12_第七章-聚类分析

合集下载

聚类分析方法

聚类分析方法

聚类分析方法聚类分析是一种常用的数据分析方法,它可以将数据集中的对象按照其相似性进行分组,形成若干个簇。

通过聚类分析,我们可以发现数据中的内在结构,帮助我们更好地理解数据集的特点和规律。

在实际应用中,聚类分析被广泛应用于市场分割、社交网络分析、图像处理等领域。

本文将介绍聚类分析的基本原理、常用方法和应用场景,希望能够帮助读者更好地理解和应用聚类分析。

聚类分析的基本原理是将数据集中的对象划分为若干个簇,使得同一簇内的对象相似度较高,不同簇之间的对象相似度较低。

在进行聚类分析时,我们需要选择合适的相似性度量方法和聚类算法。

常用的相似性度量方法包括欧氏距离、曼哈顿距离、余弦相似度等,而常用的聚类算法包括K均值聚类、层次聚类、DBSCAN等。

不同的相似性度量方法和聚类算法适用于不同的数据类型和应用场景,选择合适的方法对于聚类分析的效果至关重要。

K均值聚类是一种常用的聚类算法,它通过不断迭代更新簇中心的方式,将数据集中的对象划分为K个簇。

K均值聚类的优点是简单、易于理解和实现,但是它对初始簇中心的选择较为敏感,容易收敛到局部最优解。

层次聚类是另一种常用的聚类算法,它通过逐步合并或分裂簇的方式,构建一棵层次化的聚类树。

层次聚类的优点是不需要事先确定簇的个数,但是它对大数据集的处理效率较低。

DBSCAN是一种基于密度的聚类算法,它能够发现任意形状的簇,并且对噪声数据具有较强的鲁棒性。

不同的聚类算法适用于不同的数据特点和应用场景,我们需要根据具体情况选择合适的算法进行聚类分析。

聚类分析在实际应用中有着广泛的应用场景。

在市场分割中,我们可以利用聚类分析将顾客分为不同的群体,从而制定针对性的营销策略。

在社交网络分析中,我们可以利用聚类分析发现社交网络中的社区结构,从而发现潜在的影响力人物。

在图像处理中,我们可以利用聚类分析对图像进行分割和特征提取,从而实现图像内容的理解和识别。

聚类分析在各个领域都有着重要的应用,它为我们理解和利用数据提供了有力的工具。

数据挖掘第七章__聚类分析

数据挖掘第七章__聚类分析
火龙果 整理
Chapter 7. 聚类分析
• 聚类分析概述 • 聚类分析的数据类型
• 主要聚类分析方法分类
划分方法(Partitioning Methods)
分层方法
基于密度的方法
基于网格的方法
基于模型(Model-Based)的聚类方法
火龙果 整理
• 差异度矩阵
– (one mode)
0 d(2,1) 0 d(3,1 ) d ( 3, 2 ) : : d ( n,1) d ( n,2)
0 : ... ... 0
火龙果 整理
1.数据矩阵 数据矩阵是一个对象—属性结构。它是n个对象组
6.3 聚类分析中的数据类型
假设一个要进行聚类分析的数据集包含 n
个对象,这些对象可以是人、房屋、文件等。
聚类算法通常都采用以下两种数据结构:
火龙果 整理
两种数据结构
• 数据矩阵
– (two modes)
x11 ... x i1 ... x n1 ... x1f ... ... ... xif ... ... ... xnf ... x1p ... ... ... xip ... ... ... xnp
• 保险: 对购买了汽车保险的客户,标识那些有较高平均赔偿 成本的客户;
• 城市规划: 根据类型、价格、地理位置等来划分不同类型的 住宅; • 地震研究: 根据地质断层的特点把已观察到的地震中心分成 不同的类;
火龙果 整理
生物方面,聚类分析可以用来对动物或植物分类,或 根据基因功能对其进行分类以获得对人群中所固有的
(6.2)
火龙果 整理

聚类分析

聚类分析

第七章聚类分析第一节遗传距离数量性状遗传研究中,常常需要在多性状水平上度量个体或群体间的亲疏关系,遗传距离是在多性状水平上概括这些研究对象间的亲缘关系疏远程度的有效统计量之一。

通过对遗传距离的聚类分析,不仅可以认识所研究对象(个体或群体)间亲缘关系的远近,还可进一步研究不同类群间关系远近与杂种优势的关系,为杂交育种和杂种优势的利用提供理论和材料依据。

下面首先介绍有关遗传距离的基本概念—样品与变量,然后介绍遗传距离的具体计算,第三部分介绍聚类分析。

一、样品与变量遗传距离可以通过三种不同类型信息获得:表型信息、分子(包括DNA和蛋白质)标记信息和系谱信息,由这三种信息求得的遗传距离分别称为表型遗传距离、遗传标记距离和系谱遗传距离。

在聚类分析中有两个很重要的概念:样品和变量。

样品是所研究的对象,如不同群体、不同品种以及变异群体内的不同个体等。

为了研究样品间的关系,需要拟定一些指标来测试这些样品,这些指标就是变量,如株高、产量、籽粒长度、胚颜色等为表型性状变量;采用分子生物学技术获得的“0、1”型标记变量被称为分子标记变量。

样品间表型性状变量和分子标记变量的遗传距离计算方法不同,下面分别叙述。

二、基于数量性状表型数据的遗传距离(一)数据变换一般来说,用来考察样品的表型性状变量有多个,这些变量使用的量纲会有不同,取值范围也不相同。

为了使不同量纲、不同取值范围的数据能放在一起进行比较,通常需要对原始数据进行变换处理,使之变成无量纲而具可比性。

假设有n个样品,m个变量,y表示第i个样品在第j个变量的观测值,ij==。

观测值数据列于表7-1。

1,,;1,,i n j m11 y1. 标准差标准化变换:*(1,2,,;1,2,,)ij jij jy y y i n j m s -=== (7-1)变换后的数据*ij y 无量纲,每个变量的样本均值为0,标准差为1。

2. 极差标准化变换:*(1,2,,;1,2,,)ij j ij jy y y i n j m R -=== (7-2)变换后的数据*ij y 无量纲,每个变量的样本均值为0,极差为1,且|*ij y |﹤1。

聚类分析的基本概念与方法

聚类分析的基本概念与方法

聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。

它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。

一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。

在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。

基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。

2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。

常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。

3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。

簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。

4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。

常见的聚类算法有K均值聚类、层次聚类、密度聚类等。

二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。

算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。

2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。

层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。

3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。

核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。

聚类分析原理及步骤

聚类分析原理及步骤

聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。

聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。

聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。

二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。

聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。

聚类分析的原理分为两类,一类是基于距离的聚类。

聚类分析(共8张PPT)

聚类分析(共8张PPT)
第4页,共8页。
聚类分析
三、聚类分析中的测度与标准化
在聚类分析技术的发展过程中,形成了很多种测度相似性的方法。每一种方法 都从不同的角度测度了研究对象的相似性。
在数据采集过程中,一般可以用三种方式采集数据:二分类型数据、等级类型 数据和连续类型数据。在进行聚类分析时可以根据不同的数据特点采用相应的测度 方法。
尽量避免绝对数据。
研究个案 A B C
受教育年限 10 16 6
年收入(万元) 2
1.5 1
年收入(元) 20000 15000 10000
A、B、C在不同距离单位时的距离图
A
B
B
10.01
C
A
10000
C
单位:万元
第6页,共8页。
单位:元
聚类分析
四、常用两种聚类分析方法
1.快速聚类法
快速聚类过程是初始分类的有效方法。适用于大容量样本的情形,由用户指定须聚类的 类数之后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。
m维空间中点与点之间的某种距离就可用来描述样品之间的亲疏程度。 而聚类分析则较常使用于将变量属性相似程度较高的观察值,加以分类,使类与类间的异质性达到最大,而同一类的几个观察值同质性很高。 ③对数据进行变换处理,(如标准化或规格化);
mm维维空 空间间中中点点与与点点实之之际间间的的应某某用种种距距时离离,就就可可两用用者来来描描的述述主样样品品要之之差间间的的别亲亲在疏疏程程于度度因。。子分析是针对“变量”予以分组,而聚类分析 按照这种方则法是不断将进“行合观并察,直值到个把所体有”的样予品以合为分一组个,大类亦为即止。因子分析时,根据因变量(题项)间关系密切与 四⑦、最常 后用绘两制否种系,聚统类聚将分类变析谱方系量法图予,按以不分同的类分(类标分准为或不几同个的层分类面原因则,子得)出不;同而的分聚类类结果分。析则较常使用于将变量属性相似 从数据结构程和度统计较形高式上的看观,因察子值分析,是加一种以“横分向类合并,”的使方类法,与聚类类分间析的则是异一质种“性纵向达合到并”最的方大法,。 而同一类的几个观察值 适每用一于 种大方容法同量都质样从本不性的同很情的形角高,度。由测用度户了指研定究须对聚象类的的相类似数性之。后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。 研究学生学业差异、因教师素教分学水析平:等等横,向都需简要化对研,究聚对象类进分行分析类:。纵向分组

聚类分析大数据课件

聚类分析大数据课件

5
Techniques
第七章 聚类分析
• 什么是聚类分析? • 数据类型及其相似性与非相似性计算 • 算法复杂性及近似算法概念 • 划分方法
– k-center、k-cluster、k-means、谱聚类NCut • 层次方法
– 单链接与全链接
2024年8月6日星期二
Data Mining: Concepts and
Data Mining: Concepts and
26
Techniques
天河一号有关数据
• 天河一号由140个机柜组成,占地约70 0平方米,总重量约160吨。
• 6144个通用处理器, 5120个加速处理器,内 存总容量98TB,存储容量为2PB 。
• 峰值运算速度为每秒4700万亿次、持续运算 速度2507万亿次每秒浮点运算。
解决方案:启发式方法与近似算法!
2024年8月6日星期二
Data Mining: Concepts and
28
Techniques
一些定义
• P = {C1, C2, …, Ck}:n个对象的一个划分,满足条件
Ci (i = 1, 2, …, k), V = iCi, 及Ci Cj = (i j)。
• k-Center:最大半径最小化
min r(P)
PPnk
k 3: NP-Hard问题!
• k-Cluster:最大直径最小化:
min d (P)
PPnk
k 3: NP-Hard问题!
2024年8月6日星期二
Data Mining: Concepts and
30
Techniques
一些常见的优化准则
d(i, j) q (| xi1 x j1 |q | xi2 x j2 |q ...| xip x jp |q)

聚类分析详解ppt课件

聚类分析详解ppt课件

以上我们对例6.3.1采用了多种系统聚类法进行聚类,其结果 都是相同的,原因是该例只有很少几个样品,此时聚类的过 程不易有什么变化。一般来说,只要聚类的样品数目不是太 少,各种聚类方法所产生的聚类结果一般是不同的,甚至会 有大的差异。从下面例子中可以看到这一点。
动态聚类法(快速聚类)
(4) 对D1 重复上述对D0 的两步得 D2,如此下去 直至所有元素合并成一类为止。
如果某一步Dm中最小的元素不止一个,则称此现 象为结(tie),对应这些最小元素的类可以任选一对 合并或同时合并。
27
二、最长距离法
类与类之间的距离定义为两类最远样品间的距离, 即
DKL
max
iGK , jGL
聚类分析应注意的问题
(1)所选择的变量应符合聚类的要求
如果希望依照学校的科研情况对高校进行分类,那么可以 选择参加科研的人数、年投入经费、立项课题数、支出经 费、科研成果数、获奖数等变量,而不应选择诸如在校学 生人数、校园面积、年用水量等变量。因为它们不符合聚 类的要求,分类的结果也就无法真实地反映科研分类的情 况。
主要内容
引言 聚类分析原理 聚类分析的种类 聚类分析应注意的问题 聚类分析应用 聚类分析工具及案例分析
聚类分析的种类
(1)系统聚类法(也叫分层聚类或层次聚类) (2)动态聚类法(也叫快速聚类) (3)模糊聚类法 (4)图论聚类法
系统聚类法
对比
常用的系统聚类方法
一、最短距离法 二、最长距离法 三、中间距离法 四、类平均法 五、重心法 六、离差平方和法(Ward方法)
对比
k均值法的基本步骤
(1)选择k个样品作为初始凝聚点,或者将所有样品分成k 个初始类,然后将这k个类的重心(均值)作为初始凝聚点。

第7章 聚类分析

第7章 聚类分析

多元统计分析及R语言建模
聚类分析的目的和意义
聚类分析中所使用的几种尺度的定义
主 要
初步掌握选用聚类方法与相应距离的原则

六种系统聚类方法的定义及其基本性质

R语言程序中有关聚类分析的算法基础
掌握R语言中kmeans聚类的方法和用法
7 聚类分析及R使用
基本概念
聚类分析法(Cluster Analysis)是研究“物以类聚”的
7 聚类分析及R使用
系统聚类分析的特点 综合性 形象性 客观性
关于kmeans算法 kmeans算法只有在类的均值被定义的情况下才能使用
对于“噪声”和孤立点是敏感的,这种数据对均值影响极大
7 聚类分析及R使用
关于变量变换
平移变换 极差变换 标准差变换 主成分变换 对数变换
7 聚类分析及R使用
k个类,使类内具有较高的相似度,类间的相
似度较低。
7 聚类分析及R使用
相似度计算是根据类中对象的均值mean来进行
概 念 和 原 理
7 聚类分析及R使用
【例7.3】kmeans算法的R语言实现及模拟分析:模拟正态随机变量
7 聚类分析及R使用
7 聚类分析及R使用
模拟10个变量2000个样品的正态随机矩阵
(4)绘制 系统聚类图
(3)合并距离 最近两类为新类
(4)计算新类与各 类距离,若类个数为 1,转到第5步,否则
回到第3步
例7-1数据的系统聚类 最短距离法(采用欧氏距离)
例7-1数据的系统聚类
最长距离法(采用欧氏距离)
例7-1数据的系统聚类
7 聚类分析及R使用
系 一、计算距离阵: dist 统 聚 二、进行系统聚类: hclust 类 R 三、绘制聚类图: plot 语 言 四、画分类框: rect.hclust 步 骤 五、确认续例3.1,研究全国31个省、市、自治区2007年城镇居民生活消费 的分布规律,根据调查资料做区域消费类型划分。

spss统计分析及应用教程-第7章-聚类分析与判断分析解析

spss统计分析及应用教程-第7章-聚类分析与判断分析解析

1








d
ij
q
p
q q X ik X jk
k 1
按 q的 取 值 不 同 又 可 分 成 :
p
绝 对 距 离 (q 1)d ij 1 X ik X jk k 1
1







q

2)
d
ij
2

p
2 2 X ik X jk
k 1
切 比 雪 夫 距 离 ( q= ) dij
最近邻元素:也称作最近距离 法,以两类中最近的样品之间 的距离为类间距离。
最远邻元素:也称作最远距离 法,以两类中最远的样品之间 的距离为类间距离。
聚类方法〔M〕 质心聚类法:也称作重心法, 以两类中各样品的重心之间的 距离为类间距离。
中位数聚类法:也称作中位数法, 以两类中各样品的中位数之间 的距离为类间距离。
问题的力气。
试验一 系统聚类分析
❖ 预备学问 ❖ 系统聚类分析的定义与根本思想
系统聚类分析又称为层次聚类分析,其根本思想是依据样品或 变量之间的亲疏远近关系,将最相像的对象结合在一起,以逐 次聚合的方式,将样品或变量进展分类,直到最终全部的样品 或变量都聚成一类。系统聚类有两种形式:Q型聚类和R型聚类 。
在第15阶中,群集1是个案2,群集2是个案9,二者之间的距离测度系数为 0.134,“首次消逝阶群集”中群集1为8,群集2为1,表示参与本次聚类的 群集1,即个案2为类,不是个案,该类来源于第8阶聚类的结果。群集2也是 类,该类来源于第1阶聚类的结果,第15阶是两个类的合并,合并后的类将 在第23阶再次参与聚类分析。依次追踪,可以在聚类表中看出全部的聚类过 程。

第7章-聚类分析(孤立点分析)解读

第7章-聚类分析(孤立点分析)解读

9
检测二元正态分布中的离群点
( x, y) ~ N (m1; alanobis距离来衡量是否离群点,距离超过一个阈值 就是离群点.
sx S s xy
X ( x1 , x2 )
s xy sy
11
检测二元正态分布中的离群点
19
基于偏离的孤立点检测

通过检查一组对象的主要特征来确定孤立点 与给出的描述偏离的对象被认为是孤立点 序列异常技术(sequential exception technique)

模仿人类从一系列推测类似的对象中识别异常对象的方式

术语

异常集(exception set): 它是偏离或孤立点的集合, 被定义 为某类对象的最小子集, 这些对象的去除会导致剩余集 合的相异度的最大减少 相异度函数(dissimilarity function):是满足如下条件的 任意函数:当给定一组对象时,如果对象间相似,返值 就较小。对象间的相异度越大,函数返回的值就越大
2
孤立点分析

应用:

信用卡欺诈检测 电信欺诈检测 顾客分割: 确定极低或极高收入的客户的消费行为 医疗分析: 发现对多种治疗方式的不寻常的反应 如果采用一个回归模型, 余量的分析可以给出对数据“极 端”的很好的估计 当在时间序列数据中寻找孤立点时, 它们可能隐藏在趋势 的, 周期性的, 或者其他循环变化中, 这项任务非常棘手 当分析多维数据时, 不是任何特别的一个, 而是维值的组 合可能是极端的. 对于非数值型的数据(如分类数据), 孤立点的定义要求特殊的考虑
24
基于密度的异常检测算法(1)
LOF表征了对象p的异常程度,因此,可以通 过计算LOF(p)来判断对象p是否是局部异常。基于

聚类分析法

聚类分析法

聚类分析法聚类分析是一种常用的数据分析方法,主要用于将相似的样本归类到同一类别中。

它是数据挖掘和机器学习领域中非常重要的一项技术,被广泛应用于各个领域,如市场研究、医学诊断、社交网络分析等。

本文将介绍聚类分析的基本概念、方法和应用,并分析其优势和局限性。

聚类分析是一种无监督学习方法,它不依赖于事先标定好的训练数据集。

通过对给定的数据进行聚类,我们可以发现数据中隐藏的模式、结构和规律。

聚类分析的基本思想是通过计算样本之间的相似度或距离,将相似的样本归为一类,从而实现对数据的分类。

在聚类分析中,相似度或距离的度量是一个关键问题,常用的度量方法包括欧氏距离、曼哈顿距离、余弦相似度等。

聚类分析的方法主要有层次聚类和划分聚类两种。

层次聚类是将样本逐步合并或分割成不同的类别,形成层次化的分类结果。

划分聚类是将所有的样本划分为K个不相交的类别,每个类别之间是互不重叠的。

这两种方法各有优劣,选择何种方法取决于具体的问题和数据特点。

聚类分析的应用非常广泛。

在市场研究中,聚类分析可以将消费者按照其购买行为、兴趣偏好等特征划分为不同的群体,为企业提供有针对性的营销策略。

在医学诊断中,聚类分析可以将病人按照其病情特征进行分类,帮助医生进行准确的诊断和治疗。

在社交网络分析中,聚类分析可以将社交网络中的用户划分为不同的社区,研究社交网络的结构和特征。

然而,聚类分析也存在一些局限性和挑战。

首先,聚类算法的结果很大程度上依赖于选择的相似度或距离度量方法,不同的度量方法可能导致不同的聚类结果。

其次,聚类算法对初始的聚类中心的选择非常敏感,不同的初始选择可能会得到不同的聚类结果。

此外,聚类算法还面临维度灾难的问题,当数据的维度很大时,聚类算法的计算复杂度会急剧增加。

在实际应用中,我们还可以将聚类分析与其他数据挖掘方法相结合,以获得更好的分析结果。

比如,我们可以将聚类分析与关联规则挖掘结合起来,通过挖掘不同类别之间的关联规则,深入分析不同类别之间的关系。

第七章聚类分析

第七章聚类分析

第七章聚类分析第七章聚类分析§7.1聚类分析方法一、基本思想根据一批样品的多个观测指标,具体找出一些能够度量样品或指标间相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品聚为一类。

关系密切的聚为一个小的分类单位,关系疏远的聚为一个大的分类单位,直到把所有样品或指标都聚类完毕,这样就可以形成一个由小到大的分类系统。

聚类分析分类:按聚类变量分为样品聚类(Q聚类)和指标聚类(R聚类);按聚类方法分为系统聚类和动态聚类二、相似性测度1、对样品进行聚类时,相似性一般用距离来衡量:(1)绝对值距离(2)欧氏距离(欧几里得距离)(3)平方欧氏距离(4)切比雪夫距离(5)闵可夫斯基距离2、对指标进行聚类时,相似性通常根据相关系数或某种关联性来决定(1)夹角余弦(2)皮尔逊相关系数(简单相关系数)§7.2系统聚类法一、基本思想系统聚类法分类:聚集法和分解法。

聚集法:首先将每个个体各自看成一群,将最相似的两个群合并,重新计算群间距离,再将最相似的两群合并,每步减少一群,直至所有个体聚为一群为止。

分解法:首先将所有个体看成一群,将最不相似的个体分成两群,每步增加一群,直至所有个体各自成为一群。

二、群间距离的定义1、最短距离法将两变量间的距离定义为一个群中所有个体与另一个群中的所有个体距离最小者。

设为群中的任一个体,为群中的任一个体,表示个体与间的距离,表示群与群间的距离,则最短距离法把两群间距离定义为:设类合并成一个新类记为,则任一类的距离为最短距离法进行聚类分析的步骤如下:(1)定义样品间距离,计算样品的两两距离,得一距离阵记为,开始每一个样品即为一类,显然这时(2)找出距离最小元素,设为,则将合并成一个新类,记为,即(3)按类间距离计算新类与其他类的距离(4)重复(2)(3)步,直到所有元素并成一类。

如果某一步距离最小的元素不止一个,则对应这些最小元素的类可以同时合并。

例7.1设有六个样品,每个只测量一个指标,分别是1, 2,5,7,9,10,试用最短距离法将它们分类。

聚类分析—搜狗百科

聚类分析—搜狗百科

聚类分析—搜狗百科依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。

各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。

各指标之间具有一定的相关关系。

聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。

聚类分析区别于分类分析(classification analysis) ,后者是有监督的学习。

变量类型:定类变量、定量(离散和连续)变量聚类方法1,层次聚类(Hierarchical Clustering)合并法、分解法、树状图2. 非层次聚类划分聚类、谱聚类聚类方法特征:聚类分析简单、直观。

聚类分析主要应用于探索性的研究,其分析的结果可以提供多个可能的解,选择最终的解需要研究者的主观判断和后续的分析;不管实际数据中是否真正存在不同的类别,利用聚类分析都能得到分成若干类别的解;聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终的解都可能产生实质性的影响。

研究者在使用聚类分析时应特别注意可能影响结果的各个因素。

异常值和特殊的变量对聚类有较大影响当分类变量的测量尺度不一致时,需要事先做标准化处理。

当然,聚类分析不能做的事情是:自动发现和告诉你应该分成多少个类——属于非监督类分析方法期望能很清楚的找到大致相等的类或细分市场是不现实的;样本聚类,变量之间的关系需要研究者决定;不会自动给出一个最佳聚类结果;我这里提到的聚类分析主要是谱系聚类(hierarchical clustering)和快速聚类(K-means)、两阶段聚类(Two-Step);根据聚类变量得到的描述两个个体间(或变量间)的对应程度或联系紧密程度的度量。

可以用两种方式来测量:1、采用描述个体对(变量对)之间的接近程度的指标,例如“距离”,“距离”越小的个体(变量)越具有相似性。

2、采用表示相似程度的指标,例如“相关系数”,“相关系数”越大的个体(变量)越具有相似性。

聚类分析数据

聚类分析数据

聚类分析数据聚类分析是一种数据挖掘技术,用于将相似的数据对象归类到同一个簇中。

通过对数据进行聚类分析,可以发现数据中的隐藏模式、结构和关系,匡助我们更好地理解数据。

本文将介绍聚类分析的基本概念、常用方法和步骤,并通过一个示例来演示如何进行聚类分析。

1. 聚类分析的基本概念聚类分析是一种无监督学习方法,不需要事先标记好的训练数据。

它根据数据样本之间的相似性,将它们划分为不同的簇。

聚类分析的目标是使同一簇内的数据对象相似度较高,而不同簇之间的相似度较低。

2. 聚类分析的常用方法聚类分析有多种方法,常见的包括层次聚类和K均值聚类。

2.1 层次聚类层次聚类是一种自底向上的聚类方法,它从每一个数据对象作为一个簇开始,逐步合并最相似的簇,直到所有数据对象都被合并为一个簇或者达到预设的簇数目。

2.2 K均值聚类K均值聚类是一种迭代的聚类方法,它将数据对象划分为K个簇,每一个簇由一个质心代表。

初始时,随机选择K个质心,然后迭代地将每一个数据对象分配到最近的质心所在的簇,再更新质心的位置,直到质心的位置再也不变化或者达到预设的迭代次数。

3. 聚类分析的步骤聚类分析通常包括以下步骤:3.1 数据准备首先,需要采集和整理要进行聚类分析的数据。

数据可以是数值型、分类型或者混合型的。

确保数据的质量和完整性,处理缺失值和异常值。

3.2 特征选择根据分析目标和数据特点,选择合适的特征作为聚类分析的输入。

特征应该具有代表性,能够区分不同的数据对象。

3.3 数据标准化对于具有不同量纲的特征,需要进行数据标准化,以消除量纲影响。

常用的标准化方法包括最小-最大标准化和Z-score标准化。

3.4 选择聚类方法和参数根据数据的特点和分析目标,选择合适的聚类方法和参数。

不同的聚类方法适合于不同类型的数据和分析需求。

3.5 执行聚类分析根据选择的聚类方法和参数,执行聚类分析。

对于层次聚类,可以使用聚类树或者热图来可视化聚类结果。

对于K均值聚类,可以绘制簇内离散度图或者簇间离散度图来评估聚类的质量。

聚类分析课件

聚类分析课件

聚类分析课件聚类分析课件聚类分析是一种常用的数据分析方法,它可以将一组数据分成不同的类别或簇,每个簇内的数据点具有相似的特征,而不同簇之间的数据点具有较大的差异。

聚类分析在各个领域都有广泛的应用,如市场细分、社交网络分析、医学诊断等。

在本文中,我们将介绍聚类分析的基本概念、常用算法和实际应用案例。

一、聚类分析的基本概念聚类分析的目标是通过对数据进行分组,使得每个组内的数据点相似度较高,而不同组之间的相似度较低。

聚类分析的基本概念包括距离度量和聚类算法。

1. 距离度量距离度量是衡量数据点之间相似度或差异度的标准。

常用的距离度量方法包括欧氏距离、曼哈顿距离和闵可夫斯基距离等。

欧氏距离是最常用的距离度量方法,它计算数据点在多维空间中的直线距离。

曼哈顿距离则计算数据点在坐标轴上的绝对距离,而闵可夫斯基距离则是这两种距离的一种泛化形式。

2. 聚类算法常用的聚类算法包括K-means算法、层次聚类算法和DBSCAN算法等。

K-means算法是一种迭代的、基于距离的聚类算法,它将数据点分成K个簇,使得每个簇内的数据点与该簇的中心点的距离最小。

层次聚类算法则是一种自底向上的聚类算法,它通过计算数据点之间的相似度来构建一个层次结构。

DBSCAN算法是一种基于密度的聚类算法,它将数据点分为核心点、边界点和噪声点三类,具有较好的鲁棒性和灵活性。

二、常用的聚类分析算法1. K-means算法K-means算法是一种迭代的、基于距离的聚类算法。

它的基本思想是随机选择K个初始中心点,然后将每个数据点分配到距离其最近的中心点所对应的簇中。

接着,重新计算每个簇的中心点,并重复这个过程直到收敛。

K-means算法的优点是简单易实现,但它对初始中心点的选择敏感,并且需要预先指定簇的个数K。

2. 层次聚类算法层次聚类算法是一种自底向上的聚类算法。

它的基本思想是将每个数据点看作一个独立的簇,然后通过计算数据点之间的相似度来构建一个层次结构。

7 第七章 聚类分析

7 第七章 聚类分析
2
l
p
p
D pq
q
q
Dkl
Dkp k Dkq
k
24
(四)重心距离 递推公式 np nq n p nq 2 2 2 2 Dkl Dkp Dkq D pq 2 np nq n p nq (n p nq )
2 xi 和 x j分别是i和j的重 式中 Dij ( xi x j )T ( xi x j ), 心, i, j=k, l, p, q 。
5
7.2 模式相似性测度
7.2.1 距 离 测 度
7.2.2 相 似 测 度 7.2.3 匹 配 测 度
6
7.2.1 距离测度(差值测度)
Distance (or Dissimilarity) Measure
设特征矢量 x 和 y 的距离为 d ( x , y ) 则 d ( x , y ) 一般应满足如下公理
15
7.2.3 匹 配 测 度
若特征只有两个状态: 0 => 有此特征;1 => 无此特征。称之为二值特征。 对于给定的二值特征矢量x和y中的某两个相对应的 分量xi与yj 若xi=1, yj=1 ,则称 xi与yj (1-1)匹配; 若xi=1, yj=0 ,则称 (1-0)匹配; 若xi=0, yj=1 ,则称 (0-1)匹配; 若xi=0, yj=0 ,则称 (0-0)匹配。 对于二值n维特征矢量可定义如下相似性测度:
其中 1 m T (协方差矩阵的无偏估计) V ( x x )( x x ) i i m 1 i 1
1 m x xi m i 1
(均值向量的估计)
性质:对一切非奇异线性变换都是不变的。 即,具有坐标系比例、旋转、平移不变性, 并且从统计意义上尽量去掉了分量间的相关性。

聚类分析ppt课件

聚类分析ppt课件
第七章 聚类分析
第一节 引言 第二节 相似性的量度 第三节 系统聚类分析法 第四节 K均值聚类分析 第五节 两步聚类分析
1
第一节 引言
什么是聚类分析? ❖ 聚类分析是根据“物以类聚”的道理,对样本或指
标进行分类的一种多元统计分析方法,它们讨论的 对象是大量的样本,要求能合理地按各自的特性进 行合理的分类,没有任何模式可供参考或依循,即 在没有先验知识的情况下进行的。
1.明考夫斯基距离
p
dij (q) (
X ik X jk )q 1/ q
k 1
明考夫斯基距离简称明氏距离。
(7.1)
13
按q的取值不同又可分成下面的几个式子
(1)绝对距离( q 1)
p
dij (1) X ik X jk k 1
பைடு நூலகம்
(7.2)
(2)欧氏距离( q 2)
p
dij (2) (
X ik X jk )2 1/ 2
22
第三节 系统聚类分析法
一 系统聚类的基本思想 二 类间距离与系统聚类法
23
一、系统聚类的基本思想
❖ 系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品( 或变量)总能聚到合适的类中。系统聚类过程是:假设总共 有n个样品(或变量),第一步将每个样品(或变量)独自 聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类 ;第三步将“距离”最近的两个类进一步聚成一类,共聚成 n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(i ) ( A , B ) ( B , A ) ( ii ) (A, B) 0 (iii) (A, B) 随 A , B 之 间间的相似性增
(A, 其中,
B)

称为个体A与B之间的相似系数, rkl
和sij因为虽然满足上述性质(i),却并不满足性 质(ii),但是经过7.1和7.2的变换后就满足了。
找出其中的最小值,以确定最佳分割点。最小值 记为:
v m ( 2 ) min
* 1 i m 1
vm (2 | i)
(m 2,3,...n)
(3)由vm*(2)及V中的元素计算
1 p
p
d
ij

k 1
( x ik x
jk
)
2
III Pearson距离
m
d
ij


k 1
( x ik x sk
2
jk
)
2
IV Mahalanobis距离
d ij ( x i x j ) S
1
( xi x j )
上述距离系数是对时间点而言的,对空间点
之间距离的度量可以类似地定义,只需将i,j换
应该注意的是,不同的目的选用不同的指标作为分 类的依据。例如,对少年为选拔运动员所选用的指
标就不同于为分课外活动小组所选用的指标,对啤
酒按价格进行分类和按成分进行分类所选用的指标 也是不同的。
2.变量聚类
变量聚类在统计学中又称为R型聚类。
反映同一事物特点的变量有很多,我们往往
根据所研究的问题选择部分变量对事物的某一方 面进行研究。由于人类对客观事物的认识是有限 的,往往难以找出真正彼此独立的有代表性的变 量,而影响对问题的进一步认识和研究。
* *
*
* * *
* * *
*
空间中的p个点
例: 设有p=6个空间点的要素场,计算它们的相
关阵及相关距离系数,表中上三角阵列出各点之 间相关系数,下三角阵列出相关距离系数,系数 以弧度为单位。从相关距离系数阵出发作逐级归 并。 第一级根据相似系数最小为最相似的原则把 l 与 2点归为一类,其相似水平 (记为α)定义为它们 间的距离即为0.142。 第二级考察在3,4,5,6点中哪一点与第一级 的组最相似,即分别计算
例如,在回归分析中由于自变量的共线性导
致偏回归系数不能真正反映自变量对因变量的 影响,等等。 因此,往往先要进行变量聚类,找出彼此独 立且有代表性的自变量,而又不丢失大部分信 息(如主成分分析)。
在生产活动中也有很多需要进行变量聚类的 实例:制衣业制定衣服型号就是根据人体各部分 尺寸数据找出最有代表性的指标,如身长、胸围 、裤长、腰围等作为上衣及裤子的代表性指标。 制鞋业中制定鞋的型号也是如此。 变量聚类使批量生产成为可能。
无论哪种聚类分析得出的结论都是为了某种
目的所做的工作,往往并非在自然界真实存在。
常用的聚类方法
逐步并类法 :一开始,每个样品自成一类,然后按
一定的规则每次缩小一类,直到所有的样品都成为
“一类”为止。又称为“合二为一” 逐步分解法:一开始,所有样品的全体成为一类,
然后按一定的规则每次将一类分为两类,直到无法
各段变差之和作为某种分割的优劣标准,以最小
者为最优。因此变差的计算是十分重要的。
变差的计算 设一变量的有序样本x1,x2,….xn,分为若干
段,
由 第 i 个 值 到 第 j 个 值 (j=1 , 2 . … , n-
1;j>i)的某段变差计算公式为
j
v (i, j ) w here x (i, j )
可分为止。又称“一分为二”。
调优法:先给定一个初始分类,按照某种最优准则
,不断调整分类,最终得到合理的分类。
§1 相似性度量
在聚类分析中,需要对不同个体(空间点或
时间点)进行相似分析,相似的就归为一类, 客观地度量任两个个体的相似程度大致有下面 几种指标: 相关距离系数
相似系数
1. 相关距离系数
在实际问题中,研究 n 个时间观测点之间
的相关系数没有明显的物理意义。 因为,在计算两时间点相关系数时,要用 到空间点的平均值和方差,再加上如果变量是 不同气象要素时,在实际解释上更为困难。
虽然rkl和sij是衡量两个空间点和时间点相关程度
的 ,但还不能用它们作为聚类过程的相似性系 数,因为一般的相似系数应具有如下性质:
第7章 聚类分析
第3章 判别分析
第七章 聚类分析
分类学是人类认识世界的基础科学研究、社会科学研究、工农业生产各个领域。
在大气科学研究中,存在着两种不同的分类问
题:
1)事先不知道分类的类别和分类数目,也不 清楚样本的属性,需要根据一定的规则进行分类— 聚类问题; 2)事先已经知道分类的类别,用因子判定预
( p ) (
k 1
x ik x
jk
)
p
(1) p=1,域块距离(Block distance)
m
d
ij
(1 )

k 1
x ik x
jk
(2) p=2, 欧氏距离( Euclidean 距离)
m
d
ij
(2)

k 1
( x ik x
jk
)
2
实际中更常用平方欧氏距离
II 平均距离
基本原理
第二步把其余的组与第一步合并组进行比较, 以哪一组与它最相似为原则进行归并。由于相 似系数具有可加性,可用平均相似系数作衡量 判据。
如此下去,每一次都将“最相似”(或“最近”)
的两组归并,直到所有个体归并为一组为止。
归并过程可制成枝形图(或称树图)。
* * * *
* * *
**
* * * **
( 12 14 24 ) 1 . 281 ( 12 15 25 ) 1 . 906 ( 12 16 26 ) 1 . 902
其中以 θ(1,2,3) 为最小,故 3 点归到 1 , 2 点的一类, 相似水平为0.393。
但比这一级距离还小的有θ56=0.330,故实际上在这
第2步:重新计算串组后的距离系数矩阵D(1)。 做法是将已经合并的1,5点看做时间空间中的 一个新点,记为15。其与其它数据点之间的距 离系数用前一步距离系数的平均值代替。
例如,计算第K个点(k=2,3,4,6)与15点的
新距离系数
d
(1 ) k ;15
1 (d 2
(0) k ;1
d
(0) k ;5
)
第3步:以新的相似距离系数矩阵为基础,重复
第2步的过程,做新的合并后,又重新计算串组 后的距离系数矩阵。 最后的结果是一个树状图。其中的横坐标叫做 “串组水平”。 如果分为2类,则1951、1955和1953年为一类, 代表气温是下降型;1952、1956和1954年为另 一类,代表气温有上升趋势类。
2* 1*
3*
4*
6* 5*
(1 , 2 , 3 ) (1 , 2 , 4 ) (1 , 2 , 5 ) (1 , 2 , 6 )
1 3 1 3 1 3 1 3
( 12 13 23 )
1 3
( 0 . 142 0 . 547 0 . 491 ) 0 . 393
(y
i 1
i
y)
2
2.相似系数
研究要素场不同时间点之间的相似程度。 衡量第 i 个时间点与第 j 个时间点之间相似程度用:
ij arccos
where
s ij
p p
s ij
x ik x
p 2 ik jk

k 1

k 1
x

k 1
x
2 jk
上面的sij衡量了两个时间点之间的相关程度,它常在Q 型因子分析中用来代替两个变量的相关系数。
聚类分析的原则是同一类中的个体有较大的 相似性,不同类中的个体差异很大。 根据分类对象的不同,分为样本聚类和变量 聚类。
1.样品聚类 样品聚类在统计学中又称为Q型聚类。 就是对事件 Cases( 或称样品或称观测量)进行 聚类。是根据被观测的对象的各种特征,即反映被 观测对象特征的各变量值进行分类。 样品聚类是进行判别分析的之前的必要工作。
用来研究要素场中不同空间点之间的相似程度
。设对 p 个空间点的要素场,抽取 n 个时间点的样
本资料,那么衡量第 k 个与第 l 个空间点之间的 相似程度可用相关距离系数:
kl arccos rkl
n
(x
i
x )( yi y )
n 2
相关系数
r
i 1 n
(x
i 1
i
x)
可见第 4 点与 1 , 2 , 3 点最相似,归为一类,记
此为I类;5,6点为II类。
6个空间点可分
为二类,分级水平为 1.091 . 分 类 过 程 可 绘成树图. 由图可见,若要
把 6 个点分为三类,
则1,2,3为一类,4 点独成一类,5,6点 为另一类。分类水平 为0.393.
§3
平均权重串组法
θ及α的数值变化在0到π之间,
θ=0时为完全相似,
θ=π时则为完全不相似。
不同个体的相似系数还可以进行相加或平均, 这些在原来的rkl和sij中都是不能解释的。
3.距离系数 在聚类分析中,也可以使用距离系数进行聚类, 距离比较近的个体可以归为一类。
I Minkovski 距离
m p 1
d
ij
一水平下还应有另一类,即5,6点组成的一类。 第三级,余下的第4点应归哪一类,计算
相关文档
最新文档