细胞骨架

合集下载

细胞骨架-细胞生物学

细胞骨架-细胞生物学

细胞骨架(Cytoskeleton):指存在于真核细胞内的蛋白质纤维网络结构系统狭义细胞骨架:细胞质骨架广义细胞骨架:细胞质骨架、核骨架、细胞膜骨架、胞外基质细胞质骨架:►微管(microtubule)►纤丝(filament):微丝、中等纤维(中间丝)、粗丝微管(microtubule,MT)1、形态结构►细胞骨架中,最早发现,最粗的一种结构►存在于所有真核细胞中►管状结构►大多单管、有时二联管、三联管2、化学组成(1)微管蛋白(tubulin)两种:α-微管蛋白、β-微管蛋白►α-tubulin和β-tubulin聚合,形成异二聚体►异二聚体:高8nm,直径4-5nm,微管的结构亚单位►异二聚体进一步结合,形成原纤维(原丝结构)►13条原纤维,形成一根微管(2)微管连接蛋白(microtubule associated protein,MAP)也称微管附属蛋白、微管关联蛋白呈倒L 形“臂状”突起►长臂垂直伸出,使微管与微管及微管与其它细胞器或结构相作用短臂与微管蛋白结合,稳定、促进微管蛋白聚合作用3、微管的装配微管是一种能进行自我装配的细胞器聚合微管蛋白微管微管的装配是一个高度有序的过程,受许多因素的影响微管组织中心(MTOC)微管在生理状态或实验处理解聚后重新装配的发生处称为微管组织中心(microtubule organizing center,MTOC) :►纤毛(鞭毛)的基体►纺锤体两极的中心粒►染色体的着丝点温度37℃聚合二聚体微管0℃解聚一般认为,20˚C以上才有利于微管的装配MAP►短臂与微管蛋白结合,促进微管蛋白聚合,促进装配►对装配后的MT有稳定作用,增加MT对药物、理化因子的抵抗能力►长臂上有磷酸化位点,磷酸化修饰后,可抑制短臂对微管装配的促进以及稳定和保护作用Ca2+浓度Ca2+ >10μM微管微管蛋白(二聚体)Ca2+<10μM►通过CaM,激活蛋白激酶,MAP长臂磷酸化,解除短臂对微管的保护作用►MT研究中,用EGTA:乙二醇双(β-氨基乙醚)四乙酸药物(1)抑制微管形成药物►许多是植物中提取的代谢产物(生物碱)►秋水仙素(colchicine)►秋水仙胺(秋水仙素类似物,colcemid)►长春花碱►鬼臼素秋水仙素最常用抑制和破坏微管机理:►与β-tubulin肽链中第201位Cys结合►导致二聚体不能形成,微管装配受阻,并引起装配后微管的解聚(2)促进微管形成药物►GTP,为MT装配提供能量,与微管蛋白结合,构象变化,有利于装配►紫杉酚►重水(D2O)微管是一种动态结构:►有极性(βα→βα即头→尾)►头(+极),尾(-极)►+极装配:βα二聚体与GTP结合(有利于装配)►-极去装配:βα二聚体不与GTP结合►一头装配,一头去装配,这种交替变换过程称踏车现象(tread milling)►装配速度>去装配速度,MT延长,反之,MT消失4、微管的功能(1)维持细胞形态:刚性,支架(2)细胞内运输:分泌小泡运输、色素颗粒运输(3)细胞运动——鞭毛和纤毛►鞭毛和纤毛是运动细胞器►自然界许多细胞的运动是靠鞭毛和纤毛进行的►如原生动物:鞭毛虫、纤毛虫;单细胞藻类;动物精子;呼吸道、食道上皮细胞表面纤毛(4)细胞分裂微管参与形成有丝分裂器有丝分裂器包括:►纺锤体►中心粒►染色体纺锤体:由纺锤丝组成►纺锤丝由微管组成(4~6根微管/纺锤丝)►一端与染色体着丝粒相连,一端与中心粒相连(着丝粒、中心粒均为MTOC)►在纺锤丝牵引下,染色体移动中心粒:►位于纺锤体两端►成对出现,相互垂直►9组三联管►MTOC纤丝(filament)包括:►微丝:6~7nm►中间丝:10nm(中间纤维,中等纤维,大小处于中间)►粗丝:15nm1、微丝(microfilament,MF)►又称肌动蛋白纤维(actin filament),肌细胞中的微丝,称细肌丝►由肌动蛋白(actin)组成►肌动蛋白:一条多肽链组成,MW 43kd,球形分子2、粗丝►肌细胞中,称粗肌丝或肌球蛋白丝►由肌球蛋白(myosin)组成►每个肌球蛋白分子由6条多肽链组成肌肉运动►横桥形成后,肌球蛋白头部分子构象变化►两种肌丝间产生滑行►滑行一次,移动10nm►滑行后,在肌球蛋白头部结合2个A TP(A TPase位点)►A TP水解,头部构像复原►肌肉收缩►动物死亡后,A TP耗尽,处于收缩状态,肌肉僵硬在体内,有些微丝是永久性的结构,如肌细胞中的细肌丝等►在大多数非肌细胞中,微丝是一种动态结构►与微管相似,也存在装配和解聚药物:►细胞松弛素B(cytochalasin B,CB)►鬼笔环肽(毒蕈产生)微丝功能:(1)肌肉收缩(2)胞质环流:丽藻、轮藻,叶绿体运动(用CB 处理,停止,洗去CB,恢复)(3)细胞移动:变形虫,肌动蛋白与肌球蛋白相互作用(非肌肉细胞中,肌球蛋白不聚集成粗丝)(4)维持细胞形态♦与微管一起,支架♦应力纤维(stress fiber),微丝束♦肠上皮微绒毛(5)细胞分裂♦纺锤体中有微丝♦胞质分裂环3、中等纤维(intermediate filament,IF)中间纤维、10nm丝按组织来源和免疫原性的不同,分5类:(1)角蛋白纤维(上皮细胞)(2)波形纤维(间质细胞、中胚层来源细胞)(3)结蛋白纤维(肌细胞)(4)神经元纤维(神经元细胞)(5)神经胶质纤维(神经胶质细胞)中等纤维由中等纤维蛋白聚合而成结构:♦羧基末端和氨基末端-非螺旋♦中部α-螺旋区♦α-螺旋区310个氨基酸功能:由于没有特异性药物,影响功能研究(1)支架,细胞形态(2)细胞运动、铺展、胞内颗粒运动(3)形成桥粒等结构(4)信息传递IF与肿瘤诊断:IF的分布具有组织细胞特异性即不同的组织细胞中,IF种类不同,以此鉴定组织细胞类型扩散的癌细胞来源?波形纤维:黑色素瘤、淋巴瘤结蛋白纤维:横纹肌、平滑肌瘤神经纤维:神经母细胞瘤、嗜铬细胞瘤等核骨架(nucleoskeleton),也称核基质(nuclear matrix)成份:♦核骨架蛋白♦核骨架结合蛋白♦几十种功能:♦DNA复制♦RNA转录和加工♦病毒复制和装配♦染色体构建。

细胞生物学-细胞骨架

细胞生物学-细胞骨架
28
29
6 形成应力纤维(stress fiber)
应力纤维是由微丝与肌球蛋白-II组装的一种不稳定性收 缩束,结构类似肌原纤维,使细胞具有抗剪切力。
30
培养的上皮细胞中的应力纤维(微丝红色、微管绿色)
31
7 参与肌肉收缩
基本结构:肌纤维是圆柱形的肌细胞(长度可达40mm, 宽为10100μm), 并且含有许多核(可多达100个核)。
性,既正极与负极之别。
微丝纤维的负染电镜照片
10
三、微丝的装配过程
微丝(F-actin)由G-actin聚合而成,单体具有极性,装配时 首尾相接。在适宜的条件下,肌动蛋白单体可自组装为纤维。 微丝的组装过程分三个步骤:即成核期、延长期、平衡期。
11
影响装配的因素
微丝的装配同样受肌动蛋白临界浓度的影响,还受一些 离子浓度的影响:在含有ATP和Mg2+, 以及很低的Na+、K+ 等阳离子的溶液中,微丝趋向于解聚成G-肌动蛋白。
32
33
骨骼肌收缩的基本结构单位——肌小节
肌小节的主要成分是肌原纤维,电镜下可见肌原纤维是由两种 类型的长纤维构成, 一种是细肌丝,直径为6nm;另一种是粗 肌丝,直径为15nm。
34
粗肌丝: 组成肌节的肌球蛋白丝。 细肌丝: 组成肌节的肌动蛋白丝。
35
粗肌丝的构成---肌球蛋白(myosin)
12
踏车现象(treadmilling)
在微丝装配时,若G-肌动蛋白分子添加到F-肌动蛋白丝 上的速率正好等于G-肌动蛋白分子从F-肌动蛋白上失去的速 率时, 微丝净长度没有改变, 这种过程称为肌动蛋白的踏车 现象.
13
永久性微丝结构
在体内, 有些微丝是永久性结构, 如肌肉中的细丝及上皮 细胞微绒毛中的轴心微丝等。有些微丝是暂时性结构, 如 胞质分裂环中的微丝。

细胞骨架—《细胞生物学》笔记

细胞骨架—《细胞生物学》笔记

细胞骨架—《细胞生物学》笔记●第一节细胞骨架的基本概念●(一)基本概念●细胞骨架(cytoskeleton)一般指真核细胞细胞质内由蛋白质组成的复杂纤维状网架结构体系,包括:微丝(microfilament, MF)、微管(microtubule, MT)及中间纤维(intermediate filament, IF)。

广义的细胞骨架还包括细胞核的核骨架和细胞质膜的膜骨架。

●(二)功能●细胞骨架是高度动态的结构体系,对细胞的结构和功能发挥组织作用,并进一步影响细胞的形态、运动,胞内物质运输及周围的细胞和环境。

(除支持作用和运动功能外,与胞内物质运输、能量转换、信息传递、细胞分裂、基因表达、细胞分化、甚至分子空间结构的改变等生命活动密切相关。

)●第二节微丝与细胞运动●一、微丝的组成及其组装●(一)组成●微丝又称肌动蛋白丝(actin filament)或纤维状肌动蛋白(fibrous actin,F-actin),是指真核细胞中由肌动蛋白(actin)聚合而成的,直径为7nm的纤维状结构,其组装/去组装(微丝网格结构的动态变化)与多种细胞生命活动密切相关。

●(二)结构与成分●1.主要结构成分:肌动蛋白actin●(1)结构●由一条多肽链构成的球形蛋白质,是组成微丝的基本蛋白质,分子量约43 kDa,序列高度保守;不同亚型的肌动蛋白(isotype)常有组织和发育阶段表达的特异性。

●(2)三维结构●该分子上有一条裂缝,将其分成两半,其底部有两段肽链相连,呈蝶状(具有裂缝的一端为负极(-),另一端为正极(+))。

在裂缝内部有一个核苷酸(ATP或ATP)结合位点和一个二价阳离子(Mg²⁺或Ga²⁺)结合位点。

●(3)存在形式●①肌动蛋白单体(又称球状肌动蛋白,G-action);●②肌动蛋白多聚体(F-action)。

●(4)类型●①α-肌动蛋白●横纹肌、心肌、血管平滑肌和肠道平滑肌所特有。

4细胞器与功能——细胞骨架

4细胞器与功能——细胞骨架

4.9.了解广义和狭义的细胞骨架概念:细胞骨架是指细胞中由纤维蛋白构成的空间网络结构。

广义的细胞骨架包括:细胞核骨架、细胞质骨架、质膜骨架以及胞外基质。

狭义的细胞骨架包括:细胞质骨架(微管、微丝、中间丝)一、概念:细胞骨架是指用电子显微镜观察经非离子去污剂处理后的细胞,可以在细胞质内观察到一个复杂的纤维状网络结构体系,细胞骨架主要包括微丝、微管和中间丝。

二、细胞骨架的特点1.细胞骨架由相应的蛋白亚基构成,在组装与解聚间二者达到平衡。

2.细胞骨架具有动态不稳定性,即一定条件下存在组装与去组装现象,在细胞生命活动中起到重要作用。

(1)细胞周期中,细胞骨架经历动态的组装与去组装,周期性的重塑,在分裂期与分裂间期,其分布与组织形式不同。

(2)踏车行为能够改变微管或微丝在细胞中的分布,可能与细胞运动有关。

(3)细胞分裂伴随着纺锤体的形成与解聚。

(4)细胞胞质环流伴随着细胞骨架的形成于解聚。

3.细胞骨架是三维的空间网状结构。

三、细胞骨架的功能特点1.细胞骨架构成多种细胞结构。

(1)微管:鞭毛、纤毛、中心体、纺锤体(2)微丝:微绒毛、收缩环、应力纤维、黏合斑、黏合带(3)中间丝:桥粒、半桥粒2.细胞骨架为细胞提供结构支撑,维持细胞形态。

3.细胞骨架介导细胞内物质运输、细胞器运输。

4.细胞骨架介导细胞运动。

5.细胞骨架对细胞分裂起到重要作用。

6.细胞骨架是细胞内结构与功能的空间组织者。

细胞内生物大分子或细胞器的分布具有不对称性,这与细胞骨架的不同组织方式有关,其结构与功能相适应。

四、细胞骨架的研究方法1.荧光显微镜细胞骨架的蛋白亚基可与相应的荧光染料或荧光抗体特异性结合,从而通过荧光显微镜观察其在活细胞中的组织、分布、功能与行为模式。

2.电子显微镜细胞经非离子型去污剂处理后,可溶性物质与膜被抽离,留下不溶的细胞骨架结构,经金属复型后可在电镜下观察细胞骨架的结构。

3.特异性药物处理微管:秋水仙素、长春花碱、紫杉醇微丝:细胞松弛素、鬼笔环肽4.10.微丝4.10.1.掌握微丝的形态结构及构成微丝的分子--肌动蛋白微丝的概念:微丝又称肌动蛋白丝,直径约7nm,由肌动蛋白单体聚合而成,存在于所有真核细胞中,参与多种细胞表面形态的构成并介导细胞运动。

第七章 细胞骨架

第七章 细胞骨架

1、支持和维持细胞的形态
• 用秋水仙素处理培养细胞,发现细胞丧失原有的形 态而变圆。说明微管对维持细胞的不对称形状是重 要的。
• 微管具有一定刚性,可自然取直,在保持细胞外形 方面起支撑作用。
• 细胞突起部分,如伪足、 鞭毛、纤毛、神经轴突的 形成和维持,都是微管在 起关键作用。
(线粒体、分泌小泡前体)
③中间纤维的亚基并不与核苷酸结合,而微管的亚基与GTP 或GDP结合,微丝的亚基则与ATP或ADP结合。
一、中间纤维的分布、结构和类型
(一)分布: 中间纤维是一类丝状蛋白多聚体。分布于细胞
质中常形成精细发达的纤维网络,外与细胞膜与细 胞外基质相连,内与核纤层有直接的联系。中间纤 维与微丝、微管及其他细胞器也有着错综复杂的纤 维联络。
微丝是比微管细的实心纤维状结构
一、肌动蛋白与微丝的结构
形态:是一类由肌动蛋白纤维组成的实心螺旋状纤 维细丝。 5-8nm,长短不一。
在细胞中:微丝横向连接聚合成束。
肌细胞:肌动蛋白占细胞总蛋白10%,微丝形成特定的稳定结 构; 非肌细胞:肌动蛋白占1%~5%。微丝常分布在细胞膜下方,大 多呈现一种动态结构。
γ-TuRC组织微管在体内的装配在时间和空间是高度有序的。 间期:微管与微管蛋白处于相对平衡状态; γ-TuRC组织微管
形成的能力被关闭; 分裂前期:γ-TuRC磷酸化,开放γ-TuRC 组织形成微管的能力;
四、微管的功能
• 构成细胞内的网状支架,支持和维持细胞的形态 • 参与中心粒、纤毛和鞭毛的形成 • 参与胞内物质运输 • 维持细胞内细胞器的定位和分布 • 参与染色体运动,调节细胞分裂 • 参与细胞内信号传导
微管的装配主要表现为动态不稳定性(dynamic instability),即增 长的微管末端有微管蛋白-GTP帽,在微管组装期间或组装后GTP 被水解成GDP,从而使GDP-微管蛋白成为微管的主要成分。微管 蛋白-GDP帽及短小的微管原纤维从微管末端脱落则使微管解聚。

细胞骨架(细胞生物学)

细胞骨架(细胞生物学)

细胞骨架立体结构模式图
广意的概念
细胞质骨架 细胞核骨架 细胞外基质
二、细胞骨架的功能
1.构成细胞内支撑和区域化的网架 2.参与细胞的运动和细胞内物质的运输 3.参与细胞的分裂活动 4.参与细胞内信息传递
细胞骨架功能示意图
第二节 微 管
一、微管的化学组成
α微管蛋白、 β微管蛋白 、γ-微管蛋白
(五)微丝参与肌肉收缩
肌肉组织
骨骼肌 • 肌原纤维 • 肌节 • 粗肌丝、细肌丝
肌肉收缩是粗肌丝和细肌丝相互滑动的结果
5.3 肌肉收缩
(六)微丝参与受精作用 精子头端启动微丝组装,形成顶体刺突完成受精。
(七)微丝参与细胞内信息传递 细胞外的某些信号分子与细胞膜上的受体结合,可触 发膜下肌动蛋白的结构变化,从而启动细胞内激酶变 化的信号转导过程。 主要参与Rho蛋白家族有关的信号转导
3.微管的三种存在形式
单管微管由13根原丝组成,是胞质微管的主要存在形式 二联管主要分布在纤毛和鞭毛的杆状部分 三联管主要分布在中心粒及纤毛和鞭毛的基体中
二、微管相关蛋白
(microtubule- associated protein,MAP)
这是一类以恒定比例与微管结合的蛋白,决定不 同类型微管的独特属性,参与微管的装配,是维持微 管结构和功能的必需成份。
胞质动力蛋白与膜泡的附着
细胞中微管介导的物质运输
(三)维持细胞内细胞器的空间定位和分布
参与内质网、高尔基复合体 、纺锤体的定位及分 裂期染色体位移
、 (四)微管参与细胞运动
细胞的变形运动、纤毛、鞭毛运动
纤毛和鞭毛#43;0
中心粒 横切面上,其圆柱状小体的壁有9组三联管斜向排列呈风车状。
(一)微丝的体外组装过程分三个阶段: ①成核期 ②延长期 ③稳定期

细胞生物学 第七章 细胞骨架

细胞生物学 第七章 细胞骨架

微管的功能
(一)构成细胞的支架,维持细胞形态;
微管的功能
(二) 参与细胞内物质运输;
马达蛋白(motor protein)
• 能沿着细胞骨架铺 就的“轨道”运动 的蛋白,靠水解 ATP提供能量,介 导细胞内物质沿细 胞骨架的运输。


肌球蛋白(myosin)—— 与微丝有关的运动
驱动蛋白(kinesin)和 动力蛋白(dynein) —— 与微管有关的运动
纤维 (intermediate filament) 。
组成:由许多不同的蛋白质亚基装配成纤维状结构。 特点:弥散性、整体性、变动性
微丝 (microfilament, MF)
微管 (microtubules, MT)
中间纤维 (intermediate filament, IF)
细胞骨架的功能
13条原纤维 (一段微管)
延长
• 极性装配:
异二聚体首尾相接,组装成的微管具有极性; α微管蛋白(-),β微管蛋白(+) 在(+)极端发生装配使微管伸长
在(-)极端发生去组装使微管缩短 ----- 踏车行为
(二)微管的体内装配:
微管组织中心( microtubule organizing center, MTOC ):活细胞内微管组装时总是 以某部位为中心开始聚集,这个中心称为微 管组织中心,包括中心体、基体。为微管装配 提供始发区域,控制着细胞质中微管的数量、 位置及方向。
• 装配过程及极性规律同体外组装。
中心体
中心体 (centrosome) = 2个垂直的中心粒 + 周围物质 动物细胞内微管起始的主要位点。
中心粒结构
短筒状小体, 成对存在且相互垂直。
每个中心粒由9组三联体微 管斜向排列呈风车状包围 而成,为(9+0)结构 微管组织中心(MTOC), 参与有丝分裂。

细胞骨架医学课件

细胞骨架医学课件

02
微管骨架
微管的组成
微管蛋白
微管是由微管蛋白组成的,这些 蛋白通过聚合形成微管的主体结 构。
微管蛋白的亚单位
微管蛋白的亚单位包括α-微管蛋 白和β-微管蛋白,它们在微管的 结构和功能中具有重要作用。
微管的极性
负极
微管的负极位于细胞的中心,是微管 组装和扩展的起点。
正极
微管的正极指向细胞的边缘,是微管 组装的终点。
细胞骨架参与了细胞的物质运输、胞质流动和细胞迁移等过程 ,对细胞的移动和迁徙起到关键作用。
细胞骨架在细胞分裂过程中起到了关键作用,如微管参与了纺 锤体的形成,中间纤维参与了染色体的排列和分配。
细胞骨架在细胞的分化过程中也起到了重要作用,如中间纤维 参与了细胞的形态维持和信息传递,影响细胞的分化方向。
FRET技术可用于研究细胞骨架蛋白质的动态变化和相互作 用,如肌动蛋白丝和微管蛋白的相互作用、蛋白质磷酸化 和去磷酸化的状态等。通过FRET技术可以获得细胞骨架蛋 白质的实时动态信息,从而更深入地了解细胞活动的调控 机制。
活细胞实时观察技术
原理
活细胞实时观察技术是一种在活细胞状态下实时观察细 胞活动的方法。通过将细胞接种在特殊的载玻片上,利 用显微镜对细胞进行观察和记录。
VS
药物筛选和优化
通过计算机模拟和实验室实验,研究者正 在筛选和优化一些能够干扰癌细胞骨架的 药物,以期开发出更有效的抗癌药物。
细胞骨架与医学研究的前沿领域
细胞骨架与基因表达
最新研究表明,细胞骨架的改变可以影响基 因的表达,从而影响细胞的功能和命运。这 一领域的研究将有望揭示更多关于细胞生物 学和疾病发生发展的奥秘。
肌丝在细胞内的分布和功能
分布
粗肌丝和细肌丝分别位于肌细胞的表面和内部,它们相互交织形成肌纤维。

细胞骨架

细胞骨架

(一) 微丝的成分及组装
1 微丝的成分
1)肌动蛋白: 分子近球形,具极性,头尾相接形成 螺旋状具极性的微丝。已分离6种,4种α (分别为横 纹肌、心肌、血管平滑肌和肠道平滑肌特有),β和γ 各 1种。 2)肌动蛋白结合蛋白
肌球蛋白 作用位点
2 微丝的组装
1)聚合过程: G-actin活化 ; G-actin聚集形成种子 G-actin在种子两端聚合而延长;聚合时正极较快
基体
中心粒和基粒 是同源的,可 相互转变,均 可自我复制。
AB
纤毛
C
左图显示藻类细胞鞭毛基 部的基体(荧光染色)
(四) 微管特异性药物 长春碱类和秋水仙素类药物是通过阻滞微管蛋白聚
合,使有丝分裂不能进行从而破坏肿瘤细胞增殖。 ◆秋水仙素(colchicine) 、鬼臼素和长春花 紫杉醇及紫杉特尔的作用则是促进微管蛋白聚合作 用和抑制微管解聚,它们主要作用于 β-微管蛋白的N碱:阻断微管蛋白组装成微管,可破坏纺 锤体结构。 末端31位氨基酸和 217-231氨基酸残基上,使具有可逆 变化的微管不能解聚,阻止有丝分裂,最后导致癌细 ◆紫杉酚(taxol):能促进微管的装配,并使 胞死亡。 已形成的微管稳定。 紫杉醇源于短叶紫杉的树皮,紫杉醇可明显减少 ◆为行使正常的微管功能,微管动力学不稳G1期 的细胞群体,而增加 G2期和M 期的细胞群。紫杉醇对 定性是其功能正常发挥的基础。 卵巢癌、乳腺癌及非小细胞肺癌等有突出的疗效,被 誉为近15年来最好的抗肿瘤新药。
纺锤体极
基体
高等植物功能性的MTOC——细胞核表面 高等植物细胞微管的成核能力仅在细胞核表面 得到证实.Mizuno[1993]发现,经过冻-融处理 的烟草细胞核或核颗粒具有微管成核作用,成核 的微管从细胞核表面或核颗粒呈放射状发出.说 明植物细胞核表面具有类似中心体的功能.

细胞生物学_12细胞骨架

细胞生物学_12细胞骨架
⒋8根原纤维构成圆柱状的IF。
特点:无极性;无 动态蛋白库;装配 与温度和蛋白浓度 无关;不需要ATP、 GTP或结合蛋白的辅 助。
中间纤维装配模型 A:两条中间纤维多肽链形成超螺旋二聚体; B:两个二聚体反向平行以半交叠方式构成四聚体; C:四聚体首尾相连形成原纤维;D:8根原纤维构 成圆柱状的10nm纤维
引起粗肌丝和细肌丝的相对滑动。
肌动蛋白的工作原理可概括如下: ①肌球蛋白结合ATP,引起头部与肌动蛋白纤维分离;
②ATP水解,引起头部与肌动蛋白弱结合;
③Pi释放,头部与肌动蛋白强结合,头部向M线方向弯 曲(微丝的负极),引起细肌丝向M线移动;
④ADP释放ATP结合上去,头部与肌动蛋白纤维分离。
肌肉收缩图解
顶体反应:在精卵结合时,微丝使顶体突出穿入卵子的胶 质里,融合后受精卵细胞表面积增大,形成微绒毛,微丝 参与形成微绒毛,有利于吸收营养。 其他功能:如细胞器运动、质膜的流动性、胞质环流均与 微丝的活动有关,抑制微丝的药物(细胞松弛素)可增强 膜的流动、破坏胞质环流。
第二节 微管及其功能
微管存在于所有真核细胞中由微管蛋白组装成的
在适宜的温度,存在ATP、K+、Mg2+离子的条件下, 肌动蛋白单体可自组装为纤维。 ATP-actin(结合ATP的肌动蛋白)对微丝纤维末端的 亲和力高,ADP-actin对纤维末端的亲和力低,容易脱落。 当溶液中ATP-actin浓度高时,微丝快速生长,在微丝纤 维的两端形成ATP-actin“帽子”,这样的微丝有较高的 稳定性。伴随着ATP水解,微丝结合的ATP就变成了ADP, 当ADP-actin暴露出来后,微丝就开始去组装而变短。
此外还包括许多微丝结合蛋白。 同样的肌动蛋白可以形成不同的亚细胞结构如

第八章细胞骨架

第八章细胞骨架
2、简述中心粒、纤毛和鞭毛的亚微结构及其功能。
3、分别有哪些因素影响微管、微丝的组装和去组 装?
图7-22 细胞质动力蛋白的结构与运输作用
图7-23 轴突运输
图7-24 色素颗粒的运输
纤毛与鞭毛的运动
❖ 纤毛和鞭毛都是某些细胞表面的特化结构, 具有运动功能。 ❖ 鞭毛和纤毛均由基体和鞭杆两部分构成,鞭毛中的微管为
9+2结构,即由9个二联微管和一对中央微管构成,其中二 联微管由AB两个管组成,A管由13条原纤维组成,B管由 10条原纤维组成 。 ❖ 纤毛和鞭毛的运动是依靠动力蛋白(dynein)水解ATP, 使相邻的二联微管相互滑动。
中间纤维的结构
图7-27 中间纤维的装配模型
三、中间纤维的功能
❖为细胞提供机械强度支持 ❖参与细胞连接 ❖中间纤维维持细胞核膜稳定
单体 结合核苷酸
表7-1 胞质骨架三种组分的比较
微丝
微管
球蛋白
αβ球蛋白
ATP
GTP
中间纤维 杆状蛋白 无
纤维直径 结构
极性 组织特异性
7nm 双链螺旋
有 无
25nm 13根原纤维组成中 空管状纤维 有
微丝是由肌动蛋白组成的直径约7nm的骨架纤维,又称肌动 蛋白纤维。
一、微丝成分
二、微丝的装配
三、微丝的动态性质
四、微丝特异性药物
五、微丝结合蛋白
六、微丝的功能
一、微丝成分
❖ 肌动蛋白(actin)是微丝的结构成分 ,呈哑铃形。 ❖ 肌动蛋白有3种异构体即α、β和γ,其中4种α-肌动蛋白,
分别为横纹肌、心肌、血管平滑肌和肠道平滑肌所特有, β和γ分布于肌细胞和非肌细胞中。 ❖ 肌动蛋白的单体称为G-actin,它们形成的多聚体称为Factin。 ❖ 微丝是由两条线性排列的肌动蛋白链形成的螺旋,状如 双线捻成的绳子。

细胞骨架

细胞骨架

细胞骨架(cytoskeleton)是指真核细胞中的蛋白纤维网络结构。

广义的细胞骨架包括细胞质骨架、细胞核骨架、细胞膜骨架、细胞外基质四部分,形成贯穿于细胞核、细胞质、细胞外的一体化网络结构。

狭义的细胞骨架是指真核细胞的细胞质中支持细胞形状和引导细胞及细胞成分运动的纤维性细胞质骨架体系。

细胞质骨架由微管和纤丝(微丝,中间丝,粗丝)组成细胞骨架决定动物细胞形态,维持细胞内部结构的有序性,抵制外界压力对细胞的破坏;2.负责多种细胞器在细胞内的定位;线粒体、内质网(驱动蛋白)、高尔基体(胞质动力蛋白)等3.指导物质和细胞器在胞内的移动;胞内的膜泡运输等4.为细胞本身移动和构成细胞运动的力量来源装置;鞭毛的摆动、肌肉的运动等5.为mRNA提供锚定位点,帮助mRNA翻译成多肽链;6.是细胞分裂机制中的重要成分。

微管:微管蛋白【(αβ微管蛋白---异二聚体----原丝----片状原纤维——微管)r 微管蛋白】位于微管组织中心,对微管组成及极性的确定至关重要。

80%的r微管蛋白以环状复合体的形式存在。

微管结合蛋白(microtubule-associated protein, MAP):tau蛋白, MAP1,MAP2, MAP4。

MAP是微管蛋白装配成微管后结合在微管表面的辅助蛋白,具有稳定微管结构以及介导微管与其它细胞成分互作的功能细胞质中由微管蛋白组成的一种细长且具有一定刚性的中空圆管状结构。

13条原纤维外径:24~26nm内径:15nm。

广泛存在于各种真核细胞中,多呈网状或束状分布,与维持细胞形态、细胞运动及细胞分裂等有关。

胞质中微管可装配成:单管(主要存在形式)二联管(纤毛和鞭毛)三联管(中心粒和基体):1.支持和维持细胞形态2.维持细胞内细胞器的空间定位分布驱动蛋白与内质网膜的胞质面结合,沿微管向细胞四周牵拉使内质网在胞质溶质中展开。

动力蛋白与高尔基体膜结合,沿微管向近核方向牵拉,使高尔基体定位于中心体附近。

细胞生物学第九讲细胞骨架

细胞生物学第九讲细胞骨架

第九章细胞骨架真核细胞中由多种蛋白质纤维构成的复杂网架系统,称为细胞骨架cytoskeleton 。

广义的细胞骨架包含细胞核骨架(核内骨架、核纤层及染色体骨架)、细胞质骨架 (微丝、微管、中间纤维 )、细胞膜骨架及细胞外基质,但往常狭义的仅指细胞质骨架。

当前以为细胞骨架主要功能:① 保持细胞整体形态和内部结构有序的空间散布;②与细胞运动、胞内物质运输、能量变换、信息传达、细胞分裂、基因表达及细胞分化等生命活动亲密有关。

一、微丝 microfilament(一)组分与性质微丝的主要成分是肌动蛋白actin ,是在真核细胞中的直径为 7nm 的骨架纤维,肌动蛋白的单体是球型( G-肌动蛋白),两股由 G-肌动蛋白联络成的单链互相螺旋环绕形成纤维型肌动蛋白( F—肌动蛋白)。

从球型→ 纤维型的变化是自组装的,除肌肉细胞的细肌丝中的微丝以及肠上皮细胞微绒毛中的微丝是稳固的结构外,往常细胞中的微丝都是处在组装和解聚的动向之中,微丝装置拥有极性(即有正负极),并常表现出一端装置而另一端零落的踏车行为 treadmilling ,零落下来的单体进入细胞质中的肌动蛋白单体库。

对于微丝组装的适合条件是: ATP 、Mg 2+和高浓度的Na +、 K+离子;而解聚的条件是: Ca 2+和低浓度的 Na +、 K+离子。

微丝的形态是细而长,常常成束平行摆列,也有的构成疏散的网络。

在不一样种类细胞中,微丝还含有不一样种类的微丝联合蛋白,形成各自独到的结构或特定功能。

比如肌细胞中的就有肌球蛋白myosin 、原肌球蛋白和肌钙蛋白等。

肌球蛋白约占肌肉中蛋白总量的一半,由双股多肽链环绕成像“ 豆芽” 状的纤维。

再由多条肌球蛋白成束构成肌原纤维中的粗肌丝,其上外露的“豆芽”头部具 ATP 酶活性,是粗肌丝与细肌丝(肌动蛋白纤维)能临时性联合的部位(“ 横桥”),也是致使细肌丝与粗肌丝之间相对滑动的支点。

而原肌球蛋白和肌钙蛋白则是特异性附着在细肌丝(即F—肌动蛋白纤维)上的两种微丝联合蛋白,它们是以构象变化方式来调理细肌丝与粗肌丝(肌球蛋白头部)的联系。

细胞骨架

细胞骨架
布于肌细胞和非肌细胞。
在哺乳动物和鸟类细胞中至少已6种肌动蛋白,4
种称为肌动蛋白,另外两种为肌动蛋白和肌动
蛋白。
actin在进化上高度保守,酵母和兔子肌肉的肌动
蛋白有88%的同源性。
10
微 丝 的 结 构
11
(二)微丝的组装及动力学特征
MF是由G-actin单体形成的多聚体,肌动蛋白单
体具有极性,装配时呈头尾相接, 故微丝具有极性
培养的上皮细
胞中的应力纤
维(微丝红色、 微管绿色)
28
应力纤维
(四)、细胞伪足的形成与迁移 运动
1、肌动蛋白聚合伸出伪足
2、伪足与基质间形成新的锚定位点
30
3、胞质溶胶向前流动
成纤维细 胞爬行: 变皱膜运 动
31
(五)、微绒毛
是肠上皮细胞的指 状突起,用以增加 肠上皮细胞表面积 ,以利于营养的快 速吸收。但不含肌 球蛋白、原肌球蛋 白,因而无收缩功 能。
(二)基体和其它微管组织中心 分裂细胞----有丝分裂纺锤体(动态微管) 鞭毛(纤毛)----基体(永久性微管) 基体与中心体一样可以自我复制
64
四、微管的动力学性质
Fig. 10-31 Microtubule dynamics in a living cell. A fibroblast was injected with tubulin that had been covalently linked to rhodamine, so that approximately 1 tubulin subunit in 10 in the cell was labeled with a fluorescent dye. Note, for example, that microtubule #1 first grows and then shrinks rapidly, whereas microtubule #4 grows continuously. (P.J. Sammak et al., Nature 332: 724-736)

第八章细胞骨架

第八章细胞骨架

Microtubule-associated protein, MAP 微管相关蛋白
聚合速度等于解聚速度 (游离管蛋白达到临 界浓度)
nuleation elongation Steady state
13 15
1972年——Weisenberg——小鼠——分离微管蛋白——体外组装
+
-
微管在体内的装配和去组装在时间和空间
上是高度有序的
细胞中MTOC的常见部位:中心体、纤毛和鞭毛基体 等具有微管组织中心的功能。
The Orientation of Microtubules in a Cell
影响微管组装的特异性药物
秋水仙素(colchicine) 阻断微管蛋白 组装成微管,可破坏纺锤体结构。 紫杉醇(taxol)、重水(D2O)能促进微管 的装配,并使已形成的微管稳定。但这 种稳定对细胞有害。 注:为行使正常的微管功能,微管处于动 态的装配和解聚是其功能正常发挥的 基础。
成核期 — 微丝组装的限速过程 生长期 — 肌动蛋白在核心两端聚合
正端快,负端慢
平衡期 — 聚合速度与解离速度达到平衡
动态调节:
踏车模型(treadmilling model)
(三)微丝的功能
(1)构成细胞的支架,维持细胞的形态
微绒毛 应力纤维
(2)参与细胞分裂
细胞分裂中形成收缩环(内含肌动蛋白 纤维和肌球蛋白纤维)
广义的细胞骨架还包括
核骨架(nucleoskeleton) 核纤层(nuclear lamina) 细胞外基质(extracellular matrix)
形成贯穿于细胞核、细胞质、细胞外的一体 化网络结构。
第一节 细胞骨架的基本结构与功能 一、微管(microtubule)

第九章细胞骨架

第九章细胞骨架
这几种存在状态均是细胞某一时期所出现的暂时性 状态,包括细胞皮层,应力纤维,细胞伪足,细胞 分裂环 。
微丝功能
◆维持细胞形态,赋予质膜机械强度 ◆细胞伪足运动 ◆微绒毛(microvillus) ◆应力纤维(stress fiber) ◆参与胞质分裂 ◆肌肉收缩(muscle contraction)
细胞内物质的运输
真核细胞内部是高度区域化的体系, 细胞 中合成的物质、一些细胞器等必须经过细胞内 运输过程。这种运输过程与细胞骨架体系中的 微管及其分子马达有关。
·分子马达
分子马达
线性马达
以细胞骨架蛋白为轨道的分子马达
以DNA为轨道的分子马达(DNA解旋酶,RNA 聚合酶)
旋转式马达:F0-F1ATP(ATP合酶)
微丝结合蛋白
微丝结合蛋白种类 单体隔离蛋白(monomer-sequenstering protein) 交联蛋白(cross-link protein) 末端阻断蛋白(end blocking protein) 纤维切割蛋白(filament-severing protein) 去 聚 合 蛋 白 ( actin filament depolymerization
维持细胞形态
用秋水仙素处理细胞破坏微管,导致细胞变圆, 内质网缩回到细胞核周围,高尔基体解聚成小的 膜泡分散在细胞质内,一旦这些药物去除,则微 管重新组装,各细胞内膜结构也随之归位,这说 明微管对维持细胞的不对称形状是重要的。对于 细胞突起部分,如纤毛、鞭毛、轴突的形成和维持, 微管亦起关键作用。
protein) 膜结合蛋白(membrane-binding protein)
◆微丝结合蛋白将微丝组织成以下三种主要形式
·MF同向平行排列,主要发现于微绒毛与细胞伪足。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、中间纤维的功能
它和细胞内外的各种结构相连,对细胞的各项功能起到时间和 空间特异作用。 1细胞内网架。细胞内的广大纤维网 2为细胞间支架支撑。细胞外基质中网络连接 3参与细胞连接。本生也是细胞连接的结构成分
4维持核膜稳定。核膜内壁的网状分布对核膜起到稳定作用
5参与肌节稳定。不参与肌纤维滑动,参与肌节的构建 6细胞内物质运输。在神经纤维物质运输中起作用
13根源纤丝组成空 4个8聚体组成的空心管 心管状纤维 状纤维 有 无 无 有 无 无
有(细胞质) 有(中心粒) 有 有
动力结合蛋白 肌球蛋白 特异性药物 细胞松驰素 鬼笔环肽
动力蛋白,驱动蛋 无 白 秋水仙素,长春花 碱,紫杉酚
组成、结构 装配组建 微管 结合蛋白 特异性药物 功能 组成、结构 细胞骨架 微丝 装配组建 结合蛋白 特异性药物 功能 中间 纤维 组成、结构 装配组建 结合蛋白(结构不明) 功能 注意:构建 机制和理论; 差异和功能。 这是本章的 重点
五、微丝的功能
1构成细胞支架,维持细胞形态 2作为肌纤维的组成成分,参与肌肉收缩 3参与细胞分裂 (细胞质分裂) 4参与细胞运动(变形运动) 5细胞物质运输 (小泡运输) 6细胞内信号传导 (膜受体受刺激而引起酶 构象改变)
4、肌小节的结构与肌肉收缩
肌动蛋白和肌球蛋白结合构 成肌纤维运动
胞质分裂
有丝分裂 时,两个 即将分裂 的子细胞 之间产生 收缩环是 微丝参与 细胞分裂
第三节 中间纤维 (intermediate filaments,IF)
它介于微管和微丝之间,是三类细胞骨架中最复杂 的一种, 一、类型: 根据纤维蛋白氨基酸顺序的同源性,可分为6类 I. 角蛋白纤维: II.结蛋白纤维: III.波形纤维: 上皮细胞 肌肉细胞 间质细胞和中胚层来源的细胞
说明微管的解聚和 装配是随着生理状 态调节的,是一个 动态的变化过程。
(四)微管组织中心(MTOC):微管在生理状态或实验处理 解聚后重新组装的发生处叫微管组织中心。微管从中心开 始生长,动物细胞的MTOC是中心体,微管的(-)极指向MTOC, (+)极背向MTOC。
γ微管蛋白 中心体
四、微管结合蛋白 (microtubule associated proteins, MAPs) 是与微管装配和解聚相关的蛋白,附着在微管上的 特异蛋白,参与微管的组装稳定,和微管的附着相关, 对微管的功能具有调节作用。有动力蛋白和驱动蛋白。 MAP1 MAP2 MAP4 Tau 轴突和树突 树突 各种细胞 树突
7细胞信息传递。构建的纤维网对细胞信息传导起决定作用
8细胞分化。它的表达有组织特异性,表明与细胞分化有关 9参与基因表达。近期发现mRNA被锚定在中间纤维上,认为与基因表达有 关
胞质骨架三种组分的比较 微丝 单体 结合核苷酸 纤维直径 结构 极性 组织特异性 蛋白库 踏车行为 球蛋白 ATP ~7nm 双链螺旋 有 无 微管 α β 球蛋白 GTP ~24nm 中间纤维 杆状蛋白 无 10nm
二个螺旋
三、装配
超螺旋二聚体
单体亚基
①两个单体,形成两股
②两个二聚体反向平行
组装成四聚体 ③四聚体连成原纤维; ④8根原纤维组成中间 纤维。
8个4聚体围 成一个中空 管,即中间 纤维
四、中间纤维结合蛋白
是一类结构和功能与中间纤维密切相关, 本生不是中间纤维的蛋白,可能是中间纤 维结构功能的调节者。 目前报道约15种,在不同的细胞结构中 存在不同的结合蛋白对中间纤维的各项功 能起着不同的调节作用。(书上99页)
2、微管的极性
(﹣)α →β (﹢)
微管的极性特点是非常重要的。在(+)极二聚体消耗 GTP加入到原纤维中,在(-)极二聚体结聚,这种在一定 条件下一端延长一端缩短,或者叫一端装配一端去装配的 现象称为踏车现象。
体外微管装配条件:
1 微管蛋白达一定浓度 2 PH=6.9 3 Ca离子除去、Mg离子 增加 4 温度37装配,0解聚 5 GTP的供应
1掺入因子
2聚合因子
3交联捆绑蛋白 4成核因子 5移动因子
四、微丝特异性药物
细胞松弛素(cytochalasin)可切断微丝 纤维,并结合在微丝末端抑制肌动蛋白聚 合,因而可以破坏微丝的三维结构。(抑 制运动) 鬼笔环肽(phalloidin)与微丝能够特异性 的结合,使微丝纤维稳定。荧光标记的鬼 笔环肽可特异性的显示微丝
二、装配
1、条件:存在ATP、K+、Mg2+离子的条件下,肌动蛋白单 体可自组装为纤维
2、极性:肌动蛋白单体加到(+)极的速度要比加到(-)极 的速度快结合的电镜照片。形成箭头样 的结构,箭头所指的方向为微 丝的(-)极
三、微丝结合蛋白
体内的肌动蛋白纤维是由不同的结构蛋白结合,形成不同的结构完 成不同的功能。不同的组织细胞中结合蛋白的种类不同,其功能也有 差异。 目前发现的可以分成5个类型:
五、微管特异性药物
秋水仙素:阻断微管蛋白装配成微管 紫杉醇:稳定微管的结构 六、微管的功能 1、维持细胞形态构成网状支架 2、细胞内的物质运输,细胞器的运动有关 3、鞭毛运动和纤毛运动 4、纺锤体和染色体的运动 5、细胞器的定位
6、细胞内信号传导
第二节 微丝 (microfilament,MF) 有称为肌动蛋白纤维,直径7nm,组成细 胞中的肌动蛋白骨架,它比微管细短且有 弹性。 普遍存在于真核细胞中,肌细胞含量10%, 其他细胞1-5%,呈束网状。参与多种细胞 功能。
类型
见91页表9-1
结合 蛋白 的功 能
①促进微管聚集成束; ②增加微管稳定性或强度;
③促进微管组装
① 决定微管的结构和功能差异(如表9-1) 结合蛋白不同结构功能不同。
老年性痴呆是常见的神经系统疾病,其原因是神经元中 的微管异常,本质为微管结合蛋白过度磷酸化,使tau 结合蛋白异常神经原纤维螺旋缠结,造成神经纤维传导 速度改变,引起AD临床症状。
微管的种类:单管、二联管和三联管
1 13 12 11 10 7 9 8 2 3 4 5 6
存在于细胞质
单管
A
B
存在于真核细胞的 鞭毛和纤毛
二联管
A
B
C
存在于中心体 和基体
三联管
二、装配
1、装配过程 ⑴α 和β 微管蛋白形成异
二聚体,异二聚体装配成
原纤维。 ⑵原纤维并排扩展为片层 ⑶13条原纤维的片层合拢 为微管
IV.神经胶质纤维: 神经胶质细 V. 核蛋白纤维:核纤层 VI.神经元纤维: 神经元
二、结构
蛋白来源于同一基因家族。基本蛋白是一个α螺 旋(杆状蛋白)。 中间纤维蛋白分子由一个310个氨基酸残基形成的α 螺旋杆状区,是一个高度保守的区域,长22nm,两端可有 可变的氨基酸残基,两个相邻对应的α 螺旋形成双股超 螺旋亚基(单体)。
细胞质骨架
广义细胞骨架
细胞核骨架 细胞膜骨架 细胞外基质
狭义细胞骨架 (细胞质骨架)
微管 微丝 中间纤维
第一节 微管 (microtubule)
一、成分与结构:微管是由13条原纤维构成的中空管状结构,平均外径24nm,内径 15nm。每一条原纤维由α 450个氨基酸和β 455个氨基酸的微管蛋白(球蛋白)二聚 体线性排列而成。在微管组织中心处存在γ 微管蛋白
培养的上皮细胞中的应力纤维 (微丝红色、微管绿色)
一、成分
微丝是由肌动蛋白(actin)单体组成的直径 约7nm的骨架纤维,又称肌动蛋白纤维,肌 动蛋白外观呈哑铃形(球蛋白),有3个类 型:
α肌动蛋白:分布于各种肌肉细胞
β肌动蛋白:分布于所有细胞 γ肌动蛋白:分布于肌细胞和非肌细胞中
β型肌动蛋白基 因突变导致肌动 蛋白构象改变, 形成的肌动蛋白 纤维不能以 ATP结合,导 致肌张力障碍, 造成神经系统疾 病。
细胞骨架
是真核细胞中的蛋白纤维网架体系,位于细 胞质中呈网状,带状等不同形态,具有保持形态、 物质运输、信息传递、分裂分化、等作用。 有研究表明,心肌细胞在缺血情况下,随着 时间的延长肌动蛋白断裂并减少。说明了细胞骨 架在细胞生理活动中的重要作用。
细胞骨架(cytoskeleton)
细胞骨架是指真核细胞中的蛋白纤维网络结构 (狭义)
体内微管装配动态:这是一种细胞的自我的调节。
多余的微管蛋白促使mRNA解体,合成停止。
例如 有丝分裂时,调控发生显著变化,前期时网络解聚的微管蛋 白装配形成纺锤体,后期时发生逆向转变。
间期 只有中心粒;
前期 微管蛋白开始 合成,装配微管; 中期 微观大量装配, 形成纺锤丝; 末期 微管蛋白解聚, 纺锤丝消失。
相关文档
最新文档