交变换,那么 的不变子空间的正交 补也是 的不变子空间。
an =----------- 。
tx1 x1 x 1
x2 tx2 x2

x3 x3

1 t
tx3
t2
(1) 、有唯一解; (2) 、无解; (3) 、有无穷多解,并求出通解。
三(24 分) 、求一个正交变换把下列二次型
2 2 f ( x1 , x2 , x3 ) x12 2 x2 2 x3 4 x1 x2 4 x1 x3 8x2 x3
2014 年上海海事大学攻读硕士学位研究生入学考试试题
(重要提示:答案必须做在答题纸上,做在试题上不给分)
考试科目代码
一 填空题: (50分)
考试科目名称
高等代数
1. 11 5 3 , 2 4 7 Leabharlann ,则 T =TT

67 98 19 2.设三阶方阵 A 0 yx 2 可逆,则 x, y 应满足条件 0 x x
六(15 分) 、 设 A 是 n 阶矩阵 n 2 并且 rank( A) n 1 . 证明: rank ( A* ) 1 . 其中 A* 表 示 A 的伴随矩阵。
七(15 分) 、设 * 是 n 元非齐次线性方程组 AX=b 的一个解, 1 ,… n r 是对应的齐次线性方程组的
相关文档
最新文档