成都理工大学资源勘查工程本科论文之外文译文

合集下载

资源勘查工程专业外语

资源勘查工程专业外语

专业外语复习题英译汉、汉译英:1)abnormal high formation pressure 异常高地层压力2)reservoir drive 油藏驱动3)hydrostatic pressure gradient 静水压力梯度4)geothermal gradient 地温梯度5)dolomitization 白云岩化作用6)rollover anticline 滚动背斜7)unconformity trap 不整合圈闭8)faulting trap 断层圈闭9)salt plug 盐丘10)the use of well logging 测井应用11)stratigraphic trap 地层圈闭12)Permian sandstone reservoir 二叠系砂岩储层13)the late petroleum generation hypothesis晚期石油生成说14)organic-rich shale 富含有机质页岩15)buoyancy 浮力16)clastic or detrial rock 碎屑岩17)the strike contours 等值高线18)transgressive sequence 水进层序19)desgressive sequence 水退层序20)sequence stratigraphy 层序地层学21)well-sorted sands 分选好的砂22)secondary growth of quartz 石英次生加大23)the capacity of a fault 断层封闭24)growth fault 同生(生长)断层25)fluvial facies 河流相26)Carboniferous limestone石炭化石灰岩27)Cretaceous dolomite 白垩纪白云岩28)fan-delta 扇三角洲29)insoluble organic matter30)a potential source rock 潜在烃源岩31)evolutionary stages of kerogen 干酪根的演化阶段32)secondary pores 次生孔隙33)petroleum migration 石油运移34)hydrocarbon accumulation 烃类聚集35)kerogen 干酪根36)porosity 孔隙度37)permeability 渗透率38)water-saturation 含水饱和度39)hydrodynamic condition 水动力条件40)oils and source rocks correlation 油源岩对比41)effective porosity 有效孔隙度42)types of reservoir drives 油藏驱动类型43)lens of sandstones 砂岩透镜体44)sedimentary facies 沉积相45)minor structure 微幅构造46)subsidence or depression belt 沉陷带47)nose structure 鼻状构造48)reservoir heterogeneity 储集层非均质性49)high point of structure 构造高点50)oil-field water 油田水51)original reservoir pressure 原始储层压力52)salinity 盐度(矿化度)53)anticline 背斜54)syncline 向斜55)normal fault 正断层56)reverse fault 逆断层57)geological mapping 地质制图58)organic matter 有机质59)residual oil 剩余油60)primary pore 原生孔隙secondary pore次生孔隙61)coarse-sandstone 粗砂岩62)fine-sandstone 细砂岩63)silt stone 粉砂岩64)mature stage of hydrocarbon source rock烃源岩成熟阶段65)structural strike contours 构造等值线66)absolute permeability 绝对渗透率67)arkoses 长石砂岩68)elaborate geological description of oil pools油藏精细地质描述名词解释:1、Fossils:are the recognizable remains or traces of animals and plants that were preserved insediments,rocks and other materials.2、Minerals: A naturally occuring substance with a fairly definite chemical composition and characteristic physical properties by which it may be identified.3、Karst limestone: in the warm and humid weather ,a highly dissolved limestone.4、Faults: are breaks in the rocks in which one side has moved relative to the other.5、Reservoir rocks: some subsurface rocks ,which have voids or spaces and can hold fluids.6、Unconformity: a break in the sequence of local geologic deposition ,marked by an erosion surface,above and below which the beds are of different ages.7、Fold: reformation of the bed which is thrown into a series of ridges and valley by squeez and tension.8、Porosity:is a percentage of holes or voids in the rock and controls how much fluids the rock can hold.9、Permeability:is a measure of the ease with which a fluid can flow through the rock.同义词:地下underground = subsurface构造圈闭tectonic trap = structural trap背斜anticline = upford 向斜syncline = downfold 单斜monocline = homocline假整合disconformity = 平行不整合parallel unconformity地层bed =layer = formation = stratum逆断层reversed fault = thrust 逆掩断层overthrust节理、裂缝crack = fissure = fracture = joint粒间的interparticle = intergranular原生孔隙primary pores = initial pores油藏pools = deposits of oil and gas地堑trough fault = graben 地垒ridge fault = horst尖灭buttress = wedge out碎屑岩clastic = detrial = fragmentary + rock孔隙pore = void油藏oil reservoir = oil pool = oil deposit岩性圈闭lithologic trap = depositional trap露头outcrop = exposing = cropping out翻译:The actural pores may have had a complex history.A skeletal element, for example , may be removed by solution,leaving a mold , which may be enlarged by further solution and converted to an irregular vug. Either the mold or the enlarged product may be partially to completely filled at any stage . The history of pore filling , whatever the origin of the pore , is complex.实际空隙可能有复杂的历史,。

采矿工程 毕业设计_外文翻译 英译汉 中英文

采矿工程 毕业设计_外文翻译 英译汉 中英文

ROOM-AND-PILLAR METHOD OF OPEN-STOPE MINING空场采矿法中的房柱采矿法Chapter 1.A Classification of the Room-and-Pillar Method of Open-Stope Mining第一部分,空场采矿的房柱法的分类OPEN STOPING空场采矿法An open stope is an underground cavity from which the initial ore has been mined. Caving of the opening is prevented (at least temporarily) by support from the unmined ore or waste left in the stope,in the form of pillars,and the stope walls (also called ribs or abutments). In addition to this primary may also be required using rockbolts , reinforcing rods, split pipes ,or shotcrete to stabilize the rock surface immediately adjacent to the opening. The secondary reinforcement procedure does not preclude the method classified as open stoping.露天采场台阶是开采了地下矿石后形成的地下洞室。

通过块矿或采场的支柱和(也称为肋或肩)采场墙形式的废料的支持来(至少是暂时的)预防放顶煤的开幕。

除了这个,可能还需要使用锚杆,钢筋棒,分流管,或喷浆,以稳定紧邻开幕的岩石表面。

地质与岩土工程专业英语论文tb

地质与岩土工程专业英语论文tb

岩土工程英语作业姓名:汤彪学号:013621814102班级:0133018141SHORT COMMUNICATIONS ANALYTICAL METHOD FOR ANALYSIS OFSLOPE STABILITYJINGGANG CAOs AND MUSHARRAF M. ZAMAN*tSchool of Civil Engineering and Environmental Science,University of Oklahoma, Norman, OK 73019, U.S.A.SUMMARYAn analytical method is presented for analysis of slopestability involving cohesive and non-cohesive soils.Earthquakeeffects are considered in an approximate manner in terms ofseismic coe$cient-dependent forces. Two kinds of failure surfaces areconsidered in this study: a planar failure surface, and acircular failure surface. The proposed method can be viewed asan extension of the method of slices, but it provides a moreaccurate etreatment of the forces because they are representedin an integral form. The factor of safety is obtained by usingthe minimization technique rather than by a trial and errorapproach used commonly.The factors of safety obtained by the analytical method arefound to be in good agreement with those determined by the localminimum factor-of-safety, Bishop's, and the method of slices. Theproposed method is straightforward, easy to use, and lesstime-consuming in locating the most critical slip surface andcalculating the minimum factor of safety for a given slope.Copyright ( 1999) John Wiley & Sons, Ltd.Key words: analytical method; slope stability; cohesive andnon-cohesive soils; dynamic effect; planar failure surface;circular failure surface; minimization technique;factor-of-safety.INTRODUCTIONOne of the earliest analyses which is still used in manyapplications involving earth pressure was proposed by Coulomb in1773. His solution approach for earth pressures against retainingwalls used plane sliding surfaces, which was extended to analysis of slopes in 1820 by Francais. By about 1840, experience with cuttings and embankments for railways and canals in England and France began to show that many failure surfaces in clay were not plane, but signi"cantly curved. In 1916, curved failure surfaces were again reported from the failure of quay structures in Sweden. In analyzing these failures, cylindrical surfaces were used and the sliding soil mass was divided into a number of vertical slices. The procedure is still sometimes referred to as the Swedish method of slices. By mid-1950s further attention was given to the methods of analysis usingcircular and non-circular sliding surfaces . In recent years, numerical methods have also been used in the slope stability analysis with the unprecedented development of computer hardware and software. Optimization techniques were used by Nguyen,10 and Chen and Shao. While finite element analyses have great potential for modelling field conditions realistically, they usually require signi"cant e!ort and cost that may not be justi"ed in some cases.The practice of dividing a sliding mass into a number of slices is still in use, and it forms the basis of many modern analyses.1,9 However, most of these methods use the sums of the terms for all slices which make the calculations involved in slope stability analysis a repetitive and laborious process.Locating the slip surface having the lowest factor of safety is an important part of analyzing a slope stability problem. A number of computer techniques have been developed to automate as much of this process as possible. Most computer programs use systematic changes in the position of the center of the circle and the length of the radius to find the critical circle.Unless there are geological controls that constrain the slip surface to a noncircular shape, it can be assumed with a reasonablecertainty that the slip surface is circular.9 Spencer (1969) found that consideration of circular slip surfaces was as critical as logarithmic spiral slip surfaces for all practical purposes. Celestino and Duncan (1981), and Spencer (1981) found that, in analyses where the slip surface was allowed to take any shape, the critical slip surface found by the search was essentially circular. Chen (1970), Baker and Garber (1977), and Chen and Liu maintained that the critical slip surface is actually a log spiral. Chen and Liu12 developed semi-analytical solutions using variational calculus, for slope stability analysis with a logspiral failure surface in the coordinate system. Earthquake e!ects were approximated in terms of inertiaforces (vertical and horizontal) defined by the corresponding seismic coe$cients. Although this is one of the comprehensive and useful methods, use of /-coordinate system makes the solution procedure attainable but very complicated. Also, the solutions are obtained via numerical means at the end. Chen and Liu12 have listed many constraints, stemming from physical considerations that need to be taken into account when using their approach in analyzing a slope stability problem.The circular slip surfaces are employed for analysis of clayey slopes, within the framework of an analytical approach, in this study. The proposed method is more straightforward and simpler than that developed by Chen and Liu. Earthquake effects are included in the analysis in an approximate manner within the general framework of static loading. It is acknowledged that earthquake effects might be better modeled by including accumulated displacements in the analysis. The planar slip surfaces are employed for analysis of sandy slopes. A closed-form expression for the factor of safety is developed, which is diferent from that developed by Das.STABILITY ANALYSIS CONDITIONS AND SOIL STRENGTHThere are two broad classes of soils. In coarse-grained cohesionless sands and gravels, the shear strength is directly proportional to the stress level:''tan f τσθ= (1)where fτ is the shear stress at failure, /σ the effectivenormal stress at failure, and /θ the effective angle of shearing resistance of soil.In fine-grained clays and silty clays, the strength depends on changes in pore water pressures or pore water volumes which take place during shearing. Under undrained conditions, the shear strength cu is largely independent of pressure, that is u θ=0. When drainage is permitted, however, both &cohesive' and &frictional' components ''(,)c θ are observed. In this case the shear strength is given by(2)Consideration of the shear strengths of soils under drained and undrained conditions, and of the conditions that will control drainage in the field are important to include in analysis of slopes. Drained conditions are analyzed in terms of effective stresses, using values of ''(,)c θ determined from drained tests, or from undrained tests with pore pressure measurement. Performing drained triaxial tests on clays is frequently impractical because the required testing time can be too long. Direct shear tests or CU tests with pore pressure measurement are often used because the testing time is relatively shorter.Stability analysis involves solution of a problem involving force and/or moment equilibrium.The equilibrium problem can be formulated in terms of (1) total unit weights and boundary water pressure; or (2) buoyant unit weights and seepage forces. The first alternative is a better choice, because it is morestraightforward. Although it is possible, in principle, to usebuoyant unit weights and seepage forces, that procedure is fraught with conceptual diffculties.PLANAR FAILURE SURFACEFailure surfaces in homogeneous or layered non-homogeneous sandy slopes are essentially planar. In some important applications, planar slides may develop. This may happen in slope, where permeable soils such as sandy soil and gravel or some permeable soils with some cohesion yet whose shear strength is principally provided by friction exist. For cohesionless sandy soils, the planar failure surface may happen in slopes where strong planar discontinuities develop, for example in the soil beneath the ground surface in natural hillsides or in man-made cuttings.ααβ图平面破坏Figure 1 shows a typical planar failure slope. From an equilibrium consideration of the slide body ABC by a vertical resolution of forces, the vertical forces across the base of the slide body must equal to weight w. Earthquake effects may be approximated by including a horizontal acceleration kg which produces a horizontal force k= acting through the centroid of the body and neglecting vertical inertia.1 For a slice of unit thickness in the strike direction, the resolved forces of normaland tangential components N and ¹ can be written as(cos sin )N W k αα=-(3)(sin cos )T W k αα=+(4) where is the inclination of the failure surface and w is given by02(tan tan )(tan )(cot cot )2LW x x dx H x dx H γβαγαγαβ=-+-=-⎰⎰ (5) where γ is the unit weight of soil, H the height of slope, cot ,cot ,L H l H βαβ== is the inclination of the slope. Since the length of the slide surface AB is /sin cH α, the resisting force produced by cohesion is cH /sin a. The friction force produced by N is (cos sin )tan W k ααφ-. The total resisting or anti-sliding force is thus given by(cos sin )tan /sin R W k cH ααφα=-+(6)For stability, the downslope slide force ¹ must not exceed the resisting force R of the body. The factor of safety, F s , in the slope can be defined in terms of effective force by ratio R /T, that is1tan 2tan tan (sin cos )sin()s k c F k H k αφαγααβα-=+++- (7) It can be observed from equation (7) that F s is a function of a. Thus the minimum value of F s can be found using Powell's minimization technique18 from equation (7). Das reported a similar expression for F s with k =0, developed directly from equation (2) by assuming that /s f d F ττ=, where f τ is the averageshear strength of the soil, and d τ the average shear stressdeveloped along the potential failure surface.For cohesionless soils where c =0, the safety factor can bereadily written from equation (7) as 1tan tan tan s k F k αφα-=+ (8) It is obvious that the minimum value of F s occurs when a=b, and the failure becomes independent of slope height. For such cases (c=0 and k=0), the factors of safety obtainedfrom the proposed method and from Das are identical.CIRCULAR FAILURE SURFACESlides in medium-stif clays are often deep-seated, and failure takes place along curved surfaces which can be closely approximated in two dimensions by circular surfaces. Figure 2 shows a potential circular sliding surface AB in two dimensions with centre O and radius r . The first step in the analysis is to evaluate the sliding' or disturbing moment M s about the centre of thecircle O . This should include the self-weight w of the sliding mass, and other terms such as crest loadings from stockpiles or railways, and water pressures acting externally to the slope.Earthquake effects is approximated by including a horizontal acceleration kg which produces a horiazontal force k d=acting through the centroid of each slice and neglecting vertical inertia. When the soil above AB is just on the point of sliding, the average shearing resistance which is required along AB for limiting equilibrium is given by equation (2). The slide mass is divided into vertical slices, and a typical slice DEFG is shown. The self-weight of the slice is dW hdx γ=. The method assumes that the resultant forces Xl and Xr on DE and FG , respectively, are equal and opposite, and parallel to the base of the slice EF . It is realized that these assumptions are necessary to keep theanalytical solution of the slope stability problem addressed in this paper achievable and some of these assumptions would lead to restrictions in terms of applications (e.g.earth pressure on retaining walls). However, analytical solutions have a special usefulness in engineering practice, particularly in terms of obtaining approximate solutions. More rigorous methods, e.g. finite element technique, can then be used to pursue a detail solution. Bishop's rigorous method5 introduces a furthernumerical procedure to permit specialcation of interslice shear forces Xl and Xr . Since Xl and Xr are internal forces, ()l r X X -∑ must be zero for the whole section. Resolving prerpendicularly and parallel to EF , one getssin cos T hdx k hdx γαγα=+(9)cos csin N hdx k hdx γαγα=-(10)22arcsin ,x a r a b rα-==+ (11)The force N can produce a maximum shearing resistance when failure occurs:sec (cos sin )tan R cdx hdx k αγααφ=+-(12)The equations of lines AC , CB , and AB Y are given by y22123tan ,,()y x y h y b r x a β===---(13)The sums of the disturbing and resisting moments for all slices can be written as013230(sin cos )()(sin cos )()(sin cos )()ls l lL s c M r h k dx r y y k dx r y y k dx r I kI γααγααγααγ=+=-++-+=+⎰⎰⎰ (14) []02300232sec (cos sin )tan sec ()(cos sin )tan ()(cos sin )tan tan ()lr l l lL c s M r c h k dx r c dx r y y k dx r y y k dx r c r I kI αγααφαγααφγααφϕγφ=+-=+--+--=+-⎰⎰⎰⎰ (15)22cot ,()L H l a r b H β==+-- (16)arcsinarcsin l a a r r ϕ-=+ (17) 1323022()sin ()sin 1(cot )sec 23Ll s L I y y dx y y dxH a b H rααββ=-+-⎡⎤=+-⎢⎥⎣⎦⎰⎰ (18) 13230222222222()cos ()cos tan tan 2()()()623(tan )arcsin (tan )arcsin 221()arcsin()4()()26L l s L I y y dx y y dxb r b r L a r L a r r r L a r a a H a b r r r l a b H r l ab l a H a r r ααββββ=-+-⎡⎤=-+---++⎣⎦-⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭-⎡⎤--+-+--⎣⎦⎰⎰ (19) The safety factor for this case is usually expressed as the ratio of the maximum available resisting moment to the disturbing moment, that istan ()()c s r s s s c c r I kI M F M I kI ϕγφγ+-==+ (20) When the slope inclination exceeds 543, all failures emerge at the toe of the slope, which is called t oe failure , as shown in Figure 2. However, when the slope height H is relatively large compared with the undrained shear strength or when a hard stratum is under the top of the slope of clayey soil with 03φ<, the slide emerges from the face of the slope, which is called Face failure , as shown in Figure 3. For Face failure , the safety factor F s is the same as ¹oe failure 1s using 0()Hh - instead of H .For flatter slopes, failure is deep-seated and extends to the hard stratum forming the base of the clay layer, which is called Base failure , as shown in Figure 4.1,3 Following the sameprocedure as that for ¹oe failure , one can get the safety factor for Base failure :()''''tan ()c s s s c c r I kI F I kI ϕγφγ+-=+ (21) where t is given by equation (17), and 's I and 'c I are given by()()()0100'0313230322201sin sin sin cot ()()(2)(33)12223l l l s l l I y y xdx y y xdx y y xdx H H bl H l l l l l a b bH H r r r β=-+-+-=+----+-+⎰⎰⎰ (22)()()()()()()[]22222203231030c 4612cot arcsin 2tan arcsin 21arcsin 2cot 412cos cos cos 1100a H a l ab l r r r H H a r r a rb r a H b r H r r Hl d y y d y y d y y I x l l x l l x l --+-+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛----=⎰-+⎰-+⎰-='βββααα(23)其中,()221230,tan ,,y y x y H y b r x a β====---(24) ()220111cot ,cot ,22l a H l a H l a r b H ββ=-=+=+--(25)It can be observed from equations (21)~(25) that the factor of safety F s for a given slope is a function of the parameters a and b. Thus, the minimum value of F s can be found using the Powell's minimization technique.For a given single function f which depends on two independent variables, such as the problem under consideration here, minimization techniques are needed to find the value of these variables where f takes on a minimum value, and then to calculate the corresponding value of f. If one starts at a point P in an N-dimensional space, and proceed from there in some vector direction n, then any function of N variables f (P) can be minimized along the line n by one-dimensional methods. Different methods will difer only by how, at each stage, they choose the next direction n. Powell "rst discovered a direction set method which produces N mutually conjugate directions.Unfortunately, a problem of linear dependence was observed in Powell's algorithm. The modiffed Powell's method avoids a buildup of linear dependence.The closed-form slope stability equation (21) allows the application of an optimization technique to locate the center of the sliding circle (a, b). The minimum factor of safety Fs min then obtained by substituting the values of these parameters into equations (22)~(25) and the results into equation (21), for a base failure problem (Figure 4). While using the Powell's method, the key is to specify some initial values of a and b. Well-assumed initial values of a and b can result in a quick convergence. If the values of a and b are given inappropriately, it may result in a delayed convergence and certain values would not produce a convergent solution. Generally, a should be assumed within$¸, while b should be equal to or greater than H (Figure 4). Similarly, equations(16)~(20) could be used to compute the F s .min for toe failure (Figure 2) and face failure (Figure 3),except ()0H h - is usedinstead of H in the case of face failure .Besides the Powell method, other available minimization methods were also tried in this study such as downhill simplex method, conjugate gradient methods, and variable metric methods. These methods need more rigorous or closer initial values of a and b to the target values than the Powell method. A short computer program was developed using the Powell method to locate the center of the sliding circle (a , b ) and to find the minimum value of F s . This approach of slope stability analysis is straightforward and simple.RESULTS AND COMMENTSThe validity of the analytical method presented in the preceding sections was evaluated using two well-established methods of slope stability analysis. The local minimumfactor-of-safety (1993) method, with the state of the effective stresses in a slope determined by the finite element method with the Drucker-Prager non-linear stress-strain relationship, and Bishop's (1952) method were used to compare the overall factors of safety with respect to the slip surface determined by the proposed analytical method. Assuming k =0 for comparison with the results obtained from the local minimum factor-of-safety and Bishop's method, the results obtained from each of those three methods are listed in Table I.The cases are chosen from the toe failure in a hypothetical homogeneous dry soil slope having a unit weight of 18.5 kN/m3. Two slope configurations were analysed, one 1 : 1 slope and one 2 : 1 slope. Each slope height H was arbitrarily chosen as 8 m. To evaluate the sensitivity of strength parameters on slope stability, cohesion ranging from 5 to 30 kPa and friction angles ranging from 103 to 203 were used in the analyses (Table I). Anumber of critical combinations of c and were found to be unstable for the model slopes studied. The factors of safety obtained by the proposed method are in good agreement with those determined by the local minimum factor-of-safety and Bishop's methods, as shown in Table I.To examine the e!ect of dynamic forces, the analytical method is chosen to analyse a toe failure in a homogeneous clayey slope (Figure 2). The height of the slope H is 13.5 m; the slope inclination b is arctan 1/2; the unit weight of the soil c is 17.3 kN/m3; the friction angle is 17.3KN/m; and the cohesion c is 57.5 kPa. Using the conventional method of slices, Liu obtained theminimum safety factormin 2.09sF= Using the proposed method, one can get the minimum value of safety factor from equation (20) asmin 2.08sF= for k=0, which is very close to the value obtained from the slice method. When k"0)1, 0)15, or 0)2, one cangetmin 1.55,1.37sF=, and 1)23, respectively,which shows the dynamic e!ect on the slope stability to be significant.CONCLUDING REMARKSAn analytical method is presented for analysis of slope stability involving cohesive and noncohesive soils. Earthquake e!ects are considered in an approximate manner in terms of seismic coe$cient-dependent forces. Two kinds of failure surfaces are considered in this study: a planar failure surface, and a circular failure surface. Three failure conditions for circular failure surfacesnamely toe failure, face failure, and base failure are considered for clayey slopes resting on a hard stratum.The proposed method can be viewed as an extension of the method of slices, but it provides a more accurate treatment of the forces because they are represented in an integral form. The factor of safety is obtained by using theminimization technique rather than by a trial and error approach used commonly.The factors of safety obtained from the proposed method are in good agreement with those determined by the local minimum factor-of-safety method (finite element method-based approach), the Bishop method, and the method of slices. A comparison of these methods shows that the proposed analytical approach is more straightforward, less time-consuming, and simple to use. The analytical solutions presented here may be found useful for (a)validating results obtained from other approaches, (b) providinginitial estimates for slope stability, and (c) conducting parametric sensitivity analyses for various geometric and soil conditions.REFERENCES1. D. Brunsden and D. B. Prior. Slope Instability, Wiley, New York, 1984.2. B. F. Walker and R. Fell. Soil Slope Instability and Stabilization, Rotterdam, Sydney, 1987.3. C. Y. Liu. Soil Mechanics, China Railway Press, Beijing, P. R. China, 1990.448 SHORT COMMUNICATIONSCopyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., 23, 439}449 (1999)4. L. W. Abramson. Slope Stability and Stabilization Methods, Wiley, New York, 1996.5. A. W. Bishop. &The use of the slip circle in the stability analysis of slopes', Geotechnique, 5, 7}17 (1955).6. K. E. Petterson. &The early history of circular sliding surfaces', Geotechnique, 5, 275}296 (1956).7. G. Lefebvre, J. M. Duncan and E. L. Wilson.&Three-dimensional "nite element analysis of dams,' J. Soil Mech. Found,ASCE, 99(7), 495}507 (1973).8. Y. Kohgo and T. Yamashita, &Finite element analysis of "ll type dams*stability during construction by using the e!ective stress concept', Proc. Conf. Numer. Meth. in Geomech., ASCE, Vol. 98(7), 1998, pp. 653}665.9. J. M. Duncan. &State of the art: limit equilibrium and "nite-element analysis of slopes', J. Geotech. Engng. ASCE, 122(7), 577}596 (1996).10. V. U. Nguyen. &Determination of critical slope failuresurface', J. Geotech. Engng. ASCE, 111(2), 238}250 (1985).11. Z. Chen and C. Shao. &Evaluation of minimum factor of safety in slope stability analysis,' Can. Geotech. J., 20(1), 104}119 (1988).12. W. F. Chen and X. L. Liu. ¸imit Analysis in Soil Mechanics, Elsevier, New York, 1990.简要的分析斜坡稳定性的方法JINGGANG CAOs 和 MUSHARRAF M. ZAMAN诺曼底的俄克拉荷马大学土木环境工程学院摘要本文给出了解析法对边坡的稳定性分析,包括粘性和混凝土支撑。

勘查技术与工程专业介绍

勘查技术与工程专业介绍
1.老式优势继续得到进一步发挥 2.向能源勘探开发利用拓展 3.向地质灾害防治及环境保护拓展
煤田地球物理勘探 煤田地球物理勘探主要是根据煤层同上下岩系 间旳物理性质差别,研究地质构造、岩层性质、沉 积环境以精确勘查煤炭资源旳分布位置和储量,同 步还要想方设法处理因人类采煤活动造成旳有关环 境安全问题,例如煤矿井下水害问题、煤层自燃挥 霍资源问题、煤矿采空区破坏地表生态环境问题等 。在该领域中,以地震勘探法、电法和地球物理测 井应用最广。
地球物理学在本质上是一门 观察旳科学,必须采集大量旳有 效信息。所以,可靠信息与信息 量旳缺乏或不足则是任何数学技 巧和图像显示所无法弥补旳。
何谓地球物理学?
赵九章先生对地球物理学有 一种“科学与艺术”并缔旳精辟概 括,即
上穷碧落下黄泉, 两处茫茫皆不见。
上穷碧落下黄泉
1.上联:地球物理学旳宗旨是要为 资源勘查,灾害预防和深化认识地 球本体做出贡献,要达此目旳则必 须穿越地平线,进一步到地球内部 探索其奥秘——层、圈构造,物质 构成和成山、成盆、成岩、成矿和 成灾旳深层动力过程。
地球上存在着多种不同旳岩石,这些岩石旳物理
性质不同,从而会产生不同旳物理场,如电、磁、声 、光、热、密度、弹性、放射性等,人们在地表采用 多种精密仪器将这些物理场测量下来,然后对其进行 分析研究,就能够了解地下构造、地层岩性等地质特 征。所以,地球物理勘探专业是建立在地质学与物理 学基础上旳一门学科,既需要进一步学习多种物理场 ,还要掌握基础旳地质知识,将地质中旳东西逐渐量 化,从而大大提升地质问题研究旳精度与深度。假如 对地球物理勘探措施进一步划分,则能够细分为重力 勘探、磁法勘探、电法勘探、地震勘探、地球物理测 井和放射性勘探等。
•吉林大学――地球探测科学与技术学院――勘查技术与工程专业-—本专业 设有应用地球物理和应用地球化学两个研究方向,分属于地球物理系和地球化 学系。 •吉林大学――地球探测科学与技术学院――固体地球物理学—理学专业

土木工程 外文翻译 外文文献 英文翻译

土木工程 外文翻译 外文文献 英文翻译

Stress Limits in DesignHow large can we permit the stresses to be? Or conversely: How large must a part be to withstand a given set of loads what are the overall conditions or limits that will determine the size and material for a part?Design limits are based on avoiding failure of the part to perform its desired function. Because different parts must satisfy different functional requirements, the conditions which limit load-carrying ability may be quite different for different elements. As an example, compare the design limits for the floor of a house with those for the wing of an airplane.If we were to determine the size of the wooden beams in a home such that they simply did not break, we would not be very happy with them; they would be too ‘springy’. Walking across the room would be like walking out on a diving board.Obviously, we should be concerned with the maximum ‘deflection’that we, as individuals, find acceptable. This level will be rather subjective, and different people will give different answers. In fact, the same people may give different answers depending on whether they are paying for the floor or not!An airplane wing structure is clearly different. If you look out an airplane window and watch the wing during turbulentweather, you will see large deflections; in fact you may wish that they were smaller. However, you know that the important issue is that of ‘structural integrity’, not deflection.We want to be assured that the wing will remain intact. We want to be assured that no matter what the pilot and the weather do, that wing will continue to act like a good and proper wing. In fact, we really want to be assured that the wing will never fail under any conditions. Now that is a pretty tall order; who knows what the ‘worst’ conditions might be?Engineers who are responsible for the design of airplane wing structures must know, with some degree of certainty, what the ‘worst’ conditions are likely to be. It takes great patience and dedication for many years to assemble enough test data and failure analyses to be able to predict the ‘worst’case. The general procedure is to develop statistical data which allow us to say how frequently a given condition is likely to be encountered—once every 1000 hours, or once every 10000 hours, etc.As we said earlier, our object is to avoid failure. Suppose, however, that a part has failed in service, and we are asked; Why? ‘Error’ as such can come from three distinctly different sources, any or all of which can cause failure:1. Error in design: We the designers or the design analysts may have been a bit too optimistic: Maybe we ignored some loads; maybe our equations did not apply or were not properly applied; maybe we overestimated the intelligence of the user; may we slipped a decimal point.2. Error in manufacture: When a device involves heavily stressed members, the effective strength of the members can be greatly reduced through improper manufacture and assembly: May the wrong material was used; maybe the heat treatment was not as specified; maybe the surface finish was not as good as called for; may a part was ‘out of tolerance’; may be surface was damaged during machining; maybe the threads were not lubricated at assembly; or perhaps the bolts were not properly tightened.3. Error in use: As we all know, we can damage almost anything if we try hard enough, and sometimes we do so accidentally: We went too fast; we lost control; we fell asleep; we were not watching the gages; the power went off; the computer crashed; he was taking a coffee break; she forgot to turn the machine off; you failed to lubricate it, etc.Any of the above can happen: Nothing is designed perfectly; nothing is made perfectly; and nothing is used perfectly. Whenfailure does occur, and we try to determine the cause, we can usually examine the design; we can usually examine the failed parts for manufacturing deficiencies; but we cannot usually determine how the device was used (or misused). In serious cases, this can give rise to considerable differences of opinion, differences which frequently end in court.In an effort to account for all the above possibilities, we design every part with a safety factor. Simply put, the safety factor (SF) is the ratio of the load that we think the part can withstand to the load we expect it to experience. The safety factor can be applied by increasing the design loads beyond those actually expected, or by designing to stress levels below those that the material actually can withstand (frequently called ‘design stresses’).Safety factor=SF=failure load/design load=failure stress/design stress It is difficult to determine an appropriate value for the safety factor. In general, we should use larger values when:1. The possible consequences of failure are high in terms of life or cost.2. There are large uncertainties in the design analyses.Values of SF generally range from a low of about 1.5 to 5 ormore. When the incentives to reduce structural weight are great (as in aircraft and spacecraft), there is an obvious conflict. Safety dictates a large SF, while performance requires a small value. The only resolution involves reduction of uncertainty. Because of extreme care and diligence in design, test, manufacture, and use, the aircraft industry is able to maintain very enviable safety records while using safety factors as low as 1.5.We might not that the safety factor is frequently called the ‘ignorance factor’. This is not to imply that engineers are ignorant, but to help instill in them humility, caution, and care. An engineer is responsible for his or her design decisions, both ethically and legally. Try to learn from the mistakes of others rather than making your own.。

成都理工大学-地科

成都理工大学-地科

地球科学学院COLLEGE OF EARTHSCIENCES◆教授(级)33人、副教授(级)35人◆享受国务院政府特殊津贴专家4人◆四川省学术和技术带头人6人◆四川省有突出贡献的优秀专家2人◆四川省学术和技术带头人后备人选6人◆新世纪“百千万人才工程”国家级人选1人◆百名跨世纪优秀科技人才培养计划2人◆教育部跨世纪优秀人才培养计划1人◆全国优秀教师1人◆省级教学名师1人◆国家级特色专业:地质学、资源勘查工程(固体矿产)、地球化学◆省级特色专业:地理信息科学、测绘工程◆省级精品课程:普通地质学、矿产勘查地质学、矿床学、岩石学、铀矿地质◆国土资源部野外科学观测研究基地:四川攀枝花钒钛磁铁矿野外科学观测研究基地、重庆城口巴山锰钡矿野外科学观测研究基地◆国家级大学生校外实践教育基地:理科实践教育基地◆省级本科人才培养基地:资源环境地质学类本科人才培养基地、测绘与地理信息工程本科人才培养基地◆省级教学团队:地球化学◆国家级实验教学示范中心:地质学实验教学示范中心◆省级实验教学示范中心:地矿勘查实验教学示范中心◆国家级卓越工程师教育培养计划试点专业:资源勘查工程(固体矿产)◆省级卓越工程师教育培养计划试点专业:测绘工程、遥感科学与技术◆四川省省属高校科研创新团队:盆岭-盆山构造与油气、构造成矿学理论发展与实践◆国土资源部重点实验室:构造成矿成藏重点实验室、地学空间信息技术重点实验室(培育)本科专业地质学资源勘查工程(固体矿产)地球化学测绘工程地理信息科学遥感科学与技术一级学科硕士学位授权点地质学地理学测绘科学与技术二级学科硕士学位授权点地图学与地理信息系统矿物学、岩石学、矿床学构造地质学第四纪地质学大地测量学与测量工程摄影测量与遥感地图制图学与地理信息工程资源与环境遥感矿产普查与勘探地球化学沉积学(含:古地理学)古生物与地层学专业硕士学位授权点测绘工程地质工程(固体地质勘查)一级学科博士学位授权点地质学地质资源与地质工程(共建)二级学科博士学位授权点矿产普查与勘探矿物学、岩石学、矿床学构造地质学第四纪地质学地球化学资源与环境遥感沉积学(含:古地理学)古生物与地层学博士后流动站地质学地质资源与地质工程(共建)地质学本科一批国家级特色专业招生类别:理工专业剖析:地质学是研究地球的物质组成、内部构造、外部特征、各圈层间的相互作用及时空演化的自然学科。

工程管理专业外文文献翻译(中英文)【精选文档】

工程管理专业外文文献翻译(中英文)【精选文档】

xxxxxx 大学本科毕业设计外文翻译Project Cost Control: the Way it Works项目成本控制:它的工作方式学院(系): xxxxxxxxxxxx专业: xxxxxxxx学生姓名: xxxxx学号: xxxxxxxxxx指导教师: xxxxxx评阅教师:完成日期:xxxx大学项目成本控制:它的工作方式在最近的一次咨询任务中,我们意识到对于整个项目成本控制体系是如何设置和应用的,仍有一些缺乏理解。

所以我们决定描述它是如何工作的.理论上,项目成本控制不是很难跟随。

首先,建立一组参考基线。

然后,随着工作的深入,监控工作,分析研究结果,预测最终结果并比较参考基准。

如果最终的结果不令人满意,那么你要对正在进行的工作进行必要的调整,并在合适的时间间隔重复。

如果最终的结果确实不符合基线计划,你可能不得不改变计划.更有可能的是,会 (或已经) 有范围变更来改变参考基线,这意味着每次出现这种情况你必须改变基线计划。

但在实践中,项目成本控制要困难得多,通过项目数量无法控制成本也证明了这一点。

正如我们将看到的,它还需要大量的工作,我们不妨从一开始启用它。

所以,要跟随项目成本控制在整个项目的生命周期.同时,我们会利用这一机会来指出几个重要文件的适当的地方。

其中包括商业案例,请求(资本)拨款(执行),工作包和工作分解结构,项目章程(或摘要),项目预算或成本计划、挣值和成本基线。

所有这些有助于提高这个组织的有效地控制项目成本的能力。

业务用例和应用程序(执行)的资金重要的是要注意,当负责的管理者对于项目应如何通过项目生命周期展开有很好的理解时,项目成本控制才是最有效的。

这意味着他们在主要阶段的关键决策点之间行使职责。

他们还必须识别项目风险管理的重要性,至少可以确定并计划阻止最明显的潜在风险事件。

在项目的概念阶段•每个项目始于确定的机会或需要的人.通常是有着重要性和影响力的人,如果项目继续,这个人往往成为项目的赞助。

本科毕业设计外文文献翻译

本科毕业设计外文文献翻译

(Shear wall st ructural design ofh igh-lev el fr ameworkWu Jiche ngAbstract : In t his pape r the basic c oncepts of man pow er from th e fra me sh ear w all str uc ture, analy sis of the struct ur al des ign of th e c ont ent of t he fr ame she ar wall, in cludi ng the seism ic wa ll she ar spa本科毕业设计外文文献翻译学校代码: 10128学 号:题 目:Shear wall structural design of high-level framework 学生姓名: 学 院:土木工程学院 系 别:建筑工程系 专 业:土木工程专业(建筑工程方向) 班 级:土木08-(5)班 指导教师: (副教授)nratiodesign, and a concretestructure in themost co mmonly usedframe shear wallstructurethedesign of p oints to note.Keywords: concrete; frameshearwall structure;high-risebuildingsThe wall is amodern high-rise buildings is an impo rtant buildingcontent, the size of theframe shear wall must comply with building regulations. The principle is that the largersizebut the thicknessmust besmaller geometric featuresshouldbe presented to the plate,the force is close to cylindrical.The wall shear wa ll structure is a flatcomponent. Itsexposure to the force along the plane level of therole ofshear and moment, must also take intoaccountthe vertical pressure.Operate under thecombined action ofbending moments and axial force andshear forcebythe cantilever deep beam under the action of the force levelto loo kinto the bottom mounted on the basis of. Shearwall isdividedinto a whole walland theassociated shear wall in theactual project,a wholewallfor exampl e, such as generalhousingconstruction in the gableor fish bone structure filmwalls and small openingswall.Coupled Shear walls are connected bythecoupling beam shear wall.Butbecause thegeneralcoupling beamstiffness is less thanthe wall stiffnessof the limbs,so. Walllimb aloneis obvious.The central beam of theinflection pointtopay attentionto thewall pressure than the limits of the limb axis. Will forma shortwide beams,widecolumn wall limbshear wall openings toolarge component atbothen ds with just the domain of variable cross-section ro din the internalforcesunder theactionof many Walllimb inflection point Therefore, the calcula tions and construction shouldAccordingtoapproximate the framestructure to consider.The designof shear walls shouldbe based on the characteristics of avariety ofwall itself,and differentmechanical ch aracteristicsand requirements,wall oftheinternalforcedistribution and failuremodes of specific and comprehensive consideration of the design reinforcement and structural measures. Frame shear wall structure design is to consider the structure of the overall analysis for both directionsofthehorizontal and verticaleffects. Obtain theinternal force is required in accordancewiththe bias or partial pull normal section forcecalculation.The wall structure oftheframe shear wall structural design of the content frame high-rise buildings, in the actual projectintheuse of themost seismic walls have sufficient quantitiesto meet thelimitsof the layer displacement, the location isrelatively flexible. Seismic wall for continuous layout,full-length through.Should bedesigned to avoid the wall mutations in limb length and alignment is notupand down the hole. The sametime.The inside of the hole marginscolumnshould not belessthan300mm inordertoguaranteethelengthof the column as the edgeof the component and constraint edgecomponents.Thebi-direc tional lateral force resisting structural form of vertical andhorizontalwallconnected.Each other as the affinityof the shear wall. For one, two seismic frame she ar walls,even beam highratio should notgreaterthan 5 and a height of not less than400mm.Midline columnand beams,wall midline shouldnotbe greater tha nthe columnwidthof1/4,in order toreduce thetorsional effect of the seismicaction onthecolumn.Otherwisecan be taken tostrengthen thestirrupratio inthe column tomake up.If theshear wall shearspan thanthe big two. Eventhe beamcro ss-height ratiogreaterthan 2.5, then the design pressure of thecut shouldnotmakeabig 0.2. However, if the shearwallshear spanratioof less than two couplingbeams span of less than 2.5, then the shear compres sion ratiois notgreater than 0.15. Theother hand,the bottom ofthe frame shear wallstructure to enhance thedesign should notbe less than200mmand notlessthanstorey 1/16,otherpartsshouldnot be less than 160mm and not less thanstorey 1/20. Aroundthe wall of the frame shear wall structure shouldbe set to the beam or dark beamand the side columntoform a border. Horizontal distributionofshear walls can from the shear effect,this design when building higher longeror framestructure reinforcement should be appropriatelyincreased, especially in the sensitiveparts of the beam position or temperature, stiffnesschange is bestappropriately increased, thenconsideration shouldbe givento the wallverticalreinforcement,because it is mainly from the bending effect, andtake in some multi-storeyshearwall structurereinforcedreinforcement rate -likelessconstrained edgeofthecomponent or components reinforcement of theedge component.References: [1 sad Hayashi,He Yaming. On the shortshear wall high-rise buildingdesign [J].Keyuan, 2008, (O2).高层框架剪力墙结构设计吴继成摘要: 本文从框架剪力墙结构设计的基本概念人手, 分析了框架剪力墙的构造设计内容, 包括抗震墙、剪跨比等的设计, 并出混凝土结构中最常用的框架剪力墙结构设计的注意要点。

甲玛英文翻译

甲玛英文翻译

附3成都理工大学学生毕业设计(论文)外文译文拉雅褶皱冲断层带和喜马拉雅区晶体,2、拉萨地块,3、羌塘地块,松潘—甘孜可可西里—可可西里断块,4、the Kun Lun–Qiadam断块(Gansser,1980)。

这些领域可细分为小喜马拉雅变质沉积岩系列,高喜马拉雅变质岩石特提斯沉积序列,早第三纪林子宗组火山岩,冈底斯岩基的白垩系成岩区域和科希斯坦弧,其主要岩层如下:第三纪沉积的岩石中,钱塘江的古生界地层,昆仑地块和祁连地块的古生代和中生代火成岩。

读者可以参考这个庞大的系统的详细的历史(Yin and Harrison ,2000.)。

图1 喜马拉雅—西藏造山带的地质构造简图,雅鲁藏布江由西向东的缝合带位置和蛇绿岩年龄。

年龄表1中所列出,并划分地块。

生物地层年龄(沉积物)用斜体表示,缩略:SSZ, Shyok suture zone; ZSZ, Zanskar suture zone; BNSZ, Bangong Nujiang suture; YZSZ, Yarlung Zangbo Suture Zone。

主要根据不连续性结构块划分喜马拉雅褶皱冲断带:GCT, Great Counter thrust; STD, South Tibet detachment;HHT, High Himalaya thrust, MCTZ,主中央冲断带;MBT主边界断裂,MFT,主要的正面推力。

青藏高原北部的YZSZ这是世界同类中最高的,是印度大陆和欧亚板块之间的碰撞(Yin et al., 1988)。

它被细分为,从北到南,主要的为近东西向断块或地体缝合带:1、the Ayimaqin–Kunlun Mutztagh缝合;2、金沙江缝合带;3、班公湖- 怒江缝合带;4、雅鲁藏布江缝合(图1)。

这些的缝线是缝合之前的不同的洋盆片段(Yu and Zhen, 1979, Mercier and Li, 1984 and Murphy et al., 1997)。

土木工程 外文翻译 外文文献 英文文献

土木工程 外文翻译 外文文献 英文文献

一、外文原文Talling building and Steel construction Although there have been many advancements in building construction technology in general. Spectacular archievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing.Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes.The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structual systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit.Excessive lateral sway may cause serious recurring damage to partitions,ceilings.and other architectural details. In addition,excessive sway may cause discomfort to the occupants of the building because their perception of such motion.Structural systems of reinforced concrete,as well as steel,take full advantage of inherent potential stiffness of the total building and therefore require additional stiffening to limit the sway.In a steel structure,for example,the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building.Curve A in Fig .1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame.Structural engineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result ofseveral types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frame with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses,a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building(1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness,to resist wind load can be achieved only if all column element can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members interesting at the centre line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Centre in Chicago, using as much steel as is normally needed for a traditional 40-story building.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tube, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft(442m), is the world’s tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind and earthquake) and thecontrol of drift (lateral building movement ) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the façade of the building as a structural element which acts with the framed tube, thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.Because of the contribution of the stressed-skin façade, the framed members of the tube require less mass, and are thus lighter and less expensive. All the typical columns and spandrel beams are standard rolled shapes,minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittburgh.Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive chanllenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building ,exterior columns were spaced at 5.5ft (1.68m) centers, and interior columns were used as needed to support the 8-in . -thick (20-m) flat-plate concrete slabs.Tube in tube. Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system known as the tube-in-tube system , made it possible to design the world’s present tallest (714ft or 218m)lightweight concrete bu ilding( the 52-story One Shell Plaza Building in Houston) for the unit price of a traditional shear wall structure of only 35 stories.Systems combining both concrete and steel have also been developed, an examle of which is the composite system developed by skidmore, Owings &Merril in which an exterior closely spaced framed tube in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The 52-story One Shell Square Building in New Orleans is based on this system.Steel construction refers to a broad range of building construction in which steel plays the leading role. Most steel construction consists of large-scale buildings or engineering works, with the steel generally in the form of beams, girders, bars, plates, and other members shaped through the hot-rolled process. Despite the increased use of other materials, steel construction remained a major outlet for the steel industries of the U.S, U.K, U.S.S.R, Japan, West German, France, and other steel producers in the 1970s.二、原文翻译高层结构与钢结构近年来,尽管一般的建筑结构设计取得了很大的进步,但是取得显著成绩的还要属超高层建筑结构设计。

毕业设计(论文)外文资料翻译【范本模板】

毕业设计(论文)外文资料翻译【范本模板】

南京理工大学紫金学院毕业设计(论文)外文资料翻译系:机械系专业:车辆工程专业姓名:宋磊春学号:070102234外文出处:EDU_E_CAT_VBA_FF_V5R9(用外文写)附件:1。

外文资料翻译译文;2.外文原文.附件1:外文资料翻译译文CATIA V5 的自动化CATIA V5的自动化和脚本:在NT 和Unix上:脚本允许你用宏指令以非常简单的方式计划CATIA。

CATIA 使用在MS –VBScript中(V5.x中在NT和UNIX3。

0 )的共用部分来使得在两个平台上运行相同的宏。

在NT 平台上:自动化允许CATIA像Word/Excel或者Visual Basic程序那样与其他外用分享目标。

ATIA 能使用Word/Excel对象就像Word/Excel能使用CATIA 对象。

在Unix 平台上:CATIA将来的版本将允许从Java分享它的对象。

这将提供在Unix 和NT 之间的一个完美兼容。

CATIA V5 自动化:介绍(仅限NT)自动化允许在几个进程之间的联系:CATIA V5 在NT 上:接口COM:Visual Basic 脚本(对宏来说),Visual Basic 为应用(适合前:Word/Excel ),Visual Basic。

COM(零部件目标模型)是“微软“标准于几个应用程序之间的共享对象。

Automation 是一种“微软“技术,它使用一种解释环境中的COM对象。

ActiveX 组成部分是“微软“标准于几个应用程序之间的共享对象,即使在解释环境里。

OLE(对象的链接与嵌入)意思是资料可以在一个其他应用OLE的资料里连结并且可以被编辑的方法(在适当的位置编辑).在VBScript,VBA和Visual Basic之间的差别:Visual Basic(VB)是全部的版本。

它能产生独立的计划,它也能建立ActiveX 和服务器。

它可以被编辑。

VB中提供了一个补充文件名为“在线丛书“(VB的5。

资源勘查工程专业对比研究

资源勘查工程专业对比研究

资源勘查工程专业对比研究作者:刘成林吴胜和陈冬霞洪唯宇徐思渊张蔚来源:《教育教学论坛》2019年第37期摘要:资源勘查工程专业为经济社会发展培养了大量人才,但社会发展和科技进步对该专业提出了新的要求。

文章通过对比中国地质大学(武汉)、中国地质大学(北京)、中国石油大学(华东)、中国石油大学(北京)四所国内高校在培养方向、师资力量、课程体系、培养模式等方面的异同,并对比美国、英国、德国、法国等国的十所大学在学制、学分、课程等方面的差异,认为我国资源勘查工程专业在学生、培养目标、毕业要求、持续改进、课程体系、师资队伍、支持条件等方面总体较好,但存在培养偏重于应用、以学生为本的教育思想重视不够、学生创造性与创新性不足等问题,提出以学生为本、动态跟踪资源勘查行业发展趋势、进一步优化培养计划等改进对策。

关键词:资源勘查工程;工程教育认证;学制;学分;课程中图分类号:G642.0; ; ;文献标志码:A; ; ;文章编号:1674-9324(2019)37-0049-03资源勘查工程专业培养具备地质学的基础理论知识,掌握地质调查与勘探的室内外工作方法,具有对矿床地质、矿床分布规律等综合分析和研究的初步能力,能在资源勘查、开发(开采)与管理等领域从事固体、液体、气体矿产资源勘查、評价和管理等方面工作的高级工程技术人才。

资源勘查工程专业设固体矿产勘查、石油与天然气地质勘查两个专业方向。

目前国内开设资源勘查工程专业的有中国地质大学(北京)、中国地质大学(武汉)、吉林大学、成都理工大学、中国石油大学(华东)、中国石油大学(北京)等50余所高校。

国外高等院校相关领域一般设置地质学和地球物理两个专业。

本次研究利用我校资源勘查专业的教师在国外大学访学的契机,调研了美国的科罗拉多矿业学院、西弗吉尼亚大学、塔尔萨大学,英国的帝国理工大学、阿伯丁大学、伦敦大学,德国的亚琛工业大学、柏林自由大学、慕尼黑工业大学,法国的布莱兹·帕斯卡大学。

工程造价专业毕业外文文献、中英对照

工程造价专业毕业外文文献、中英对照

工程造价专业毕业外文文献、中英对照中文翻译:工程造价专业毕业外文文献工程造价专业是一种重要的工程技术专业,主要负责工程投资的评估、选择和控制工程项目成本,以及项目质量、进度和安全。

因此,工程造价专业需要具备丰富的知识和技能,包括工程建设、经济学、管理学、数学、统计学等方面。

为了提高工程造价专业学生的综合能力,学习外文文献是不可或缺的步骤。

本文将介绍几篇与工程造价专业相关的外文文献,并提供中英文对照。

1)《The Role of Quantity Surveyors in Sustainable Construction》该文研究了数量调查师在可持续建筑中的作用,并深入探讨了数量调查师在项目的可持续性评估、营建阶段和运营阶段的角色和责任。

该文指出,数量调查师可以通过成本控制、资源利用、和材料选择等方面促进可持续建筑的发展,为未来可持续发展提供支持。

中文翻译:数量调查师在可持续建筑中的作用2)《Cost engineering》该文研究了造价工程的理论和实践,并提供了一系列工具和方法用于项目成本的控制和评估。

该文还深入探讨了工程造价和项目管理之间的关系,并提供了一些实用的案例研究来说明造价工程的实际应用。

中文翻译:造价工程3)《Construction cost management: learning from case studies》该文通过案例分析的方式来探讨建筑项目成本管理的实践。

该文提供了多个案例研究,旨在向读者展示如何运用不同的方法来控制和评估项目成本,并阐述了思考成本问题时需要考虑的多个因素。

中文翻译:建筑项目成本管理:案例学习4)《Project Cost Estimation and Control: A Practical Guide to Construction Management》该书是一本实用指南,详细介绍了在工程起始阶段进行项目成本估算的方法和技巧,以及如何在项目执行阶段进行成本控制。

本科专业中英文对照

本科专业中英文对照

本科专业中英文对照地球科学与技术学院School of Geosciences资源勘查工程专业Resource Exploration Engineering勘查技术与工程专业Exploration Technology and Engineering测绘工程专业Surveying and Mapping Engineering地理信息系统专业Geographical Information System地质学专业Geology地球物理学专业Geophysics石油工程学院School of Petroleum Engineering石油工程专业Petroleum Engineering船舶与海洋工程专业Naval Architecture and Ocean Engineering化学工程学院College of Chemical Engineering化学工程与工艺专业Chemical Engineering and Technology应用化学专业Applied Chemistry环境工程专业Environmental Engineering环保设备工程专业Material Chemistry过程装备与控制工程专业Process Equipment and Control Engineering机电工程学院College of Mechanical and Electronic Engineering材料科学与工程专业Material Science and Engineering工业设计专业Industrial Design车辆工程专业Vehicle Engineering机械设计制造及其自动化专业Mechanical Design & Manufacture and Automation 材料成型及控制工程专业Material Molding and Control Engineering安全工程专业Safety Engineering信息与控制工程学院College of Information and Control Engineering自动化专业Automation电气工程及其自动化专业Electrical Engineering and Automation电子信息工程专业Electronic Information Engineering测控技术与仪器专业Measurement & Control Technology and Instrument储运与建筑工程学院College of Pipeline and Civil Engineering油气储运工程专业Oil & Gas Storage and Transportation Engineering工程力学Engineering Mechanics土木工程专业Civil Engineering热能与动力工程专业Thermal Power and Power Engineering建筑环境与设备工程专业Architectural Environment and Equipment Engineering建筑学专业Architecture计算机与通信工程学院College of Computer and Communication Engineering计算机科学与技术专业Computer Science and Technology软件工程专业Software Engineering通信工程专业Communication Engineering经济管理学院Schlool of Economics and Management工程管理专业Engineering Management信息管理与信息系统专业Information Management and Information System会计学专业Accounting财务管理专业Financial Management国际经济与贸易专业International Economy and Trade行政管理专业Administration Management经济学专业Economics市场营销专业Marketing and Sales公共事业管理专业Public Utility Management电子商务专业Electronic Commerce工商管理专业Business Administration理学院College of Science应用物理学专业Applied Physics材料物理专业Materials Physics材料化学专业Materials Chemistry信息与计算科学专业Information and Computing Science数学与应用数学专业Mathematics光信息科学与技术专业Optical Information Science and Technology文学院College of Arts英语专业English Language and Literature俄语专业Russian Language and Literature音乐学专业Musicology法学专业Science of Law艺术设计专业Art Design汉语言文学专业Chinese Language and Literature。

外文文献翻译原文+译文

外文文献翻译原文+译文

外文文献翻译原文Analysis of Con tin uous Prestressed Concrete BeamsChris BurgoyneMarch 26, 20051、IntroductionThis conference is devoted to the development of structural analysis rather than the strength of materials, but the effective use of prestressed concrete relies on an appropriate combination of structural analysis techniques with knowledge of the material behaviour. Design of prestressed concrete structures is usually left to specialists; the unwary will either make mistakes or spend inordinate time trying to extract a solution from the various equations.There are a number of fundamental differences between the behaviour of prestressed concrete and that of other materials. Structures are not unstressed when unloaded; the design space of feasible solutions is totally bounded;in hyperstatic structures, various states of self-stress can be induced by altering the cable profile, and all of these factors get influenced by creep and thermal effects. How were these problems recognised and how have they been tackled?Ever since the development of reinforced concrete by Hennebique at the end of the 19th century (Cusack 1984), it was recognised that steel and concrete could be more effectively combined if the steel was pretensioned, putting the concrete into compression. Cracking could be reduced, if not prevented altogether, which would increase stiffness and improve durability. Early attempts all failed because the initial prestress soon vanished, leaving the structure to be- have as though it was reinforced; good descriptions of these attempts are given by Leonhardt (1964) and Abeles (1964).It was Freyssineti’s observations of the sagging of the shallow arches on three bridges that he had just completed in 1927 over the River Allier near Vichy which led directly to prestressed concrete (Freyssinet 1956). Only the bridge at Boutiron survived WWII (Fig 1). Hitherto, it had been assumed that concrete had a Young’s modulus which remained fixed, but he recognised that the de- ferred strains due to creep explained why the prestress had been lost in the early trials. Freyssinet (Fig. 2) also correctly reasoned that high tensile steel had to be used, so that some prestress would remain after the creep had occurred, and alsothat high quality concrete should be used, since this minimised the total amount of creep. The history of Freyssineti’s early prestressed concrete work is written elsewhereFigure1:Boutiron Bridge,Vic h yFigure 2: Eugen FreyssinetAt about the same time work was underway on creep at the BRE laboratory in England ((Glanville 1930) and (1933)). It is debatable which man should be given credit for the discovery of creep but Freyssinet clearly gets the credit for successfully using the knowledge to prestress concrete.There are still problems associated with understanding how prestressed concrete works, partly because there is more than one way of thinking about it. These different philosophies are to some extent contradictory, and certainly confusing to the young engineer. It is also reflected, to a certain extent, in the various codes of practice.Permissible stress design philosophy sees prestressed concrete as a way of avoiding cracking by eliminating tensile stresses; the objective is for sufficient compression to remain after creep losses. Untensionedreinforcement, which attracts prestress due to creep, is anathema. This philosophy derives directly from Freyssinet’s logic and is primarily a working stress concept.Ultimate strength philosophy sees prestressing as a way of utilising high tensile steel as reinforcement. High strength steels have high elastic strain capacity, which could not be utilised when used as reinforcement; if the steel is pretensioned, much of that strain capacity is taken out before bonding the steel to the concrete. Structures designed this way are normally designed to be in compression everywhere under permanent loads, but allowed to crack under high live load. The idea derives directly from the work of Dischinger (1936) and his work on the bridge at Aue in 1939 (Schonberg and Fichter 1939), as well as that of Finsterwalder (1939). It is primarily an ultimate load concept. The idea of partial prestressing derives from these ideas.The Load-Balancing philosophy, introduced by T.Y. Lin, uses prestressing to counter the effect of the permanent loads (Lin 1963). The sag of the cables causes an upward force on the beam, which counteracts the load on the beam. Clearly, only one load can be balanced, but if this is taken as the total dead weight, then under that load the beam will perceive only the net axial prestress and will have no tendency to creep up or down.These three philosophies all have their champions, and heated debates take place between them as to which is the most fundamental.2、Section designFrom the outset it was recognised that prestressed concrete has to be checked at both the working load and the ultimate load. For steel structures, and those made from reinforced concrete, there is a fairly direct relationship between the load capacity under an allowable stress design, and that at the ultimate load under an ultimate strength design. Older codes were based on permissible stresses at the working load; new codes use moment capacities at the ultimate load. Different load factors are used in the two codes, but a structure which passes one code is likely to be acceptable under the other.For prestressed concrete, those ideas do not hold, since the structure is highly stressed, even when unloaded. A small increase of load can cause some stress limits to be breached, while a large increase in load might be needed to cross other limits. The designer has considerable freedom to vary both the working load and ultimate load capacities independently; both need to be checked.A designer normally has to check the tensile and compressive stresses, in both the top and bottom fibre of the section, for every load case. The critical sections are normally, but not always, the mid-span and the sections over piers but other sections may become critical ,when the cable profile has to be determined.The stresses at any position are made up of three components, one of which normally has a different sign from the other two; consistency of sign convention is essential.If P is the prestressing force and e its eccentricity, A and Z are the area of the cross-section and its elastic section modulus, while M is the applied moment, then where ft and fc are the permissible stresses in tension and compression.c e t f ZM Z P A P f ≤-+≤Thus, for any combination of P and M , the designer already has four in- equalities to deal with.The prestressing force differs over time, due to creep losses, and a designer isusually faced with at least three combinations of prestressing force and moment;• the applied moment at the time the prestress is first applied, before creep losses occur,• the maximum applied moment after creep losses, and• the minimum applied moment after creep losses.Figure 4: Gustave MagnelOther combinations may be needed in more complex cases. There are at least twelve inequalities that have to be satisfied at any cross-section, but since an I-section can be defined by six variables, and two are needed to define the prestress, the problem is over-specified and it is not immediately obvious which conditions are superfluous. In the hands of inexperienced engineers, the design process can be very long-winded. However, it is possible to separate out the design of the cross-section from the design of the prestress. By considering pairs of stress limits on the same fibre, but for different load cases, the effects of the prestress can be eliminated, leaving expressions of the form:rangestress e Perm issibl Range Mom entZ These inequalities, which can be evaluated exhaustively with little difficulty, allow the minimum size of the cross-section to be determined.Once a suitable cross-section has been found, the prestress can be designed using a construction due to Magnel (Fig.4). The stress limits can all be rearranged into the form:()M fZ PA Z e ++-≤1 By plotting these on a diagram of eccentricity versus the reciprocal of the prestressing force, a series of bound lines will be formed. Provided the inequalities (2) are satisfied, these bound lines will always leave a zone showing all feasible combinations of P and e. The most economical design, using the minimum prestress, usually lies on the right hand side of the diagram, where the design is limited by the permissible tensile stresses.Plotting the eccentricity on the vertical axis allows direct comparison with the crosssection, as shown in Fig. 5. Inequalities (3) make no reference to the physical dimensions of the structure, but these practical cover limits can be shown as wellA good designer knows how changes to the design and the loadings alter the Magnel diagram. Changing both the maximum andminimum bending moments, but keeping the range the same, raises and lowers the feasible region. If the moments become more sagging the feasible region gets lower in the beam.In general, as spans increase, the dead load moments increase in proportion to the live load. A stage will be reached where the economic point (A on Fig.5) moves outside the physical limits of the beam; Guyon (1951a) denoted the limiting condition as the critical span. Shorter spans will be governed by tensile stresses in the two extreme fibres, while longer spans will be governed by the limiting eccentricity and tensile stresses in the bottom fibre. However, it does not take a large increase in moment ,at which point compressive stresses will govern in the bottom fibre under maximum moment.Only when much longer spans are required, and the feasible region moves as far down as possible, does the structure become governed by compressive stresses in both fibres.3、Continuous beamsThe design of statically determinate beams is relatively straightforward; the engineer can work on the basis of the design of individual cross-sections, as outlined above. A number of complications arise when the structure is indeterminate which means that the designer has to consider, not only a critical section,but also the behaviour of the beam as a whole. These are due to the interaction of a number of factors, such as Creep, Temperature effects and Construction Sequence effects. It is the development of these ideas whichforms the core of this paper. The problems of continuity were addressed at a conference in London (Andrew and Witt 1951). The basic principles, and nomenclature, were already in use, but to modern eyes concentration on hand analysis techniques was unusual, and one of the principle concerns seems to have been the difficulty of estimating losses of prestressing force.3.1 Secondary MomentsA prestressing cable in a beam causes the structure to deflect. Unlike the statically determinate beam, where this motion is unrestrained, the movement causes a redistribution of the support reactions which in turn induces additional moments. These are often termed Secondary Moments, but they are not always small, or Parasitic Moments, but they are not always bad.Freyssinet’s bridge across the Marne at Luzancy, started in 1941 but not completed until 1946, is often thought of as a simply supported beam, but it was actually built as a two-hinged arch (Harris 1986), with support reactions adjusted by means of flat jacks and wedges which were later grouted-in (Fig.6). The same principles were applied in the later and larger beams built over the same river.Magnel built the first indeterminate beam bridge at Sclayn, in Belgium (Fig.7) in 1946. The cables are virtually straight, but he adjusted the deck profile so that the cables were close to the soffit near mid-span. Even with straight cables the sagging secondary momentsare large; about 50% of the hogging moment at the central support caused by dead and live load.The secondary moments cannot be found until the profile is known but the cablecannot be designed until the secondary moments are known. Guyon (1951b) introduced the concept of the concordant profile, which is a profile that causes no secondary moments; es and ep thus coincide. Any line of thrust is itself a concordant profile.The designer is then faced with a slightly simpler problem; a cable profile has to be chosen which not only satisfies the eccentricity limits (3) but is also concordant. That in itself is not a trivial operation, but is helped by the fact that the bending moment diagram that results from any load applied to a beam will itself be a concordant profile for a cable of constant force. Such loads are termed notional loads to distinguish them from the real loads on the structure. Superposition can be used to progressively build up a set of notional loads whose bending moment diagram gives the desired concordant profile.3.2 Temperature effectsTemperature variations apply to all structures but the effect on prestressed concrete beams can be more pronounced than in other structures. The temperature profile through the depth of a beam (Emerson 1973) can be split into three components for the purposes of calculation (Hambly 1991). The first causes a longitudinal expansion, which is normally released by the articulation of the structure; the second causes curvature which leads to deflection in all beams and reactant moments in continuous beams, while the third causes a set of self-equilibrating set of stresses across the cross-section.The reactant moments can be calculated and allowed-for, but it is the self- equilibrating stresses that cause the main problems for prestressed concrete beams. These beams normally have high thermal mass which means that daily temperature variations do not penetrate to the core of the structure. The result is a very non-uniform temperature distribution across the depth which in turn leads to significant self-equilibrating stresses. If the core of the structure is warm, while the surface is cool, such as at night, then quite large tensile stresses can be developed on the top and bottom surfaces. However, they only penetrate a very short distance into the concrete and the potential crack width is very small. It can be very expensive to overcome the tensile stress by changing the section or the prestress。

资源勘查工程专业“卓越工程师教育培养计划”的探索与实践

资源勘查工程专业“卓越工程师教育培养计划”的探索与实践

资源勘查工程专业“卓越工程师教育培养计划”的探索与实践陈翠华;丁枫;董树义;程文斌【摘要】资源勘查工程专业是成都理工大学的老牌专业,也是国家级特色专业.2011年获批教育部“卓越工程师教育培养计划”专业.为达到我校资源勘查工程专业“卓越工程师教育培养计划”既定的培养目标,探索适合国情和校情的人才培养和管理模式是当前的首要任务.本文通过对我校资源勘查工程专业卓越工程师培养进行探索与实践,希望对推动地学创新人才培养模式改革具有借鉴作用.【期刊名称】《中国地质教育》【年(卷),期】2013(000)002【总页数】6页(P44-49)【关键词】卓越工程师;人才培养;资源勘查工程【作者】陈翠华;丁枫;董树义;程文斌【作者单位】成都理工大学地球科学学院,四川成都610059;成都理工大学地球科学学院,四川成都610059;成都理工大学地球科学学院,四川成都610059;成都理工大学地球科学学院,四川成都610059【正文语种】中文【中图分类】G640针对当今高等教育培养出的人才重理论轻实践,工程教育中工程性缺失和实践薄弱的问题,2010 年颁布的《国家中长期教育改革和发展规划纲要(2010—2020年)》(以下简称《纲要》)明确指出:实施卓越工程师人才教育培养计划是提升高等教育质量的主要内容之一。

高等教育今后的战略目标是:“优化知识结构,丰富社会实践,强化能力培养;着力提高学生的学习能力、实践能力和创新能力”。

为贯彻落实《纲要》精神,教育部率先启动了高等学校“卓越工程师教育培养计划”,其主要目标是面向工业界、面向世界、面向未来,培养造就一大批创新能力强、适应经济社会发展需要的高质量各类型工程技术人才[1]。

2010 年6 月,在全国开设工科专业的1003 所本科高校中,教育部批准61 所高校为第一批“卓越工程师教育培养计划”实施高校,为我国培养各类型工程师提供了大背景、大舞台。

成都理工大学资源勘查工程专业是我校创办最早的工科专业之一,具有丰厚的底蕴。

本科毕业设计(论文)外文翻译译文

本科毕业设计(论文)外文翻译译文

本科毕业设计(论文)外文翻译译文学生姓名:院(系):油气资源学院专业班级:物探0502指导教师:完成日期:年月日地震驱动评价与发展:以玻利维亚冲积盆地的研究为例起止页码:1099——1108出版日期:NOVEMBER 2005THE LEADING EDGE出版单位:PanYAmericanYEnergyvBuenosYAiresvYArgentinaJPYBLANGYvYBPYExplorationvYHoustonvYUSAJ.C.YCORDOVAandYE.YMARTINEZvYChacoYS.A.vYSantaYCruzvYBolivia 通过整合多种地球物理地质技术,在玻利维亚冲积盆地,我们可以减少许多与白垩纪储集层勘探有关的地质技术风险。

通过对这些远景区进行成功钻探我们可以验证我们的解释。

这些方法包括盆地模拟,联井及地震叠前同时反演,岩石性质及地震属性解释,A VO/A V A,水平地震同相轴,光谱分解。

联合解释能够得到构造和沉积模式的微笑校正。

迄今为止,在新区有七口井已经进行了成功钻探。

基质和区域地质。

Tarija/Chaco盆地的subandean 褶皱和冲断带山麓的中部和南部,部分扩展到玻利维亚的Boomerange地区经历了集中的成功的开采。

许多深大的泥盆纪气田已经被发现,目前正在生产。

另外在山麓发现的规模较小较浅的天然气和凝析气田和大的油田进行价格竞争,如果他们能产出较快的油流而且成本低。

最近发现气田就是这种情况。

接下来,我们赋予Aguja的虚假名字就是为了讲述这些油田的成功例子。

图1 Aguja油田位于玻利维亚中部Chaco盆地的西北角。

基底构造图显示了Isarzama背斜的相对位置。

地层柱状图显示了主要的储集层和源岩。

该油田在Trija和冲积盆地附近的益背斜基底上,该背斜将油田和Ben i盆地分开(图1),圈闭类型是上盘背斜,它存在于连续冲断层上,Aguja有两个主要结构:Aguja中部和Aguja Norte,通过重要的转换压缩断层将较早开发的“Sur”油田分开Yantata Centro结构是一个三路闭合对低角度逆冲断层并伴随有小的摆幅。

地质工程专业英语翻译

地质工程专业英语翻译

地质工程专业英语翻译Unit1 Cosmic Beginnings宇宙的起源地球的历史上是何时何地开始的?只有在过去的几十年里,这个问题才有了一个比较科学的回答来解释。

当然存在一个较好的说法是地球的起源时间是当组成地球的物质在宇宙中开始与太空中组成太阳系其它成员的物质分离的时候。

虽然故事很可能开始在这里,许多重要的问题仍悬而未决。

一些有必要提及的物质构成了地,这将推动更偏远的起源问题。

现在我们知道从其他星球上得到的第一手观察的物理条件,这让我们可以尽早寻求合理的答案,为什么地球是不同于早期火星和月球。

为了理解差异和相似之处,我们必须研究包括太阳的整个太阳系。

为了了解恒星太阳所属的类,我们需要知道更多关于银河系的其他天体。

当我们超过银河系的领域到太空中的其他部分来获得能说明的证据就更不容易了。

现在我们知道(太空中)有很多不同种类的星系,也包括很多像我们一样的。

那么这些不同的种类是怎么开始的然后变得不同的呢?这个问题现在是在天文学研究的最前沿而且很明显它是能够真正理解太阳系的关键。

显然,没有太阳就没有其他行星,没有星系就没有太阳,没有宇宙就没有星系,没有空间和物质也就没有宇宙。

[笔者认为这里倒着翻译从大到小更好一些]因此,我们的关于地球物质起源的探究路线,最终也会带领我们去(探究)空间和物质的起源,这是一个很重大的课题,伴随着很多模糊的和未知或不可知的次要领域。

太阳系在太空中是一个巨大的,平坦的,透镜状的区域,行星和大部分的更小的组件沿着一个几乎完整的面绕着太阳转。

这个结构好比与螺旋星系和土星和它的卫星或不明飞行体一样。

虽然太阳系在细节上也不像这些集合体,但是带有平坦的螺旋圈或旋臂仍然是现代起源理论的起点。

早在1644年,伟大的法国哲学家和数学家笛卡尔就提出了太阳系形成于一团松散的,原始的云状物质。

他认为,太阳和行星是这团物质通过旋转、涡流而成的积聚物。

在1755年,康德考虑了牛顿于1687年描述的万有引力定律后发表了一个更为详细的理论。

隧道施工外文文献及翻译

隧道施工外文文献及翻译

附录二外文参考文献及翻译NATM tunnel design principle in the construction of major andConstruction TechnologyW.BroereI.The NATM Design Principle1.Tunnel design and construction of two major theoretical and development processSince the 20th century, human space on the ground floor of the growing demand, thus the underground works of the study of a rapid development. In a large number of underground engineering practice, it is generally recognized that the tunnel and underground cavern project, the core of the problem, all up in the excavation and retaining two key processes. How excavation, it will be more conducive to the stability and cavern facilitate support : For more support, Supporting how they can more effectively ensure stability and facilitate the cavern excavation. This is the tunnels and underground works two promote each other and check each other's problems.Tunnels and underground caverns, and focusing on the core issues with the above practice and research, in different periods, People of different theories and gradually established a system of different theories, Each system includes theory and resolve (or are studying the resolution) from the works of understanding (concept), mechanics, engineering measures to the construction methods (Technology), a series of engineering problems.A theory of the 20th century the 1920s the traditional "load relaxation theory." Its core content is : a stable rock self-stability, no load : unstable rock may have collapsed. need shoring structure to be supported. Thus, the role of the supporting structure of the rock load is within a certain range may be due to relaxation and collapse of rock gravity. This is a traditional theory, and their representative is Taishaji and Principe's and others. It works similar to the surface issues of the thinking is still widely used to.Another theory of the 20th century made the 1950s the modern theory of timbering or "rock for the theory." Its core content is : rock stability is clearly bearing rock to their ownself-stability : unstable rock loss of stability is a process, and if this process in providing the necessary help or restrictions will still be able to enter the rock steady state. This theoretical system of representative characters Labuxiweici, Miller-Feiqieer, Fenner - Daluobo and Kashitenai others. This is a more modern theory, it is already out of the ground works to consider the ideas, and underground works closer to reality, the past 50 years has been widely accepted and applied. demonstrated broad development prospects.Can be seen from the above, the former theory more attention to the findings and the results of treatment : The latter theory is even more attention to the process and the control of the process, right from the rock for the full utilization of capacity. Given this distinction, which both theory and methods in the process, each with different performance characteristics. NATM theory is rock for the tunnel engineering practice in the representation method.2. NATMNATM that the new Austrian Tunneling Method short the original is in New Austrian Tunneling Method, referred to as the NATM. France said it convergence bound or some countries alleged to observe the dynamic design and construction of the basic principles.NATM concept of filibustering Xiweici Austria scholars in the 20th century, Professor age of 50. It was based on the experience of both the tunnel and rock mechanics theory, will bolt and shotcrete combination as a major means of supporting a construction method, Austria, Sweden, Italy and other countries, many practical and theoretical study in the 1960s and patented officially named. Following this approach in Western Europe, Scandinavia, the United States and Japan and many other underground works with a very rapid development, have become modern tunnels new technologies landmark. Nearly 40 years ago, the railway sector through research, design, construction combining, in many construction of the tunnel, according to their own characteristics successfully applied a new Austrian law, made more experience, have accumulated large amounts of data, This is the application stage. However, in the road sector NATM of only 50%. Currently, the New Austrian Tunneling Method almost become weak and broken rock section of a tunnel construction method, technical and economic benefits are clear. NATM the basic points can be summarized as follows : (1). Rock tunnel structure is the main loading unit, the construction must fully protect the rock, it minimize the disturbance to avoid excessive damage to the intensity of rock. Tothis end, the construction of sub-section should not block too much, excavation should be used smooth blasting, presplit blasting or mechanical tunneling.(2). In order to give full play to rock the carrying capacity should be allowed to control and rock deformation. While allowing deformation, which can be a rock bearing ring; The other hand, have to limit it, Rock is not so lax and excessive loss or greatly reduced carrying capacity. During construction should be used with rock close to, the timely building puzzle keeps strengthening Flexible support structure, such as bolting and shotcreting supporting. This adjustment will be adopted supporting structural strength, Stiffness and its participation in the work of the time (including the closure of time) to control the deformation of the rock mass.(3). In order to improve the support structure, the mechanical properties, the construction should be closed as soon as possible, and to become a closed cylindrical structure. In addition, the tunnel shape with a round should, as far as possible, to avoid the corner of the stress concentration.(4). Construction right through the rock and supporting the dynamic observation, measurement, and reasonable arrangements for the construction procedures, changes in the design and construction management of the day-to-day.(5). To lay waterproof layer, or is subject to bolt corrosion, deterioration of rock properties, rheological, swelling caused by the follow-up to load, use composite lining.(6). Lining in principle, and the early rock deformation Supporting the basic stability of the conditions under construction. rock and supporting structure into a whole, thereby improving the support system of security.NATM above the basic elements can be briefly summarized as : "less disturbance, early spray anchor, ground measurements, closed tight."3.With a spring to understand the principle NATM(1). Cavern brink of a point A in the original excavation ago with stress (stress self-respect and tectonic stress) in a state of equilibrium. As an elastic stiffness of the spring K, P0 under compression in a state of equilibrium.(2). Cavern excavation, A point in attacking lose face constraints, the original stress state to be adjusted, if the intensity of rock big enough, After less stress adjustments may cavern in a stable condition (without support). But most of the geological conditions of thepoor, that is, after the stress cavern adjustments, such as weak protection, we could have convergence deformation, even instability (landslides), must be provided to support power PE, in order to prevent landslides instability. Equivalent to the Spring of deformation u, in the role of PE is now in the midst of a state of equilibrium.(3). By the mechanical balance equation, we can see in the spring P0 role in a state of equilibrium; Spring in the event of deformation u, PE in the role they will be in equilibrium, assuming spring elasticity of K, were : P0=PE+KuDiscussion :(1) When u = 0, that is not allowed P0=PE rock deformation, is a rigid support, not economic;(2) when u ↑, PE ↓; When u ↓, PE ↑. That is, rock deformation occurred, t he release of some of the load (unloading), we should allow some extent rock deformation, to give full play to rock the capacity for self. Is an economic support measures, the rock self-stability P=P0-PE=Ku;(3) When u=umax, landslides, have relaxation load and unsafe.4. Points(1). Rock cavern excavation is affected by that part of rock (soil) body, the rock is a trinity : have a load bearing structure, building materials.(2). Tunnel construction is in the rock stress is of special architectural environment, which can not be equated with the construction on the ground.(3). Tunnel structure rock + = bracing system.II. The new Austrian highway construction in the basic methodNATM one of the characteristics is the scene monitoring, measurement information to guide construction, through the tunnel construction measure receipts and excavation of the geological observation for prediction and feedback. And in accordance with the established benchmark for measuring the tunnel construction, excavation section steps and sequences, Supporting the initial parameters for reasonable adjustments to guarantee the safety of construction, a tunnel rock stability, the quality of the project and supporting structure of the economy and so on. The author of commitments (Chengde) Chek (Chifeng) East Maojingba Tunnel NATM basic construction method for investigation concluded, synthesis of a newhighway tunnel Natm the selection of different types and the basic characteristics of the construction methods and tips.1. A tunnel construction method of choice tunnel construction method of choice, mainly based on the engineering geological and hydrogeological conditions Construction, rock type, buried deep tunnel, the tunnel section size and length lining types, Construction should be the premise of safety and engineering quality at the core, and with the use of the tunnel function, the level of construction technology, Construction machinery and equipment, time requirements and economic feasibility of factors to consider in selection.When choosing the method for tunnel construction on the surrounding environment negatively affected, should also be a tunnel, the environmental conditions as the method to choose one of the factors, taking into rock changes the method and the applicability of the possibility of change. Tunnel project to avoid mistakes and unnecessary increase investment in public works. NATM new construction, we should also consider the entire process of construction of auxiliary operations and changes in the surrounding rock to measure control methods and the tunnel through special geological lots of construction means for a reasonable choice.2. New Austrian Tunneling Method program New Austrian Tunneling Method used all methods can be divided into sections, Division level and the three major types of excavation method and some changes in the program.(1) Full-face method. That whole section excavation method is based on the design of an excavation face excavation molding. Excavation order is its full face excavation, steel bracing, pouring concrete lining. Often choose to IV-VI Class Rock Hard Rock Tunnel, which can be used blasting deep hole.Excavation whole section of the law is a larger space operations, introducing supporting large mechanized operations, improving the speed and process small, less interference and facilitate the construction organization and management. Excavation is due to shortcomings in the larger, lower relative stability of rock, and with each cycle of the relatively large workload, it requires the construction units should have a strong excavation, transport and slag out and support capability, Maojingba VI : Class V rock used in the full-face excavation to achieve the desired results.Full-face excavation face, drilling and blasting construction more efficient use of deep focus to accelerate the excavation blasting speed, and the rock blasting vibration frequency less conducive to a stable transfer rocks. The drawback is every deep hole blasting vibration larger. Therefore require careful drilling and blasting design and strict control of blasting operations.Full-face excavation method is the main process : the use of mobile carts (or platforms), the first full-face a bored, and installed a line, and then drilling platform car outside 50m back to a safe place and then detonate, Blasting to make a shape out after drilling Jardine car again moved to the excavation face in place, began a cycle of drilling and blasting operations, Anchor sprayed simultaneously supporting or after the first arch wall lining.(2) step method. Step method of design is generally divided into sections on the half-section and the lower half section two excavation molding. Excavation order is its first half excavation arch bolt jet concrete bracing, arch lining, the central part of the second half of excavation, sidewall of excavation, concrete wall jet bolt support and lining. The more applicable to the II, III and soft joint development of the surrounding rock, which were used Tim change program.Long-step method : The next stage distance away, on the general level above 50m ahead, Construction can be assigned to the Department of next larger machine with parallel operations, when mechanical deficiencies can be used interchangeably. When the case of a short tunnel, the upper section will be all dug later, and then dug under the section, the construction of which less interference, single process can work.Short step method : on the stage length 5-50m apply to Ⅱ, Ⅲrock can be shortened Invert closing time, Supporting improve early stress conditions, but larger construction interference, in the event of Soft Rock need to consider carefully, Auxiliary shall be applied measures to stabilize the excavation excavation face, in order to ensure the safety of construction.Ultrashort step method : The only step ahead 3-5m, section closed faster. The method used for the high level of mechanization of various rock section, in the event of the siege soft rock when required careful consideration. Auxiliary shall be applied measures to stabilize the construction excavation face to ensure the safety of construction.Excavation level of character is the first step to using light excavation drilling machine drill a hole, rather than through large drilling platform car. Two step method of excavation operations with sufficient space and a faster rate of construction. Level is conducive to the stability of excavation face. Especially Excavation in the upper, lower operational safety. Three step method of excavation is the next shortcomings of operations interfere with each other. It should be noted at the bottom of the upper operational stability, level of excavation will increase the number of country rock.(3) Segment excavation method. Excavation Law Division can be divided into five changes in the program : Excavation Division level, from top to bottom hole lead, heading advance on the excavation, single (double) and lateral pit method. Excavation will be conducted Section Division excavation by the Ministry of shape, and to advance some of excavation, it may be called derivative ahead excavation pit method.Law Division level : general application or soil collapse easily lots of soft rock, with its advantages - stage method, height can be lengthened, the two-lane tunnel for a hole-fold, cycling Road Tunnel - hole 2 times; rather than single (double) PENDANTS Heading a high degree of mechanization, can accelerate the progress of the projects.The next heading advance excavation method (that is guided pit wall first arch) : This Act applies to Ⅱ, Ⅲrock. in the soft ground tunneling, to be adopted next general guide advance excavation pit wall first arch Act. Its advantages are : Heading advance excavation, the use of proven geological conditions in advance to facilitate change in the method. Face to facilitate started procedures applicable to the labor arrangements for the use of small machinery and construction. The drawbacks : The next section will guide small, slow construction and construction processes more, construction and management difficult.Unilateral-arm pit Law : rock instability, the tunnel span larger, ground subsidence is difficult to control when using this method. Its characteristics are : a positive step and arms Heading Act advantages.Bilateral arm Heading law : in large-span shallow tunnels, surface subsidence require strict, especially poor rock used. Advantages of this method are : Construction of safe, reliable, but slow construction, high cost.III.The main tunnel construction technology1. Cave construction :(1)excavation slope around :Lofting total station measurements, the use of excavators from top to bottom, paragraph by paragraph excavation, not the amount of excavation or the end of next overlapping excavation, remove pits with the above may slump topsoil, shrubs and rock slopes, rock strata of slope excavation needs blasting, Discussion should focus mainly loose blasting. Also partial artificial finishing, when excavation and inspection slope of slope, if sliding and cracking phenomenon and slowing down due slope.(2).Cheng Tung-supporting :Yang Brush Singapore Singapore after the completion of timely inspection plate slope gradient, the gradient to pass the inspection, the system set up to fight time anchor, and the exposed bolt heads, hanging metal based network expansion and bolt welding into first overall. Linked network immediately after the completion of shotcrete and repeatedly jet until it reaches the thickness of the design so far.(3).as of gutter construction :Yang slope away from the groove 5 meters excavation ditch interception, interception gutter mainly mechanical excavation, artificial finishing, after dressing, 7.5# immediately masonry made of mortar and stones, and the floor surface with mortar.2. Auxiliary construction :(1)A long pipe roof :Sets arch construction : construction Lofting, template installation, assembling reinforcement, the guidance of lofting 127 installation guide, concrete pouring.Pipe specifications : Heat Nazarbayev Seamless Steel Tube ¢108 mm and a thickness of 6 mm, length of 3 m, 6 m;N pipe from : Central to the distance 50 cm;N Inclination : Elevation 1 ° (the actual construction works by 2 °), the direction parallel with the Central Line;N pipe construction error : Radial not more than 20 cm;N tunnel longitudinal joints within the same section with more than 50% adjacent pipe joints staggered at least a meter.A. pipe roof construction method :Lofting accurate measurement personnel, marking the centerline and the vault out of its hole elevation, soil excavation reserved as a core pipe roof construction work platform Excavation footage of 2.5 meters, after the end of excavation, artificial symmetrical on both sides of excavation (Commodities H) platform, level width of 1.5 meters, 2.0 meters high, as construction sets and pipe arch shed facilities drilling platform. Pipe-roof design position should be and it should be a good hole steel tube, grouting after playing non-porous tube steel, non-porous tube can be used as pipe inspection, Grouting quality inspection, drill vertical direction must be accurately controlled to guarantee the opening hole to the right, End each drilling a hole is a pipe jacking, drilling should always use dipcompass drilling pipe measuring the deflection, found that the deflection over design requirements in a timely fashion. Pipe joints using screw connection, screw length 15 cm, to stagger the pipe joints, odd-numbered as the first section of the introduction of three-meter steel pipes and even numbered the first section of pipe using 6 meters, After each have adopted six-meter-long steel pipe.B. pipe roof construction machinery :N drilling machinery : XY-28-300 equipped with electric drill, drilling and pipe jacking long shelf;N grouting machine : BW-250/50-injection pump two Taiwan;N using cement-water glass slurry. Mud and water volume ratio 1:0.5; water glass slurry concentration of water-cement ratio 1:1 silicate 35 Baume; The efficacy silicate modulus pressure grouting pressure early pressure 2.0MPA 0.5~1.0MPA; end.(2). a small catheterA. small catheter used ahead diameter of 42 mm and a thickness of 3.5 mm thermal Nazarbayev seamless steel tubes, steel pipe was front-tip, Welding on the tail ¢6 stiffening brace and the wall around the drilling hole grouting 8 mm, but the tail of a meter without grouting holes and Advance Construction of a small catheter, the tubes and the lining of the centerline parallel to 10 ° -30 ° Chalu into the rock arch. penstocks to 20-50 cm spacing. Each was over a steel tubes, should be closed immediately shotcrete excavation face and then grouting. After grouting, erecting steel Arch, Supporting the early completion of every (2-3 meters, and the paper attempts to be) another one for steel tubes, Advance small catheter general lap length of 1.0 meters.B. Grouting parameters :N water slurry and water glass volume : 1:0.5;N slurry water-cement ratio 1:1N 35 Baume concentration of sodium silicate; The efficacy silicate modulusN grouting pressure 0.5~1.0MPA; if necessary, set up only orifice Pulp Cypriots.(3). bolting ahead : The Chalu must be greater than 14 degrees, grouting satiated and lap length is not less than 1 meter.3.Correcting construction :Embedded parts used by the Design Dimensions plank make shape design, installation in contrast snoop plate car, and position accuracy (error ± 50CM), the firm shall not be fixed, you must be in possession of the wire through the middle wear.4. Leveling ConstructionInstallation templates, at the request of both sides leveling layer calibration position to install template. Side-channel steel templates used [10#, top elevation with a corresponding length of the road elevation unanimously to allow deviation ±2mm. adjusted using the standard measurement to determine elevation. Every template fixed a certain distance from the outside to ensure that no displacement, the joints template close comfort, not from a slit, crooked and formation, and the bottom connector templates are not allowed to leak plasma. Concrete before reperfusion, the bottom surface of concrete must be clean. When the concrete arrived at the construction site directly installed backward mode of the road bed, and using artificial Huabu uniform. Concrete paver should be considered after the earthquake destroyed the settlement. Unrealistically high can be 10% higher, Lan is the surface elevation and design line. Concrete earthquake destroyed at or anywhere near the corner with plug-Lan Lan pound for pound order; Flat-Lan pound for pound crisscross comprehensive Lan, Inside each location is no longer the time for concrete sinks, no longer emitted large bubbles, and the surface of cement mortar later. normally no less than 15 seconds, also should not be too long; Then Chun-pound beam along the longitudinal Lan-pound trailer, With redundant Chun-pound concrete beams were dragged shift Trim, Dixian Department should keep leveling Lan facts. Finally, the diameter 75~100mm rolling seamless steel pipe for further leveling. Just do prohibited in the surface spraying water, and threw cement.5. Water, cable duct constructionInstall groove wall reinforcement of location accuracy, the line must be linked to the construction. Install groove wall purity, the purity requirements of accurate location, a vertical line. Dyadic greatest degree of not more than 3 mm, and template-Ditch The top-pronged, pass the inspection before the concrete reperfusion, on the side of the original wall must pick hair, and embedded parts to the location accurately. Template using stereotypes purity.6.Gate ConstructionCleared the site for construction layout. By design size requirement dug-wall basis. M7.5# masonry made of mortar and stones.Template installation, location accuracy requirements purity, a vertical line, and timely inspection template slope. Concrete pouring 15 # Riprap concrete, concrete strength to be more than 70% for Myeongdong vault backfill.Myungdong vault backfill should hierarchical compaction said. The typical thickness of less than 0.3M, both backfill surface height difference of not more than 0.5M. restored to the vault after the pack to design hierarchical compaction high, the use of machines rolling, Ramming must manually filled to vault over 1.0M before mechanical compaction .7 .Construction safety and environmental controlEntrance to wear helmets to prevent crashes, in which the speed limit 5KM, lighting must be a 10-meter lights reckless goods stored material must be standardized and distributed under special guard.Spoil venues must be smooth drainage, and must be masonry retaining wall to prevent flooding, debris flow forming.8. The construction process has to tackle the problems :Construction of two liner after water seepage treatment :Small cracks with acrylic, water or slurry coating of epoxy resin and other caulking, a good effect; On the larger cracks, available on the 10th of cement mortar or cement mortar expansion caulking more appropriate and effective;Large cracks (crack width greater than 5MM), (if leakage of water, available along the cutting machine cutting a wide cracks around 2~4CM small groove depth approximately 10CM above the water, Cutting a 5 × 5CM Cube holes room, then insert a pipe 4 × 4CM MF7 plastic Blind groove, Cutting together into good pressure tank, the introduction of vertical water drains, Finally, cement and water Glass closed mixed mortar cutting groove) withoutseepage, it is appropriate epoxy mortar, or grouting, Reinforced concrete and other reinforced jet.IV. Example projectsNATM is from the introduction of the bolt and shotcrete a category of "active" support the new technology to promote the use began. Soon, the Chinese engineer on the tunnel not only in substance but also in terms of acceptance of the new Austrian law. To be held in China in the tunnel and underground engineering academic meeting, the new Austrian capital has become a hot topic.Engineers of the new Austrian law relishes is justified : the use of new Austrian law, has been successful in soft rock and difficult conditions of the construction of various types of underground works.Built on loose sand gravel stratum of Beijing Subway allowed back of the tunnel is a typical example. The tunnel is located in the main street-256, 358m long, the largest excavation section 9m high, 14.5m wide coverage stratigraphic top of the tunnel only minimum thickness 9.0m. Tunnel boring machine of excavation, strengthen the grid arch shotcrete initial support and advance small catheter care, Without prejudice to ground transportation, underground pipelines to ensure the safety of construction success.In the works is the experience, knowledge of the Chinese engineers, the use of new Austrian law principles can be used in the Mountain Tunnel Mine Act to expand the scope of application of the soft rock, even in the fourth strata of municipal shallow tunnel to replace the traditional method of digging or shield. In China, such a method called "shallow mining method."Following allowed back lane tunnel, gravel in the same folder of alluvial gravel layer is shallow mining method used to build the span of 21.67m in the Xidan MTR stations.Changan Avenue in the construction of the new Beijing metro line projects, shallow mining method has been selected as the main method of construction. For example, the Tiananmen Square in Beijing Metro West Point, 226m long, for two double-pole structure.Guangzhou Metro East is shallow mining method used in the construction. Experience shows that from the ground environmental protection, surface subsidence of the dug system。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
莺歌海盆地的超压主要由快速沉降,有机质生烃,和烃类裂解引起的。此外。异常高压的地层由于欠压实含有许多孔隙流体。因此,一些参数显示其测井数据随深度增加与正常趋势线的差异,即,密度越低,声波时差越大,电阻率越小,孔隙度越大
由于异常高压导致低温梯度陡然增加,地层超压的分布可以根据上述参数的变化估计。从地震波速度可以推论地层压力的分布与测井数据相一致(图2)。超压在平面中的分布不仅受沉降中心影响,还直接受底辟分布及强度影响。在盆地边界,超压的顶部深度大于盆地中心。甚至没有任何异常超压。向盆地的中心,顶部的超压逐渐变浅,高底辟构造的顶部大约1480米(the wellLD14-1-1)。
成都理工大学
学生毕业设计(论文)外文译文
学生姓名:雷和金
学号:200904020223
专业名称:资源勘查工程
译文标题(中英文):莺歌海盆地超压流体流动的构造效应(Structural Effects of Overpressure FluidActivities in Yinggehai Basin)
关键词:超压莺歌海盆地构造效应
在沉积盆地中超压和流体在油气运移和聚集中所起的作用的研究(li,2000,1995)。地质学家最近意识到在沉积盆地中研究超压流体的活动是认识如超压地层、阶段性排出、通道系统、圈闭特征、和动力演化科学依据(Li,2000;Tang and Wang,1999;Law and Spencer,1998)。在超压流体和它的作用上有了越来越多的研究。
译文出处:Mining Science and Technology 20 (2010) 0591–0599
指导教师审阅签名:
摘要:
这篇文章讨论了莺歌海盆地断层的特征和分布,揭示了超压流体排出的构造效应。快速的沉降和富泥的海相地层控制了超压系统和大量超压流体的形成。超压流体由于一些断层的作用被快速的排出,在盆地中形成一系列的底辟构造,从而导致底辟的裂缝、断层和褶皱的形成。这些裂缝和断层为烃类的纵向流动提供了运移通道,使气体在该过程中向上运移至砂岩储层。因此,油气藏通常位于底辟构造的上部分。
图5:莺歌海盆地泥底辟构造
(a)拱形构造(b)漏斗构造
莺歌海盆地的油气勘探表明,有许多圈闭背斜中的裂缝位于底辟的顶部,所有的裂缝和在超压系统中成熟的超压流体活动相关。(Yin et a1.,2002b).一些刺穿的超压超压系统向上延伸然后在正常压力区域中消失或延伸到海底。由此产生的裂缝是超压流体垂向运移的主要通道。
莺歌海盆地的典型特征是广泛的超压流体活动。在运移的过程中超压流体获得丰富的能量,不仅提供了使油气运移和聚集的排驱力,同时也使之与围岩进行反应和能量交换。之后,盆地的构造和成藏特征可能发生改变(Yinet a1.,2002a),因此,莺歌海盆地是一个研究超压流体活动理想的自然实验室。
超压流体排出超压封存箱控制着流体压力场的分布模式。由于浅层和深部地层的温度差异,快速流动可能会导致对流传导(finkbeinereta1.,2001),运移通道的大量形成。在这种情况下,热超压流体迅速上升到温度和压力异常高的浅层。
这篇文章分析了莺歌海盆地的构造特征和超压流体活动的规律。讨论了在沉积盆地的超压流体活动的构造效应和提供了构造演化的研究证据。
莺歌海盆地位于中国南海西北部,北西走向,与古红河断裂带直接重叠,主要的边界断裂是一个断层,是红河断裂带的一个分支,作为琼东南盆地与莺歌海盆地的分界,莺歌海盆地的最南端连接着南北走向的粤东断层,沿着归仁和皖南-北盆地发育,莺歌海盆地由于位于莫霍面20-22km大陆地壳延伸而形成。该盆地具有独特的沉积、构造和演化模式,揭示了莺歌海盆地超压流体流动的丰富的烃类构造效应。
莺歌海盆地的沉降和填充率非常迅速。新近纪以来,多达10公里的沉积物被沉积。在特殊时期,之后的5.2百万年,盆地沉降的越来越深,这些沉积物从上新世到第四纪主要由海相层序组成,厚度可达至4000m。由地震和钻井数据显示其沉降速率超过700m/Ma(Xie et a1.,1999).
莺歌海盆地地温高的特征在1999年被Dong发现。最高的地温梯度位于中央的泥浆流体底辟带,高达4.36-4.98℃/100米,而盆地两侧斜坡地温梯度较低(Wang and Hu,1999)
图一:莺歌海盆地简化构造图
1:大陆板块2:古生代造山带3:中生代造山带4:洋壳5:第三纪盆地
6古地中海缝合线7:俯冲和弧陆碰撞带。
莺歌海盆地的沉降和填充率非常迅速。新近纪以来,多达10公里的沉积物被沉积。在特殊时期,之后的5.2百万年,盆地沉降的越来越深,这些沉积物从上新世到第四纪主要由海相层序组成,厚度可达至4000m。由地震和钻井数据显示其沉降速率超过700m/Ma(Xie et a1.,1999).
超压特征
基于莺歌海盆地超压流体运移通道的不同,超压流体的对流可分为两种类型,横向对流和垂直对流(xieeta1.,1999年,1997年)。
横向对流超压流体运移主要沿着横向的通道网络。主要的通道是渗透性好的砂岩体,不整合,和平行断层系统。这种类型的压力分布通常具有明显的热异常且镜质体反射率与那些正常的热传导不同。垂直对流超压流体运移沿垂直的密集裂缝和断层。
这篇文章分析了莺歌海盆地的构造特征和超压流体活动的规律。讨论了在沉积盆地的超压流体活动的构造效应和提供了构造演化的研究证据。
莺歌海盆地位于中国南海西北部,北西走向,与古红河断裂带直接重叠,主要的边界断裂是一个断层,是红河断裂带的一个分支,作为琼东南盆地与莺歌海盆地的分界,莺歌海盆地的最南端连接着南北走向的粤东断层,沿着归仁和皖南-北盆地发育,莺歌海盆地由于位于莫霍面20-22km大陆地壳延伸而形成。该盆地具有独特的沉积、构造和演化模式,揭示了莺歌海盆地超压流体流动的丰富的烃类构造效应。
测井数据显示不受底辟构造活动影响的超压顶部深度大约是3000m。在盆地的西北和边界,超压顶部的深度增加而地层的压力系数减少。底辟是一个局部异常高压区,其超压顶部浅层和较新的地层(莺歌海盆地上新世以上地层)的特征主要受深部高温和超压热流体沿断裂带从浅到深的测井数据引导。可以观察到地层低于3900米压力系数稳定在2~2.2。压力系数的垂直分布从莺歌海黄流组到基底逐渐延伸,其眉山组的压力系数似乎最大,从三亚组轻微降低(Zhang et a1.1996)。
莺歌海盆地的底辟构造是由沿断裂带超压流体活动控制,而断层和塑性岩石的侵入,底辟构造又称为泥浆流体底辟构造当超压流体被向上排出导致地层顶部变形从而显示为穹隆背斜(图5a)但是如果断层促使底辟作用延伸到海底,从而诱发塌陷构造,可能会形成漏斗构造。图(5b)
图4:底辟构造在莺歌海盆地的分布
1、底辟构造2、盆地边界3、断层4、底辟构造延伸方向
基于莺歌海盆地超压流体运移通道的不同,超压流体的对流可分为两种类型,横向对流和垂直对流(xieeta1.,1999年,1997年)。
横向对流超压流体运移主要沿着横向的通道网络。主要的通道是渗透性好的砂岩体,不整合,和平行断层系统。这种类型的压力分布通常具有明显的热异常且镜质体反射率与那些正常的热传导不同。垂直对流超压流体运移沿垂直的密集裂缝和断层。
地层压力系数,即地层压力与正常静水压力的比值,从边界到中心逐渐增加其最大值为2.2。在Linggao隆起,顶部的超压与梅山地层的底部接近,其表面低于3400m,最大压力系数小于1.6。压力系数在1号断层的下降盘在1.1-1.7的过渡。
因此,一般压力系数分布趋势从东北和西北斜坡带到盆地中心逐渐增加。特别是在底辟中央。底辟构造的分布和活动强度控制着地层超压的分布。(L4.GeopressureandOil/Gas Migration in Yinggehai—Qiongdongnan Basin).
图2:莺歌海盆地超压的顶部等深线图
测井数据显示不受底辟构造活动影响的超压顶部深度大约是3000m(图3)
图3:莺歌海盆地各井压力分布
在沉积盆地中超压和流体在油气运移和聚集中所起的作用的研究(li,2000,1995)。地质学家最近意识到在沉积盆地中研究超压流体的活动是认识如超压地层、阶段性排出、通道系统、圈闭特征、和动力演化科学依据(Li,2000;Tang and Wang,1999;Law and Spencer,1998)。在超压流体和它的作用上有了越来越多的研究。
由于其快速沉积,形成以海相页岩为主的盆地充填序列,其中高地热,大型高压封存箱形成大型超压热流体。这种大型超压热流体自上新世以来被排出超压封存箱可能是由区域应力状态的变化控制产生导致红河走滑断层。雁列式和张扭性断裂控制底辟构造的分布和导致大规模的超压热流体排出。然后,通过横向和纵向的超压热流体流出形成独特的局部应力场。
由于大型的超压地层在盆地深部能量巨大。底辟作用,超压流体活动与天然气富集均发生在中深层的巨大异常高压系统下。
超压流体系统易产生底辟作用一旦发生一些构造运动。盆地充填序列由
泥岩为主,有利于形成异常高压地层和压力的控制。莺歌海盆地中央底辟带的沉降速率最高,以至于充填着丰富的泥岩。自晚中新世以后形成的一系列底辟构造可分为5行,彼此大致呈雁形排列。(图4)
莺歌海盆地的典型特征是广泛的超压流体活动。在运移的过程中超压流体获得丰富的能量,不仅提供了使油气运移和聚集的排驱力,同时也使之与围岩进行反应和能量交换。之后,盆地的构造和成藏特征可能发生改变(Yinet a1.,2002a),因此,莺歌海盆地是一个研究超压流体活动理想的自然实验室。
超压流体排出超压封存箱控制着流体压力场的分布模式。由于浅层和深部地层的温度差异,快速流动可能会导致对流传导(finkbeinereta1.,2001),运移通道的大量形成。在这种情况下,热超压流体迅速上升到温度和压力异常高的浅层。
当超压流体被排出,高的地热的释放,高的温度和能量形成了底辟构造和底辟构造顶部的致密裂缝和断层。其形成过程,在底辟构造顶部张开和关闭的断裂通常显示超压热流体和油(气)的运移。作为垂直通道这些断裂拥有以下特点:(1)长期或多阶段活动或继承性断裂:(2)断裂导致的超压烃源;(3)延伸到石油生成的断裂;(4)与储集层岩石相连接。
相关文档
最新文档