静态无功补偿器原理

合集下载

无功补偿装置的工作原理与结构

无功补偿装置的工作原理与结构

无功补偿装置的工作原理与结构无功补偿装置是一种重要的电力设备,用于提高电网的功率因数,减少无功功率的损耗。

它在工业生产、电力系统中发挥着重要的作用。

本文将介绍无功补偿装置的工作原理和结构,以便读者更好地理解和应用。

一、工作原理:无功补偿装置的工作原理基于功率因数的概念和相位关系。

功率因数是指有功功率与视在功率之间的比值,通常用cosφ表示。

在电力系统中,发电机产生的功率可以分为有功功率和无功功率。

有功功率用来做实际的功率输出,而无功功率则是电能在传输和分配过程中的无效功率。

无功补偿装置通过将无功功率与有功功率的相位差调整到最小,从而减少无功功率的损耗。

它采用电容器或电感器进行补偿,根据电力系统的需求,在适当的时候引入或消除电容器或电感器,使得电压和电流的相位一致,功率因数接近1,达到无功补偿的效果。

无功补偿装置通常由控制器、电容器或电感器、断路器等组成。

控制器通过监测电流和电压的波形,实时判断无功功率和功率因数的大小,根据设定值控制电容器或电感器的引入或消除。

断路器用于保护电容器或电感器,防止过电流和短路等故障。

二、结构及组成部分:无功补偿装置的结构通常分为静态型和动态型两种。

静态型无功补偿装置主要由电容器组成。

电容器由多个电容单元串联或并联而成,具有较大的容量。

一般采用铝电解电容器或聚丙烯薄膜电容器,具有容量大、体积小、功耗低等优点。

静态型无功补偿装置在电力系统中安装方便,故障率低,适用于中小型电力负载。

动态型无功补偿装置主要由控制器、开关装置和电感器组成。

控制器负责监测和控制整个系统的运行。

开关装置用于控制电感器的引入和消除。

电感器由多个线圈组成,可以根据电力系统的需求来调整无功功率的补偿量。

三、应用场景:无功补偿装置广泛应用于电力系统、工矿企业以及特定负载场景中。

在电力系统中,无功补偿装置可以提高电压稳定性,减少线路损耗,降低电力设备的负荷率。

在工矿企业中,无功补偿装置可以提高设备的效率,减少电能损耗,节约能源。

静止无功补偿装置(SVC)介绍资料

静止无功补偿装置(SVC)介绍资料
静止无功补偿系统-SVC
南京南瑞继保电气有限公司
主要内容


概述
工作原理 SVC技术发展现状 南瑞继保SVC主要构成 南瑞继保SVC主要性能及技术优势 重点应用 SVC工程应用实例及补偿效果 SVC的型号和主要参数
概述

电网存在的问题

部分输电网可能过载而另一部分却未被充分利用; 最大静态稳定传输功率不足,有待进一步提高; 长距离电力传输过程中的过电压应该被有效抑制; 可能出现的次同步振荡(SSR)必须快速阻尼。 来自一些大功率负荷的谐波电流,应该滤除; 某些弱系统,需要大量动态无功来维持其电压稳定; HVDC换流站,为保证可靠稳定工作,也需要补偿一定的无功。
南瑞继保
中国电科院
鞍山荣信
西电科技
阀组触发系 统 散热器
冷却水管 支路水管 水管接头焊 接 触发单元
SVC发展现状

国内主要SVC制造公司的产品性能比较
厂家 主要指标
触发光缆 晶闸管元件 更换 阀组冷却系 统 阀组结构 全部单进单出 更换方便,单 人可完成 水冷或水风冷 却 立式阀,占地 小 观察维护方便 开环抑制闪变 和闭环提高功 率因数双调节 器 专业控制保护 制造厂家,利 用了高压直流 输电控制保护 平台,可靠性 高。占地更小, 操作通信非常 方便。 有两进八出等 至少要两人完 成更换 水水或水风冷 却 卧式阀 占地面 积大 加权合并的单 调节器 无 至少要两人完 成更换 热管风冷却, 须外配大功率 空调 卧式阀 占地 面积更大 约2 倍水冷阀面积 有两进八出等 至少要两人完 成更换 水水或水风冷 却 卧式阀 占地面 积大 功能单一的单 调节器
热备用和冗 余
可以另外加

svg无功补偿器工作原理

svg无功补偿器工作原理

SVG(Static Var Generator,静止无功发生器)是一种用于电力系统中动态补偿无功功率的装置。

其工作原理基于先进的电力电子技术,主要通过自换相桥式电路实现。

1. 基本结构:
SVG的核心部件是采用可关断电力电子器件(如IGBT,绝缘栅双极型晶体管)组成的电压源逆变器(VSI)。

该逆变器经过适当的控制后并联接入电网。

2. 实时监测与控制:
- SVG首先通过外部电流互感器(CT)或其他传感器检测系统的电流、电压等参数。

- 控制系统根据这些信息计算出当前所需的无功功率和相位,并实时调整逆变器输出的交流侧电压幅值和相位。

3. 无功补偿过程:
- 通过快速调节逆变器输出的交流电流,SVG能够在需要时产生或吸收无功功率,精确匹配负载变化,从而改善电网的功率因数,减少线损,稳定电压,提高电能质量。

- 当系统需要无功功率时,SVG会向电网注入滞后90度相位的电流;当系统有过多无功功率需要消耗时,SVG则从电网吸收相同相位的电流。

4. 动态响应能力:
- SVG具有非常快的动态响应速度,可以在毫秒级的时间内完成对无功需求的跟踪和补偿,尤其适用于负荷变化频繁、冲击性大或者谐波含量高的场合。

5. 谐波抑制:
- 高性能的SVG不仅可以补偿基波无功,还可以通过特定算法对谐波进行抵消,有助于改善整个电力系统的电能质量。

总之,SVG通过高级的电力电子技术和数字信号处理技术,实现了对电网无功功率的精准控制和高效补偿,是现代电力系统中不可或缺的重要组成部分之一。

静止无功补偿器((TCR+FC)SVC)

静止无功补偿器((TCR+FC)SVC)

SVC-技术参数
项目 电网电压(kV) TCR 额定功率(Mvar) 晶闸管阀组结构 晶闸管冷却方式
晶闸管型式
触发方式 控制系统 控制方式 无功调节范围 调节方式 调节系统响应时间 噪声水平 辅助电网供电电压 使用期限
规格
6
10 27.5
35 66
6-300
组架开放式
热管自冷、水冷却
电触发晶闸管(ETT)或 光控晶闸管(LTT)
--------------------------------------------------------------------------◆ 轧机
轧机及其他工业对称负载在工作中所产生的无功冲击会对电网造成如下影响: ■引起电网电压降及电压波动,严重时使电气设备不能正常工作,降低了生产效率 ■使功率因数降低 ■负载的传动装置中会产生有害高次谐波,主要是以 5、7、11、13 次为代表的奇次谐波及旁频,会使电网 电压产生严重畸变
◆ 先进的全数字控制系统
系统响应时间小于 10 ms 分相调节 自诊断 远程监控 ---------------------------------------------------------------------------
◆ 国内唯一的高压全载检测试验成套技术
72 小时高压全载动态连续运行成套试验检测技术 SCR 阀组成套试验技术 满足 IEC61954 要求
◆ 高可靠的 SVC 可控硅阀技术
直挂于 6 KV,10KV,35KV 系统 标准组架式结构 SCR 合理冗余设计 高效热管冷却和全密闭纯水冷却 光电触发和光触发 ---------------------------------------------------------------------------

svg静止无功发生器原理

svg静止无功发生器原理

svg静止无功发生器原理SVG静止无功发生器原理引言SVG(Static Var Generator)是一种用于电力系统中的无功补偿设备,可以帮助调整电网中的无功功率,提高电力系统的稳定性和可靠性。

本文将介绍SVG静止无功发生器的原理及其工作过程。

一、SVG的基本原理SVG的基本原理是通过控制自身的电流和电压,实现对电力系统中的无功功率的补偿。

当电力系统中存在无功功率,SVG可以根据需要提供或吸收无功功率,以维持系统的功率平衡。

二、SVG的工作过程SVG的工作过程主要包括电流检测、电压检测、控制算法和功率电子器件等几个关键步骤。

1. 电流检测SVG通过电流传感器检测电力系统中的电流大小和相位差。

电流传感器将电流信号转化为电压信号,并传送给控制系统进行处理。

2. 电压检测SVG通过电压传感器检测电力系统中的电压大小和相位差。

电压传感器将电压信号转化为电压信号,并传送给控制系统进行处理。

3. 控制算法控制系统根据电流和电压的检测结果,通过控制算法计算出需要补偿的无功功率大小和相位差。

控制算法可以根据不同的系统要求进行调整,以实现最佳的无功功率补偿效果。

4. 功率电子器件根据控制算法计算的结果,控制系统通过控制功率电子器件的开关状态来提供或吸收无功功率。

功率电子器件一般采用可控硅等器件,可以实现高速的无功功率补偿。

三、SVG的优点1. 快速响应:SVG采用功率电子器件进行控制,可以实现毫秒级的快速响应速度,可以迅速补偿电力系统中的无功功率波动,提高系统的稳定性。

2. 高效能:SVG可以根据电力系统的实际需要,提供或吸收合适的无功功率,以最小化无功功率的损耗,提高电网的效能。

3. 灵活性:SVG可以根据电力系统的要求进行调整,可以实现不同的无功功率补偿方式,以适应不同的电力系统运行状态。

4. 可靠性:SVG采用先进的控制算法和功率电子器件,具有较高的可靠性和稳定性,可以长期稳定地工作在电力系统中。

四、SVG的应用领域SVG广泛应用于电力系统中的各个环节,包括输电线路、变电站、电力电子设备等。

静止无功发生器(SVG)无功补偿

静止无功发生器(SVG)无功补偿

静止无功发生器(SVG)无功补偿静止无功发生器(SVG)无功补偿专业知识:静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥式变流器来进态无功补偿的装置。

SVG的思想早在20世纪70年代就有人提出,1980 年日本研制出了20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991年和1994年日本和美国分别研制成功了80MVA 和10OMVA的采用GTO晶闸管的SVG。

目前国际上有关SVG的研究和将其应用于电网或工业实际的兴趣正是方兴未艾,国内有关的研究也已见诸报道。

与传统的以TCR为代表的SVC相比,SVG的调节速度更快,运行范围宽,而且在采取多重化或PWM技术等措施后可大大减少补偿电流中谐波的含量。

更重要的是,SVG使用的电抗器和电容元件远比SVC中使用的电抗器和电容要小,这将大大缩小装置的体积和成本。

由于SVG具有如此优越的性能,是今后动态无功补偿装置的重要发展方向。

无功补偿的专业知识:与电网中的有功损耗相比,无功损耗要大的多,这是因为高压线路、变压器的等值电抗要比电阻大得多,并且变压器的励磁无功损耗也要比励磁有功损耗更大,事实证明电网最基本的无功电源——发电机所发出的无功功率远远满足不了电网对无功的需求,因此对电网进行无功补偿显得尤为必要。

另外,对电网采取适当的无功补偿可以稳定受端及电网的电压,在长距离输电线路中选择合适的地点设置无功补偿装置,还可以改善电网性能,提高输电能力,在负荷侧合理配置无功,可以提高供用电系统的功率因数,减少功率损耗,因此,电网中无功补偿的作用已得到普遍重视。

1.电网无功补偿的方法电网无功补偿方法有很多种,从传统的带旋转机械的方式到现代的电力电子元件的应用经历了近一个世纪的发展历程,下面将按无功补偿方式的发展顺序逐一论述电网的无功补偿方法。

1.1同步调相机同步调相机是一种专门设计的无功功率电源,相当于空载运行的同步电动机。

调节其励磁电流可以发出或吸收无功功率,在其过励磁运行时,向系统供给感性无功功率而起无功电源的作用,可提高系统电压;在欠励磁运行时,它会从系统吸取感性无功功率而起无功负荷的作用,可降低系统电压,同步调相机欠励磁运行吸收无功功率的能力,约为其过励磁运行发出无功功率容量的50%~65%。

静止无功补偿器(SVC)简介10

静止无功补偿器(SVC)简介10

主要性能及特点

友好的人机界面
运行人员监视控制主回路界面
主要性能及特点

友好的人机界面
TCR回路监视界面
主要性能及特点

友好的人机界面
控制方式选择及参数设置界面
主要性能及特点

友好的人机界面
水冷系统监监视界面
主要性能及特点

友好的人机界面
手动触发录波及主机监控界面
主要性能及特点

友好的人机界面
工程应用之一

安装SVC稳定供电电压的好处

提高系统的静稳定、动稳定和暂态稳定储备 过低的电压通常是重负荷或供电容量短缺造成的,低电压供电会使 负荷运行性能变坏,对于感应电机负荷,这种情况尤其明显。 过高的供电电压可能导致变压器激磁饱和,增加损耗。同时,对设 备绝缘也极为不利。 对于雷击等异常原因引起的暂态过电压,SVC具有瞬时吸收无功、抑 制该类暂态过电压的功能。 经系统仿真验证,在该站10kV I母上安装17Mvar的SVC。
不同触发角度下的TCR电流波形
工作原理
TCR 关断
TCR 开通 TCR 阀组电压以及电流随触发角变化的波形
主要构成
主要构成

降压变压器(根据需要) 开关柜 线性(空心)电抗器 电容器组/滤波器组
主要构成

晶闸管阀组 纯水冷却系统
晶闸管阀组 水风冷却系统
水水冷却系统
纯水冷却系统
目前被最广泛使用的SVC,主要是TCR+BSC(FC)形式。
概述

应用领域

电网

输电系统 配电网 风力发电

工业用户

冶金:电弧炉、精炼炉 钢铁:轧钢机 电气化铁路:牵引站 化工:工业研磨机、电解电源 采矿:矿石提升机械 港口:海港起重机 重型加工业:大型木材加工机械、大型焊接机械

试简述静止无功发生器(SVG)的基本原理。与基于晶闸管技术的SVC相比,SVG有哪些更优越的性能

试简述静止无功发生器(SVG)的基本原理。与基于晶闸管技术的SVC相比,SVG有哪些更优越的性能

试简述静止无功发生器(SVG)的基本原理。

与基于晶闸管技术的SVC相比,SVG有哪些更优越的性能?静止无功发生器(Static Var Generator,SVG)是一种用于有功功率和无功功率控制的装置。

其基本原理是通过使用功率电子器件(通常为IGBT)将无功功率通过电容器和电感器装置进行控制和补偿,以实现对电网的无功功率的准确控制。

SVG的基本工作原理如下:1.检测电网的电压和电流,通过控制电子器件(IGBT)的导通和阻断,将电容器和电感器转换为容性负载或感性负载。

2.当电网需求无功功率时,SVG将电容器充电或电感器供电,产生无功功率并注入电网,以帮助电网消耗或吸收无功功率。

3.当电网有多余的无功功率时,SVG将其吸收并存储在电容器中,以减少电网的无功功率,从而维持电网的功率因数在标准范围内。

与基于晶闸管技术的静止无功补偿器(Static Var Compensator,SVC)相比,SVG具有以下更优越的性能:1.更快的响应速度:SVG使用功率电子器件(如IGBT),其开关速度非常快,可以实时响应电网瞬态变化,从而更快地进行无功功率控制和补偿。

2.更高的精确性:SVG使用数字控制技术,使其能够实现对电网功率因数的精确控制。

相比之下,基于晶闸管技术的SVC的控制精度较低。

3.更小的占地面积:SVG采用变流器和电容器构成,空间占用较小。

而基于晶闸管技术的SVC通常由较大的电抗器和电容器构成,需要更大的空间。

4.更高的效率:SVG采用功率电子器件(如IGBT)作为开关装置,具有较低的功耗和较高的转换效率。

相比之下,基于晶闸管技术的SVC由于存在一定的能量损耗,效率较低。

综上所述,静止无功发生器(SVG)相对于基于晶闸管技术的静止无功补偿器(SVC),具有更快的响应速度、更高的精确性、更小的占地面积和更高的效率。

这使得SVG在电力系统中更受青睐,并得到广泛的应用。

静态无功补偿器原理

静态无功补偿器原理

1、工作原理单独的TCR由于只能提供感性的无功功率,因此往往与并联电容器配合使用。

并联上电容器后,使得总的无功功率为TCR与并联电容器无功功率抵消后的净无功功率,因而可以将补偿器的总体无功电流偏置到可吸收容性无功的范围内。

另外,并联电容器串上小的调谐电抗器还可兼做滤波器,以吸收TCR 产生的谐波电流。

通过控制与电抗器串联的反并联晶闸管的导通角,既可以向系统输送感性无功电流,又可以向系统输送容性无功电流。

由于该补偿装置响应时间快(小于半个周波),灵活性大,而且可以连续调节无功输出,所以目前在我国的输电系统和工业企业中应用最为广泛。

TCR+FC型SVC的基本原理图如图1,补偿前及补偿后电压电流示意图如图2、图3。

单相的TCR由两个反并联的晶闸管与电抗器串联而成,而三相一般采用三角形接法。

图中,QS为系统供给的无功功率;QL为负载无功功率,它是随机变化的;QC为滤波器提供的容性无功功率,是固定不变的;QR为TCR提供的感性无功,它是可以调节的。

QS=QL+QR-QC当负荷发生扰动变化时,SVC通过调节晶闸管的触发角从而调节TCR发出的感性无功,使得QR 总能弥补QL的变化。

这样的电路并入到电网中相当于△QS=△QL+△QR=0。

这就是TCR+FC型静止无功补偿装置对无功功率进行动态补偿的原理。

将此电路并联到电网上,就相当于交流调压器电路接入电感性负载,此电路的有效相移范围为90o~180o。

当触发角α=90o时,晶闸管全导通,导通角δ=180o,此时电抗器吸收的无功电流最大。

根据导通角与补偿器等效导纳之间的关系式:BL=BLmax(δ-sinδ)/π其中BLmax=1/XL。

可知,增大导通角即可增大补偿器的等效导纳,这样就会减小补偿电流中的基波分量,所以通过调整触发角的大小就可以改变补偿器所吸收的无功分量,达到调整无功功率的目的。

2、应用领域(1)电弧炉作为非线性及无规律负荷接入电网,将会对电网产生一系列不良影响,其中主要影响有:导致电网三相严重不平衡,产生负序电流,产生高次谐波,其中普遍存在如2、4偶次谐波与3、5、7次等奇次谐波共存的状况,使电压畸变更为复杂化,存在严重的电压闪变,功率因数低。

静止无功补偿器工作原理

静止无功补偿器工作原理

静止无功补偿器工作原理以静止无功补偿器工作原理为标题,我们来探讨一下静止无功补偿器的工作原理及其作用。

静止无功补偿器(Static Var Compensator,SVC)是一种用于电力系统中的无功补偿装置。

它主要通过控制电流的相位和幅值来实现对无功功率的补偿,从而提高系统的功率因数,并稳定系统电压。

静止无功补偿器由控制系统和功率电子元件组成。

控制系统通过监测系统电压和电流的波形,并计算出系统的功率因数和无功功率的大小。

根据计算结果,控制系统会发出指令,通过功率电子元件调整电流的相位和幅值,以实现无功功率的补偿。

在电力系统中,无功功率是指由于电感和电容元件引起的交流电路中的无功能量。

无功功率的存在会导致电压波动,降低系统的稳定性和效率。

为了解决这个问题,引入了静止无功补偿器。

静止无功补偿器主要通过控制电流的相位来改变无功功率的流动方向。

当系统需要吸收无功功率时,静止无功补偿器会向系统注入电流,使其与系统电流形成夹角,从而吸收无功功率。

相反,当系统需要释放无功功率时,静止无功补偿器会向系统注入与系统电流相位相反的电流,使其与系统电流形成夹角,从而释放无功功率。

静止无功补偿器还可以通过控制电流的幅值来调整无功功率的大小。

当系统需要补偿更多的无功功率时,静止无功补偿器会增大电流的幅值;反之,当系统需要补偿较少的无功功率时,静止无功补偿器会减小电流的幅值。

通过以上方式,静止无功补偿器能够快速响应系统的无功功率需求,实现对无功功率的精确控制。

这不仅可以提高系统的功率因数,减少无功功率的损耗,还可以稳定系统电压,提高系统的稳定性和可靠性。

总的来说,静止无功补偿器通过控制电流的相位和幅值,实现对无功功率的补偿,提高系统的功率因数,并稳定系统电压。

它在电力系统中发挥着重要的作用,能够有效解决无功功率带来的问题,提高系统的运行效率和稳定性。

svg无功补偿原理

svg无功补偿原理

svg无功补偿原理SVG(Static Var Generator)静态无功补偿装置,是一种通过电子器件来实现电力系统的无功补偿的装置。

其原理是根据电力系统中的功率因数和电压波动情况,实时调节无功功率,并保持系统的电压稳定。

SVG的无功补偿原理主要有以下几点:1.电容器的无功补偿:SVG中包含电容器作为无功补偿元件。

当电力系统的功率因数较低时,系统中有较多的无功功率需要补偿。

电容器通过储存电能的方式,在低负载时释放无功电能,以调节系统的功率因数,提高整体电能的利用率。

2.可控硅的无功补偿:SVG采用可控硅作为调节元件,通过控制可控硅通断来改变电压波形,从而实现无功补偿。

当电力系统中的高次谐波存在时,会对系统的无功功率带来影响。

SVG通过调节可控硅的开通角度和关断角度,可以消除或减小谐波分量,从而有效补偿无功。

3.瞬时响应能力:SVG具备快速响应无功补偿的能力。

当电力系统中存在瞬态负荷或突发负荷变化时,SVG可以迅速调节无功功率,以防止系统电压的大幅波动。

这种快速响应能力可以有效维持系统电压的稳定,保证系统设备的正常运行。

4.全容量调节能力:SVG能够根据系统的无功需求进行全容量调节。

不论是小负载还是大负荷情况,SVG都可以提供相应的无功补偿。

这种全容量调节能力可以满足各种负载条件下的无功需求,保证系统的无功功率控制稳定。

5.功率因数控制:SVG可以通过电压控制和电流控制来实现功率因数的调节。

在一般情况下,当电力系统中的功率因数较低时,SVG将通过有功功率、无功功率调节以及电压调节等方式,来实现功率因数的控制。

通过控制这些参数的大小,可以使系统的功率因数维持在所需的范围内。

总之,SVG静态无功补偿装置通过电容器补偿和可控硅控制,实现了对电力系统的无功补偿。

通过瞬时响应能力和全容量调节能力,SVG能够保持系统电压的稳定,提高电能的利用效率,并且通过功率因数的控制,可以满足各种负载条件下的无功需求。

这些原理使得SVG在现代电力系统中得到了广泛应用,提高了电力系统的可靠性和稳定性。

电力系统无功补偿及调压设计技术导则

电力系统无功补偿及调压设计技术导则

电力系统无功补偿及调压设计技术导则引言电力系统是现代社会中不可或缺的基础设施之一,而无功补偿和调压则是保证电力系统稳定运行的重要技术手段。

本文将介绍电力系统无功补偿和调压的设计技术导则,包括无功补偿的原理、分类和应用,以及调压装置的选型、布置和运行。

无功补偿原理无功补偿是指通过在电力系统中引入适当的电容器或电感器来消除或减小无功功率,以提高系统的功率因数。

其原理是根据电流滞后于电压的特性,通过合理配置并控制适当大小的无功补偿装置,使得系统中总的无功功率接近于零。

分类根据无功补偿装置的工作方式和控制方法,可以将其分为静态无功补偿和动态无功补偿两种类型。

1.静态无功补偿:静态无功补偿装置主要包括固定电容器、固定电感器和可调谐滤波器等。

固定电容器适用于需要长时间稳定补偿的场合,而固定电感器则适用于需要长时间稳定吸收无功功率的场合。

可调谐滤波器则可以根据系统的需求进行频率选择性补偿。

2.动态无功补偿:动态无功补偿装置主要包括STATCOM(静止同步补偿器)和SVC(静止无功补偿器)等。

这些装置通过快速响应和灵活控制,能够实时调节无功功率,适用于需要频繁变化的负载条件下。

应用无功补偿广泛应用于电力系统中,其主要目的是改善系统的功率因数、降低线路损耗、提高电压质量和稳定系统运行。

1.改善功率因数:通过引入适当大小的电容器或电感器,可以使得系统的功率因数接近于1,减少无效功率的消耗,提高能源利用效率。

2.降低线路损耗:在输电线路中,由于电流滞后于电压,会导致一定的传输损耗。

通过合理配置无功补偿装置,可以减小线路上的感性无功组分,降低传输损耗。

3.提高电压质量:电力系统中的电压波动和谐波等问题会对用户的设备和用电质量产生不良影响。

通过引入无功补偿装置,可以提高系统的电压稳定性和质量,减少谐波污染。

4.稳定系统运行:在大规模风电、光伏发电等可再生能源接入系统中,由于其不稳定性和间歇性特点,会对系统的稳定运行造成一定影响。

静态无功补偿装置原理

静态无功补偿装置原理

静态无功补偿装置原理静态无功补偿装置(STATCOM)是一种用来补偿电力系统中的无功功率的装置。

静态无功补偿装置的原理基于电力系统中的无功功率是电压和电流之间的乘积,因此通过控制电压和电流之间的相位差,可以实现无功功率的补偿。

静态无功补偿装置通常由一个功率电子器件(如IGBT或GTO等)和一个控制系统组成。

该装置可以通过调整其输出的电压的相位和幅值来改变电力系统中的无功功率。

具体来说,静态无功补偿装置的原理如下:1. 电压控制:静态无功补偿装置通过测量电力系统中的电压,并与设定值进行比较,然后调整输出电压的幅值和相位以实现电压的控制。

当电力系统中的电压下降或偏离设定值时,装置将通过增加输出电压的幅值来补偿电力系统中的无功功率。

2. 电流控制:静态无功补偿装置还通过测量电力系统中的电流,并与设定值进行比较,然后调整输出电流的相位以实现电流的控制。

当电力系统中的电流偏离设定值时,装置将通过改变输出电流的相位来补偿电力系统中的无功功率。

3. 动态响应:静态无功补偿装置具有快速响应的特点,可以在很短的时间内调整输出电压和电流的相位和幅值。

这使得它能够在电力系统中快速补偿无功功率的变化,以提高电力系统的稳定性和可靠性。

4. 多功能性:静态无功补偿装置不仅可以用来补偿电力系统中的无功功率,还可以用来改善电压的稳定性、提高电力系统的功率因数,以及减少电力系统中的谐波等。

它可以根据实际需要进行调整,并与其他装置(如静态有功补偿装置)进行协调运行。

总之,静态无功补偿装置通过控制输出电压和电流的相位和幅值,能够快速、灵活地补偿电力系统中的无功功率。

它在电力系统中具有重要的作用,能够提高电力系统的稳定性和可靠性,提高电能的质量,并减少能源的消耗。

随着电力系统对无功功率补偿需求的增加,静态无功补偿装置将在电力系统中发挥越来越重要的作用。

低压svg无功补偿方案

低压svg无功补偿方案

低压SVG无功补偿方案引言随着电力系统发展的需求,无功补偿技术在电力系统中扮演着越来越重要的角色,以提高电力系统的稳定性和电能质量。

低压SVG(静止无功发生器)无功补偿方案是一种在低压电网中用于无功平衡的装置。

本文将介绍低压SVG无功补偿方案的原理、特点以及应用。

1. 低压SVG无功补偿方案的原理低压SVG无功补偿方案的基本原理是通过控制SVG装置的无功输出来补偿电网中的无功功率。

SVG通过静态功率电子装置实现无功补偿的功能。

其基本电路如下图所示:SVG电路图SVG电路图在这个电路中,主要包含一个电流控制器和一个电压控制器,分别用来控制SVG的电流和电压。

电流控制器根据电网的需求,控制SVG的电流输出;而电压控制器则根据电压的变化,控制SVG的电压输出。

通过这两个控制器的协调工作,低压SVG可以实现对电网的无功功率的补偿。

2. 低压SVG无功补偿方案的特点•快速响应:低压SVG无功补偿方案采用静态功率电子装置,无需机械部件,具有响应速度快的特点,能够快速地进行无功补偿,提高电力系统的稳定性。

•精确补偿:低压SVG通过精确的控制电流和电压,可以实现精确的无功补偿,提高电能质量。

•体积小巧:由于无需机械部件,低压SVG体积相对较小,可以灵活安装在电力系统中,减少占地面积。

•高效节能:低压SVG通过对无功功率的补偿,可以减少电网的无功损耗,提高电能的利用效率,实现节能减排的目标。

3. 低压SVG无功补偿方案的应用低压SVG无功补偿方案广泛应用于低压电网中,特别是在需要对电网进行无功补偿的场合。

以下是几个常见的应用场景:3.1 工业电网在工业电网中,由于负载的变化以及设备的特性,往往会产生大量的无功功率。

低压SVG可以根据电网的无功需求进行精确的补偿,提高电压质量、降低电网损耗和电力质量。

3.2 商业建筑商业建筑中的电力负载通常变化较大,低压SVG可以根据负载的变化实时调整无功补偿,维持电力系统的稳定性和电能质量,避免产生电能质量问题对设备的影响。

svg静态无功补偿原理

svg静态无功补偿原理

svg静态无功补偿原理
SVG静态无功补偿的原理是通过控制无功功率的流动来实现电力系统的无功补偿。

在电力系统中,无功功率的流动会引起电压波动和功率因数下降,给电力系统的稳定运行带来不利影响。

而SVG无功补偿装置可以根据系统的需求,快速调节无功功率的流动,以维持电力系统的电压稳定和功率因数在合理范围内。

SVG无功补偿装置由主电路和控制电路两部分组成。

主电路由静态电子器件组成,包括IGBT(Insulated Gate Bipolar Transistor)、电容器等。

控制电路负责监测电力系统的电压、电流等参数,并根据设定值进行调节。

SVG无功补偿的工作原理是由外部CT检测系统的电流信息,然后经由控制芯片分析出当前的电流信息,如PF、S、Q等;然后由控制器给出补偿的驱动信号,最后由电力电子逆变电路组成的逆变回路发出补偿电流。

SVG无功补偿采用可关断电力电子器件(IGBT)组成自换相桥式电路,经过电抗器并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流。

迅速吸收或者发出所需的无功功率,实现快速动态调节无功的目的。

SVG无功补偿作为有源形补偿装置,不仅可以跟踪冲击型负载的冲击电流,而且可以对谐波电流也进行跟踪补偿。

SVC控制系统原理

SVC控制系统原理

SVC控制系统原理SVC(静态无功补偿器)控制系统原理是一种用于电力系统的静态无功补偿设备,通过调节电力系统的电压和无功功率,能够实现改善电力系统的电压稳定性、无功功率平衡和功率因数调节等目的。

SVC控制系统原理主要包括SVC基本原理、控制策略和控制器设计。

SVC基本原理:SVC由可控电压源和电流源组成,主要包括一个串联电抗器和并联可控电流源。

串联电抗器通过改变电压的大小和相位来调节电力系统的电压稳定性。

并联可控电流源通过改变电流的大小和相位来调节电力系统的无功功率。

串并联电抗器分别通过可控开关进行控制,并通过控制电压和电流源的输出,实现对电力系统的电压和无功功率的调节。

控制策略:SVC的控制策略主要包括电压控制和无功功率控制两种模式。

电压控制是通过调整串联电抗器的电压大小和相位来实现对电力系统电压的调节。

当电力系统电压下降时,控制系统将串联电抗器的电压调高,提高电力系统电压;当电力系统电压上升时,控制系统将串联电抗器的电压调低,降低电力系统电压。

无功功率控制是通过调整并联可控电流源的电流大小和相位来实现对电力系统无功功率的调节。

控制系统根据电力系统的无功功率需求,调整并联可控电流源的输出电流,提供所需的无功功率。

控制器设计:SVC控制系统的控制器主要包括电流控制环和电压控制环。

电流控制环主要用于调节并联可控电流源的输出电流,实现对电力系统无功功率的控制。

电压控制环主要用于调节串联电抗器的电压,实现对电力系统电压的控制。

控制器通过测量电力系统的电流和电压,比较实际值与设定值的差异,并根据差异进行调整,控制串并联电抗器的输出,最终实现对电系统的电压和无功功率的调节。

总结起来,SVC控制系统通过串并联电抗器对电力系统的电压和无功功率进行调节,实现对电力系统的电压稳定性、无功功率平衡和功率因数调节等目的。

控制系统通过电流和电压的测量和比较,通过调整串并联电抗器的输出实现对电力系统的控制。

SVC控制系统可以有效改善电力系统的电压稳定性和无功功率平衡,提高电力系统的运行效率。

静止无功补偿器工作原理

静止无功补偿器工作原理

静止无功补偿器(STATCOM)是一种用于电力系统中的电力质量控制设备,它可以实时响应电力系统中的无功功率需求变化,通过调节电流的相位和幅值,提供无功功率的动态补偿。

本文将详细解释与静止无功补偿器工作原理相关的基本原理。

1. 无功功率的产生和补偿在电力系统中,无功功率是由电感和电容元件引起的。

电感元件(如电感线圈、变压器等)会产生感性无功功率,而电容元件(如电容器、电缆等)会产生容性无功功率。

这些无功功率会导致电压的波动和不稳定,影响电力系统的运行和电力质量。

静止无功补偿器可以通过控制电流的相位和幅值,实时地调节电力系统中的无功功率,使其与有功功率保持平衡,从而提高电力系统的稳定性和可靠性。

2. 静止无功补偿器的基本原理静止无功补偿器主要由一个直流电压源、一个逆变器以及一个电流控制系统组成。

2.1 直流电压源静止无功补偿器的直流电压源通常由一个直流电压源和一个电容滤波器组成。

直流电压源通过电容滤波器提供稳定的直流电压,用于逆变器的工作。

2.2 逆变器逆变器是静止无功补偿器的核心部件,它将直流电压转换为交流电压,并通过控制电流的相位和幅值来实现无功功率的补偿。

逆变器通常采用可控硅器件(如GTO、IGBT等)作为开关元件,通过不断开关和导通这些器件,可以产生可控的交流电压。

逆变器的工作原理如下:1.通过控制开关器件的导通和开断,逆变器可以产生可控的脉冲宽度调制(PWM)波形。

2.逆变器通过PWM波形控制开关器件的导通时间,从而控制输出电压的幅值。

3.逆变器还通过改变PWM波形的相位,控制输出电压的相位。

2.3 电流控制系统电流控制系统是静止无功补偿器的核心控制部分,它通过检测电力系统中的电流和电压,实时计算出无功功率的补偿需求,并控制逆变器的工作,实现无功功率的动态补偿。

电流控制系统的工作原理如下:1.电流控制系统通过电流传感器和电压传感器实时检测电力系统中的电流和电压。

2.电流控制系统根据检测到的电流和电压信号,计算出电力系统中的无功功率需求。

静止无功补偿器-PPT文档资料

静止无功补偿器-PPT文档资料
静止无功补偿器
主要内容
1 、静止无功补偿器的原理 2、静止无功补偿器的控制策略 3、静止无功补偿器的应用
静止无功补偿器的原理
静止无功补偿器(SVC)是在机械投切 式并联电容和电感的基础上,采用大容 量晶闸管代替断路器等触电式开关而发 展起来的。 分立式SVC包括可控饱和电抗器、晶闸 管投切电容(TSC)和晶闸管控制/投切 电感(TCR/TSR),它们之间或与传统 的机械投切电容/电感结合起来构成组合 式SVC。
几种常见的SVC
自饱和电抗器(SR)
由饱和电抗器和串联电容器组成的回路具 有稳压的特性,能维持连接母线的电压水平 ,对冲击性负荷引起的电压波动具有补偿作 用,与其并联的滤波电路能吸收谐波并提高 功率因数,而且还具有有效抑制三相不平衡 的能力。其优点是补偿快速、可靠、过载能 力强,维护简单,但运行时电抗器长期处于 饱和状态,有较大的噪声和损耗,原材料消 耗也大,补偿不对称负荷自身产生较大谐波 电流,无平衡有功负荷能力。
SVC在在电气化铁道上的应用
右图所示为安装在某铁路 分局牵引变电所的SVC。在 仅由固定电容器补偿下,功 率因数为0.85 左右(考核值 为0.9),每月都要缴纳低功 率因数罚款,加装SVC 系统 之后,功率因素提高到0.95 ,除得到当地供电部门奖励 外,所需费用投资也在一年 多时间内收回。安装在各地 铁路部门的SVC 总体补偿效 果也令人满意
SVC在纳米比亚400kV,330Mvar 项目 NamPower 的Auas 变 电站新建了一条输电系统 ,使得一旦发生50Hz 的 谐振,在某个系统负荷的 发电机出力条件下就会出 现很高的动态过电压,这 将使得NamPower 系统 无法运行。为此,在Auas 变电站安装了一台SVC, 主要是控制系统电压。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静态无功补偿器原理
SVC 一般为TCR和TSC的组合
TCR为晶闸管控制的电抗器,TSC为晶闸管投切的电容器
电抗器是可以连续调节电抗的大小的,电容器是分段调节电容大小的,因为电容只能一个一个投入,假设一个电容产生+10MVar,如果我们想得到0-10MVAR 则只要窜连个0-10的电抗,总的无功=10-电抗的无功,如果有2个电容投入,则可产生10-20之间的无功。

控制的时候晶闸管串联死区时间的处理,电容器的投入的讲究,
TCR和TSC会产生谐波,这些谐波的处理,都比较复杂查关键词
SVC静止型动态无功补偿装置和滤波装置
高压TCR型SVC装置
该装置根据控制策略,检测有关电量和设定量的大小改变与电抗器串联的晶闸管的导通角,能快速连续改变装置的电感电流,从而获得平滑调节的无功功率,该平台采用多项国际先进技术,品质优良,运行可靠,可以按无功电压或无功功率调节,可手动、自动转换,也可以分相或自适应调整,并有存储、显示、处理故障等功能、应有于电网可降低网损,抑制电压波动,提高电压稳定性和系统有功输送能力,应用于电气化铁路、冶金等工业用户,可进行动态无功功率补偿,电压控制、谐波和负序治理,并可提高用户的生产工效,提高产品质量和降低能耗
工作原理
单独的TCR由于只能提供感性的无功功率,因此往往与并联电容器配合使用。

并联上电容器后,使得总的无功功率为TCR与并联电容器无功功率抵消后的净无功功率,因而可以将补偿器的总体无功电流偏置到可吸收容性无功的范围内。

另外,并联电容器串上小的调谐电抗器还可兼做滤波器,以吸收TCR产生的谐波电流。

通过控制与电抗器串联的反并联晶闸管的导通角,既可以向系统输送感性无功电流,又可以向系统输送容性无功电流。

由于该补偿装置响应时间快(小于半个周波),灵活性大,而且可以连续调节无功输出,所以目前在我国的输电系统和工业企业中应用最为广泛。

TCR+FC型SVC的基本原理图如图1,补偿前及补偿后电压电流示意图如图2、图3。

单相的TCR由两个反并联的晶闸管与电抗器串联而成,而三相一般采用三角形接法。

图中,QS为系统供给的无功功率;QL为负载无功功率,它是随机变化的;QC为滤波器提供的容性无功功率,是固定不变的;QR为TCR提供的感性无功,它是可以调节的。

QS=QL+QR-QC
当负荷发生扰动变化时,SVC通过调节晶闸管的触发角从而调节TCR发出的感性无功,使得QR 总能弥补QL的变化。

这样的电路并入到电网中相当于
△QS=△QL+△QR=0。

这就是TCR+FC型静止无功补偿装置对无功功率进行动态补偿的原理。

将此电路并联到电网上,就相当于交流调压器电路接入电感性负载,此电路的有效相移范围为90o~180o。

当触发角α=90o时,晶闸管全导通,导通角δ=180o,此时电抗器吸收的无功电流最大。

根据导通角与补偿器等效导纳之间的关系式:BL=BLmax(δ-sinδ)/π
其中BLmax=1/XL。

可知,增大导通角即可增大补偿器的等效导纳,这样就会减小补偿电流中的基波分量,所以通过调整触发角的大小就可以改变补偿器所吸收的无功分量,达到调整无功功率的目的。

图1 TCR+FC型SVC的基本原理图
图2 SVC投入前欠补偿,电压超前电流45°,cosφ=0.707
图3 SVC投入后完全补偿,电流、电压重合,cosφ=1
3 应用领域
(1)电弧炉作为非线性及无规律负荷接入电网,将会对电网产生一系列不良影响,其中主要影响有:导致电网三相严重不平衡,产生负序电流,产生高次谐波,其中普遍存在如2、4偶次谐波与3、5、7次等奇次谐波共存的状况,使电压畸变更为复杂化,存在严重的电压闪变,功率因数低。

SVC具有快速动态补偿、响应速度快的特点,它可向电弧炉快速提供无功电流并且稳定母线电网电压,最大限度地降低闪变的影响,SVC具有的分相补偿功能可以消除电弧炉造成的三相不平衡,滤波装置可以消除有害的高次谐波并通过向系统提供容性无功来提高功率因数。

(2)轧机及其他大型电机对称负载引起电网电压降及电压波动,严重时使电气设备不能正常工作,降低了生产效率,使功率因数降低;负载在传动装置中会产生有害的高次谐波,主要是以5、7、11、13次为代表的奇次谐波及旁频,会使电网电压产生严重畸变。

安装SVC系统可解决上述问题,保持母线电压平稳,无谐波干扰,功率因数接近1。

(3)城市二级变电站(66kv/10kv):在区域电网中,一般采用分级投切电容器组的方式来补偿系统无功,改善功率因数,这种方式只能向系统提供容性无功,并且不能随负载变化而实现快速精确调节,在保证母线功率因数的同时,容易造成向系统倒送无功,抬高母线电压,危害用电设备及系统稳定性等问题。

TCR结合固定电容器组FC或者TCR+TSC可以快速精确的进行容性及感性无功补偿,稳定母线电压、提高功率因数。

并且,在改造旧的补偿系统时,在原有的固定电容器组的基础上,只需增加晶闸管相控电抗器(TCR)部分即可,用最少的投资取得最佳的效果,成为改善区域电网供电质量的最有效方法。

(4)电力机车供电:电力机车运输方式在保护环境的同时也对电网造成了严重的“污染”,因电力机车为单相供电,这种单相负荷造成供电网的严重三相不平衡及较低的功率因数,目前世界各国解决这一问题的唯一途径就是在铁路沿线适当
位置安装SVC系统,通过SVC的分相快速补偿功能来平衡三相电网,并通过滤波装置来提高功率因数。

(5)矿用提升机:提升机作为大功率、频繁启动、周期性冲击负荷以及采用硅整流装置对电网造成的无功冲击和高次谐波污染等危害不仅危及电网安全,同时也造成提升机过电流、欠电压等紧停故障的发生,影响了矿井生产。

因此对提升机供电系统进行无功动态补偿和高次谐波治理,对于提高矿井提升机和电网的安全运行可靠性、提高企业的经济效益意义巨大。

提升机单机装机功率大,在矿井总供电负荷中占的比重较大。

伴随煤矿生产规模的扩大、井筒的加深,要求配套的提升机装置容量也越来越大,单机容量已达到2000~3000kW,有的甚至达到5400kW,单斗提升装载量达34t。

这么大的负载启动将对电网造成很大的冲击电流,无功电流成分较大,功率因数较低。

所以大功率提升机对供电电网的容量和稳定性要求更高。

其中大功率提升机主要的问题是:
引起电网电压降低及电压波动;"
高次谐波,其中普遍存在如2、4次偶次谐波与3、5等奇次谐波共存的状况,使电压畸变更趋复杂化;"
功率因数低;"
彻底解决上述问题的方法是用户必须安装具有快速响应速度的动态无功补偿器(SVC)。

SVC系统响应时间小于lOms,完全可以满足严格的技术要求。

(6)远距离电力传输:全球电力目前正在趋向于大功率电网,长距离输电,高能量消耗,同时也迫使输配电系统不得不更加有效,SVC可以明显提高电力系统输配电性能,这已在世界范围内得到了广泛的证明,即当在不同的电网条件下,为保持一个平衡的电压时,可在电网的一处或多处适合的位置上安装SVC,以达到如下目的:
稳定弱系统电压、减少传输损耗"
增加传输动力,使现有电网发挥最大功率"
提高瞬变稳态极限"
增加小干扰下的阻尼"
增强电压控制及稳定性"
缓冲功率振荡"
(7)其他通用领域
油田,水泥化工等领域随着节能改造的有着较多的传动及变频调速等电力电子装置,其产生有害的高次谐波危害其他用电设备,导致用电效率降低,其他用电设备发热寿命降低。

相关文档
最新文档