福建省惠安县尾山学校等六校2017_2018学年八年级数学下学期期中试题新人教版2018052329
福建省泉州市惠安县2017—2018学年(下)八年级期中考数学试卷及答案
惠安2017—2018学年(下)八年级期中考试数 学 试 卷 (试卷满分:150分;考试时间:120分钟) 一、选择题(每小题4分,共40分). 1.已知点P (2,﹣1),则点P 位于平面直角坐标系中的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.若分式有意义,则实数x 的取值范围是( ) A .x ≠1 B .x ≠﹣1 C .x=1 D .x=﹣1 3.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104 B .0.715×10﹣4 C .7.15×105 D .7.15×10﹣5 4.如果把中的x 与y 都扩大为原来的5倍,那么这个代数式的值( ) A .不变 B .扩大为原来的5倍 C .扩大为原来的10倍 D .缩小为原来的 5.在平面直角坐标系中,点P (﹣3,2)关于x 轴的对称点的坐标为( ) A .(2,﹣3) B .(﹣2,3) C .(﹣3,2) D .(﹣3,﹣2) 6.若点(m ,n )在函数12+=x y 的图象上,则代数式124+-n m 的值是( ) A .1 B .1- C .2 D .2- 7.在同一坐标系中(水平方向是x 轴),函数y=和y=kx +3的图象大致是( ) A . B . C D . 8.如图,在平行四边形ABCD 中,AB=3cm ,BC=5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是( ) A .1cm <OA <4cm B .2cm <OA <8cm C .2cm <OA <5cm D .3cm <OA <8cm班级 座号 姓名___________ 考场__________ ………………密…………封…………线…………内…………不…………得…………答…………题………………9. 如图,直线,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为(-4,2),点B 的坐标为(2,-4),则坐标原点为(A )(B )(C ) (D )10.如图,已知点A 是双曲线y=在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n ),则m ,n 满足的关系式为( )A .n=﹣2mB .n=﹣C .n=﹣4mD .n=﹣二、填空题(每小题4分,共24分).11.计算:= .12.当x =__________时,分式22x x -+的值为零. 13.已知一个正比例函数的图象经过点(﹣1,2),则这个正比例函数的解析式是 .14.将一次函数y =2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是 .15.已知如图:▱ABCD 中,AD=8,AB=6,DE 平分∠ADC 交BC 于E ,则BE= .16.函数y 1=x 与y 2=4x的图像如图所示,下列关于函数y =y 1+y 2的结论:①函数的图像关于原点对称;②当x <2时,y 随x 的增大而减小;③当x >0时,函数的图像最低点的坐标是(2,4).其中所有正确的结论的序号是_____________________.三、解答题(共86分).17.(8分)计算:(2017﹣π)0﹣()﹣1+(﹣1)4. 18.(8分) 计算:1)111(2-÷-+x x x . 19.(8分)关于x 的方程:=+1.(1)当a=2时,求这个方程的解;(2)若这个方程无解且a ≠1,求a 的值.20.(8分)如图,在▱ABCD 中,点E 、F 分别在AD 、BC 上,且AE=CF ,EF 、BD 相交于点O ,求证:OE=OF .21.(8分)(1)计算并填数:(2)观察上表,描述1﹣的值的变化情况. (3)当x 非常大时,的值接近于什么数?22.(10分)已知甲加工A 型零件60个所用时间和乙加工B 型零件80个所用时间相同.甲、乙两人每天共加工35个零件,设甲每天加工x 个A 型零件.(1)直接写出乙每天加工的零件个数;(用含x 的代数式表示)(2)求甲、乙每天各加工零件多少个?(3)根据市场预测,加工A 型零件所获得的利润为m 元/件(3≤m ≤5),加工B 型零件所获得的利润每件比A 型少1元.求甲、乙每天加工的零件所获得的总利润P (元)与m 的函数关系式,并求P 的最大值和最小值.23.(10分)已知直线y=kx +b (k ≠0)过点(1,2)(1)填空:b= (用含k 代数式表示);(2)将此直线向下平移2个单位,设平移后的直线交x 轴于点A ,交y 轴于点B ,x 轴上另有点C (1+k ,0),使得△ABC 的面积为2,求k 值;(3)当1≤x ≤3,函数值y 总大于零,求k 取值范围.24.(13分)如图1,ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且 点G 在ABCD 内部.将BG 延长交DC 于点F .(1)猜想并填空:GF DF (填“>”、“<”、“=”);(2)请证明你的猜想;(3)如图2,当∠A=90°,设BG=a ,GF=b ,EG=c ,求出 a 、b 、c 三者之间的关系.25. (13分)如图,在平面直角坐标系xOy 中,函数()0k y x x =>的图象与直线2y x =-交于点()3,A m .(1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0k y x x=>的图象于点N . ①当1n =时,判断线段PM 与PN 的数量关系,并说明理由;②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.(3)设P 1(x 1,y 1),P 2(x 2,y 2)是这个反比例函数图象上任意不重合的两点,M=,N=,试判断M ,N 的大小,并说明理由。
2017-2018学年f人教版八年级(下)期中数学试卷(有答案和解析)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5 3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6 4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=25.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=16.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>57.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.128.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D .6,59.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根10.在平行四边形ABCD 中,AC 与BD 相交于0,AE ⊥BD 于E ,CF ⊥BD 于F ,则图中的全等三角形共( )A .5对B .6对C .7对D .8对二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 .12.一个多边形的每一个外角为30°,那么这个多边形的边数为 .13.化简:= .14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 市场.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 .16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:;乙:.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6【分析】利用一元二次方程的定义判断即可.【解答】解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1【分析】移项后配方,再根据完全平方公式求出即可.【解答】解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.【点评】本题考查了解一元二次方程的应用,关键是能正确配方.6.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).7.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.12【分析】先过点D作DE⊥AC于点E,由在▱ABCD中,AC=8,BD=6,可求得OD的长,又由对角线AC、BD相交成的锐角α为30°,求得DE的长,△ACD的面积,则可求得答案.【解答】解:过点D作DE⊥AC于点E,∵在▱ABCD中,AC=8,BD=6,∴OD=BD=3,∵∠α=30°,∴DE=OD•sin∠α=3×=1.5,∴S=AC•DE=×8×1.5=6,△ACD=12.∴S▱ABCD=2S△ACD故选:D.【点评】此题考查了平行四边形的性质以及三角函数的知识.注意准确作出辅助线是解此题的关键.8.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D.6,5【分析】根据众数、中位数的定义分别进行解答即可. 【解答】解:由表知数据5出现次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B .【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 9.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根【分析】先把方程化为一般式得到2x 2﹣3x ﹣3=0,再计算△=(﹣3)2﹣4×2×(﹣3)=18+24>0,然后根据△的意义判断方程根的情况. 【解答】解:方程整理得2x 2﹣3x ﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.在平行四边形ABCD中,AC与BD相交于0,AE⊥BD于E,CF⊥BD于F,则图中的全等三角形共()A.5对B.6对C.7对D.8对【分析】由四边形ABCD是平行四边形,可得OA=OC,OB=OD,AB=CD,AD=BC,即可证得△ABD≌△CDB(SSS),△ABC≌△CDA,△AOD≌△COB(SAS),△AOB≌△COD,又由AC⊥BD,AE⊥BD,可得△AOE≌△COF,△ABE≌△CDF(AAS),△ADE≌△CBF.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB=CD,AD=BC,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理:△ABC≌△CDA;在△AOD和△COB中,,∴△AOD≌△COB(SAS),同理:△AOB≌△COD,∴∠ABO=∠CDO,∵AC⊥BD,AE⊥BD,∴∠AEO=∠CFO=90°,∠AEB=∠CFD=90°,在△AOE和△COF中,,∴△AOE ≌△COF (AAS ), 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ). 同理:△ADE ≌△CBF . 故选:C .【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 4 .【分析】把x =﹣2代入已知二次根式,通过开平方求得答案.【解答】解:把x =﹣2代入得,==4,故答案为:4.【点评】本题考查了二次根式的定义及性质,注意二次根式的结果是非负数是解答此题的关键. 12.一个多边形的每一个外角为30°,那么这个多边形的边数为 12 .【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12, 则这个多边形的边数为12. 故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.化简:=.【分析】根据二次根式的性质计算即可.【解答】解:原式==,故答案为:.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质是解题的关键.14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 乙 市场.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵S 甲2=7.5,S 乙2=1.5,S 丙2=3.1, ∴S 甲2>S 丙2>S 乙2,∴该月份白菜价格最稳定的是乙市场; 故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 x 1=﹣,x 2=0 .【分析】由于方程的解比二次方程a (x +h )2+k =0的解要大,则方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.【解答】解:∵关于x 的二次方程a (x +h )2+k =0的解为,∴方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.故答案为x 1=﹣,x 2=0.【点评】本题考查了一元二次方程的解:满足一元二次方程的未知数的值叫一元二次方程的解. 16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC . 【解答】解:连接E 、F 两点, ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等, ∴S △EFC =S △BCF , ∴S △EFQ =S △BCQ , 同理:S △EFD =S △ADF , ∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2, ∴S 四边形EPFQ =41cm 2, 故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形. 三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第 ③ 步开始出错的; (2)请你给出正确的解题过程.【分析】根据二次根式的运算法则即可求出答案. 【解答】解:(1)③(2)原式=2﹣=6﹣2=4【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【分析】(1)利用配方法得到(x﹣7)2=57,然后利用直接开平方法解方程;(2)先计算判别式的值,然后利用求根公式解方程;(3)先移项得到(2x+3)2﹣4(2x+3)=0,然后利用因式分解法解方程;(4)先变形得到2(x﹣3)2﹣(x+3)(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法解一元二次方程.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:10,13,12,14,16;乙:13,14,12,12,14.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.【分析】根据图表就可以得到甲,乙的成绩,注意观察次数所对应的点的纵坐标,就是成绩;根据这两组数就可以求出每组的平均数,中位数、众数、方差;根据平均数的大小确定成绩的好坏,根据方差确定成绩哪个稳定.【解答】解:(1)甲:10,13,12,14,16;乙:13,14,12,12,14;(2)(3)选择乙去竞赛.因为甲乙的平均分相同,乙的成绩较稳定所以选乙去.【点评】本题主要考查了平均数、中位数、众数的概念,方差是描述一组数据波动大小的量.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?【分析】设这种商品每千克应降价x元,利用销售量×每千克利润=2240元列出方程求解即可.【解答】解:设这种商品每千克应降价x元,根据题意得(60﹣x﹣40)(100+×20)=2240整理得x2﹣10x+24=0解得:x1=4(不合题意,舍去),x2=6.答:这种商品每千克应降价6元.【点评】本题考查了一元二次方程的应用,解题的关键是掌握销售问题中的基本数量关系.21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.【分析】(1)由题意可得:∠DAE=∠BAE=∠AEB=∠BAD=∠C,则∠C+∠FEC=90°,根据三角形内角和可得∠C+∠EFC=90°,则∠CEF=∠CFE,即可得结论;(2)连接AC,作AP⊥BC于P,由题意可求AB=BE=CD=5,CE=CF=2,即可求DH=3,根据勾股定理可求AE的长,根据勾股定理可列出方程,可求出BP,AP,PE,PC的长度,再根据勾股定理可求AC的长,由题意可证AC=GF,即可得GF的长.【解答】证明:(1)∵四边形ABCD是平行四边形∴∠BAD=∠C,AD∥BC∴∠DAE=∠AEB∵AE平分∠DAB∴∠BAE=∠DAE=∠BAD∴∠BAE=∠AEB=∠BAD∴AB=BE∵AE⊥EF∴∠AEF=90°∴∠AEB+∠FEC=90°,即∠BAD+∠FEC=90°∴∠C+∠FEC=90°∵∠C+∠FEC+∠EFC=180°∴∠C+∠EFC=90°∴∠EFC=∠FEC∴CE=CF(2)如图连接AC,作AP⊥BC于P∵四边形ABCD是平行四边形∴AB=CD,AD=BC=7,AB∥CD∵CE=CF∴BC﹣BE=CD﹣DF,且AB=BE=CD∴7﹣AB=AB﹣3∴AB=5=BE=CD∴CE=CF=2∵AD∥BC∴∠H=∠FEC,且∠FEC=∠EFC,∠DFH=∠EFC ∴∠H=∠DFH∴DH=DF=3∴AH=10在Rt△AEH中,AH2=AE2+EH2,且EH=2AE∴5AE2=100∴AE=2在Rt△ABP和Rt△APE中AP2=AB2﹣BP2,AP2=AE2﹣PE2.∴AB2﹣BP2=AE2﹣PE2.∴25﹣BP2=20﹣(5﹣BP)2.∴BP=3∴AP=4,PE=2,PC=4在Rt△APC中,AC==4∵AB∥CD,AG=CF∴四边形AGFC是平行四边形∴GF=AC=4【点评】本题考查了平行四边形的性质,全等三角形的性质和判定,勾股定理,添加恰当的辅助线构造直角三角形是本题的关键.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.【分析】(1)由△=[﹣(k+1)]2﹣4×1×(2k﹣2)=(k﹣3)2≥0可得答案;(2)利用因式分解法可得(x﹣2)[x﹣(k﹣1)]=0,再进一步求解可得;(3)根据等边三角形的三边相等得出关于k的方程,解之可得.【解答】解:(1)依题意,得△=[﹣(k+1)]2﹣4×1×(2k﹣2)=k2+2k+1﹣8k+8=k2﹣6k+9=(k﹣3)2≥0,∴此方程总有两个实数根.(2)将方程左边因式分解得(x﹣2)[x﹣(k﹣1)]=0,则x﹣2=0或x﹣(k﹣1)=0,解得x1=2,x2=k﹣1;(3)∵此方程的根刚好是某个等边三角形的边长,∴k﹣1=2.∴k=3.【点评】此题考查了配方法解一元二次方程与一元二次方程判别式的知识.解题的关键是熟练掌握一元二次方程的根的个数与判别式的关系及因式分解法解一元二次方程及等边三角形的性质.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.【分析】(1)根据题意先求得AB=30cm,由纸带的宽为15cm,根据三角函数求得∠BAD=30°;(2)由三棱柱的侧面展开图求出BC和MB的长,即是所需的矩形纸带的长度.【解答】解:(1)由图2的包贴方法知:∵AB的长等于三棱柱的底边周长,∴AB=30cm,∵纸带的宽为15cm,∴sin∠BAD=sin∠ABM===,∴∠BAD=30°;(2)在图3中将三棱柱沿过点A的侧棱剪开,得知如图甲的侧面展开图.将图甲的△ABF向左平移30cm,△CDE向右平移30cm,拼成如图乙中的平行四边形AMCN,此平行四边形即为图2中的平行四边形ABCD.由题意得:图2中的BC=图乙中的AM=2AE=2AB÷cos∠EAB=60÷cos30°=40(cm),故所需的矩形纸带的长度为MB+BC=30×cos30°+40=55cm.【点评】本题是一道立体图形的侧面展开,结合三角函数进行计算是一道综合题,难度较大.。
2017-2018学年福州XX中学八年级下期中数学试卷(有答案)(必备优质)
2017-2018学年福建省福州XX中学八年级(下)期中数学试卷一、选择题(每题2分,共10题,共计20分)1.下列方程是关于x的一元一次方程的是()A.x+1=0 B.k2x+5k+6=0C.D.(k2x+3)x2+2x+1=02.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形3.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.4.将y=x2﹣2x﹣1配方后得到的结果是()A.y=(x﹣1)2﹣1 B.y=(x﹣1)2﹣2C.y=﹣(x﹣1)2+1 D.y=(x﹣1)2+25.若一次函数y=ax+b的图象不经过第三象限,则下列不等式中总是成立的是()A.a>0,b>0 B.a>0,b<0 C.a<0,b≥0 D.a<0,b<06.随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8B.28.8(1+x)2=20C.20(1+x)2=28.8D.20+20(1+x)+20(1+x)2=28.87.甲、乙两名队员参加射击训练,成绩分别被制作成下面两个统计图:下列说法中错误的是()A.甲射击成绩的中位数为7B.乙射击成绩的众数为8C.甲射击成绩的平均数为7D.乙射击成绩的平均数为7.58.已知二次函数y=ax2+bx+c的图象如图所示,则()A.a>0,c>0,b2﹣4ac<0 B.a>0,c<0,b2﹣4ac>0C.a<0,c>0,b2﹣4ac<0 D.a<0,c<0,b2﹣4ac>09.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或1110.在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()A.①②B.①②④C.③④D.①②③④二、填空题:(每题3分,共6题,计18分)11.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为.12.某体校要从四名射击选手中选拔一名参加体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差s2如表所示,如果要选出一名成绩高,且发挥稳定的选手参赛,则应选择的选手是.(环)13.已知二元一次方程组的解为,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =﹣x ﹣1的交点坐标为 .14.若关于x 的一元二次方程(k ﹣1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是 .15.如图,已知正方形纸片ABCD ,M ,N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠PBQ = 度.16.当﹣b ≤x ≤b 时,二次函数y =﹣3x 2﹣3x +4b 2+的最大值是7,则b = .三、解答题:(共9题,计62分)17.(6分)按要求解下列方程.(1)x 2+3x +2=0(2)2x 2﹣4x =118.(6分)某饭店共有6名员工,所有员工的工资如表所示:(2)平均月工资能准确反映该饭店员工工资的一般水平吗?若能,请说明理由.若不能,如何才能较准确地反映该饭店员工工资的一般水平?谈谈你的看法.19.(6分)已知关于x 的一元二次方程x 2﹣mx +m ﹣2=0.(1)求证:无论m 取何值,该方程均有两不等的实数解;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.20.(6分)如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB 、CD 的延长线分别交于E 、F .(1)证明:△BOE ≌△DOF ;(2)当EF ⊥AC 时,求证四边形AECF 是菱形.21.(7分)已知正比例函数y =k 1x 的图象与一次函数y =k 2x ﹣9的图象交于点P (3,﹣3).(1)求k 1和k 2的值;(2)如果一次函数y =k 2x ﹣9的图象与x 轴交于点A ,求△AOP 的面积.22.(7分)为了检验一批禽流感疫苗对鸡在自然条件下的免疫反应,工作人员在实验室外设立了一块面积为150平方米的长方形临时鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米,求这个鸡场的长与宽各是多少米?23.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg .且不高于180元/kg ,经销一段时间后得到如下数据:(1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?24.(8分)正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点.过点P 作PF ⊥CD 于点F .(1)如图1,当点P 与点O 重合时,求证:DF =CF ;(2)在图2中可以证明PC =CE +PA ,那么若点P 在线段OC 上(不与点O 、C 重合),PE ⊥PB 且PE 交直线CD 于点E .请在图3中画出图形,并判断此时图2中得到的PC ,CE ,PA 之间的关系是否仍然成立,并给出证明.25.(8分)已知:抛物线y 1=ax 2+bx +1,ab ≠0的顶点为A (1,k )(1)若抛物线经过点B (﹣1,4),求该抛物线的解析式;(2)若抛物线y 2=2x 2也经过A 点,求a ,b 的值;(3)若点A 在抛物线y 3=tx 2+x ,t <﹣1上,且抛物线y 1与x 轴有两个不同的交点,求a 的取值范围.参考答案与试题解析一、选择题(每题2分,共10题,共计20分)1.下列方程是关于x的一元一次方程的是()A.x+1=0 B.k2x+5k+6=0C.D.(k2x+3)x2+2x+1=0【分析】根据一元一次方程的定义对A、B进行判断;根据分式方程的定义对C进行判断;根据一元二次方程的定义对D进行判断.【解答】解:A、x+1=0为一元一次方程,所以A选项正确;B、当k≠0时,k2x+5k+6=0为一元一次方程,所以B选项错误;C、方程中含分式,所以3x2+2x+=0为分式方程,所以C选项错误;D、方程(k2x+3)x2+2x+1=0为一元二次方程,所以D选项错误.故选:A.【点评】本题考查了一元二次方程的定义:一元二次方程同时满足的三个条件.2.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【分析】直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.【解答】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选:D.【点评】此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.3.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据负数没有平方根求出x的范围,表示在数轴上即可.【解答】解:由函数y=,得到3x+6≥0,解得:x≥﹣2,表示在数轴上,如图所示:故选:A.【点评】此题考查了在数轴上表示不等式的解集,以及函数自变量的取值范围,熟练掌握平方根定义是解本题的关键.4.将y=x2﹣2x﹣1配方后得到的结果是()A.y=(x﹣1)2﹣1 B.y=(x﹣1)2﹣2C.y=﹣(x﹣1)2+1 D.y=(x﹣1)2+2【分析】根据配方法把二次函数的一般式化为顶点式即可.【解答】解:y=x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,故选:B.【点评】本题考查了二次函数的三种形式,掌握用配方法把一般式化为顶点式是解题的关键.5.若一次函数y=ax+b的图象不经过第三象限,则下列不等式中总是成立的是()A.a>0,b>0 B.a>0,b<0 C.a<0,b≥0 D.a<0,b<0【分析】根据一次函数的性质,可得答案.【解答】解:一次函数y=ax+b的图象不经过第三象限,得a<0,b≥0,故选:C.【点评】本题考查了一次函数的性质,利用一次函数的性质是解题关键.6.随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8B.28.8(1+x)2=20C.20(1+x)2=28.8D.20+20(1+x)+20(1+x)2=28.8【分析】设这两年观赏人数年均增长率为x,根据“2014年约为20万人次,2016年约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选:C.【点评】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.7.甲、乙两名队员参加射击训练,成绩分别被制作成下面两个统计图:下列说法中错误的是()A.甲射击成绩的中位数为7B.乙射击成绩的众数为8C.甲射击成绩的平均数为7D.乙射击成绩的平均数为7.5【分析】直接根据统计图得出甲、乙队员的射击成绩,计算平均数,找出中位数和众数即可.【解答】解:A、甲射击成绩的中位数为=7,此选项正确;B、乙射击成绩分布如下:3环1次、4环1次、6环1次、7环2次、8环3次、9环1次、10环1次,所以乙射击成绩的众数为8,此选项正确;C、甲射击成绩的平均数为:(5+6+6+7+7+7+7+8+8+9)÷10=7,此选项正确;D、乙的平均数为:(3+4+6+7+7+8+8+8+9+10)÷10=7,此选项错误;故选:D.【点评】本题主要考查了条形统计图和折线统计图、平均数的计算、中位数、众数等知识点,难度不大,清楚各统计概念是解答的关键.8.已知二次函数y=ax2+bx+c的图象如图所示,则()A.a>0,c>0,b2﹣4ac<0 B.a>0,c<0,b2﹣4ac>0C.a<0,c>0,b2﹣4ac<0 D.a<0,c<0,b2﹣4ac>0【分析】利用抛物线开口方向得到a<0,由抛物线的对称轴位置得到b>0,由抛物线与y轴的交点位置得到c<0,由抛物线与x轴有2个交点得到b2﹣4ac>0,然后对各选项进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴a 、b 异号,即b >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,故选:D .【点评】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.9.已知3是关于x 的方程x 2﹣(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或11【分析】把x =3代入已知方程求得m 的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解答】解:把x =3代入方程得9﹣3(m +1)+2m =0,解得m =6,则原方程为x 2﹣7x +12=0,解得x 1=3,x 2=4,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC 的腰为4,底边为3时,则△ABC 的周长为4+4+3=11;②当△ABC 的腰为3,底边为4时,则△ABC 的周长为3+3+4=10.综上所述,该△ABC 的周长为10或11.故选:D .【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.10.在正方形ABCD 中,点E 为BC 边的中点,点B ′与点B 关于AE 对称,B ′B 与AE 交于点F ,连接AB ′,DB ′,FC .下列结论:①AB ′=AD ;②△FCB ′为等腰直角三角形;③∠ADB ′=75°;④∠CB ′D =135°.其中正确的是( )A.①②B.①②④C.③④D.①②③④【分析】①根据轴对称图形的性质,可知△ABF与△AB′F关于AE对称,即得AB′=AD;②连接EB′,根据E为BC的中点和线段垂直平分线的性质,求出∠BB′C为直角三角形;③假设∠ADB′=75°成立,则可计算出∠AB′B=60°,推知△ABB′为等边三角形,B′B=AB=BC,与B′B<BC矛盾;④根据∠ABB′=∠AB′B,∠AB′D=∠ADB′,结合周角定义,求出∠DB′C的度数.【解答】解:①∵点B′与点B关于AE对称,∴△ABF与△AB′F关于AE对称,∴AB=AB′,∵AB=AD,∴AB′=AD.故①正确;②如图,连接EB′.则BE=B′E=EC,∠FBE=∠FB′E,∠EB′C=∠ECB′.则∠FB′E+∠EB′C=∠FBE+∠ECB′=90°,即△BB′C为直角三角形.∵FE为△BCB′的中位线,∴B′C=2FE,∵△B′EF∽△AB′F,∴=,即==,故FB′=2FE.∴B′C=FB′.∴△FCB′为等腰直角三角形.故②正确.④设∠ABB′=∠AB′B=x度,∠AB′D=∠ADB′=y度,则在四边形ABB′D中,2x+2y+90°=360°,即x+y=135度.又∵∠FB′C=90°,∴∠DB′C=360°﹣135°﹣90°=135°.故④正确.③假设∠ADB′=75°成立,则∠AB′D=75°,∠ABB′=∠AB′B=360°﹣135°﹣75°﹣90°=60°,∴△ABB′为等边三角形,故B′B=AB=BC,与B′B<BC矛盾,故③错误.故选:B.【点评】此题考查了正方形的性质、等腰直角三角形的判定和性质,等边三角形的性质及反证法等知识,综合性很强,值得关注.二、填空题:(每题3分,共6题,计18分)11.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为y=(x+2)2﹣3 .【分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(﹣2,﹣3),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移3个单位得到对应点的坐标为(﹣2,﹣3),所以平移后的抛物线解析式为y=(x+2)2﹣3.故答案为y=(x+2)2﹣3.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.某体校要从四名射击选手中选拔一名参加体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差s2如表所示,如果要选出一名成绩高,且发挥稳定的选手参赛,则应选择的选手是 乙 . (环)【解答】解:∵乙、丙的平均成绩高于甲和丁,且乙的方差小于丙的方差,即乙的成绩更稳定, ∴应选择选手乙, 故答案为:乙.【点评】本题主要考查方差和平均数,掌握方差的意义是解题的关键.13.已知二元一次方程组的解为,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =﹣x ﹣1的交点坐标为 (﹣4,1) . 【分析】根据一次函数与二元一次方程组的关系进行解答即可.【解答】解:∵二元一次方程组的解为,∴直线l 1:y =x +5与直线l 2:y =﹣x ﹣1的交点坐标为(﹣4,1), 故答案为:(﹣4,1).【点评】本题考查的是一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.若关于x 的一元二次方程(k ﹣1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是 k <5且k ≠1 .【分析】根据二次项系数非零以及根的判别式△>0,即可得出关于k 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的一元二次方程(k ﹣1)x 2+4x +1=0有两个不相等的实数根,∴,解得:k <5且k ≠1. 故答案为:k <5且k ≠1.【点评】本题考查了根的判别式以及解一元一次不等式组,根据二次项系数非零以及根的判别式△>0,找出关于k 的一元一次不等式组是解题的关键.15.如图,已知正方形纸片ABCD ,M ,N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠PBQ = 30 度.【分析】根据折叠的性质知:可知:BN=BP,从而可知∠BPN的值,再根据∠PBQ=∠CBQ,可将∠PBQ的角度求出.【解答】解:根据折叠的性质知:BP=BC,∠PBQ=∠CBQ∴BN=BC=BP∵∠BNP=90°∴∠BPN=30°∴∠PBQ=×60°=30°.故答案为30.【点评】已知折叠问题就是已知图形的全等,根据边之间的关系,可将∠PBQ的度数求出.16.当﹣b≤x≤b时,二次函数y=﹣3x2﹣3x+4b2+的最大值是7,则b=.【分析】首先求得抛物线的对称轴为x=,当|b|<时,x=﹣b时,二次函数有最大值,当|b|≥时,x=﹣时,二次函数有最大值,最后根据最大值为7列方程求解即可.【解答】解:抛物线的对称轴为x=,当|b|<时,x=﹣b时,二次函数有最大值,根据题意得:﹣3b2+3b+4b2+=7,解得:(舍去),(舍去);当|b|≥时,x=﹣时,二次函数有最大值,根据题意得:﹣3×﹣3×(﹣)+4b2+=7.解得:b=或b=﹣(舍去).故答案为:.【点评】本题主要考查的是二次函数的最值,根据|b|与抛物线的对称轴之间的位置关系进行讨论是解题的关键.三、解答题:(共9题,计62分)17.(6分)按要求解下列方程.(1)x 2+3x +2=0 (2)2x 2﹣4x =1【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可; (2)移项后求出b 2﹣4ac 的值,再代入公式求出即可. 【解答】解:(1)x 2+3x +2=0, (x +2)(x +1)=0,x +2=0,x +1=0, x 1=﹣2,x 2=﹣1;(2)2x 2﹣4x =1, 2x 2﹣4x ﹣1=0,b 2﹣4ac =(﹣4)2﹣4×2×(﹣1)=24,x =,x 1=﹣,x 2=.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键. 18.(6分)某饭店共有6名员工,所有员工的工资如表所示:(2)平均月工资能准确反映该饭店员工工资的一般水平吗?若能,请说明理由.若不能,如何才能较准确地反映该饭店员工工资的一般水平?谈谈你的看法.【分析】(1)根据平均数的计算公式,直接求出酒店所有员工的平均月工资即可;(2)由平均数的值,可见平均月工资不能准确反映该酒店员工工资的一般水平,反映该酒店员工工资的一般水平的统计量应符合多数人的工资水平才可以.【解答】解:(1)平均月工资=(4000+600+900+500+500+400)÷6=1150(元), 众数为500元,中位数700元;(2)∵能达到这个工资水平的只有1人,∴平均月工资不能准确反映该酒店员工工资的一般水平,这组数据的众数是500元,才能较准确地反映该酒店员工工资的一般水平,原因是它符合多数人的工资水平.【点评】本题考查了平均数的计算及众数、中位数的知识,以及统计量的正确选择,解题的关键是能够了解众数及中位数的意义,难度不大.19.(6分)已知关于x 的一元二次方程x 2﹣mx +m ﹣2=0.(1)求证:无论m 取何值,该方程均有两不等的实数解;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.【分析】(1)先计算△=m 2﹣4(m ﹣2)=m 2﹣4m +8,配方得到△=(m ﹣2)2+4,由于(m ﹣2)2≥0,则(m ﹣2)2+4>0,即△>0,根据△的意义即可得到无论m 取何值,该方程总有两个不相等的实数根.(2)将x 1+x 2=m 、x 1x 2=m ﹣2代入2x 1x 2+x 1+x 2≥20得出关于m 的不等式,解之可得. 【解答】解:(1)∵△=m 2﹣4(m ﹣2) =m 2﹣4m +8 =(m ﹣2)2+4, ∵(m ﹣2)2≥0,∴(m ﹣2)2+4>0,即△>0,∴无论m 取何值,该方程总有两个不相等的实数根.(2)∵x 1+x 2=m 、x 1x 2=m ﹣2,∴由2x 1x 2+x 1+x 2≥20可得2(m ﹣2)+m ≥20, 解得:m ≥8.【点评】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有两实数根,也考查了根与系数的关系.20.(6分)如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB 、CD 的延长线分别交于E 、F .(1)证明:△BOE ≌△DOF ;(2)当EF ⊥AC 时,求证四边形AECF 是菱形.【分析】(1)由矩形的性质:OB =OD ,AE ∥CF 证得△BOE ≌△DOF ; (2)根据对角线互相垂直平分的四边形是菱形,即可判断; 【解答】(1)证明:∵四边形ABCD 是矩形, ∴OB =OD (矩形的对角线互相平分),AE ∥CF (矩形的对边平行).∴∠E=∠F,∠OBE=∠ODF.∴△BOE≌△DOF(AAS).(2)证明:∵四边形ABCD是矩形,∴OA=OC(矩形的对角线互相平分).又∵由(1)△BOE≌△DOF得,OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形)又∵EF⊥AC,∴四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).【点评】本题考查矩形的性质、菱形的判定、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.21.(7分)已知正比例函数y=k1x的图象与一次函数y=k2x﹣9的图象交于点P(3,﹣3).(1)求k1和k2的值;(2)如果一次函数y=k2x﹣9的图象与x轴交于点A,求△AOP的面积.【分析】(1)将点P的坐标代入两函数解析式求解,即可得到k1和k2的值;(2)令y=0求出x的值,然后写出点A的坐标,即可得到△AOP的面积.【解答】解:(1)将点P(3,﹣3)代入y=k1x得,3k1=﹣3,解得k1=﹣1,将点P(3,﹣3)代入y=k2x﹣9得,3k2﹣9=﹣3,解得k2=2;(2)一次函数解析式为y=2x﹣9,令y=0,则2x﹣9=0,解得x=,所以点A的坐标为(,0),所以△AOP的面积=××|﹣3|=.【点评】本题考查了两直线相交的问题,主要利用了待定系数法求一次函数解析式以及一次函数与坐标轴的交点的求法.22.(7分)为了检验一批禽流感疫苗对鸡在自然条件下的免疫反应,工作人员在实验室外设立了一块面积为150平方米的长方形临时鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米,求这个鸡场的长与宽各是多少米?【分析】设平行于墙的边长为x米(x≤18),则垂直于墙的边长为米,根据长方形临时鸡场的面积为150平方米,列出关于x的一元二次方程,解之,找出符合x取值范围的答案即可.【解答】解:设平行于墙的边长为x米(x≤18),则垂直于墙的边长为米,根据题意得:x=150,解得:x1=15,x2=20(舍去),=10(米),答:这个鸡场的长为15米,宽为10米.【点评】本题考查一元二次方程的应用,正确找出等量关系,列出关于x的一元二次方程是解题的关键.23.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?【分析】(1)首先由表格可知:销售单价每涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.【解答】解:(1)∵由表格可知:销售单价每涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;(2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=﹣x2+200x﹣12800=﹣(x﹣200)2+7200,∵a=﹣<0,∴当x<200时,w随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w=﹣(180﹣200)2+7200=7000(元),答:当销售单价为180元时,销售利润最大,最大利润是7000元.【点评】此题考查了二次函数与一次函数的应用.注意理解题意,找到等量关系是关键.24.(8分)正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F.(1)如图1,当点P与点O重合时,求证:DF=CF;(2)在图2中可以证明PC=CE+PA,那么若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E.请在图3中画出图形,并判断此时图2中得到的PC,CE,PA之间的关系是否仍然成立,并给出证明.【分析】(1)首先证明PF∥AD,然后依据平行线分线段成比例定理进行证明即可;(2)首先依据题意画出图形,然后再证明△PBC≌△PDC,从而可证明∠PEC=∠PDC,然后依据等腰三角形的性质可证DF=EF,然后再依据PC=CF,PA=(CE+CF)求解即刻.【解答】解:(1)∵ABCD为正方形,∴AD⊥CD.又∵PF⊥DC,∴AD∥PF.∴=.又∵O与P重合,∴AP=PC.∴DF=FC.(2)不成立,此时三条线段的数量关系是PA﹣PC=CE.∵PB⊥PE,BC⊥CE,∴B、P、C、E四点共圆,∴∠PEC=∠PBC,在△PBC 和△PDC 中有:BC =DC (已知),∠PCB =∠PCD =45°(已证),PC 边公共边, ∴△PBC ≌△PDC (SAS ), ∴∠PBC =∠PDC , ∴∠PEC =∠PDC , ∵PF ⊥DE , ∴DF =EF ;∵PA =PG =DF =EF ,PC =CF ,∴PA =EF =(CE +CF )=CE +CF =CE +PC即PC 、PA 、CE 满足关系为:PA ﹣PC =CE .【点评】本题是一个动态几何题,考查用正方形性质、线段垂直平分线的性质、三角形相似的条件和性质进行有条理的思考和表达能力.利用条件构造三角形全等是解题的关键. 25.(8分)已知:抛物线y 1=ax 2+bx +1,ab ≠0的顶点为A (1,k ) (1)若抛物线经过点B (﹣1,4),求该抛物线的解析式; (2)若抛物线y 2=2x 2也经过A 点,求a ,b 的值;(3)若点A 在抛物线y 3=tx 2+x ,t <﹣1上,且抛物线y 1与x 轴有两个不同的交点,求a 的取值范围.【分析】(1)把B 点坐标代入解析式,对称轴x =﹣=1,组成方程组可求a ,b ,即得到抛物线解析式.(2)先求k 的值,根据顶点坐标公式可求a ,b 的值.(3)根据抛物线y 1与x 轴有两个不同的交点,则△>0,可得a >1,或a <0,把A (1,k )代入两个解析式中,找到t 与k 的关系,可求a 的取值,综合下可得a 的取值范围.【解答】解:(1)根据题意得:解得:a =1,b =﹣2 ∴解析式y =x 2﹣2x 1(2)∵抛物线y 2=2x 2也经过A 点, ∴k =2 ∴A (1,2)∴解得:a =﹣1,b =2(3)根据题意得:∴t=a+b,又∵t<﹣1,﹣=1∴a>1与x轴有两个不同的交点∵抛物线y1∴△=b2﹣4a×1>0∴4a(a﹣1)>0∴a>1或a<0综上所述:a>1【点评】本题考查了二次函数图象与系数的关系,用待定系数法求二次函数解析式,抛物线与x 轴交点,关键是掌握△=b2﹣4ac决定抛物线与x轴的交点个数.。
福建省惠安县尾山学校等六校2017-2018学年八年级数学下学期期中试题新人教版含答案
福建省惠安县尾山学校等六校2017-2018学年八年级数学下学期期中试题(满分:150分 考试时间:120分钟) 友情提示:所有答案必须填写到答题卡相应的位置上.学校姓名号数第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.在答题卡的相应位置内作答.(1)若分式23xx +有意义,则x 的取值范围为( ). A .3x >- B .x ≥3- C .3x ≠- D .0x ≠ (2)点(3,2)-关于原点对称的点的坐标为( ).A .(3,2)-B .(3,2)--C .(3,2)D .(2,3)- (3)已知点(1,2)M a a -+在平面直角坐标系的第二象限,则a 的取值范围是( ).A . 1a <B .2a >-C . 12a -<<D .21a -<<(4)若9y kx =-的函数值y 随x 的增大而减小,则k 的值可能是下列的( ).A . 4 B. 3- C. 0 D.13(5)已知甲、乙两个函数图像上部分点的横坐标x 与对应的纵坐标y 分别如下表所示.若这两个函数图像仅有一个交点,则交点的纵坐标y 是( ).A .0B .1 C. 2 D .3(甲) (乙)(6)将直线5y x =+向下平移2个单位,得到的直线是( ).A .2y x =-B .2y x =+C .3y x =+D .7y x =+(7)小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程()s km 与所花时间(min)t 之间的函数关系,下列说法错误的是( ).A .他离家8()km 共用了30(min)B .他等公交车时间为6(min)C .他步行的速度是100/min mD .公交车的速度是350/min m(8)若关于x 的分式方程1233x mx x +-=--无解,则m 的值为( ). A. 3 B. 4 C. 5 D. 6(9)设函数6y x =与1y x =+的图象的交点坐标为(a ,b ),则11a b-的值为( ). A .16 B .6 C .16- D . 6-(10)若直线y kx k =+经过点(,3)m n +和(1,2)m n +,且02k <<,则n 的值可以是( ).A. 3B. 4C. 5D. 6第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.(11)计算:8811m m m +++(12)测得某人的一根头______________. (13)计算: 01(1)4π---=(14)如图,AB x ⊥图象经过线段若ABO ∆的面积为2(15)已知130x x +-=(16OA ,若在直线a 上存在点P 坐标是 .三、解答题:本题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤. 在答题卡的相应位置内作答.(17)(本小题满分8分)计算:22193m m m --+.(18)(本小题满分8分)先化简:21(1)11aa a -÷+-,再选择一个合适的整数作为a 的值代入求值.(19) (本小题满分8分)解方程:211xx x =-+.(20)(本小题满分8分)某校初一年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度是多少千米/小时?(21) (本小题满分8分)已知反比例函数的图象经过点),(32-P . (Ⅰ)求该函数的解析式;(Ⅱ)若将点P 沿x 轴负方向平移3个单位,再沿y 轴方向平移)0(>n n 个单位得到点Q ,使得点Q 恰好在该函数的图象上,求n 的值.(22)(本小题满分10分)一次函数4+=kx y 的图象经过点),(21-. (Ⅰ)求出这个一次函数的表达式;(Ⅱ)在平面直角坐标系中准确地画出这个函数的图象; (Ⅲ)已知这个函数的图象分别与x 轴、y 轴 相交于点A 、B ,点),(11C ,求ABC ∆的面积.(23) (本小题满分10分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了x h之间手机支付和会员卡支付两种支付方式,下图描述了两种方式应支付金额y(元)与骑行时间()的函数关系,根据图象回答下列问题.x h的函数关系式;(Ⅰ)求手机支付金额y (元)与骑行时间()(Ⅱ)陈老师经常骑行共享单车,请你帮他确定选择哪种支付方式比较合算?(24) (本小题满分12分)某商场同时购进甲、乙两种商品共200件,其进价和售价如右表,设其中甲种商品购进x件.(Ⅰ) 直接写出购进乙种商品的件数;(用含x的代数式表示)(Ⅱ)若设该商场售完这200件商品的总利润为y元.(ⅰ)求y与x的函数关系式;(ⅱ)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(25) (本小题满分14分)商品名称甲乙进价(元/件)80 100 售价(元/件) 160 240在平面直角坐标系中,直线AB 与y 轴、x 轴分别交于点A 、点B ,与双曲线6y x=()0x >交于C 、D 两点,分别过点C 、点D 作CE x ⊥轴,x DF ⊥轴,垂足分别为点E 、点F ,1OE = (Ⅰ)求线段CE 的长; (Ⅱ)若13DF CE =. (ⅰ)求直线AB 的解析式;(ⅱ)请你判断线段AC 与线段DB 的大小关系,并说明理由.草稿纸2017-2018学年度第二学期期中教学质量监测八年级数学试题参考答案及评分标准一、选择题(每小题4分,共40分)(1)C (2)A (3)D (4)B (5)D (6)C (7) D (8)B (9)A (10)B 二、填空题(每小题4分,共24分)(11)8 (12)57.1510-⨯(13)34 (14)2y x= (15) 7 (16)(8,4)、 (2,4)-、 (3,4)-. 写对一个得1分,写对两个得2分,写对三个得4分 三、解答题(共86分) (17)(本小题8分)解:原式21(3)(3)3m m m m =-+-+,……………………………………………………………2分23(3)(3)(3)(3)m m m m m m -=-+-+-,………………………………………………4分3(3)(3)m m m +=+-,……………………………………………………………………6分13m =-…………………………………………………………………………………8分(18)(本小题8分)解:解:原式11(1)(1)()11a a a a a a++-=-∙++ , ……………………………………………2分 (1)(1)1a a a a a+-=∙+ , ……………………………………………………4分 =1a - , …………………………………………………………………………6分当3a =时,原式=312-=. …………………………………………………………………………8分(19)(本小题8分)解: ()()2211x x x x +=+- ,…………………………………………………………3分2222x x x x +=+- ,2x =- , …………………………………………………………6分经检验:2x =-是原方程的解, …………………………………………………………8分 ∴2x =-是原方程的解.(20)(本小题8分)解:设中巴车速度为x 千米/小时,则旅游车的速度为x 2.1千米/小时. …………………1分 依题意得6082.14040=-x x ………………………………………………………………5分 解得50=x ……………………………………………………………………………7分经检验50=x 是原方程的解且符合题意…………………………………………………8分 答:中巴车的速度为50千米/小时.(21)(本小题8分)解:(Ⅰ)设此反比例函数的解析式为xk y =(0≠k )…………………………………………1分 依题意得:6)3(2-=-⨯=k …………………………………………3分∴ 此反比例函数的解析式为xy 6-=;…………………………………………4分 (Ⅱ)依题意设点P 平移后的对应点Q 的坐标为),(m Q 1-……………5分∵ 点Q 恰好在函数xy 6-=的图象上…………………………………………6分 ∴ 6-=-m ,∴ 6=m …………………………………………7分∴ 9)3(6=--=n ………………………………………8分(22)(本小题10分)解:(Ⅰ)∵一次函数4+=kx y 的图象经过点),(21-, ∴42k -+=,∴2k =,…………………………………………………………………………………2分∴这个一次函数的表达式是24y x =+.……………………………………………………3分 (Ⅱ)列表………………………………………………………………………4分描点………………………………………………………………………5分连线 ………………………………………………………………………6分(Ⅲ) )∵24y x =+的图象分别与x 轴、y 轴相交于点A 、B∴A (-2,0)、B (0,4)………………………………………7分 过点C 作CD x ⊥轴,垂足为点D∴ABC ACD S S S ∆∆-=四边形ABCDABO ACD S S S ∆∆-=+四边形BCDO535224-==+………………………………………10分(23)(本小题10分)解:(Ⅰ)设手机支付金额y (元)与骑行时间()x h 的函数关系式为y kx b =+,…………1分 ∵点()0.5,0、()1,0.5在y kx b =+的图象上,得0.500.5k b k b +=⎧⎨+=⎩……………………………………………………2分解得10.5k b =⎧⎨=-⎩ ……………………………………………………4分∴手机支付金额y(元)与骑行时间()x h 的函数关系式为0.5y x =-.…………………………5分 (Ⅱ)设会员卡支付金额y (元)与骑行时间()x h 的函数关系式为y mx =,∵过点()1,0.75在y mx =的图象上,∴10.75m ⨯=,∴0.75m =,∴0.75y x =. ……………………………………………………7分当0.50.75x x -=,即2x =时,选择手机支付与会员卡支付金额相同;……………8分 当0.50.75x x ->,即2x >时,选择会员卡支付比较合算; ……………9分当0.50.75x x -<,即2x <时,选择手机支付比较合算. ……………10分(24)(本小题12分)解:(Ⅰ) 购进乙种商品的件数是(200﹣x )件;……………………………3分(Ⅱ)(ⅰ)由已知可得:y=(160﹣80)x+(240﹣100)(200﹣x )……………5分=﹣60x+28000(0≤x≤200).……………………………7分(ⅱ)由已知得:80x+100(200﹣x )≤18000,……………………8分解得:x≥100,……………………………9分∴100≤x≤200…………………………10分∵y=﹣60x+28000,∴x 在100≤x≤200范围内,y 随x 增大而减小,…………………………11分 ∴当x=100时,y 有最大值,y 最大=﹣60×100+28000=22000.∴该商场获得的最大利润为22000元.………………………………12分(25)(本小题14分)解:(Ⅰ) ∵1OE =,∴点C 的横坐标是1……………………………………………………………1分 ∵点C 在双曲线6y x=()0x >的图象上 ∴ 661y == …………………………………………………………2分 ∴6CE = …………………………………………………………3分 (Ⅱ) ∵13DF CE = ∴ 1623DF =⨯= ………………………… …………………………4分 (ⅰ)∵点D 在双曲线6y x =()0x >的图象上,2DF = ∴62x= ∴3x = ∴()2,3D …………………………………………………………5分 设直线AB 的解析式为:b kx y +=()0≠k ,∵直线AB 过点()6,1C 、()2,3D∴⎩⎨⎧=+=+23,6b k b k , ……………………………………………………………6分 解得:⎩⎨⎧=-=8,2b k ……………………………………………………………7分∴直线AB 的解析式为:82+-=x y .………………………………………8分 (Ⅲ) DB AC =…………………………………………………………………9分 解法一:过点C 作CM y ⊥轴,垂足为点M∵直线AB 与y 轴交于点A ,∴令0=x ,则8=y ,∴()8,0A ,∵直线AB 与x 轴交于点B ,∴令0=y ,则4=x ,∴()0,4B ,…………………………………………………10分 ∵()6,1C 、()2,3D∴2AM DF ==,1CM BF ==………………………………………………11分 ∵CM y ⊥轴,x DF ⊥轴.∴90AMC DFB ∠=∠=︒∵AM DF =,CM BF =………………………………………………12分∴AMC ∆≌DFB ∆()SAS ………………………………………………………13分 ∴DB AC =……………………………………………………………………14分解法二:过点C 作CM x ⊥轴,垂足为点M根据勾股定理可得AC =DB =AC∴DB。
2017-2018学年福州XX中学八年级下期中数学试卷((有答案))
2017-2018学年福建省福州XX中学八年级(下)期中数学试卷一、选择题(每题2分,共10题,共计20分)1.下列方程是关于x的一元一次方程的是()A.x+1=0B.k2x+5k+6=0C.D.(k2x+3)x2+2x+1=02.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形3.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.4.将y=x2﹣2x﹣1配方后得到的结果是()A.y=(x﹣1)2﹣1B.y=(x﹣1)2﹣2C.y=﹣(x﹣1)2+1D.y=(x﹣1)2+25.若一次函数y=ax+b的图象不经过第三象限,则下列不等式中总是成立的是()A.a>0,b>0B.a>0,b<0C.a<0,b≥0D.a<0,b<06.随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8B.28.8(1+x)2=20C.20(1+x)2=28.8D.20+20(1+x)+20(1+x)2=28.87.甲、乙两名队员参加射击训练,成绩分别被制作成下面两个统计图:下列说法中错误的是()A.甲射击成绩的中位数为7B.乙射击成绩的众数为8C.甲射击成绩的平均数为7D.乙射击成绩的平均数为7.58.已知二次函数y=ax2+bx+c的图象如图所示,则()A.a>0,c>0,b2﹣4ac<0B.a>0,c<0,b2﹣4ac>0C.a<0,c>0,b2﹣4ac<0D.a<0,c<0,b2﹣4ac>09.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7B.10C.11D.10或1110.在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()A.①②B.①②④C.③④D.①②③④二、填空题:(每题3分,共6题,计18分)11.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为.12.某体校要从四名射击选手中选拔一名参加体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差s2如表所示,如果要选出一名成绩高,且发挥稳定的选手参赛,则应选择的选手是.(环)13.已知二元一次方程组的解为,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=﹣x﹣1的交点坐标为.14.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是.15.如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=度.16.当﹣b≤x≤b时,二次函数y=﹣3x2﹣3x+4b2+的最大值是7,则b=.三、解答题:(共9题,计62分)17.(6分)按要求解下列方程.(1)x2+3x+2=0(2)2x2﹣4x=118.(6分)某饭店共有6名员工,所有员工的工资如表所示:(2)平均月工资能准确反映该饭店员工工资的一般水平吗?若能,请说明理由.若不能,如何才能较准确地反映该饭店员工工资的一般水平?谈谈你的看法.19.(6分)已知关于x的一元二次方程x2﹣mx+m﹣2=0.(1)求证:无论m取何值,该方程均有两不等的实数解;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.20.(6分)如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.(1)证明:△BOE≌△DOF;(2)当EF⊥AC时,求证四边形AECF是菱形.21.(7分)已知正比例函数y=k1x的图象与一次函数y=k2x﹣9的图象交于点P(3,﹣3).(1)求k1和k2的值;(2)如果一次函数y=k2x﹣9的图象与x轴交于点A,求△AOP的面积.22.(7分)为了检验一批禽流感疫苗对鸡在自然条件下的免疫反应,工作人员在实验室外设立了一块面积为150平方米的长方形临时鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米,求这个鸡场的长与宽各是多少米?23.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?24.(8分)正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F.(1)如图1,当点P与点O重合时,求证:DF=CF;(2)在图2中可以证明PC=CE+PA,那么若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E.请在图3中画出图形,并判断此时图2中得到的PC,CE,PA之间的关系是否仍然成立,并给出证明.25.(8分)已知:抛物线y1=ax2+bx+1,ab≠0的顶点为A(1,k)(1)若抛物线经过点B(﹣1,4),求该抛物线的解析式;(2)若抛物线y2=2x2也经过A点,求a,b的值;(3)若点A在抛物线y3=tx2+x,t<﹣1上,且抛物线y1与x轴有两个不同的交点,求a的取值范围.参考答案与试题解析一、选择题(每题2分,共10题,共计20分)1.下列方程是关于x的一元一次方程的是()A.x+1=0B.k2x+5k+6=0C.D.(k2x+3)x2+2x+1=0【分析】根据一元一次方程的定义对A、B进行判断;根据分式方程的定义对C进行判断;根据一元二次方程的定义对D进行判断.【解答】解:A、x+1=0为一元一次方程,所以A选项正确;B、当k≠0时,k2x+5k+6=0为一元一次方程,所以B选项错误;C、方程中含分式,所以3x2+2x+=0为分式方程,所以C选项错误;D、方程(k2x+3)x2+2x+1=0为一元二次方程,所以D选项错误.故选:A.【点评】本题考查了一元二次方程的定义:一元二次方程同时满足的三个条件.2.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【分析】直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.【解答】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选:D.【点评】此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.3.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据负数没有平方根求出x的范围,表示在数轴上即可.【解答】解:由函数y=,得到3x+6≥0,解得:x≥﹣2,表示在数轴上,如图所示:故选:A.【点评】此题考查了在数轴上表示不等式的解集,以及函数自变量的取值范围,熟练掌握平方根定义是解本题的关键.4.将y=x2﹣2x﹣1配方后得到的结果是()A.y=(x﹣1)2﹣1B.y=(x﹣1)2﹣2C.y=﹣(x﹣1)2+1D.y=(x﹣1)2+2【分析】根据配方法把二次函数的一般式化为顶点式即可.【解答】解:y=x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,故选:B.【点评】本题考查了二次函数的三种形式,掌握用配方法把一般式化为顶点式是解题的关键.5.若一次函数y=ax+b的图象不经过第三象限,则下列不等式中总是成立的是()A.a>0,b>0B.a>0,b<0C.a<0,b≥0D.a<0,b<0【分析】根据一次函数的性质,可得答案.【解答】解:一次函数y=ax+b的图象不经过第三象限,得a<0,b≥0,故选:C.【点评】本题考查了一次函数的性质,利用一次函数的性质是解题关键.6.随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8B.28.8(1+x)2=20C.20(1+x)2=28.8D.20+20(1+x)+20(1+x)2=28.8【分析】设这两年观赏人数年均增长率为x,根据“2014年约为20万人次,2016年约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选:C.【点评】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),一般形式为a(1+x)2=b,a 为起始时间的有关数量,b为终止时间的有关数量.7.甲、乙两名队员参加射击训练,成绩分别被制作成下面两个统计图:下列说法中错误的是()A.甲射击成绩的中位数为7B.乙射击成绩的众数为8C.甲射击成绩的平均数为7D.乙射击成绩的平均数为7.5【分析】直接根据统计图得出甲、乙队员的射击成绩,计算平均数,找出中位数和众数即可.【解答】解:A、甲射击成绩的中位数为=7,此选项正确;B、乙射击成绩分布如下:3环1次、4环1次、6环1次、7环2次、8环3次、9环1次、10环1次,所以乙射击成绩的众数为8,此选项正确;C、甲射击成绩的平均数为:(5+6+6+7+7+7+7+8+8+9)÷10=7,此选项正确;D、乙的平均数为:(3+4+6+7+7+8+8+8+9+10)÷10=7,此选项错误;故选:D.【点评】本题主要考查了条形统计图和折线统计图、平均数的计算、中位数、众数等知识点,难度不大,清楚各统计概念是解答的关键.8.已知二次函数y=ax2+bx+c的图象如图所示,则()A.a>0,c>0,b2﹣4ac<0B.a>0,c<0,b2﹣4ac>0C.a<0,c>0,b2﹣4ac<0D.a<0,c<0,b2﹣4ac>0【分析】利用抛物线开口方向得到a<0,由抛物线的对称轴位置得到b>0,由抛物线与y轴的交点位置得到c<0,由抛物线与x轴有2个交点得到b2﹣4ac>0,然后对各选项进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴a、b异号,即b>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,故选:D.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.9.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7B.10C.11D.10或11【分析】把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0,解得m=6,则原方程为x2﹣7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选:D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.10.在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()A.①②B.①②④C.③④D.①②③④【分析】①根据轴对称图形的性质,可知△ABF与△AB′F关于AE对称,即得AB′=AD;②连接EB′,根据E为BC的中点和线段垂直平分线的性质,求出∠BB′C为直角三角形;③假设∠ADB′=75°成立,则可计算出∠AB′B=60°,推知△ABB′为等边三角形,B′B=AB=BC,与B′B<BC矛盾;④根据∠ABB′=∠AB′B,∠AB′D=∠ADB′,结合周角定义,求出∠DB′C的度数.【解答】解:①∵点B′与点B关于AE对称,∴△ABF与△AB′F关于AE对称,∴AB=AB′,∵AB=AD,∴AB′=AD.故①正确;②如图,连接EB′.则BE=B′E=EC,∠FBE=∠FB′E,∠EB′C=∠ECB′.则∠FB′E+∠EB′C=∠FBE+∠ECB′=90°,即△BB′C为直角三角形.∵FE为△BCB′的中位线,∴B′C=2FE,∵△B′EF∽△AB′F,∴=,即==,故FB′=2FE.∴B′C=FB′.∴△FCB′为等腰直角三角形.故②正确.④设∠ABB′=∠AB′B=x度,∠AB′D=∠ADB′=y度,则在四边形ABB′D中,2x+2y+90°=360°,即x+y=135度.又∵∠FB′C=90°,∴∠DB′C=360°﹣135°﹣90°=135°.故④正确.③假设∠ADB′=75°成立,则∠AB′D=75°,∠ABB′=∠AB′B=360°﹣135°﹣75°﹣90°=60°,∴△ABB′为等边三角形,故B′B=AB=BC,与B′B<BC矛盾,故③错误.故选:B.【点评】此题考查了正方形的性质、等腰直角三角形的判定和性质,等边三角形的性质及反证法等知识,综合性很强,值得关注.二、填空题:(每题3分,共6题,计18分)11.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为y=(x+2)2﹣3.【分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(﹣2,﹣3),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移3个单位得到对应点的坐标为(﹣2,﹣3),所以平移后的抛物线解析式为y=(x+2)2﹣3.故答案为y=(x+2)2﹣3.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.某体校要从四名射击选手中选拔一名参加体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差s2如表所示,如果要选出一名成绩高,且发挥稳定的选手参赛,则应选择的选手是乙.(环)【解答】解:∵乙、丙的平均成绩高于甲和丁,且乙的方差小于丙的方差,即乙的成绩更稳定,∴应选择选手乙,故答案为:乙.【点评】本题主要考查方差和平均数,掌握方差的意义是解题的关键.13.已知二元一次方程组的解为,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=﹣x﹣1的交点坐标为(﹣4,1).【分析】根据一次函数与二元一次方程组的关系进行解答即可.【解答】解:∵二元一次方程组的解为,∴直线l1:y=x+5与直线l2:y=﹣x﹣1的交点坐标为(﹣4,1),故答案为:(﹣4,1).【点评】本题考查的是一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是k<5且k≠1.【分析】根据二次项系数非零以及根的判别式△>0,即可得出关于k的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,解得:k<5且k≠1.故答案为:k<5且k≠1.【点评】本题考查了根的判别式以及解一元一次不等式组,根据二次项系数非零以及根的判别式△>0,找出关于k的一元一次不等式组是解题的关键.15.如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=30度.【分析】根据折叠的性质知:可知:BN=BP,从而可知∠BPN的值,再根据∠PBQ=∠CBQ,可将∠PBQ的角度求出.【解答】解:根据折叠的性质知:BP=BC,∠PBQ=∠CBQ∴BN=BC=BP∵∠BNP=90°∴∠BPN=30°∴∠PBQ=×60°=30°.故答案为30.【点评】已知折叠问题就是已知图形的全等,根据边之间的关系,可将∠PBQ的度数求出.16.当﹣b≤x≤b时,二次函数y=﹣3x2﹣3x+4b2+的最大值是7,则b=.【分析】首先求得抛物线的对称轴为x=,当|b|<时,x=﹣b时,二次函数有最大值,当|b|≥时,x=﹣时,二次函数有最大值,最后根据最大值为7列方程求解即可.【解答】解:抛物线的对称轴为x=,当|b|<时,x=﹣b时,二次函数有最大值,根据题意得:﹣3b2+3b+4b2+=7,解得:(舍去),(舍去);当|b|≥时,x=﹣时,二次函数有最大值,根据题意得:﹣3×﹣3×(﹣)+4b2+=7.解得:b=或b=﹣(舍去).故答案为:.【点评】本题主要考查的是二次函数的最值,根据|b|与抛物线的对称轴之间的位置关系进行讨论是解题的关键.三、解答题:(共9题,计62分)17.(6分)按要求解下列方程.(1)x2+3x+2=0(2)2x2﹣4x=1【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后求出b2﹣4ac的值,再代入公式求出即可.【解答】解:(1)x2+3x+2=0,(x+2)(x+1)=0,x+2=0,x+1=0,x1=﹣2,x2=﹣1;(2)2x2﹣4x=1,2x2﹣4x﹣1=0,b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,x=,x1=﹣,x2=.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.18.(6分)某饭店共有6名员工,所有员工的工资如表所示:(2)平均月工资能准确反映该饭店员工工资的一般水平吗?若能,请说明理由.若不能,如何才能较准确地反映该饭店员工工资的一般水平?谈谈你的看法.【分析】(1)根据平均数的计算公式,直接求出酒店所有员工的平均月工资即可;(2)由平均数的值,可见平均月工资不能准确反映该酒店员工工资的一般水平,反映该酒店员工工资的一般水平的统计量应符合多数人的工资水平才可以.【解答】解:(1)平均月工资=(4000+600+900+500+500+400)÷6=1150(元),众数为500元,中位数700元;(2)∵能达到这个工资水平的只有1人,∴平均月工资不能准确反映该酒店员工工资的一般水平,这组数据的众数是500元,才能较准确地反映该酒店员工工资的一般水平,原因是它符合多数人的工资水平.【点评】本题考查了平均数的计算及众数、中位数的知识,以及统计量的正确选择,解题的关键是能够了解众数及中位数的意义,难度不大.19.(6分)已知关于x的一元二次方程x2﹣mx+m﹣2=0.(1)求证:无论m取何值,该方程均有两不等的实数解;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【分析】(1)先计算△=m2﹣4(m﹣2)=m2﹣4m+8,配方得到△=(m﹣2)2+4,由于(m﹣2)2≥0,则(m ﹣2)2+4>0,即△>0,根据△的意义即可得到无论m取何值,该方程总有两个不相等的实数根.(2)将x1+x2=m、x1x2=m﹣2代入2x1x2+x1+x2≥20得出关于m的不等式,解之可得.【解答】解:(1)∵△=m2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴无论m取何值,该方程总有两个不相等的实数根.(2)∵x1+x2=m、x1x2=m﹣2,∴由2x1x2+x1+x2≥20可得2(m﹣2)+m≥20,解得:m≥8.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有两实数根,也考查了根与系数的关系.20.(6分)如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.(1)证明:△BOE≌△DOF;(2)当EF⊥AC时,求证四边形AECF是菱形.【分析】(1)由矩形的性质:OB=OD,AE∥CF证得△BOE≌△DOF;(2)根据对角线互相垂直平分的四边形是菱形,即可判断;【解答】(1)证明:∵四边形ABCD是矩形,∴OB=OD(矩形的对角线互相平分),AE∥CF(矩形的对边平行).∴∠E=∠F,∠OBE=∠ODF.∴△BOE≌△DOF(AAS).(2)证明:∵四边形ABCD是矩形,∴OA=OC(矩形的对角线互相平分).又∵由(1)△BOE≌△DOF得,OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形)又∵EF⊥AC,∴四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).【点评】本题考查矩形的性质、菱形的判定、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.21.(7分)已知正比例函数y=k1x的图象与一次函数y=k2x﹣9的图象交于点P(3,﹣3).(1)求k1和k2的值;(2)如果一次函数y=k2x﹣9的图象与x轴交于点A,求△AOP的面积.【分析】(1)将点P的坐标代入两函数解析式求解,即可得到k1和k2的值;(2)令y=0求出x的值,然后写出点A的坐标,即可得到△AOP的面积.【解答】解:(1)将点P(3,﹣3)代入y=k1x得,3k1=﹣3,解得k1=﹣1,将点P(3,﹣3)代入y=k2x﹣9得,3k2﹣9=﹣3,解得k2=2;(2)一次函数解析式为y=2x﹣9,令y=0,则2x﹣9=0,解得x=,所以点A的坐标为(,0),所以△AOP的面积=××|﹣3|=.【点评】本题考查了两直线相交的问题,主要利用了待定系数法求一次函数解析式以及一次函数与坐标轴的交点的求法.22.(7分)为了检验一批禽流感疫苗对鸡在自然条件下的免疫反应,工作人员在实验室外设立了一块面积为150平方米的长方形临时鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米,求这个鸡场的长与宽各是多少米?【分析】设平行于墙的边长为x米(x≤18),则垂直于墙的边长为米,根据长方形临时鸡场的面积为150平方米,列出关于x的一元二次方程,解之,找出符合x取值范围的答案即可.【解答】解:设平行于墙的边长为x米(x≤18),则垂直于墙的边长为米,根据题意得:x=150,解得:x1=15,x2=20(舍去),=10(米),答:这个鸡场的长为15米,宽为10米.【点评】本题考查一元二次方程的应用,正确找出等量关系,列出关于x的一元二次方程是解题的关键.23.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?【分析】(1)首先由表格可知:销售单价每涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.【解答】解:(1)∵由表格可知:销售单价每涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;(2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=﹣x2+200x﹣12800=﹣(x﹣200)2+7200,∵a=﹣<0,∴当x<200时,w随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w=﹣(180﹣200)2+7200=7000(元),答:当销售单价为180元时,销售利润最大,最大利润是7000元.【点评】此题考查了二次函数与一次函数的应用.注意理解题意,找到等量关系是关键.24.(8分)正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F.(1)如图1,当点P与点O重合时,求证:DF=CF;(2)在图2中可以证明PC=CE+PA,那么若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E.请在图3中画出图形,并判断此时图2中得到的PC,CE,PA之间的关系是否仍然成立,并给出证明.【分析】(1)首先证明PF∥AD,然后依据平行线分线段成比例定理进行证明即可;(2)首先依据题意画出图形,然后再证明△PBC≌△PDC,从而可证明∠PEC=∠PDC,然后依据等腰三角形的性质可证DF=EF,然后再依据PC=CF,PA=(CE+CF)求解即刻.【解答】解:(1)∵ABCD为正方形,∴AD⊥CD.又∵PF⊥DC,∴AD∥PF.∴=.又∵O与P重合,∴AP=PC.∴DF=FC.(2)不成立,此时三条线段的数量关系是PA﹣PC=CE.∵PB⊥PE,BC⊥CE,∴B、P、C、E四点共圆,∴∠PEC=∠PBC,在△PBC和△PDC中有:BC=DC(已知),∠PCB=∠PCD=45°(已证),PC边公共边,∴△PBC≌△PDC(SAS),∴∠PBC=∠PDC,∴∠PEC=∠PDC,∵PF⊥DE,∴DF=EF;∵PA=PG=DF=EF,PC=CF,∴PA=EF=(CE+CF)=CE+CF=CE+PC即PC、PA、CE满足关系为:PA﹣PC=CE.【点评】本题是一个动态几何题,考查用正方形性质、线段垂直平分线的性质、三角形相似的条件和性质进行有条理的思考和表达能力.利用条件构造三角形全等是解题的关键.25.(8分)已知:抛物线y1=ax2+bx+1,ab≠0的顶点为A(1,k)(1)若抛物线经过点B(﹣1,4),求该抛物线的解析式;(2)若抛物线y2=2x2也经过A点,求a,b的值;(3)若点A在抛物线y3=tx2+x,t<﹣1上,且抛物线y1与x轴有两个不同的交点,求a的取值范围.【分析】(1)把B点坐标代入解析式,对称轴x=﹣=1,组成方程组可求a,b,即得到抛物线解析式.(2)先求k的值,根据顶点坐标公式可求a,b的值.(3)根据抛物线y1与x轴有两个不同的交点,则△>0,可得a>1,或a<0,把A(1,k)代入两个解析式中,找到t与k的关系,可求a的取值,综合下可得a的取值范围.【解答】解:(1)根据题意得:解得:a=1,b=﹣2∴解析式y=x2﹣2x1(2)∵抛物线y2=2x2也经过A点,∴k=2∴A(1,2)∴解得:a=﹣1,b=2(3)根据题意得:∴t=a+b,又∵t<﹣1,﹣=1∴a>1∵抛物线y1与x轴有两个不同的交点∴△=b2﹣4a×1>0∴4a(a﹣1)>0∴a>1或a<0综上所述:a>1【点评】本题考查了二次函数图象与系数的关系,用待定系数法求二次函数解析式,抛物线与x轴交点,关键是掌握△=b2﹣4ac决定抛物线与x轴的交点个数.。
2017-2018学年福建省泉州市惠安县八年级(下)期中数学试卷(解析版)
2017-2018学年福建省泉州市惠安县八年级(下)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.若分式2xx+3有意义,则x的取值范围为()A. x>−3B. x≥−3C. x≠−3D. x≠02.点P(3,-2)关于原点的对称点坐标是()A. (−3,2)B. (3,2)C. (−3,−2)D. (3,−2)3.已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围是()A. 1<a<2B. −1<a<2C. −2<a<−1D. −2<a<14.若y=kx-9的函数值y随x的增大而减小,则k的值可能是下列的()A. 4B. −3C. 0D. 135.已知甲、乙两个函数图象上部分点的横坐标x与对应的纵坐标y分别如表所示,两个函数图象仅有一个交点,则交点的纵坐标y是()甲x1234y0123乙x-2246y0234A. 0B. 1C. 2D. 36.将直线y=x+5向下平移2个单位,得到的直线是()A. y=x−2B. y=x+2C. y=x+3D. y=x+77.小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是()A. 他离家8km共用了30minB. 他等公交车时间为6minC. 他步行的速度是100m/minD. 公交车的速度是350m/min8.若关于x的分式方程x+1x−3−2=mx−3无解,则m的值为()A. 3B. 4C. 5D. 69.设函数y=6x 与y=x+1的图象的交点坐标为(a,b),则1a−1b的值为()A. 16B. 6 C. −16D. −610.若直线y=kx+k经过点(m,n+3)和(m+1,2n),且0<k<2,则n的值可以是()A. 3B. 4C. 5D. 6二、填空题(本大题共6小题,共24.0分)11.计算:8mm+1+8m+1=______.12. 测得某人的一根头发直径约为0.0000715米,该数用科学记数法表示为______米. 13. 计算:(π-1)0-4-1=______.14. 如图,AB ⊥x 轴,反比例函数y =kx 的图象经过线段AB 的中点C ,若△ABO 的面积为2,则该反比例函数的解析式为______.15. 已知x +1x -3=0,则x 2+1x 2=______.16. 如图,在平面直角坐标系中,分别平行于x 轴、y 轴的两直线a 、b 相交于点A (3,4).连接OA ,若在直线a 上存在点P ,使△AOP 是以AO 为腰的等腰三角形.请写出所有满足条件的点P 的坐标是______三、计算题(本大题共4小题,共36.0分) 17. 计算:2mm 2−9-1m+3.18. 先化简:(1-1a+1)÷aa 2−1,再选择一个合适的整数作为a 的值代入求值.19. 解方程:2x =1-x x+1.20.某商场同时购进甲、乙两种商品共200件,其进价和售价如右表,设其中甲种商品购进x件.(Ⅰ)直接写出购进乙种商品的件数;(用含x的代数式表示)(Ⅱ)若设该商场售完这200件商品的总利润为y元.(ⅰ)求y与x的函数关系式;(ⅱ)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?四、解答题(本大题共5小题,共50.0分)21.某校初二年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度.22.已知反比例函数的图象经过点P(2,-3).(Ⅰ)求该函数的解析式;(Ⅱ)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点Q,使得点Q恰好在该函数的图象上,求n的值.23.一次函数y=kx+4的图象经过点(-1,2).(Ⅰ)求出这个一次函数的表达式;(Ⅱ)在平面直角坐标系中准确地画出这个函数的图象;(Ⅲ)已知这个函数的图象分别与x轴、y轴相交于点A,B,点C(1,1),求△ABC 的面积.24.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.25.在平面直角坐标系中,直线AB与y轴、x轴分别交于点A、点B,与双曲线y=6(xx >0)交于C、D两点,分别过点C、点D作CE⊥x轴,DF⊥x轴,垂足分别为点E、点F,OE=1.(Ⅰ)求线段CE的长;CE.(Ⅱ)若DF=13(ⅰ)求直线AB的解析式;(ⅱ)请你判断线段AC与线段DB的大小关系,并说明理由.答案和解析1.【答案】C【解析】解:∵分式有意义,∴x的取值范围为:x≠-3.故选:C.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.2.【答案】A【解析】解:根据关于原点对称的点的坐标的特点,∴点A(3,-2)关于原点过对称的点的坐标是(-3,2).故答案为(-3,2).故选:A.根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.本题主要考查了关于原点对称的点的坐标的特点,此题比较简单,易于掌握.3.【答案】D【解析】解:∵点P(a-1,a+2)在平面直角坐标系的第二象限内,∴,解不等式①得,a<1,解不等式②得,a>-2,∴-2<a<1.故选:D.根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.【答案】B【解析】解:∵y=kx-9的函数值y随x的增大而减小,∴k<0,而四个选项中,只有B符合题意,故选:B.根据一次函数的性质,若y随x的增大而减小,则k<0.本题考查了一次函数的性质,要知道,在直线y=kx+b中,当k>0时,y随x 的增大而增大;当k<0时,y随x的增大而减小.5.【答案】D【解析】解:由表格中数据可得:甲、乙有公共点(4,3),则交点的纵坐标y是:3.故选:D.根据题意结合表格中数据得出两图象交点进而得出答案.此题主要考查了函数图象,正确得出交点坐标是解题关键.6.【答案】C【解析】解:将直线y=x+5向下平移2个单位,得到的解析式为y=x+5-2,即y=x+3,故选:C.根据图象向下平移减,向上平移加,可得答案.本题考查了一次函数图象与几何变换,利用了函数图象的平移规律:向上平移加,向下平移减.7.【答案】D【解析】解:A、依题意得他离家8km共用了30min,故A选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故B选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故C选项正确;D、公交车(30-16)min走了(8-1)km,故公交车的速度为7000÷14=500m/min,故D选项错误.故选:D.根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.8.【答案】B【解析】解:去分母得:x+1-2x+6=m,由分式方程无解,得到x-3=0,即x=3,把x=3代入方程得:m=4,故选:B.分式方程去分母转化为整式方程,由分式方程无解得到x的值,代入整式方程计算即可求出m的值.此题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.9.【答案】A【解析】解:,解得:,,把a=2,b=3代入==,把a=-3,b=-2代入-=-=,故选:A.把y=与y=x+1联立,解方程组,求得a和b的值,代入-即可.本题考查反比例函数与一次函数的交点问题,把两个函数联立形成二元一次方程组并求解是解决本题的关键.10.【答案】B【解析】解:依题意得:,∴k=n-3,∵0<k<2,∴0<n-3<2,∴3<n<5,故选:B.根据题意列方程组得到k=n-3,由于0<k<2,于是得到0<n-3<2,即可得到结论.考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.11.【答案】8【解析】解:原式===8,故答案为:8.先根据分式的加法法则计算,再约分即可得.本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和运算步骤.12.【答案】7.15×10-5【解析】解:0.0000715=7.15×10-5.故答案为:7.15×10-5.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】34【解析】解:原式=1-=,故答案为:.首先计算零次幂、负整数指数幂,再计算有理数的减法即可.此题主要考查了实数的运算,关键是掌握零指数幂:a0=1(a≠0),负整数指数幂:a-p=(a≠0,p为正整数).14.【答案】y=2x【解析】解:设C点的坐标为(x,y),∵C为AB的中点,∴AB=2y,OB=x,∵△ABO的面积为2,∴=2,解得:xy=2,∵C点在反比例函数y=上,∴k=2,故答案为:y=.设C点的坐标为(x,y),求出AB=2y,OB=x,根据面积公式求出xy=2,即可得出答案.本题考查了三角形的面积,反比例函数图象上点的坐标特征和用待定系数法求反比例函数的解析式,能求出xy=2是解此题的关键.15.【答案】7【解析】解:∵x+-3=0,∴x+=3,则(x+)2=9,即x 2++2=9,∴x 2+=7, 故答案为:7.由x+-3=0知x+=3,两边平方后进一步求解可得.本题主要考查分式的混合运算,解题的关键是掌握完全平方公式. 16.【答案】(8,4)、(-2,4)、(-3,4)【解析】解:∵A (3,4)∴OB=3,AB=4∴0A==5∴当OA 为等腰三角形一条腰,则点P 的坐标是(8,4),(-2,4),(-3,4); 故答案为:(8,4),(-2,4),(-3,4).根据题意可得0A=5,再根据情况OA 为等腰三角形一条腰计算求解.本题考查了坐标与图形的性质及等腰三角形的判定;根据等腰三角形的判定解答是正确解答本题的关键.17.【答案】解:原式=2m (m+3)(m−3)−1m+3=2m (m+3)(m−3)−m−3(m+3)(m−3)=m+3(m+3)(m−3)=1m−3.【解析】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则及运算步骤.先通分化为同分母分式相减,再根据法则计算,最后约分即可得. 18.【答案】解:(1-1a+1)÷a a 2−1=(a+1a+1−1a+1)⋅(a+1)(a−1)a =a a+1⋅(a+1)(a−1)a当a=3时,原式=3-1=2.【解析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的整数代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.【答案】解:去分母得:2(x+1)=x(x+1)-x2,整理得:2x+2=x2+x-x2,解得:x=-2,经检验:x=-2是原方程的解,∴x=-2是原方程的解.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.20.【答案】解:(Ⅰ)∵甲种商品购进x件,某商场同时购进甲、乙两种商品共200件,∴购进乙种商品(200-x)件,即购进乙种商品的件数是(200-x)件;(Ⅱ)(ⅰ)由已知可得,y=(160-80)x+(240-100)(200-x)=-60x+28000(0≤x≤200),即y与x的函数关系式是y=-60x+28000(0≤x≤200);(ⅱ)由已知得:80x+100(200-x)≤18000,解得:x≥100,∴100≤x≤200,∵y=-60x+28000,∴x在100≤x≤200范围内,y随x增大而减小,∴当x=100时,y有最大值,y最大=-60×100+28000=22000,∴该商场获得的最大利润为22000元.【解析】(Ⅰ)根据题意可以用含x的代数式表示出购进乙种商品的件数;(Ⅱ)(ⅰ)根据表格中的数据可以得到y与x的函数关系式;(ⅱ)根据题意可以得到相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和不等式的性质解21.【答案】解:设中巴车速度为x千米/小时,则旅游车的速度为1.2x千米/小时.依题意得40x −401.2x=860,解得x=50,经检验x=50是原方程的解且符合题意,答:中巴车的速度为50千米/小时.【解析】根据中巴车走40千米所用时间-=旅游车走40千米所用时间列出方程,求出方程的解即可.此题考查了分式方程的应用,找到合适的等量关系是解决问题的关键,此题的等量关系是旅游车与中巴车所用时间差为8分钟.注意单位要一致.22.【答案】解:(Ⅰ)设此反比例函数的解析式为y=kx(k≠0),依题意得:k=2×(-3)=-6,∴此反比例函数的解析式为y=-6x;(Ⅱ)依题意设点P平移后的对应点Q的坐标为Q(-1,m),∵点Q恰好在函数y=-6x的图象上,∴-m=-6,∴m=6,∴n=6-(-3)=9.【解析】(Ⅰ)将点P的坐标代入反比例函数的一般形式即可确定其解析式;(Ⅱ)首先确定平移后的横坐标,然后代入确定其纵坐标,从而确定沿y轴平移的距离.本题考查了待定系数法确定反比例函数的解析式及坐标的平移的知识,解题的关键是确定反比例函数的解析式.23.【答案】解:(Ⅰ)∵一次函数y=kx+4的图象经过点(-1,2),∴-k+4=2,∴k=2,∴这个一次函数的表达式是y=2x+4;(Ⅱ)如图所示;(Ⅲ)∵y =2x +4的图象分别与x 轴、y 轴相交于点A 、B∴A (-2,0)、B (0,4)过点C 作CD ⊥x 轴,垂足为点D∴S △ABC =S 四边形ABCD -S △ACD =S △ABO +S 四边形BCDO -S △ACD =4+52−32=5.【解析】(Ⅰ)直接把点(-1,2)代入一次函数y=kx+4的解析式,求出k 的值即可; (Ⅱ)先求出直线y=2x+4与y 轴的交点B ,再画出函数图象即可;(Ⅲ)根据三角形的面积公式求解即可.本题考查的是待定系数法求一次函数的解析式,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.24.【答案】解:(1)当0≤x ≤0.5时,y =0,当x ≥0.5时,设手机支付金额y (元)与骑行时间x (时)的函数关系式是y =kx +b , {1×k +b =0.50.5k+b=0,解得,{b =−0.5k=1,即当x ≥0.5时,手机支付金额y (元)与骑行时间x (时)的函数关系式是y =x -0.5, 由上可得,手机支付金额y (元)与骑行时间x (时)的函数关系式是y ={0(0≤x <0.5)x −0.5(x ≥0.5);(2)设会员卡支付对应的函数解析式为y =ax ,则0.75=a ×1,得a =0.75, 即会员卡支付对应的函数解析式为y =0.75x ,令0.75x =x -0.5,得x =2,由图象可知,当x >2时,会员卡支付便宜,答:当0<x <2时,李老师选择手机支付比较合算,当x =2时,李老师选择两种支付一样,当x >2时,李老师选择会员卡支付比较合算.【解析】各段对应的函数解析式;(2)根据题意可以求得会员卡支付对应的函数解析式,再根据函数图象即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想和一次函数的性质解答,这是一道典型的方案选择问题.25.【答案】解:(Ⅰ)∵OE=1,∴点C的横坐标是1,∵点C在双曲线y=6(x>0)的图象上,x=6,∴y=61∴CE=6,CE,(Ⅱ)(i)∵DF=13×6=2,∴DF=13∵点D在双曲线y=6(x>0)的图象上,DF=2,x=2∴6x∴x=3,∴D(3,2)设直线AB的解析式为:y=kx+b,(k≠0),∵直线AB过点C(1,6),D(3,2),k+b=6,∴{3k+b=2k=−2,解得:{b=8∴直线AB的解析式为:y=-2x+8,(ii)过点C作CM⊥y轴,垂足为点M,如下图所示:∵直线AB与y轴交于点A,∴令x=0,则y=8,∴A(0,8),∵直线AB与x轴交于点B,∴令y=0,则x=4,∴B(4,0),∵C(1,6),D(2,3),∴AM=DF=2,CM=BF=1,∵CM⊥y轴,DF⊥x轴.∴∠AMC=∠DFB=90°,∵AM=DF,CM=BF,∴△AMC≌△DFB(SAS),∴AC=DB.【解析】(I)根据OE=1得到点C的横坐标为1,代入函数关系式即可,(II)(i)根据DF=CE和函数关系式得到点D的坐标,由(I)知点C的坐标,用待定系数法求AB得解析式即可,(ii)过点C作CM⊥y轴,垂足为M,根据等量关系求得△AMC和△DFB全等,即可得到答案.本题考查反比例函数与一次函数的交点问题,根据题意画出准确的示意图并找出重要的等量关系为解题的关键.。
新人教版本20172018学年初中八年级的下期初中中考试数学试卷试题包括答案2018.4.docx
新人教版 2017-2018 学年八年级下期中考试数学试题含答案2018.4(考试时间:120 分钟总分150分)一、选择题(每小题 4 分,共 48 分)1.如图,下列哪组条件能判别四边形ABCD是平行四边形?()A.AB ∥ CD,AD= BCB.AB = CD, AD= BCC. ∠ A=∠ B,∠ C=∠ DD.AB= AD, CB= CD2. 三角形的三边为 a、b、 c,由下列条件不能判断它是直角三角形的是()A . a:b:c =13∶ 5∶12B. a 2-b 2=c22D. a:b:c=8 ∶16∶ 17C . a =(b+c )(b-c)3.在△ ABC中,∠ C=90°,周长为 60,斜边与一直角边比是13: 5,?则这个三角形三边分别是()A . 5, 4,3B . 13, 12, 5C . 10, 8, 6D . 26, 24,104.已知:如图,在矩形 ABCD中, E、 F、G、 H 分别为边 AB、BC、 CD、DA的中点.若 AB= 2,AD = 4,则图中阴影部分的面积为( )A.5B.4.5C.4D.3.5A DB C第 1题第4题第5题5.如图 ABCD是平行四边形,下列条件不一定使四边形ABCD是矩形的是()。
A.AC ⊥ BDB.∠ABC=90°C.OA=OB=OC=ODD.AC=BD6.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH 四条线段,其中能构成一个直角三角形三边的线段是()A . CD,EF,GH B.AB,EF,GH C.AB,CD,GH D.AB,CD,EF7.若a 2 b24b 4c2c10 ,则 b2a c =()4A . 4B. 2C. -2D. 111则ab(a b)8.若a1, bb) 的值为(2 2 1aA. 2B.-2C.2D.229.如图, D 是△ ABC内一点, BD⊥ CD,AD=6, BD=4,CD=3, E,F,G,H 分别是 AB,AC,CD,BD的中点,则四边形EFGH的周长是 ( )A . 7 B.9 C.10 D.1110.如图,边长为 6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1, S2,则 S +S 值为()12A . 16 B.17 C.18 D.19[来源 : 学科网 ZXXK]第 11 题第 12 题11.如图,在 Rt△ ABC中,∠ BAC=90°, D、E 分别是 AB、BC的中点, F 在 CA延长线上,∠ FDA=∠ B,AC=6, AB=8,则四边形 AEDF的周长为()A. 14 B.15 C.16 D.1812. 已知如图,矩形ABCD中, BD=5cm, BC=4cm, E 是边 AD上一点,且BE = ED, P是对角线上任意一点, PF⊥ BE, PG⊥ AD,垂足分别为F、 G。
福建省2017-2018学年新人教版八年级数学下册期中试卷含答案解析
2017-2018学年八年级(下)期中数学试卷一、选择题1.下列式子中,属于最简二次根式的是()A.B.C. D.2.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,73.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米4.使代数式有意义的x的取值范围是()A.x<3 B.x>3 C.x≤3 D.x≥35.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.56.如图,在矩形ABCD中,对角线AC=8cm,∠AOD=120°,则AB的长为()A. cm B.2cm C. cm D.4cm7.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.118.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C.D.二、填空题9.在△ABC中,BC=6,E、F分别是AB、AC的中点,则EF= .10.菱形的两条对角线分别是6cm和8cm,则这个菱形的面积是 cm2.11.比较大小:.(填“>”、“=”、“<”).12.化简= .13.写出“两组对边分别相等的四边形是平行四边形”的逆命题.14.+|b﹣4|=0,则= .15.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= cm.16.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为.三、解答题(共9题,86分)17.计算(1)﹣(﹣)(2)+a﹣4+.18.先化简,再求值:÷(x+1﹣),其中x=﹣2.19.如图,▱ABCD的对角线ACBD有相交于点O,且E、F、G、H分别是OA、OB、OC、OD、的中点.求证:四边形EFGH是平行四边形.20.如图,▱ABCD,E、F分别在AD、BC上,且EF∥AB.求证:EF=CD.21.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.22.如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.23.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.25.某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①⇒②⇒③),图中的M、N分别为直角三角形的直角边与矩形ABCD 的边CD、BC的交点.(1)该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.(2)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.(3)将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之间所满足的数量关系.(不需要证明)参考答案与试题解析一、选择题1.下列式子中,属于最简二次根式的是()A.B.C. D.【考点】最简二次根式.【专题】计算题.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,7【考点】勾股数.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+22≠32,故不能构成直角三角形;B、602+802=1002,故能构成直角三角形;C、42+52≠62,故不能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.3.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】应用题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.4.使代数式有意义的x的取值范围是()A.x<3 B.x>3 C.x≤3 D.x≥3【考点】二次根式有意义的条件.【分析】二次根式有意义时,被开方数为非负数,列不等式求解即可.【解答】解:根据题意得:3﹣x≥0,解得x≤3.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.5【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得BC=AD=6,CD=AB=4,AD∥BC,得∠ADE=∠DEC,又由DE 平分∠ADC,可得∠CDE=∠DEC,根据等角对等边,可得EC=CD=4,所以求得BE=BC﹣EC=2.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,CD=AB=4,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD=4,∴BE=BC﹣EC=2.故选:A.【点评】此题考查了平行四边形的性质、角平分线的定义与等腰三角形的判定定理.注意当有平行线和角平分线出现时,会出现等腰三角形.6.如图,在矩形ABCD中,对角线AC=8cm,∠AOD=120°,则AB的长为()A. cm B.2cm C. cm D.4cm【考点】矩形的性质.【分析】根据矩形的对角线相等且互相平分可得AO=BO=AC,再根据邻角互补求出∠AOB的度数,然后得到△AOB是等边三角形,再根据等边三角形的性质即可得解.【解答】解:在矩形ABCD中,AO=BO=AC=4cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=AO=4cm.故选D.【点评】本题考查了矩形的性质,等边三角形的判定与性质,判定出△AOB是等边三角形是解题的关键.7.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【考点】平行四边形的性质;勾股定理.【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C.D.【考点】平面展开﹣最短路径问题.【专题】数形结合.【分析】将长方体展开,得到两种不同的方案,利用勾股定理分别求出AB的长,最短者即为所求.【解答】解:如图(1),AB==;如图(2),AB===10.故选B.【点评】此题考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.二、填空题9.在△ABC中,BC=6,E、F分别是AB、AC的中点,则EF= 3 .【考点】三角形中位线定理.【分析】根据三角形的中位线等于第三边的一半进行计算即可.【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=×6=3,故答案为:3.【点评】此题考查了三角形的中位线定理的数量关系,熟练掌握定理是解题的关键.10.菱形的两条对角线分别是6cm和8cm,则这个菱形的面积是24 cm2.【考点】菱形的性质.【分析】直接利用菱形面积等于对角线乘积的一半进而得出答案.【解答】解:∵菱形的两条对角线分别是6cm和8cm,∴这个菱形的面积是:×6×8=24(cm2).故答案为:24.【点评】此题主要考查了菱形的性质,正确记忆菱形面积求法是解题关键.11.比较大小:<.(填“>”、“=”、“<”).【考点】实数大小比较.【分析】本题需先把进行整理,再与进行比较,即可得出结果.【解答】解:∵ =∴∴故答案为:<.【点评】本题主要考查了实数大小关系,在解题时要化成同一形式是解题的关键.12.化简= .【考点】分母有理化.【分析】把分子分母同时乘以(﹣1)即可.【解答】解:原式==.故答案为:.【点评】本题考查的是分母有理化,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.13.写出“两组对边分别相等的四边形是平行四边形”的逆命题“平行四边形是两组对边分别相等的四边形”.【考点】命题与定理.【专题】推理填空题.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:“两组对边分别相等的四边形是平行四边形”的逆命题是:“平行四边形是两组对边分别相等的四边形”.故答案为:“平行四边形是两组对边分别相等的四边形”.【点评】此题主要考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.+|b﹣4|=0,则= 2 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出算式求出a、b的值,根据算术平方根的概念解答即可.【解答】解:由题意得,a﹣1=0,b﹣4=0,解得,a=1,b=4,则=2,故答案为:2.【点评】本题考查的是非负数的性质和算术平方根的概念,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.15.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= 4 cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【解答】解:∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=4cm,BC=6cm.∵AB=CD,∴CD=4cm故答案为:4.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.16.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为18.【考点】菱形的性质.【专题】规律型.【分析】根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律不难求得第6个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=2,∴BM=1,∴AM==,∴AC=2AM=2,同理可得AC1=AC=6,AC2=AC1=6,AC3=AC2=18,AC4=AC3=18.故答案为:18.【点评】本题考查了菱形的性质,勾股定理,等边三角形的性质和判定的应用,解此题的关键是能根据求出的结果得出规律.三、解答题(共9题,86分)17.(2016春•莆田校级期中)计算(1)﹣(﹣)(2)+a﹣4+.【考点】二次根式的加减法.【分析】(1)首先化简二次根式,进而合并同类二次根式进而得出答案;(2)首先化简二次根式,进而合并同类二次根式进而得出答案.【解答】解:(1)﹣(﹣)=2﹣(3﹣×4)=2﹣=;(2)+a﹣4+=2a+a﹣2+=(3a﹣1).【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.18.先化简,再求值:÷(x+1﹣),其中x=﹣2.【考点】分式的化简求值.【分析】将原式括号中各项通分并利用同分母分式的减法法则计算,整理后再利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,即可得到原式的值.【解答】解:÷(x+1﹣)=÷[﹣]=÷=×=当x=﹣2时,原式==.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.19.如图,▱ABCD的对角线ACBD有相交于点O,且E、F、G、H分别是OA、OB、OC、OD、的中点.求证:四边形EFGH是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】由平行四边形的性质得出OA=OC,OB=OD,再由中点的定义得出OE=OG,OF=OH,即可证出四边形EFGH是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F、G、H分别是OA、OB、OC、OD、的中点,∴OE=OA,OG=OC,OF=OB,OH=OD,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形.【点评】本题考查了平行四边形的判定与性质;熟记平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形是解决问题的关键.20.如图,▱ABCD,E、F分别在AD、BC上,且EF∥AB.求证:EF=CD.【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质可得AB=CD,AD∥BC,再判定四边形ABFE是平行四边形,进而可得AB=EF,再利用等量代换可得EF=CD.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴AE∥FB,∵EF∥AB,∴四边形ABFE是平行四边形,∴AB=EF,∴EF=CD.【点评】此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边相等,两组对边分别平行的四边形是平行四边形.21.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=AC•CD=×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.22.如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.【考点】翻折变换(折叠问题);矩形的性质.【专题】几何综合题.【分析】(1)根据AD∥BC,∠1与∠2是内错角,因而就可以求得∠2,根据图形的折叠的定义,可以得到∠4=∠2,进而可以求得∠3的度数;(2)已知AE=1,在Rt△ABE中,根据三角函数就可以求出AB、BE的长,BE=DE,则可以求出AD的长,就可以得到矩形的面积.【解答】解:(1)∵AD∥BC,∴∠2=∠1=60°;又∵∠4=∠2=60°,∴∠3=180°﹣60°﹣60°=60°.(2)在直角△ABE中,由(1)知∠3=60°,∴∠5=90°﹣60°=30°;∴BE=2AE=2,∴AB==;∴AD=AE+DE=AE+BE=1+2=3,∴长方形纸片ABCD的面积S为:AB•AD=×3=3.【点评】此题考查了矩形的性质,折叠的性质以及直角三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.23.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.【考点】菱形的判定;三角形中位线定理.【专题】计算题;证明题;压轴题.【分析】(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEF的周长也就能求出了.【解答】(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,又∵DE=AB,EF=BC,且AB=BC,∴DE=EF,∴四边形BDEF是菱形;(2)解:∵AB=12cm,F为AB中点,∴BF=6cm,∴菱形BDEF的周长为6×4=24cm.【点评】本题的关键是判断四边形BDEF是菱形.菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【考点】矩形的判定;平行线的性质;等腰三角形的判定与性质;直角三角形斜边上的中线.【专题】压轴题.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.【解答】(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【点评】此题主要考查了矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.25.某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①⇒②⇒③),图中的M、N分别为直角三角形的直角边与矩形ABCD 的边CD、BC的交点.(1)该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.(2)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.(3)将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之间所满足的数量关系.(不需要证明)【考点】旋转的性质;全等三角形的判定与性质;勾股定理;矩形的性质.【专题】计算题;操作型.【分析】(1)作辅助线,连接DN,在Rt△CDN中,根据勾股定理可得:ND2=NC2+CD2,再根据ON垂直平分BD,可得:BN=DN,从而可证:BN2=NC2+CD2;(2)作辅助线,延长MO交AB于点E,可证:△BEO≌△DMO,NE=NM,在Rt△BEN和Rt△MCN中,根据勾股定理和对应边相等,可证:CN2+CM2=DM2+BN2;(3)根据正方形的性质知:OA=OB,∠OAM=∠OBN,∠AOB=∠AOM+∠BOM=90°,∠MON为直角三角板的直角,可知:∠MON=∠BOM+∠BON=90°,可得:∠AOM=∠BON,从而可证:△AOM≌△BON,AM=BN,又AB=BC,可得:BM=CN,在Rt△ADM和△BCM中,根据勾股定理:DM2=AM2+AD2=BN2+AD2,MC2=MB2+BC2=CN2+BC2,故可得:CM2﹣CN2+DM2﹣BN2=2.【解答】解:(1)选择图①证明:连接DN.∵四边形ABCD是矩形,∴BO=DO,∠DCN=90°,∵ON⊥BD,∴NB=ND,∵∠DCN=90°,∴ND2=NC2+CD2,∴BN2=NC2+CD2.(2)CM2+CN2=DM2+BN2.理由如下:如图②,延长MO交AB于E,连接NE、NM.∵四边形ABCD是矩形,∴BO=DO,∠ABC=∠DCB=90°,∵AB∥CD,∴∠ABO=∠CDO,∠BEO=∠DMO,∴△BEO≌△DMO,∴OE=OM,BE=DM,∵NO⊥EM,∴NE=NM,∵∠ABC=∠DCB=90°,∴NE2=BE2+BN2,NM2=CN2+CM2,∴CN2+CM2=BE2+BN2,即CN2+CM2=DM2+BN2.(3)CM2﹣CN2+DM2﹣BN2=2.【点评】本题考查了图形的旋转变化,在解题过程中要综合应用勾股定理、矩形、正方形的特殊性质及三角形全等的判定等知识.。
2017-2018年福建省泉州市惠安县八年级(下)期中数学试卷(解析版)
进价 (元/件)80 100 160 240 售价 (元/件)
第 4 页(共 16 页)
25. (14 分)在平面直角坐标系中,直线 AB 与 y 轴、x 轴分别交于点 A、点 B, 与双曲线 y= (x>0)交于 C、D 两点,分别过点 C、点 D 作 CE⊥x 轴,DF⊥ x 轴,垂足分别为点 E、点 F,OE=1. (Ⅰ)求线段 CE 的长; (Ⅱ)若 DF= CE. (ⅰ)求直线 AB 的解析式; (ⅱ)请你判断线段 AC 与线段 DB 的大小关系,并说明理由.
15. (4 分)已知 x+ ﹣3=0,则 x2+
=
.
16. (4 分)如图,在平面直角坐标系中,分别平行于 x 轴、y 轴的两直线 a、b 相交于点 A(3,4) .连接 OA,若在直线 a 上存在点 P,使△AOP 是以 AO 为 腰的等腰三角形.请写出所有满足条件的点 P 的坐标是
三、解答题:本题共 9 小题,共 86 分.解答应写出文字说明,证明过程或演算 步骤.在答题卡的相应位置内作答. 17. (8 分)化简: ﹣ . )÷ ,再选择一个合适的整数作为 a 的值代
5. (4 分)已知甲、乙两个函数图象上部分点的横坐标 x 与对应的纵坐标 y 分别 如表所示,两个函数图象仅有一个交点,则交点的纵坐标 y 是( 甲 x y 乙 x y A.0 ﹣2 0 B.1 2 2 C.2 4 3 D.3 ) D.y=x+7 6 4 1 0 2 1 3 2 4 3 )
6. (4 分)将直线 y=x+5 向下平移 2 个单位,得到的直线是( A.y=x﹣2 B.y=x+2 C.y=x+3
18. (8 分)先化简: (1﹣ 入求值. 19. (8 分)解方程: =1﹣
福建省泉州市惠安县2018-2019年八年级(下)期中数学试卷 解析版
2018-2019学年八年级(下)期中数学试卷一.选择题(共10小题)1.代数式,,,中分式有()A.1个B.2个C.3个D.4个2.在▱ABCD中,若∠A+∠C=200°,则∠B的大小为()A.160°B.100°C.80°D.60°3.在平面直角坐标系中,点(﹣3,2)关于原点对称的点是()A.(2,﹣3)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)4.若分式的值为零,那么x的值为()A.x=﹣1或x=1 B.x=0 C.x=1 D.x=﹣15.如图,在▱ABCD中,∠ABC的平分线BE交AD于E,BC=5,AB=3,则DE的长()A.1 B.1.5 C.2 D.36.若x、y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.7.如图,已知一次函数y=kx+b,观察图象回答问题:当kx+b>0,x的取值范围是()A.x>2.5 B.x<2.5 C.x>﹣5 D.x<﹣58.若A(3,y1),B(﹣2,y2),C(﹣1,y3)三点都在函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y1=y2=y3D.y1<y3<y29.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B、D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB、CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是()A.25 B.8 C.6 D.3010.如图,在平面直角坐标系中,四边形ABCD是平行四边形,A(﹣1,3)、B(1,1)、C (5,1).规定“把▱ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2018次变换后,▱ABCD的顶点D的坐标变为()A.(﹣2015,3)B.(﹣2015,﹣3)C.(﹣2016,3)D.(﹣2016,﹣3)二.填空题(共6小题)11.计算:=.12.根据测算,1粒芝麻重0.000004克,数0.000004可用科学记数法表示为.13.如图所示,矩形ABCD两条对角线夹角为60°,AB=2,则对角线AC长为.14.反比例函数y=的图象经过点(1,6)和(m,﹣3),则m=.15.若A、B两点关于y轴对称,且点A在双曲线y=上,点B在直线y=x+6上,设点A的坐标为(a,b),则=.16.如图,P为反比例函数y=(x>0)在第一象限内图象上的一点,过点P分别作x轴、y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若AO、BO分别平分∠BAP、∠ABP,则k的值为.三.解答题(共9小题)17.计算:18.解分式方程.19.化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.20.在矩形ABCD中,点E,点F为对角线BD上两点,DE=EF=FB.(1)求证:四边形AFCE是平行四边形;(2)若AE⊥BD,AF=3,AB=4,求BF的长度.21.如图,在平面直角坐标中,点O是坐标原点,一次函数y1=﹣x+4与反比例函数y2=(x>0)的图象交于A(1,m)、B(n,1)两点.(1)求k、m、n的值.(2)根据图象写出当y1>y2时,x的取值范围.(3)若一次函数图象与x轴、y轴分别交于点N、M,则求出△AON的面积.22.某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?23.如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.(1)当出发时,点P和点Q之间的距离是10cm;(2)逆向发散:当运动时间为2s时,P、Q两点的距离为cm;当运动时间为4s 时,P、Q两点的距离为cm;(3)探索发现:如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连接AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.24.如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).25.如图1所示,一次函数y=kx+b的图象与反比例函数y=的图象交于A(1,t+1),B (t﹣5,﹣1)两点.(1)求一次函数和反比例函数的解析式;(2)设点(a,b)和(c,d)是反比例函数y=图象上两点,若,求a﹣c 的值;(3)若M(x1,y1)和N(x2,y2)两点在直线AB上,如图2所示,过M、N两点分别作y轴的平行线交双曲线于E、F,已知﹣3<x1<0,x2>1,请探究当x1、x2满足什么关系时,MN∥EF.参考答案与试题解析一.选择题(共10小题)1.代数式,,,中分式有()A.1个B.2个C.3个D.4个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,是分式,故选:B.2.在▱ABCD中,若∠A+∠C=200°,则∠B的大小为()A.160°B.100°C.80°D.60°【分析】由四边形ABCD是平行四边形,可得∠A=∠C,AD∥BC,又由∠A+∠C=200°,即可求得∠A的度数,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∵∠A+∠C=200°,∴∠A=100°,∴∠B=180°﹣∠A=80°.故选:C.3.在平面直角坐标系中,点(﹣3,2)关于原点对称的点是()A.(2,﹣3)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即求关于原点的对称点时,横、纵坐标都变成原数的相反数.【解答】解:根据两个点关于原点对称,则横、纵坐标都是原数的相反数,得点(﹣3,2)关于原点对称的点是(3,﹣2).故选:D.4.若分式的值为零,那么x的值为()A.x=﹣1或x=1 B.x=0 C.x=1 D.x=﹣1【分析】直接利用分式的值为0,则分子为0,分母不能为0,进而得出答案.【解答】解:∵分式的值为零,∴x2﹣1=0,x+1≠0,解得:x=1.故选:C.5.如图,在▱ABCD中,∠ABC的平分线BE交AD于E,BC=5,AB=3,则DE的长()A.1 B.1.5 C.2 D.3【分析】由BE平分∠ABC知∠ABE=∠CBE,再由四边形ABCD是平行四边形知BC∥AD,BC=AD=5,据此得∠CBE=∠AEB,结合以上结论得出∠ABE=∠AEB,据此知AB=AE=3,根据DE=AD﹣AE可得答案.【解答】解:∵BE平分∠ABC,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD=5,∴∠CBE=∠AEB,∴∠ABE=∠AEB,∴AB=AE=3,∴DE=AD﹣AE=5﹣3=2,故选:C.6.若x、y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.【分析】据分式的基本性质,x,y的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【解答】解:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,A、==,B、=,C、==,D、==,故选:A.7.如图,已知一次函数y=kx+b,观察图象回答问题:当kx+b>0,x的取值范围是()A.x>2.5 B.x<2.5 C.x>﹣5 D.x<﹣5【分析】根据函数的图象可知,函数为增函数即k>0,再根据函数图象与x轴的交点为(2.5,0)可得出结论.【解答】解:结合函数图象可知:一次函数为增函数,∴k>0,又∵当x=2.5时,y=0,∴当x>2.5时,y=kx+b>0.故选:A.8.若A(3,y1),B(﹣2,y2),C(﹣1,y3)三点都在函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y1=y2=y3D.y1<y3<y2【分析】因为反比例函数的系数为﹣1,则图象的两个分支在二、四象限,且每一分支,y随x的增大而增大,作出判断;也可以依次将x的值代入计算求出对应的y值,再比较.【解答】解:∵k=﹣1<0,∴反比例函数的两个分支在二、四象限,且每一分支,y随x的增大而增大,∵3>0,∴y1<0,∵﹣2<﹣1<0,∴0<y2<y3,∴y1<0<y2<y3,故选:A.9.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B、D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB、CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是()A.25 B.8 C.6 D.30【分析】利用反比例函数k的几何意义,结合相关线段的长度来求a﹣b的值.【解答】解:如图,由题意知:a﹣b=2•OE,a﹣b=3•OF,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故选:C.10.如图,在平面直角坐标系中,四边形ABCD是平行四边形,A(﹣1,3)、B(1,1)、C (5,1).规定“把▱ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2018次变换后,▱ABCD的顶点D的坐标变为()A.(﹣2015,3)B.(﹣2015,﹣3)C.(﹣2016,3)D.(﹣2016,﹣3)【分析】根据已知条件得到D(3,3),得到规律,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,A(﹣1,3)、B(1,1)、C(5,1),∴D(3,3),把▱ABCD先沿x轴翻折,再向下平移1个单位后,∴D(2,﹣3),观察,发现规律:D0(3,3),D1(2,﹣3),D2(1,3),D3(0,﹣3),D4(﹣1,3),…,∴D2018(﹣2015,3).故选:A.二.填空题(共6小题)11.计算:= 2 .【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2.故答案为:2.12.根据测算,1粒芝麻重0.000004克,数0.000004可用科学记数法表示为4×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 004=4×10﹣6,故答案为:4×10﹣6.13.如图所示,矩形ABCD两条对角线夹角为60°,AB=2,则对角线AC长为 4 .【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AC的长.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB,又∵∠AOB=60°∴△AOB是等边三角形.∴OA=AB=2,∴AC=2OA=4.故答案是:4.14.反比例函数y=的图象经过点(1,6)和(m,﹣3),则m=﹣2 .【分析】先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,﹣3)代入即可得出m的值.【解答】解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,﹣3)在此函数图象上上,∴﹣3=,解得m=﹣2.故答案为:﹣2.15.若A、B两点关于y轴对称,且点A在双曲线y=上,点B在直线y=x+6上,设点A的坐标为(a,b),则=70 .【分析】根据点关于y轴对称的特点写出B点坐标,再把两点坐标分别代入所求关系式即可解答.【解答】解:根据点A在双曲线y=上,得到2ab=1,即ab=,根据A、B两点关于y轴对称,得到点B(﹣a,b).根据点B在直线y=x+6上,得到a+b=6,所以====70.故答案为:70.16.如图,P为反比例函数y=(x>0)在第一象限内图象上的一点,过点P分别作x轴、y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若AO、BO分别平分∠BAP、∠ABP,则k的值为8 .【分析】作BF⊥x轴,OE⊥AB,CQ⊥AP,易证△BOE∽△AOD,根据相似三角形对应边比例相等的性质即可求出k的值.【解答】解:方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP,如图,设P点坐标(n,),∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB,∵P点坐标(n,),∴OD=CQ=n,∴AD=AQ+DQ=n+4;∵当x=0时,y=﹣x﹣4=﹣4,∴OC=DQ=4,GE=OE=OC=2;同理可证:BG=BF=PD=,∴BE=BG+EG=+2;∵AO、BO分别平分∠BAP、∠ABP,∴∠AOB=135°,∴∠OBE+∠OAE=45°,∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE,∴△BOE∽△AOD;∴=,即=;整理得:nk+2n2=8n+2n2,化简得:k=8.故答案为:8.三.解答题(共9小题)17.计算:【分析】根据零指数幂的运算法则、负整数指数幂的运算法则、算术平方根的概念进行计算.【解答】解:原式=3+1﹣4+3=3.18.解分式方程.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣2),得1﹣x=﹣1+x﹣2,解得x=2.检验:把x=2代入(x﹣2)=0,x=2是原方程的增根,∴原方程无解.19.化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.【分析】首先利用分式的混合运算法则将原式化简,然后解不等式,选择使得分式有意义的值代入求解即可求得答案.【解答】解:原式====∵不等式x≤2的非负整数解是0,1,2∵(x+1)(x﹣1)≠0,x+2≠0,∴x≠±1,x≠﹣2,∴把x=0代入.20.在矩形ABCD中,点E,点F为对角线BD上两点,DE=EF=FB.(1)求证:四边形AFCE是平行四边形;(2)若AE⊥BD,AF=3,AB=4,求BF的长度.【分析】(1)连接AC,由矩形的性质得出OA=OC,OB=OD,再由DE=FB,证出OE=OF,即可得出结论;(2)由线段垂直平分线的性质得出AD=AF,再根据勾股定理求出BD,即可得出BF.【解答】(1)证明:如图所示,连接AC,交BD于O,∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OB=OD,∵DE=FB,∴OE=OF,∴四边形AFCE是平行四边形;(2)解:∵DE=EF=BF,AE⊥BD,∴AD=AF=3,∴BD===5,∴BF=BD=.21.如图,在平面直角坐标中,点O是坐标原点,一次函数y1=﹣x+4与反比例函数y2=(x>0)的图象交于A(1,m)、B(n,1)两点.(1)求k、m、n的值.(2)根据图象写出当y1>y2时,x的取值范围.(3)若一次函数图象与x轴、y轴分别交于点N、M,则求出△AON的面积.【分析】(1)把A(1,m)、B(n,1)两点的坐标代入一次函数的解析式即可求出m、n 的值,再把B的坐标代入反比例函数的解析式即可求出k的值;(2)根据函数的图象和A、B的坐标即可得出答案;(3)先根据一次函数的解析式求出N的坐标,再利用三角形面积公式即可求出△AON的面积.【解答】解:(1)把A(1,m)、B(n,1)两点的坐标代入y1=﹣x+4,得m=﹣1+4=3,﹣n+4=1,n=3,则A(1,3)、B(3,1).把B(3,1)代入y2=,得k=3×1=3;(2)∵A(1,3)、B(3,1),∴由函数图象可知,y1>y2时,x的取值范围是1<x<3;(3)∵一次函数y1=﹣x+4的图象与x轴交于点N,∴N(4,0),ON=4,∵A(1,3),∴△AON的面积=×4×3=6.22.某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?【分析】(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据:总利润=冰箱每台利润×冰箱数量+空调每台利润×空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况.【解答】解:(1)设每台电冰箱的进价m元,每台空调的进价(m﹣400)元依题意得,,解得:m=2000,经检验,m=2000是原分式方程的解,∴m=2000;∴每台电冰箱的进价2000元,每台空调的进价1600元.(2)设购进电冰箱x台,则购进空调(100﹣x)台,根据题意得,总利润W=100x+150(100﹣x)=﹣50x+15000,∵﹣50<0,∴W随x的增大而减小,∵33≤x≤40,∴当x=33时,W有最大值,即此时应购进电冰箱33台,则购进空调67台.23.如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.(1)当出发s或s时,点P和点Q之间的距离是10cm;(2)逆向发散:当运动时间为2s时,P、Q两点的距离为6cm;当运动时间为4s 时,P、Q两点的距离为2cm;(3)探索发现:如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连接AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.【分析】(1)作PH⊥BC,根据勾股定理求出QH,分点H在BQ之间、点H在CQ之间两种情况计算;(2)根据题意分别求出QH的长,根据勾股定理计算,得到答案;(3)作DE⊥AO于点E,根据相似三角形的性质得到==,证明△AED∽△AOC,根据相似三角形的性质求出点D的坐标,得到k的值.【解答】解:(1)作PH⊥BC于点H,则四边形APHB为矩形,∴PH=AB=6,BH=AP=3t,当PQ=10时,由勾股定理得,QH===8,当点H在BQ之间时,QH=BC﹣BH﹣CQ=16﹣5t,则16﹣5t=8,解得,t=,当点H在CQ之间时,QH=CQ﹣(BC﹣BH)=5t﹣16,则5t﹣18=8,解得,t=,则当t=s或s时,点P和点Q之间的距离是10cm,故答案为:s或s;(2)当t=2s时,QH=16﹣5t=6,则PQ==6,当当t=4s时,QH=5t﹣16=4,则PQ==2,故答案为:6;2;(3)k的值不会变化,理由如下:作DE⊥AO于点E,∵OA∥BC,∴△ADP∽△CDQ,∴==,∵DE⊥AO,∠AOC=90°,∴DE∥OC,∴△AED∽△AOC,∴==,即==,解得,AE=,DE=,∴OE=AO﹣AE=,∴点D的坐标为(,),则k=×=.24.如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).【分析】(1)根据正方形的周长定义求解;(2)根据正方形的性质得AB=AD,AE=AG,在根据旋转的性质得∠BAE=∠DAG=θ,然后根据“SAS”判断△BAE≌△DAG,则BE=DG;(3)①由BAE≌△DAG得到∠ABE=∠ADG,而∠AMB=∠DMH,根据三角形内角和定理即可得到∠DHM=∠BAM=90°,则BH⊥DG;②连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG互相垂直平分,且AF在AD上,由AE=可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出DG=,则BE=,解着利用S△DEG=GE•ND=DG•HE可计算出HE=,所以BH=BE+HE=≈5.1.【解答】(1)解:正方形ABCD的周长=4×4=16;(2)证明:∵四边形ABCD,AEFG都是正方形,∴AB=AD,AE=AG,∵将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°),∴∠BAE=∠DAG=θ,在△BAE和△DAG,,∴△BAE≌△DAG(SAS),∴BE=DG;(3)①证明:∵△BAE≌△DAG,∴∠ABE=∠ADG,又∵∠AMB=∠DMH,∴∠DHM=∠BAM=90°,∴BH⊥DG;②解:连结GE交AD于点N,连结DE,如图,∵正方形AEFG绕点A逆时针旋转45°,∴AF与EG互相垂直平分,且AF在AD上,∵AE=,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,DG==;∴BE=,∵S△DEG=GE•ND=DG•HE,∴HE==,∴BH=BE+HE=+=≈5.1.25.如图1所示,一次函数y=kx+b的图象与反比例函数y=的图象交于A(1,t+1),B (t﹣5,﹣1)两点.(1)求一次函数和反比例函数的解析式;(2)设点(a,b)和(c,d)是反比例函数y=图象上两点,若,求a﹣c 的值;(3)若M(x1,y1)和N(x2,y2)两点在直线AB上,如图2所示,过M、N两点分别作y轴的平行线交双曲线于E、F,已知﹣3<x1<0,x2>1,请探究当x1、x2满足什么关系时,MN∥EF.【分析】(1)根据反比例函数的比例系数等于图象上点的横纵坐标的积,得一次方程求出t的值;(2)由于ab=3,cd=3,代入关系式求出a﹣c的值;(3)因为ME∥NF,只要ME=NF,就能得到MN∥EF.用含x1、x2的代数式表示出ME=NF,得到x1、x2间关系.【解答】解:(1)∵A(1,t+1),B(t﹣5,﹣1)两点在反比例函数y=的图象上,∴t+1=﹣(t﹣5)=m,即t+1=5﹣t,解得t=2.当t=2时,A(1,3),B(﹣3,﹣1),m=﹣3,∴反比例函数的解析式为y=.∵A、B在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)∵点(a,b)和(c,d)在反比例函数y=图象上,∴ab=cd=m,∴b=,d=,∴=+,∵m=3,∴=+,∴a﹣c=.(3)由题意可知,M(x1,x1+2),N(x2,x2+2),E(x1,),F(x2,),∴ME=x1+2﹣,NF=x2+2﹣,当ME=NF时,即x1+2﹣=x2+2﹣,即(x1﹣x2)(1+)=0,∵﹣3<x1<0,x2>1,∴x1﹣x2≠0,1+=0,∴x1x2=﹣3,∴当x1x2=﹣3时,ME=NF,又∵ME∥NF,∴四边形MNFE为平行四边形,∴此时有ME∥NF.即当x1x2=﹣3时,ME∥NF.。
2017—2018学年度第二学期八年级数学期中试卷(含答案)
2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。
2017_2018学年八年级数学下学期期中试题扫描版新人教版(15)
理由如下:
∵AB⊥BC,DF⊥BC,
∴AE∥DF.
又AE=DF,
∴四边形AEFD为平行四边形.4分
∵AB= AC,
∴AC=2AB =10.
∴AD=AC-DC=10-2t.5分
若使▱AEFD为菱形,则需AE=AD,
即t=10-2t,6分
解得:t= .
即当t= 时,四边形AEFD为菱形.7分
∴∠BAD=∠DAC,
∵AN是△ABC外角∠CAM的平分线, ∴∠MAE=∠CAE,
∴∠DAE=∠DAC+∠CAE= ×180°=90°,2分
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°, 3分
∴四边形ADCE为矩形.4分
(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.5分
∴AD= AE.
即10﹣2t= t,t=4.
③∠EFD=90°时,此种情况不存在.
当t= 秒或4秒时,△DEF为直角三角形 11分
山东省汶上县2017-2018学年八年级数学下学期期中试题
2017-2018学年度第二学期八年级期中质量检测
数学试题参考答案及评分说明
一、选择题:本题共10个小题,每小题3分,共30分
题号
1
2
3
4
5
6
7
8
9
10
选项
A
B
C
D
D
C
A
B
C
D
二、填空题:本大题共5个小题;每小题3分,共15分
11. ;12. ;13.80°;14. ;15.
故 , 5分
解之得 .6分
2017-2018学年福建省泉州市惠安县八年级(下)期中数学试卷
2017-2018学年福建省泉州市惠安县八年级(下)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.在答题卡的相应位置内作答.1.(4分)若分式有意义,则x的取值范围为()A.x>﹣3B.x≥﹣3C.x≠﹣3D.x≠02.(4分)点P(3,﹣2)关于原点的对称点坐标是()A.(﹣3,2)B.(3,2)C.(﹣3,﹣2)D.(3,﹣2)3.(4分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围是()A.1<a<2B.﹣1<a<2C.﹣2<a<﹣1D.﹣2<a<1 4.(4分)若y=kx﹣9的函数值y随x的增大而减小,则k的值可能是下列的()A.4B.﹣3C.0D.5.(4分)已知甲、乙两个函数图象上部分点的横坐标x与对应的纵坐标y分别如表所示,两个函数图象仅有一个交点,则交点的纵坐标y是()甲乙A.0B.1C.2D.36.(4分)将直线y=x+5向下平移2个单位,得到的直线是()A.y=x﹣2B.y=x+2C.y=x+3D.y=x+77.(4分)小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是()A .他离家8km 共用了30minB .他等公交车时间为6minC .他步行的速度是100m/minD .公交车的速度是350m/min 8.(4分)若关于x 的分式方程无解,则m 的值为( ) A .3B .4C .5D .69.(4分)设函数y=与y=x +1的图象的交点坐标为(a ,b ),则的值为( ) A .B .6C .D .﹣610.(4分)若直线y=kx +k 经过点(m ,n +3)和(m +1,2n ),且0<k <2,则n 的值可以是( ) A .3 B .4C .5D .6二、填空题:本题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11.(4分)计算:= .12.(4分)测得某人的一根头发直径约为0.0000715米,该数用科学记数法表示为 米.13.(4分)计算:(π﹣1)0﹣4﹣1= .14.(4分)如图,AB ⊥x 轴,反比例函数y=的图象经过线段AB 的中点C ,若△ABO 的面积为2,则该反比例函数的解析式为 .15.(4分)已知x+﹣3=0,则x2+=.16.(4分)如图,在平面直角坐标系中,分别平行于x轴、y轴的两直线a、b 相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是以AO为腰的等腰三角形.请写出所有满足条件的点P的坐标是三、解答题:本题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.17.(8分)化简:﹣.18.(8分)先化简:(1﹣)÷,再选择一个合适的整数作为a的值代入求值.19.(8分)解方程:=1﹣.20.(8分)某校初二年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度.21.(8分)已知反比例函数的图象经过点P(2,﹣3).(Ⅰ)求该函数的解析式;(Ⅱ)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点Q,使得点Q恰好在该函数的图象上,求n的值.22.(10分)一次函数y=kx+4的图象经过点(﹣1,2).(Ⅰ)求出这个一次函数的表达式;(Ⅱ)在平面直角坐标系中准确地画出这个函数的图象;(Ⅲ)已知这个函数的图象分别与x轴、y轴相交于点A,B,点C(1,1),求△ABC的面积.23.(10分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.24.(12分)某商场同时购进甲、乙两种商品共200件,其进价和售价如右表,设其中甲种商品购进x件.(Ⅰ)直接写出购进乙种商品的件数;(用含x的代数式表示)(Ⅱ)若设该商场售完这200件商品的总利润为y元.(ⅰ)求y与x的函数关系式;(ⅱ)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?25.(14分)在平面直角坐标系中,直线AB与y轴、x轴分别交于点A、点B,与双曲线y=(x>0)交于C、D两点,分别过点C、点D作CE⊥x轴,DF⊥x轴,垂足分别为点E、点F,OE=1.(Ⅰ)求线段CE的长;(Ⅱ)若DF=CE.(ⅰ)求直线AB的解析式;(ⅱ)请你判断线段AC与线段DB的大小关系,并说明理由.2017-2018学年福建省泉州市惠安县八年级(下)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.在答题卡的相应位置内作答.1.【解答】解:∵分式有意义,∴x的取值范围为:x≠﹣3.故选:C.2.【解答】解:根据关于原点对称的点的坐标的特点,∴点A(3,﹣2)关于原点过对称的点的坐标是(﹣3,2).故答案为(﹣3,2).故选:A.3.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,∴,解不等式①得,a<1,解不等式②得,a>﹣2,∴﹣2<a<1.故选:D.4.【解答】解:∵y=kx﹣9的函数值y随x的增大而减小,∴k<0,而四个选项中,只有B符合题意,故选:B.5.【解答】解:由表格中数据可得:甲、乙有公共点(4,3),则交点的纵坐标y是:3.故选:D.6.【解答】解:将直线y=x+5向下平移2个单位,得到的解析式为y=x+5﹣2,即y=x+3,故选:C.7.【解答】解:A、依题意得他离家8km共用了30min,故A选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故B选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故C选项正确;D、公交车(30﹣16)min走了(8﹣1)km,故公交车的速度为7000÷14=500m/min,故D选项错误.故选:D.8.【解答】解:去分母得:x+1﹣2x+6=m,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入方程得:m=4,故选:B.9.【解答】解:,解得:,,把a=2,b=3代入==,把a=﹣3,b=﹣2代入﹣=﹣=,故选:A.10.【解答】解:依题意得:,∴k=n﹣3,∵0<k<2,∴0<n﹣3<2,∴3<n<5,故选:B.二、填空题:本题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11.【解答】解:原式===8,故答案为:8.12.【解答】解:0.0000715=7.15×10﹣5.故答案为:7.15×10﹣5.13.【解答】解:原式=1﹣=,故答案为:.14.【解答】解:设C点的坐标为(x,y),∵C为AB的中点,∴AB=2y,OB=x,∵△ABO的面积为2,∴=2,解得:xy=2,∵C点在反比例函数y=上,∴k=2,故答案为:y=.15.【解答】解:∵x+﹣3=0,∴x+=3,则(x+)2=9,即x2++2=9,∴x2+=7,故答案为:7.16.【解答】解:∵A(3,4)∴OB=3,AB=4∴0A==5∴当OA为等腰三角形一条腰,则点P的坐标是(8,4),(﹣2,4),(﹣3,4);故答案为:(8,4),(﹣2,4),(﹣3,4).三、解答题:本题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.17.【解答】解:原式====.18.【解答】解:(1﹣)÷===a﹣1,当a=3时,原式=3﹣1=2.19.【解答】解:去分母得:2(x+1)=x(x+1)﹣x2,整理得:2x+2=x2+x﹣x2,解得:x=﹣2,经检验:x=﹣2是原方程的解,∴x=﹣2是原方程的解.20.【解答】解:设中巴车速度为x千米/小时,则旅游车的速度为1.2x千米/小时.依题意得,解得x=50,经检验x=50是原方程的解且符合题意,答:中巴车的速度为50千米/小时.21.【解答】解:(Ⅰ)设此反比例函数的解析式为y=(k≠0),依题意得:k=2×(﹣3)=﹣6,∴此反比例函数的解析式为y=﹣;(Ⅱ)依题意设点P平移后的对应点Q的坐标为Q(﹣1,m),∵点Q恰好在函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴n=6﹣(﹣3)=9.22.【解答】解:(Ⅰ)∵一次函数y=kx+4的图象经过点(﹣1,2),∴﹣k+4=2,∴k=2,∴这个一次函数的表达式是y=2x+4;(Ⅱ)如图所示;(Ⅲ)∵y=2x+4的图象分别与x轴、y轴相交于点A、B∴A(﹣2,0)、B(0,4)过点C作CD⊥x轴,垂足为点D=S四边形ABCD﹣S△ACD=S△ABO+S四边形BCDO﹣S△ACD=.∴S△ABC23.【解答】解:(1)当0≤x≤0.5时,y=0,当x≥0.5时,设手机支付金额y(元)与骑行时间x(时)的函数关系式是y=kx+b,,解得,,即当x≥0.5时,手机支付金额y(元)与骑行时间x(时)的函数关系式是y=x ﹣0.5,由上可得,手机支付金额y(元)与骑行时间x(时)的函数关系式是y=;(2)设会员卡支付对应的函数解析式为y=ax,则0.75=a×1,得a=0.75,即会员卡支付对应的函数解析式为y=0.75x,令0.75x=x﹣0.5,得x=2,由图象可知,当x>2时,会员卡支付便宜,答:当0<x<2时,李老师选择手机支付比较合算,当x=2时,李老师选择两种支付一样,当x>2时,李老师选择会员卡支付比较合算.24.【解答】解:(Ⅰ)∵甲种商品购进x件,某商场同时购进甲、乙两种商品共200件,∴购进乙种商品(200﹣x)件,即购进乙种商品的件数是(200﹣x)件;(Ⅱ)(ⅰ)由已知可得,y=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000(0≤x≤200),即y与x的函数关系式是y=﹣60x+28000(0≤x≤200);(ⅱ)由已知得:80x+100(200﹣x)≤18000,解得:x≥100,∴100≤x≤200,∵y=﹣60x+28000,∴x在100≤x≤200范围内,y随x增大而减小,∴当x=100时,y有最大值,y=﹣60×100+28000=22000,最大∴该商场获得的最大利润为22000元.25.【解答】解:(Ⅰ)∵OE=1,∴点C的横坐标是1,∵点C在双曲线(x>0)的图象上,∴,∴CE=6,(Ⅱ)(i)∵,∴,∵点D在双曲线(x>0)的图象上,DF=2,∴∴x=3,∴D(3,2)设直线AB的解析式为:y=kx+b,(k≠0),∵直线AB过点C(1,6),D(3,2),∴,解得:,∴直线AB的解析式为:y=﹣2x+8,(ii)过点C作CM⊥y轴,垂足为点M,如下图所示:∵直线AB与y轴交于点A,∴令x=0,则y=8,∴A(0,8),∵直线AB与x轴交于点B,∴令y=0,则x=4,∴B(4,0),∵C(1,6),D(2,3),∴AM=DF=2,CM=BF=1,∵CM⊥y轴,DF⊥x轴.∴∠AMC=∠DFB=90°,∵AM=DF,CM=BF,∴△AMC≌△DFB(SAS),∴AC=DB.。
2017-2018学年第二学期八年级期中测试数学试题卷、参考答案评分建议
17 S△ABC . 120
1 BM=5﹣2t, 2 17 1 17 由 S△PMD S△ABC ,即 12 t 5 2t , 120 2 2 2 ∴2t ﹣29t+43=0
①若点 M 在线段 CD 上,即 0 t
12.4 15.2
13.-4 16.3.
1 . 8 1 33 1 33 (2) x1 , x2 . 4 4
1 1 y 2 x 2 y x y x 18.(1)原式 2 2 2 2 , 2 y x y xy x
1 1 1 1 (1)已知 x 2 3 , y 2 3 ,求 的值. x y x y
(2)若 5 的整数部分为 a ,小数部分为 b ,写出 a , b 的值并计算
a 1 ab 的值. b
19.(本小题满分 8 分) 某校八年级对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由 低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下 列问题: (1)该班共有 ▲ 名同学参加这次测验; (2)这次测验成绩的中位数落在 ▲ 分数段内; (3)若该校一共有 800 名初三学生参加这次测验, 成绩 80 分以上(不含 80 分)为优秀,估计该校这 次数学测验的优秀人数是多少人?
第 2 页(共 3 页)
23.(1)∵AB=AC=13,AD⊥BC, ∴BD=CD=5cm,且∠ADB=90° , 2 2 2 ∴AD =AC ﹣CD ∴AD=12cm (2)AP=t, ∴PD=12﹣t, 在 Rt△PDC 中, PC 29 ,CD=5,根据勾股定理得,PC2=CD2+PD2, ∴29=52+(12﹣t)2 , ∴t=10 或 t=14(舍) (3)假设存在 t,使得 S△PMD ∵BC=10,AD=12, ∴ S△ABC
最新学校17—18学年下学期八年级期中考试数学试题(附答案)
绝密★启用前2017-2018学年第二学期期中考试八年级数学试题卷2018.4本试卷共2页,23小题,满分100分.考试用时90分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。
2.选择题每小题选出答案后,请将答案填写在答题卷上对应的题目序号后,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。
不按要求填涂的,答案无效。
3.非选择题必须用黑色字迹的签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回。
一、选择题(每小题3分,共36分)1. 下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是A.1个B.2个C.3个D.4个 2.已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是 A.9㎝ B .12㎝ C .12㎝或者15㎝ D .15㎝ 3.要使代数式2-x 有意义,则x 的取值范围是( ).A .2-≤xB .2-≥xC .2≥xD .2≤x4. 不等式组⎩⎨⎧<>-421x x 的解集是 ( ).A. x <3B. 3<x <4C. x <4D. 无解 5.下列各多项式中,不能用平方差公式分解的是( ).A.a 2b 2-1 B .4-0.25a 2 C .-a 2-b 2 D .-x 2+16.分解因式x 2y ﹣y 3结果正确的是( ).A .y (x +y )2B .y (x -y )2C .y (x 2-y 2)D .y (x +y )(x -y ) 7.如果多项式x 2-mx +9是一个完全平方式,那么m 的值为( ). A .-3 B .-6 C .±3 D .±6 8.满足0106222=+-++n m n m 的是( ). A.3,1==n mB.3,1-==n mC.3,1=-=n mD.3,1-=-=n m9.如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=620,则∠EFD 的度数为( )A 、150B 、160C 、170D 、18010.如图所示,在矩形ABCD 中,AD=8,DC=4,将△ADC 按逆时针方向绕点A 旋转到△AEF(点,A,B,E 在同一直线上),连接CF ,则CF=( )A . 10 B. 12C.D.11.矩形ABCD 中,AB=5,AD=12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )A.12πB.252π C. 13πD.12.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办FCCDE F法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买( )块肥皂.A.5B.4C.3D.2 二、填空题(每小题3分,共12分)13.不等式组⎩⎨⎧-><13x x 的解集是 _____.14.利用分解因式计算:32003+6×32002-32004=_____________.15.已知关于x 的不等式组⎩⎪⎨⎪⎧4(x -1)+2>3x ,x -1<6x +a7有且只有三个整数解,则a 的取值范围是16.如图,Rt ⊿ABC 中,∠C = 90º,以斜边AB 为边向外 作正方形ABDE ,且正方形对角线交于点O ,连接OC , 已知AC=6,OC=BC 的长为 三、解答题(共52分)17.分解因式(每小题3分.共6分)⑴ 4a 2-8ab+4b 2 ⑵ (2)x 2(m ﹣n )﹣y 2(m ﹣n )18. (每小题4分.共8分)解下列不等式组:⑴ ⑵523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩①② CA BEDO4(1)42123x x x x -≥+⎧⎪+⎨<⎪⎩ 19.计算(每小题5分,共10分)⑴.已知a+b=-3,ab=5,求多项式4a2b+4ab2-4a-4b的值(2)已知x2-3x-1=0,求代数式3-3 x2+9x的值?20. (6分)求关于x、y的方程组24563x y mx y m+=+⎧⎨+=+⎩的解x、y都是正数,求m的取值范围。
2017-2018学年八年级下期中数学试卷含答案
2017-2018学年八年级下期中数学试卷含答案一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC3.下列各式从左到右的变形正确的是()A.=x+y B.=C.﹣=D.=4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=度.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为米.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=,BC=.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k,则x=4k,y=3k,z=2k,将它们分别代入中并化简,可得分式的值为.【拓展应用】已知=﹣=,求分式的值.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.21.如图,在▱ABCD中,DE平分∠ADC交AB于点G,交CB延长线于E,BF平分∠ABC交AD的延长线于F.(1)若AD=5,AB=8,求GB的长.(2)求证:∠E=∠F.22.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y(米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计)(1)直接写出点A坐标,并求出线段OC的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?23.我县万德隆商场有A、B两种商品的进价和售价如表:已知:用2400元购进A种商品的数量与用3000元购进B种商品的数量相同.(1)求m的值;(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A 种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.①求y关于x的函数关系式;②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.参考答案与试题解析一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)【考点】一次函数图象与几何变换.【分析】根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【解答】解:根据“上加下减”的原理可得:函数y=﹣2x的图象向下平移1个单位后得出的图象的函数解析式为y=﹣2x﹣1.故选B.【点评】本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.本题属于基础题,难度不大,解决该题型题目时,依据“上加下减”的平移原理找出函数图象平移后的函数解析式是关键.2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.3.下列各式从左到右的变形正确的是()A.=x+y B.=C .﹣=D.=【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.【解答】解:A、分子与分母除的数不是同一个数,故A错误;B、分子分母的一部分乘以10,故B错误;C、分子、分母、分式改变其中两个的符号,分式的值不变,故C错误;D、分子分母都乘以2,故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定【考点】解分式方程;关于原点对称的点的坐标.【专题】计算题.【分析】根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.【解答】解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选:C【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【考点】平行四边形的判定;坐标与图形性质.【分析】根据两组对边分别平行的四边形是平行四边形可得到D点坐标的三种情况:①当AB∥CD,AD∥BC 时;②当AB∥CD,AC∥BD时;③当AD∥BC,AC∥BD时;分别求出D的坐标即可.【解答】解:如图所示∵两组对边分别平行的四边形是平行四边形∴可以分以下三种情况分别求出D点的坐标:如图所示:①当AB∥CD,AD∥BC时,D点的坐标为(2,1);②当AB∥CD,AC∥BD时,D点的坐标为(0,﹣1);③当AD∥BC,AC∥BD时,D点的坐标为(﹣2,1).故选:C.【点评】本题主要考查了平行四边形的判定,要求学生掌握平行四边形的判定并会灵活运用,注意分类讨论.6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s【考点】函数的图象.【专题】数形结合.【分析】根据函数图象对各选项分析判断后利用排除法求解.【解答】解:A、路程为1500m后不在增加,所以,这是一次1500m赛跑,正确,故本选项错误;B、加起跑后一段时间乙开始起跑,错误,故本选项正确;C、乙计时283秒到达终点,甲计时300秒到达终点,正确,故本选项错误;D、甲在这次赛跑中的速度为=5m/s,正确,故本选项错误.故选B.【点评】本题考查了函数图象,读函数的图象时首先要理解横、纵坐标表示的含义.7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④【考点】反比例函数的图象.【分析】根据函数图象上图象经过的点的,利用待定系数法即可求得函数的解析式,即k的值,从而判断.【解答】解:A、反比例函数进过点(﹣3,4),代入函数解析式得k=﹣12,故选项正确;B、反比例函数进过点(﹣3,2),代入函数解析式得k=﹣6,故选项错误;C、反比例函数进过点(1,4),代入函数解析式得k=4,故选项错误;D、反比例函数进过点(2,4),代入函数解析式得k=8,故选项错误.故选A.【点评】本题考查了待定系数求函数的解析式,是一个基础题.8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,(a≠0)在二、四象限,只有A符合;a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,(a≠0)在一、三象限,无选项符合.故选A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a的取值确定函数所在的象限.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=2+1.【考点】立方根;零指数幂;负整数指数幂.【专题】计算题.【分析】首先将二次根式、幂运算、绝对值、立方根进行化简求值,然后根据实数的运算法则进行运算即可.【解答】解:﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+,=2﹣1﹣1+4﹣3+2,=2+1.故答案为:2+1.【点评】题目考查了二次根式化简、幂运算、绝对值的运算、立方根的运算等知识点,考察知识较多,对学生要求较高,解决本题的关键是掌握各种运算法则,题目难易程度整体适中,适合课后训练.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=59度.【考点】平行四边形的性质.【分析】直接利用垂直的定义结合平行四边形的性质得出∠BAE的度数,进而得出答案.【解答】解:∵在▱ABCD中,AE⊥BC,AF⊥CD,∴∠AEB=∠AFC=90°,AB∥DC,∴∠BAF=90°,∵∠EAF=59°,∴∠BAE=31°,∴∠B=59°.故答案为:59.【点评】此题主要考查了平行四边形的性质,根据题意得出∠BAE的度数是解题关键.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为 6.2×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:62000纳米=62000×10﹣10m=6.2×10﹣6m,故答案为:6.2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为y2.【考点】反比例函数图象上点的坐标特征.【分析】首先可判定函数y=(k为常数)的系数﹣k2﹣2<0,即可知此函数在二、四象限,然后画出图象,确定各点的位置,即可求得答案.【解答】解:∵函数y=(k为常数)的系数﹣k2﹣2<0,∴此函数在二、四象限,如图∴函数值y1,y2,y3中最大的为y2.故答案为:y2.【点评】此题考查了反比例函数图象上点的坐标特征.注意结合图象求解比较简单.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为6.【考点】反比例函数系数k的几何意义;平行四边形的性质.【专题】计算题.【分析】连结OA、CA,根据反比例函数y=(k≠0)中比例系数k的几何意义得到S△OAD=|k|=×6=3,再利用平行四边形的性质得BC∥AD,所以S△CAD=S△OAD=3,然后根据▱ABCD的面积=2S△CAD进行计算.【解答】解:连结OA、CA,如图,则S△OAD=|k|=×6=3,∵四边形ABCD为平行四边形,∴BC∥AD,∴S△CAD=S△OAD=3,∴▱ABCD的面积=2S△CAD=6.故答案为6.【点评】本题考查了反比例函数y=(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.也考查了平行四边形的性质.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是x<2.【考点】一次函数与一元一次不等式.【分析】以交点(2,﹣2)为分界,交点的坐标,y=﹣2x+b的图象在直线y=ax﹣1的上边,故不等式的解集为x<2.【解答】解:根据图象可得不等式﹣2x+b>ax﹣1的解集是x<2,故答案为:x<2.【点评】此题主要考查了一次函数与一元一次不等式的关系,关键是正确从图象中得到信息.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=19cm,BC=11cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长多8cm,则AB比BC大8cm,继而可求出AB、BC的长度.【解答】解:∵▱ABCD的周长为60cm,∴BC+AB=30cm,①又∵△AOB的周长比△BOC的周长大8cm,∴AB﹣BC=8cm,②由①②得:AB=19cm,BC=11cm.故答案为:19cm,11cm.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k ,则x=4k ,y=3k ,z=2k ,将它们分别代入中并化简,可得分式的值为 .【拓展应用】已知=﹣=,求分式的值.【考点】分式的化简求值;分式的值;零指数幂;负整数指数幂.【分析】(1)先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可; (2)【解决问题】把x=4k ,y=3k ,z=2k 代入进行计算即可;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,再代入分式进行计算即可.【解答】解:(1)原式=÷+=÷+=÷+=•+=+= =,当x=2﹣1﹣20160=﹣1=﹣时,原式===.(2)【解决问题】把x=4k ,y=3k ,z=2k 代入得,原式===.故答案为:;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,原式====.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.【考点】正方形的性质.【分析】根据正方形的对角线平分一组对角可得∠DAC=∠ACB=45°,再根据等边对等角可得∠E=∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EAC,再根据∠DAE=∠DAC﹣∠EAC代入数据进行计算即可得解.【解答】解:∵四边形ABCD为正方形,∴∠DAC=∠ACB=45°,∵AC=CE,∴∠E=∠EAC,∵2∠EAC=∠E+∠EAC=∠ACB=45°,∴∠EAC=22.5°,∴∠DAE=∠DAC﹣∠EAC=45°﹣22.5°=22.5°.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等边对等角的性质,三角形的外角性质,是基础题,熟记各性质是解题的关键.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?【考点】一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)首先求出图象与坐标轴交点,进而画出图象;(2)直接利用(1)中所求,结合直角三角形面积求法得出答案;(3)利用函数图象得出不等式的解.【解答】解:(1)当x=0,则y=6;当y=0,则x=﹣3,如图所示:(2)直线与坐标轴所围成的三角形的面积为:×3×6=9;(3)如图所示:当x>﹣3时,函数值y>0.【点评】此题主要考查了一次函数图象以及三角形面积求法,正确求出一次函数与坐标轴交点是解题关键.19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.【考点】一次函数的应用.【专题】应用题.【分析】根据题意,y1与x是一次函数关系,y2与x成正比例,可直接写出它们的关系式y1=5x+1500,y2=8x;若要选择公司订做光盘,则要看学校订做纪念光盘的数量,当甲、乙两家公司的收费相等时,即y1=y2时可计算出订做的光盘数,再与学校订做的光盘数相比较,就可做出选择.【解答】解:(1)y1=5x+1500,(2)y2=8x;(3)当y1=y2时,即5x+1500=8x,解得x=500,当光盘为500个是同样合算,当光盘少于500个时选乙公司合算,当光盘多于500个时选甲公司合算.【点评】此题不难,关键要仔细审题,懂得计算两家公司收费相等时的光盘数,再与学校需订的数量相比较.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为(﹣3,﹣1);当x满足:﹣3<x<0或x>3时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是平行四边形;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.【考点】反比例函数综合题.【分析】(1)根据双曲线关于原点对称求出点B的坐标,结合图象得到≤k′x时,x的取值范围;(2)①根据对角线互相平分的四边形是平行四边形证明即可;②过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,根据正方形的面积公式和三角形的面积公式计算即可.【解答】解:(1)∵双曲线y=关于原点对称,点A的坐标为(3,1),∴点B的坐标为(﹣3,﹣1),由图象可知,当﹣3<x<0或x>3时,≤k′x,故答案为:(﹣3,﹣1);﹣3<x<0或x>3;(2)①∵双曲线y=关于原点对称,∴OA=OB,OP=OQ,∴四边形APBQ一定是平行四边形,故答案为:平行四边形;②∵点A的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为y=,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,则四边形CDEF是矩形,CD=6,DE=6,DB=DP=4,CP=CA=2,则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积=36﹣2﹣8﹣2﹣8=16.【点评】本题考查的是反比例函数的图形和性质、反比例函数图象上点的坐标特征、中心对称图形的概念和性 质以及平行四边形的判定,掌握双曲线是关于原点的中心对称图形、平行四边形的判定定理是解题的关键.21.如图,在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,交 CB 延长线于 E,BF 平分∠ABC 交 AD 的延长线 于 F. (1)若 AD=5,AB=8,求 GB 的长. (2)求证:∠E=∠F.【考点】平行四边形的性质. 【分析】(1)直接利用平行四边形的性质结合角平分线的性质得出∠2=∠AGD,进而得出 AD=AG,得出答 案即可; (2)首先证明∠CDE=∠ABF,再证明 ED∥FB,然后再根据平行四边形的性质可得 AF∥CE,根据两组对边 分别平行的四边形是平行四边形可得四边形 BFDE 是平行四边形,进而得出答案. 【解答】(1)解:∵在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,BF 平分∠ABC 交 AD 的延长线于 F, ∴∠1=∠2,∠3=∠4,AB∥DC, ∴∠2=∠AGD, ∴∠1=∠AGD, ∴AD=AG=5, ∵AB=8, ∴BG=8﹣5=3;(2)证明:∵四边形 ABCD 是平行四边形, ∴∠ADC=∠ABC,DC∥AB,AD∥BC, ∵DE 平分∠ADC, ∴∠CDE= ∠ADC, ∵BF 平分∠ABC, ∴∠ABF= ∠ABC, ∴∠CDE=∠ABF, ∵DC∥AB, ∴∠AGD=∠CDE, ∴∠AGD=∠FBA, ∴ED∥FB, ∵AF∥CE, ∴四边形 BFDE 是平行四边形, ∴∠E=∠F.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形两组对边分别平行,两组对边分别 平行的四边形是平行四边形.22.甲、乙两人在某标准游泳池相邻泳道进行 100 米自由泳训练,如图是他们各自离出发点的距离 y(米)与 他们出发的时间 x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长 50 米,100 米自由 泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计) (1)直接写出点 A 坐标,并求出线段 OC 的解析式; (2)他们何时相遇?相遇时距离出发点多远? (3)若甲、乙两人在各自游完 50 米后,返回时的速度相等;则快者到达终点时领先慢者多少米?【考点】一次函数的应用. 【专题】综合题. 【分析】(1)由图得点 A(30,50),C(40,50),用待定系数法,即可求出解析式;(2) 用待定系数法可求出, 线段 AB 的解析式为 y2=﹣ x+100, (30≤x≤60) , 然后, 联立方程组,解出即可; (3)甲乙两人在各自游完 50 米后,在返程中的距离保持不变,把 x=30 与 40 分别代入 y1 和 y2,解出即可解 答; 【解答】解:(1)由图得点 A(30,50),C(40,50), 设线段 OC 的解析式为:y1=k1x, 把点 C(40,50)代入得,k1= , ∴线段 OC 的解析式为:y1= x(0≤x≤40);(2)设线段 AB 的解析式为 y2=k2x+b, 把点 A(30,50)、点 B(60,0)代入可知: ,解得,,∴线段 AB 的解析式为 y2=﹣ x+100,(30≤x≤60);解方程组,解得,,∴线段 OC 与线段 AB 的交点为(,),即出发秒后相遇,相遇时距离出发点米;(3)∵甲乙两人在各自游完 50 米后,在返程中的距离保持不变, 把 x=30 代入 y1= x,得 y1= 米, 米, = 米.把 x=40 代入 y2=﹣ x+100,得 y2= ∴快者到达终点时,领先慢者 50﹣【点评】本题主要考查了一次函数的应用,考查了学生获取信息的能力,读懂图是解答的关键.23.我县万德隆商场有 A、B 两种商品的进价和售价如表: 商品 A 价格 进价(元/件) 售价(元/件) m 160 m+20 240 B已知:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同. (1)求 m 的值;(2)该商场计划同时购进的 A、B 两种商品共 200 件,其中购进 A 种商品 x 件,实际进货时,生产厂家对 A 种商品的出厂价下调 a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这 200 件商品的总 利润为 y 元. ①求 y 关于 x 的函数关系式; ②若限定 A 种商品最多购进 120 件最少购进 100 件,请你根据以上信息,设计出使该商场获得最大利润的进 货方案. 【考点】一次函数的应用. 【分析】(1)根据等量关系:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同,列出方 程即可解决问题. (2)①根据总利润=A 商品利润+B 商品利用计算即可解决问题. ②分 50<a<60,60<a<70,a=60 三种情形,根据一次函数的性质讨论即可解决问题. 【解答】解:(1)由题意 解得:m=88. ∴m=80. (2)①y=[160﹣(80﹣a)]x+(240﹣100)(200﹣x)=(a﹣60)x+28000.(0<x<200) ②∵y=(a﹣60)x+28000,100≤x≤120, ∴当 50<a<60 时,a﹣60<0,y 随 x 增大而减小, ∴x=100 时,y 有最大值, 此时进货方案是购买 100 件 A 种商品,100 件 B 种商品利润最大. 当 60<a<70 时,y 随 x 增大而增大, ∴x=120 时,y 有最大值, 此时进货方案是购买 120 件 A 种商品,80 件 B 种商品利润最大. 当 a=60 时, 利润是定值为 28000 元, 此时进货方案是购买 m 件 A 种商品, (200﹣m) 件 B 种商品 (100≤m≤120) . 【点评】本题考查一次函数的应用,一元一次不等式等知识,解题的关键是连接题意,学会利用不等式解决实 际问题,学会利用一次函数的性质解决实际问题中最值问题,属于中考常考题型. =。
2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(3)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.正方形面积为36,则对角线的长为()A.6B.C.9D.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.66.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.39.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称.13.一个多边形的内角和与外角和的比是4:1,则它的边数是.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.16.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?20.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义逐一判断即可得.【解答】解:A、==,此选项不符合题意;B、是最简二次根式,符合题意;C、==,此选项不符合题意;D、=3,次选县不符合题意;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:最小的数是﹣2,故选:B.【点评】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.正方形面积为36,则对角线的长为()A.6B.C.9D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.6【分析】利用勾股定理求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【解答】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.【点评】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:B.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.3【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.9.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【解答】解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选:B.【点评】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.【分析】连接CD,判断出四边形CEDF是矩形,再根据矩形的对角线相等可得EF=CD,然后根据垂线段最短可得CD⊥AB时线段EF的长最小,进而解答即可.【解答】解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时线段EF的长最小,∵AC=3,BC=4,∴AB=,∵四边形CEDF是矩形,∴CD=EF=,故选:D.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,熟记性质与判定方法并确定出EF 最短时的位置是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称矩形,平行四边形,等腰梯形等.【分析】根据题意画出图形便可直观解答.【解答】解:如图:可拼成以上三种图形:等腰梯形、矩形、平行四边形或等腰梯形、平行四边形.【点评】解答此类题目的关键是根据题意画出图形再解答.13.一个多边形的内角和与外角和的比是4:1,则它的边数是10.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是S1+S2=S3.【分析】分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r 1)2+(2r 2)2的关系,可以求得S 1+S 2=S 3.【解答】解:设大圆的半径是r 3,则S 3=πr 32;设两个小圆的半径分别是r 1和r 2,则S 1=πr 12,S 2=πr 22.由勾股定理,知(2r 3)2=(2r 1)2+(2r 2)2,得r 32=r 12+r 22.所以S 1+S 2=S 3.故答案为S 1+S 2=S 3.【点评】本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r 3)2=(2r 1)2+(2r 2)2是解题的关键.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 52 .【分析】根据菱形的对角线互相垂直平分,可知AO 和BO 的长,再根据勾股定理即可求得AB 的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC =10,BD =24,菱形对角线互相垂直平分,∴AO =5,BO =12cm ,∴AB ==13,∴BC =CD =AD =AB =13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB 的值是解题的关键.16.如图,已知A 1(1,0)、A 2(1,1)、A 3(﹣1,1)、A 4(﹣1,﹣1)、A 5(2,﹣1)、….则点A 2019的坐标为 (﹣505,505) .的坐标为(﹣n,n)(n为正【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.【分析】(1)先根据分式的混合运算顺序和运算法则计算可得;(2)根据x的值,可以求得题目中所求式子的值.【解答】解:(1)原式=+•=+=,当a=+1时,原式==1+;(2)∵x=2﹣,∴x2=(2﹣)2=7﹣4,∴(7+4)x2+(2+)x+=(7+4)(7﹣4)+(2+)(2﹣)+=1+1+=2+.【点评】本题考查分式与二次根式的化简求值,解答本题的关键是明确分式与二次根式化简求值的方法.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD ,在直角三角形ABD 中可求得BD 的长,由BD 、CD 、BC 的长度关系可得三角形DBC 为一直角三角形,DC 为斜边;由此看,四边形ABCD 由Rt △ABD 和Rt △DBC 构成,则容易求解.【解答】解:连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC =90°,S 四边形ABCD =S △BAD +S △DBC =•AD •AB +DB •BC ,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,CE ∥DB .求证:四边形OBEC 是矩形.【分析】先证四边形OCED 是平行四边形,然后根据菱形的对角线互相垂直,得到∠BOC =90°,根据矩形的定义即可判定四边形OCDE是矩形.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,且AC、BD是对角线,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形.【点评】此题综合考查了菱形的性质与矩形的判定方法.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=36.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为17.【分析】(1)根据直角三角形两直角边的平方和等于斜边的平方计算即可;(2)如图,连接BM,PB.因为PM+MD=PM+BM≥PB,推出PM+DM的最小值为PB的长,由此即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AC=8,AB=10,∴BC2=AB2﹣AC2=100﹣64=36,故答案为36(2)如图,连接BM,PB.∵四边形ABCD是正方形,∴∠BAP=90°,B、D关于AC对称,∴MD=MB,∴PM+MD=PM+BM≥PB,∴PM+DM的最小值为PB的长,在Rt△ABP中,PB2=AB2+PA2=42+12=17,故答案为17.【点评】本题考查轴对称、正方形的性质、直角三角形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.【点评】本题考查了完全平方公式和求代数式的值、二次根式的混合运算,能熟记完全平方公式是解此题的关键,还培养了学生的阅读能力和计算能力.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【分析】(1)根据正方形的面积为10可得正方形边长为,画一个边长为正方形即可;(2)①画一个边长为,2,的直角三角形即可;②画一个边长为,,的直角三角形即可;【解答】解:(1)如图①所示:(2)如图②③所示.【点评】此题主要考查了利用勾股定理画图,关键是计算出所画图形的边长是直角边长为多少的直角三角形的斜边长.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.【分析】(1)根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而判断出EF=AG,得出四边形AGEF是平行四边形,继而结合AG=GE,可得出结论.(2)连接ON,得出ON是梯形ABCE的中位线,在RT△ADE中,利用勾股定理可解出x,继而可得出折痕FG的长度.【解答】(1)证明:由折叠的性质可得,GA=GE,∠AGF=∠EGF,∵DC∥AB,∴∠EFG=∠AGF,∴∠EFG=∠EGF,∴EF=EG=AG,∴四边形AGEF是平行四边形(EF∥AG,EF=AG),又∵AG=GE,∴四边形AGEF是菱形.(2)解:连接ON,∵O,N分别是AE,CB的中点,故ON是梯形ABCE的中位线,设CE=x,则ED=4﹣x,2ON=CE+AB=x+4,在Rt△AED中,AE=2OE=2ON=x+4,AD2+DE2=AE2,∴22+(4﹣x)2=(4+x)2,得x=,OE==,∵△FEO∽△AED,∴=,解得:FO=,∴FG=2FO=.故折痕FG的长是.【点评】此题考查了翻折变换的知识,涉及了菱形的判定、含30°角的直角三角形的性质,关键在于得出△FEO∽△AED,求出=.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
2017-2018学年八年级下学期期中考试数学试题及答案(1)
2017-2018学年八年级下学期期中考试数学试题(一)姓名:_________班级:_________考号:________得分:__________第I 卷(选择题)一、单选题1.下列计算正确的是( ) A.822-=B. 235+=C. 236⨯=D. 824÷=2.下列二次根式中属于最简二次根式的是 ( ) A. 2xy B. 2ab C. 0.5 D. 22x 3.平行四边形、矩形、菱形、正方形都具有的性质是( )A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 轴对称图形4.一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是( )A. 40B. 20C. 10D. 255.已知△ABC 的各边长度分别为3cm ,4cm ,5cm ,则连结各边中点的三角形的周长为( )A. 2cmB. 7cmC. 5cmD. 6cm6.满足下列条件的三角形中,不是直角三角形的是( )A. 三内角之比为1:2:3B. 三边长的平方之比为1:2:3C. 三边长之比为3:4:5D. 三内角之比为3:4:57.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A. 12 B. 7+7 C. 12或7+7 D. 以上都不对8.如图,□ABCD 中,AE 平分∠DAB ,∠B=100°,则∠AED 的度数为A. 100°B. 80°C. 60°D. 40°9.在下列命题中,正确的是 ( )A. 一组对边平行的四边形是平行四边形B. 有一个角是直角的四边形是矩形C. 有一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是正方形10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( )A. 菱形B. 对角线互相垂直的四边形C. 矩形D. 对角线相等的四边形11.已知a+1a=√7,则a-1a=()A. √3B. ﹣√3C. ±√3D. ±√1112.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=12∠BCD②EF=CF③S△BEC=2S△CEF④∠DFE=3∠AEFA. ①②③B. ①②C. ②③④D. ①②④第II卷(非选择题)二、填空题13.使41x 有意义的x的取值范围是 .14.已知x=2﹣√3,则代数式(7+4√3)x2的值是_____.15.如图所示,在数轴上点A所表示的数为a,则a的值为_____.16.如图,正方形ABCD的面积为25,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省惠安县尾山学校等六校2017-2018学年八年级数学下学期期中试题(满分:150分 考试时间:120分钟) 友情提示:所有答案必须填写到答题卡相应的位置上.学校姓名号数第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.在答题卡的相应位置内作答.(1)若分式23xx +有意义,则x 的取值范围为( ). A .3x >- B .x ≥3- C .3x ≠- D .0x ≠ (2)点(3,2)-关于原点对称的点的坐标为( ).A .(3,2)-B .(3,2)--C .(3,2)D .(2,3)- (3)已知点(1,2)M a a -+在平面直角坐标系的第二象限,则a 的取值范围是( ).A . 1a <B .2a >-C . 12a -<<D .21a -<<(4)若9y kx =-的函数值y 随x 的增大而减小,则k 的值可能是下列的( ).A . 4 B. 3- C. 0 D.13(5)已知甲、乙两个函数图像上部分点的横坐标x 与对应的纵坐标y 分别如下表所示.若这两个函数图像仅有一个交点,则交点的纵坐标y 是( ).A .0B .1 C. 2 D .3(甲) (乙)(6)将直线5y x =+向下平移2个单位,得到的直线是( ).A .2y x =-B .2y x =+C .3y x =+D .7y x =+ (7)小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程()s km 与所花时间(min)t 之间的函数关系,下列说法错误的是( ). A .他离家8()km 共用了30(min) B .他等公交车时间为6(min) C .他步行的速度是100/min m D .公交车的速度是350/min m(8)若关于x 的分式方程1233x mx x +-=--无解,则m 的值为( ). A. 3 B. 4 C. 5 D. 6(9)设函数6y x =与1y x =+的图象的交点坐标为(a ,b ),则11a b-的值为( ). A .16 B .6 C .16- D . 6-(10)若直线y kx k =+经过点(,3)m n +和(1,2)m n +,且02k <<,则n 的值可以是( ).A. 3B. 4C. 5D. 6第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.(11)计算:8811m m m +++(12______________.(13)计算: 01(1)4π---(14)如图,AB x ⊥若ABO ∆的面积为2(15)已知130x x +-=(16)如图,接OA ,若在直线a 件的点P 的坐标是 .三、解答题:本题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤. 在答题卡的相应位置内作答.(17)(本小题满分8分)计算:22193m m m --+.(18)(本小题满分8分)先化简:21(1)11a a a -÷+-,再选择一个合适的整数作为a 的值代入求值.(19) (本小题满分8分)解方程:211x x x =-+.(20)(本小题满分8分)某校初一年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车的速度是多少千米/小时?(21) (本小题满分8分)已知反比例函数的图象经过点),(32-P .(Ⅰ)求该函数的解析式;(Ⅱ)若将点P 沿x 轴负方向平移3个单位,再沿y 轴方向平移)0(>n n 个单位得到点Q ,使得点Q 恰好在该函数的图象上,求n 的值.(22)(本小题满分10分)一次函数4+=kx y 的图象经过点),(21-.(Ⅰ)求出这个一次函数的表达式;(Ⅱ)在平面直角坐标系中准确地画出这个函数的图象; (Ⅲ)已知这个函数的图象分别与x 轴、y 轴相交于点A 、B ,点),(11C ,求ABC ∆的面积.(23) (本小题满分10分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,下图描述了两种方式应支付金额y(元)与骑行时x h之间的函数关系,根据图象回答下列问题.间()x h的函数关系式;(Ⅰ)求手机支付金额y (元)与骑行时间()(Ⅱ)陈老师经常骑行共享单车,请你帮他确定选择哪种支付方式比较合算?(24) (本小题满分12分)某商场同时购进甲、乙两种商品共200件,其进价和售价如右表,设其中甲种商品购进x件.(Ⅰ) 直接写出购进乙种商品的件数;(用含x的代数式表示)(Ⅱ)若设该商场售完这200件商品的总利润为y元.(ⅰ)求y与x的函数关系式;(ⅱ)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(25) (本小题满分14分)在平面直角坐标系中,直线AB 与y 轴、x 轴分别交于点A 、点B ,与双曲线6y x=()0x >交于C 、D 两点,分别过点C 、点D 作CE x ⊥轴,x DF ⊥轴,垂足分别为点E 、点F ,1OE = (Ⅰ)求线段CE 的长; (Ⅱ)若13DF CE =. (ⅰ)求直线AB 的解析式;(ⅱ)请你判断线段AC 与线段DB 的大小关系,并说明理由.草稿纸2017-2018学年度第二学期期中教学质量监测八年级数学试题参考答案及评分标准一、选择题(每小题4分,共40分)(1)C (2)A (3)D (4)B (5)D (6)C (7) D (8)B (9)A (10)B 二、填空题(每小题4分,共24分)(11)8 (12)57.1510-⨯(13)34 (14)2y x= (15) 7 (16)(8,4)、 (2,4)-、 (3,4)-. 写对一个得1分,写对两个得2分,写对三个得4分 三、解答题(共86分) (17)(本小题8分)解:原式21(3)(3)3m m m m =-+-+,……………………………………………………………2分23(3)(3)(3)(3)m m m m m m -=-+-+-,………………………………………………4分3(3)(3)m m m +=+-,……………………………………………………………………6分13m =-…………………………………………………………………………………8分(18)(本小题8分)解:解:原式11(1)(1)()11a a a a a a++-=-∙++ , ……………………………………………2分 (1)(1)1a a a a a+-=∙+ , ……………………………………………………4分 =1a - , …………………………………………………………………………6分当3a =时,原式=312-=. …………………………………………………………………………8分(19)(本小题8分)解: ()()2211x x x x +=+- ,…………………………………………………………3分2222x x x x +=+- ,2x =- , …………………………………………………………6分经检验:2x =-是原方程的解, …………………………………………………………8分∴2x =-是原方程的解.(20)(本小题8分)解:设中巴车速度为x 千米/小时,则旅游车的速度为x 2.1千米/小时. …………………1分 依题意得6082.14040=-x x ………………………………………………………………5分 解得50=x ……………………………………………………………………………7分 经检验50=x 是原方程的解且符合题意…………………………………………………8分答:中巴车的速度为50千米/小时.(21)(本小题8分)解:(Ⅰ)设此反比例函数的解析式为xk y =(0≠k )…………………………………………1分 依题意得:6)3(2-=-⨯=k …………………………………………3分∴ 此反比例函数的解析式为xy 6-=;…………………………………………4分 (Ⅱ)依题意设点P 平移后的对应点Q 的坐标为),(m Q 1-……………5分 ∵ 点Q 恰好在函数xy 6-=的图象上…………………………………………6分 ∴ 6-=-m ,∴ 6=m …………………………………………7分∴ 9)3(6=--=n ………………………………………8分(22)(本小题10分)解:(Ⅰ)∵一次函数4+=kx y 的图象经过点),(21-,∴42k -+=,∴2k =,…………………………………………………………………………………2分 ∴这个一次函数的表达式是24y x =+.……………………………………………………3分(Ⅱ)列表………………………………………………………………………4分描点………………………………………………………………………5分连线 ………………………………………………………………………6分(Ⅲ) )∵24y x =+的图象分别与x 轴、y 轴相交于点A 、B∴A (-2,0)、B (0,4)………………………………………7分过点C 作CD x ⊥轴,垂足为点D∴ABC ACD S S S ∆∆-=四边形ABCDABO ACD S S S ∆∆-=+四边形BCDO535224-==+………………………………………10分(23)(本小题10分)解:(Ⅰ)设手机支付金额y (元)与骑行时间()x h 的函数关系式为y kx b =+,…………1分∵点()0.5,0、()1,0.5在y kx b =+的图象上,得0.500.5k b k b +=⎧⎨+=⎩……………………………………………………2分解得10.5k b =⎧⎨=-⎩……………………………………………………4分 ∴手机支付金额y(元)与骑行时间()x h 的函数关系式为0.5y x =-.…………………………5分(Ⅱ)设会员卡支付金额y (元)与骑行时间()x h 的函数关系式为y mx =,∵过点()1,0.75在y mx =的图象上,∴10.75m ⨯=,∴0.75m =,∴0.75y x =. ……………………………………………………7分当0.50.75x x -=,即2x =时,选择手机支付与会员卡支付金额相同;……………8分 当0.50.75x x ->,即2x >时,选择会员卡支付比较合算; ……………9分当0.50.75x x -<,即2x <时,选择手机支付比较合算. ……………10分(24)(本小题12分)解:(Ⅰ) 购进乙种商品的件数是(200﹣x)件;……………………………3分(Ⅱ)(ⅰ)由已知可得:y=(160﹣80)x+(240﹣100)(200﹣x) (5)分=﹣60x+28000(0≤x≤200).……………………………7分(ⅱ)由已知得:80x+100(200﹣x)≤18000,……………………8分解得:x≥100,……………………………9分∴100≤x≤200…………………………10分∵y=﹣60x+28000,∴x在100≤x≤200范围内,y随x增大而减小,…………………………11分∴当x=100时,y有最大值,y最大=﹣60×100+28000=22000.∴该商场获得的最大利润为22000元.………………………………12分(25)(本小题14分)解:(Ⅰ) ∵1OE=,∴点C的横坐标是1……………………………………………………………1分∵点C在双曲线6yx=()0x>的图象上∴661y==…………………………………………………………2分∴6CE=…………………………………………………………3分(Ⅱ) ∵13 DF CE=∴1623DF=⨯=……………………………………………………4分(ⅰ)∵点D在双曲线6yx=()0x>的图象上,2DF=∴62x = ∴3x =∴()2,3D …………………………………………………………5分 设直线AB 的解析式为:b kx y +=()0≠k ,∵直线AB 过点()6,1C 、()2,3D∴⎩⎨⎧=+=+23,6b k b k , ……………………………………………………………6分 解得:⎩⎨⎧=-=8,2b k ……………………………………………………………7分∴直线AB 的解析式为:82+-=x y .………………………………………8分 (Ⅲ) DB AC =…………………………………………………………………9分 解法一:过点C 作CM y ⊥轴,垂足为点M∵直线AB 与y 轴交于点A ,∴令0=x ,则8=y ,∴()8,0A ,∵直线AB 与x 轴交于点B ,∴令0=y ,则4=x ,∴()0,4B ,…………………………………………………10分 ∵()6,1C 、()2,3D∴2AM DF ==,1CM BF ==………………………………………………11分 ∵CM y ⊥轴,x DF ⊥轴.∴90AMC DFB ∠=∠=︒∵AM DF =,CM BF =………………………………………………12分∴AMC ∆≌DFB ∆()SAS ………………………………………………………13分 ∴DB AC =……………………………………………………………………14分解法二:过点C 作CM x ⊥轴,垂足为点M根据勾股定理可得AC DB =∴DB AC =。