小学奥数 算式谜(一) 精选例题练习习题(含知识点拨)
小学奥数 加减法数字谜 精选例题练习习题(含知识点拨)
数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题
一、数字迷加减法
1.个位数字分析法
2.加减法中的进位与退位
3.奇偶性分析法
二、数字谜问题解题技巧
1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;
2.要根据不同的情况逐步缩小范围,并进行适当的估算;
3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;
4.注意结合进位及退位来考虑;
模块一、加法数字谜
【例 1】 “华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华
罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?
01
9
1杯华
2
4
+
【例 2】 下面的算式里,四个小纸片各盖住了一个数字。被盖住的四个数字的总和是多少?
1
+
4
9
例题精讲
知识点拨
教学目标
5-1-2-1.加减法数字谜
【例 3】 在下边的算式中,被加数的数字和是和数的数字和的三倍。问:被加数至少是多少?
【例 4】 两个自然数,它们的和加上它们的积恰为34,这两个数中较大数为( ).
【例 5】 下面的算式里,每个方框代表一个数字.问:这6个方框中的数字的总和是多少?
1
9
9
1
+
【例 6】 在下边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数tavs =______
小学奥数 角度计算 精选例题练习习题(含知识点拨)
4-1-3.角度计算
知识点拨
一、角
1、角的定义:自一点引两条射线所成的图形叫角
2、表示角的符号:∠
3、角的分类:锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种
(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
(4)平角:等于180°的角叫做平角。
(5)优角:大于180°小于360°叫优角。
(6)劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。
(7)周角:等于360°的角叫做周角。
(8)负角:按照顺时针方向旋转而成的角叫做负角。
(9)正角:逆时针旋转的角为正角。
(10)0角:等于零度的角。
4、角的大小:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,
角就越大,相反,张开的越小,角则越小。
二、三角形
1、三角形的定义:由三条边首尾相接组成的封闭图形叫做三角形
2、内角和:三角形的内角和为180度;
外角:(1)三角形的一个外角等于另外两个内角的和;
(2)三角形的一个外角大于其他两内角的任一个角。
3、三角形的分类
(1)按角分:锐角三角形:三个角都小于90度。
直角三角形:有一个角等于90度。
钝角三角形:有一个角大于90度。
注:锐角三角形和钝角三角形可统称为斜三角形
(2)按边分:不等腰三角形;等腰三角形(含等边三角形)。
模块一、角度计算
【例 1】有下列说法:
(1)一个钝角减去一个直角,得到的角一定是锐角,
(2)一个钝角减去一个锐姥,得到的角不可能还是钝角.
小学奥数。乘除法数字谜(一)。精选例题练习习题(含知识点拨)
小学奥数。乘除法数字谜(一)。精选例题练习习题(含知识点拨)
教学目标:本模块旨在教授乘除竖式数字谜的解题方法,通过找到突破口来解决问题。学生将学会估算填写的数字,逐一检验,并去掉不符合题意的取值,直到得到正确答案。
数字谜是一种算式,含有未知数字或未知运算符号。要解开这样的谜,需要根据有关的运算法则和数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)进行正确的推理和判断。
解数字谜的突破口通常在某个数的首位或末位数字上。在推理时,需要注意数字谜中的文字、字母或其它符号只取1~9中的某个数字;要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;数字谜解出之后,最好验算一遍。
以下是几个例题的解答:
例1:一个乘法算式,当乘积最大时,所填的四个数字的
和是多少?
解答:这个问题可以通过试探法来解决。首先,我们可以将乘数设为9,被乘数设为876.然后,我们可以将876分解成
三个数,即800、70和6.接下来,我们可以将这三个数与9相乘,得到7200、630和54.最后,将这三个数相加,得到7884.因此,所填的四个数字的和是7+8+8+4=27.
例2:下面两个算式中,相同的汉字代表相同的数字,不
同的汉字代表不同的数字。求美妙数学的值。
解答:我们可以将美妙数学表示为abcde。因此,第一个
算式可以表示为a+b+c=10d+e,第二个算式可以表示为___将
第一个算式代入第二个算式中,得到ab+cd=9d。因此,我们
小学奥数 智巧趣题 精选例题练习习题(含知识点拨)
智巧趣题
教学目标
1.挖掘孩子学习数学的兴趣.
2.让孩子掌握各种趣题的不同思考方式.
知识点拨
知识点说明
智巧趣题顾名思义,就是有趣的一类问题,但回答时要十分小心,稍有不慎,就可能落入“圈套”。要想正确地解答这类题目,一是细心,善于观察,全面考虑各种情况;二是要充分运用生活中学到的知识;三是需要那么一点思考问题的灵气和非常规的思考方法。本讲主要是通过数学趣题的研究学习引发学生学习奥数的兴趣,激发学生学习奥数的灵感,充分调动学生学习奥数的积极性。
智巧趣题主要依靠巧妙的构思而解决问题,其中包括火柴棍游戏、数的恰当排列、称量问题及直线或
圆周形状的报数问题。
例题精讲
青蛙跳、蜗牛爬
【例1】青蛙沿着10米高的井往上跳,每次它向上跳半米,然后又落下去,问青蛙爬需要跳几次就能跳出井外?
【考点】智巧趣题【难度】2星【题型】填空
【解析】每次青蛙向上跳半米,然后又落下去,等于还在原地,所以永远也跳不出去.
【答案】永远也跳不出去
【巩固】一只树蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米?
【考点】智巧趣题【难度】2星【题型】填空
【解析】分析:实际上青蛙每爬行一次只前进了5-2=3(厘米),5次共前进了3×5=15(厘米).
【答案】15厘米
【例2】一口井深10米,一只蜗牛从井底白天往上爬2米,晚上又往下滑1米,请问要多长时间,这只蜗牛能爬出这口井?
【考点】智巧趣题【难度】2星【题型】填空
【解析】“白天往上爬2米,晚上又往下滑1米”其实一天只往上爬1米,如果这样理解,说这只蜗牛爬出这口井需要10天就错了.因为最后一次爬出井外不会往下滑,所以蜗牛只要往上爬9米,晚上下滑1米,这时距离井口只有2米了,这样只要一个白天再往上爬2米就到井口了.所以只需要8天再加一个白天.
小学奥数 乘除法数字谜(一) 精选例题练习习题(含知识点拨)
数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用
尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.
1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.
2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的
性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.
3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;
⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.
模块一、乘法数字谜
【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?
5
×
【例 2】 下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.
⨯=美妙数学数数妙,美+妙数学=妙数数。=美妙数学___________
【例 3】 北京有一家餐馆,店号“天然居”,里面有一副著名对联:客上天然居,居然天上客。巧的很,
小学奥数质数与合数(一)精选例题练习习题(含知识点拨)
小学奥数质数与合数(一)精选例题练习习题(含知识点拨)
1.
掌握质数与合数的定义 2.
能够用特殊的偶质数2与质数5解题 3.
能够利用质数个位数的特点解题 4. 质数、合数综合运用
一、质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数。要特别记住:0和1不是质数,也不是合数。常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.
考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.
⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.
二、判断一个数是否为质数的方法
根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=?,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数
.
模块一、判断质数合数【例 1】下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.【例2】著名的哥德巴赫猜想是:“任意一个大于4的偶数都可以表示为两个质数的和”。如6=3+3,12=5+7,
小学奥数 整除与分类计数综合 精选例题练习习题(含知识点拨)
1. 熟练掌握整除的性质;
2. 运用整除的性质解计数问题;
3. 整除性质的综合运用求计数.
一、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除;
一个数的末两位能被4或25整除,这个数就能被4或25整除;
一个数的末三位能被8或125整除,这个数就能被8或125整除;
2. 一个位数数字和能被3整除,这个数就能被3整除;
一个数各位数数字和能被9整除,这个数就能被9整除;
3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.
4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.
【备注】(以上规律仅在十进制数中成立.)
二、整除性质
性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,
c ︱b ,那么c ︱(a ±b ).
性质2 如果数a 能被数b 整除,b 又能被数c 整除,那么a 也能被c 整除.即如果b ∣a ,
c ∣b ,那么c ∣a .
用同样的方法,我们还可以得出:
性质3 如果数a 能被数b 与数c 的积整除,那么a 也能被b 或c 整除.即如果bc ∣a ,那
么b ∣a ,c ∣a .
性质4 如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b
与c 的乘积整除.即如果b ∣a ,c ∣a ,且(b ,c )=1,那么bc ∣a .
例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.
小学奥数 算式谜(一) 精选例题练习习题(含知识点拨)
5-1-1-1.算式谜(一)
教学目标
数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题。
知识点拨
一、基本概念
填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指+、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法
(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质
(一)定义:整数可以分为奇数和偶数两类
(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.
(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.
(二)性质:①奇数≠偶数.
②整数的加法有以下性质:
奇数+奇数=偶数;
奇数+偶数=奇数;
偶数+偶数=偶数.
③整数的减法有以下性质:
奇数-奇数=偶数;
奇数-偶数=奇数;
偶数-奇数=奇数;
偶数-偶数=偶数.
④整数的乘法有以下性质:
奇数×奇数=奇数;
奇数×偶数=偶数;
偶数×偶数=偶数.
例题精讲
模块一、巧填算符
(一)巧填加减运算符号
【例1】在下面算式适当的地方添上加号,使算式成立。88888888=1000
【例2】在等号左边9个数字之间填写6个加号或减号组成等式:1 2 3 4 5 6 7 8 9=101 【例3】在下面的□中填入“+”、“一”,使算式成立:1110987654210
小学奥数 容斥原理之重叠问题(一) 精选例题练习习题(含知识点拨)
1. 了解容斥原理二量重叠和三量重叠的内容;
2. 掌握容斥原理的在组合计数等各个方面的应用.
一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.
包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进
来,加在一起);
第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).
二、三量重叠问题
A 类、
B 类与
C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:
小学奥数 和倍问题(一) 精选例题练习习题(含知识点拨)
1. 学会分析题意并且熟练的利用线段图法能够分析和倍问题
2. 掌握寻找和倍的方法解决问题.
知识点说明: 和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题.
解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。
和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.
和倍问题的数量关系式是:
和÷(倍数+1)=小数
小数×倍数=大数 或 和一小数=大数
如果要求两个数的差,要先求1份数:
l 份数×(倍数-1)=两数差.
解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。
【例 1】 某校三(1)班举办优秀少先队员评选活动.每位同学如果表现优秀,则可得一枚小红花,5枚小红花
可换成一面小红旗,4面小红旗可换成一个奖章,3个小奖章可换成一个小金杯,一学期得2个小金杯,可评为优秀少先队员,那么要评为优秀少先队员,需要得________个小红花.
【例 2】 根据线段图列式:
【例 3】 花园小学组织学生植树,五年级植树160棵,正好是四年级的2倍。三年级比四年级少20棵。三年
级植树___棵。
例题精讲
知识点拨
教学目标
6-1-5.和倍问题(一)
【巩固】果园里有梨树和苹果树共54棵,苹果树的棵数是梨树的5倍,苹果树比梨树多多少棵?
【巩固】实验小学三、四年级的同学们一共制作了318件航模,四年级同学制作的航模件数是三年级的2倍,三、四年级的同学各制作了多少件航模?
小学奥数 奇妙的一笔画 精选例题练习习题(含知识点拨)
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.
我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:
(1)能一笔画出的图形必须是连通的图形;
(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:
我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.
模块一、判断奇偶点
【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些
点是偶点?哪些点是奇点?
J O I H G F
E
D C
B
A
【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,
要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.
【例 3】 判断下列图a 、图b 、图c 能否一笔画.
小学奥数 位值原理 精选例题练习习题(含知识点拨)
5-7-1.位值原理
教学目标
1.利用位值原理的定义进行拆分
2.巧用方程解位值原理的题
知识点拨
位值原理
当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。既是说,一个数字除了本身的值以外,还有一个“位置值”。例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。希望同学们在做题中认真体会。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。
3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式
(2)利用十进制的展开形式,列等式解答
小学奥数 和倍问题(一) 精选例题练习习题(含知识点拨)
1. 学会分析题意并且熟练的利用线段图法能够分析和倍问题
2. 掌握寻找和倍的方法解决问题.
知识点说明: 和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题.
解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。
和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.
和倍问题的数量关系式是:
和÷(倍数+1)=小数
小数×倍数=大数 或 和一小数=大数
如果要求两个数的差,要先求1份数:
l 份数×(倍数-1)=两数差.
解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。
【例 1】 某校三(1)班举办优秀少先队员评选活动.每位同学如果表现优秀,则可得一枚小红花,5枚小红花
可换成一面小红旗,4面小红旗可换成一个奖章,3个小奖章可换成一个小金杯,一学期得2个小金杯,可评为优秀少先队员,那么要评为优秀少先队员,需要得________个小红花.
【例 2】 根据线段图列式:
【例 3】 花园小学组织学生植树,五年级植树160棵,正好是四年级的2倍。三年级比四年级少20棵。三年
级植树___棵。
例题精讲
知识点拨
教学目标
6-1-5.和倍问题(一)
【巩固】果园里有梨树和苹果树共54棵,苹果树的棵数是梨树的5倍,苹果树比梨树多多少棵?
【巩固】实验小学三、四年级的同学们一共制作了318件航模,四年级同学制作的航模件数是三年级的2倍,三、四年级的同学各制作了多少件航模?
小学奥数 长方体与正方体(一) 精选例题练习习题(含知识点拨)
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.
如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.
c
b
a H
G
F
E
D
C
B
A
①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.
③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.
板块一 长方体与正方体的表面积
【例 1】 右图中共有多少个面?多少条棱?
后面
前面右面
左面
下面
上面
【巩固】右图中共有多少个面?多少条棱?
例题精讲
长方体与正方体(一)
【例 2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?
【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?
【例 3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?
【例 4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?
【例 5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)
一年级奥数之算式谜
(1)
4
6 7 9
(2)
3 +
+
6 4
例2:你知道下列题目中的A、B各是几吗?
(1)
5 A + B 6 9 4 ) A= ( B= ( )
(2)
2 A + 3 B
6 1 ) A= ( B= ( )
例3:在方框中填上合适的数,使算式 成立。
(1)
-
7 4 3 1
(2)
(1) (2)
+
6 9
和 =( )
+ 1 9 7
和 =( )
8
+ 3 4 3
例4:想一想,下面算式中的“快”、 “乐”各代表几?
(1)
+
快6 5 乐 8 3
) )
(2)
快 =(
9 快 - 乐 4 1 8 快= ( )
乐= (
Байду номын сангаас
乐= (
)
例5:在方框中填上合适的数,使算式 成立。
(1)
4
(2)
6
- 1
+
5
7
+
-
3 7 1 7
5
8
5
例6:猜一猜,下面算式中的“数学 好”三个字各表示几?
(1)
小学奥数 环形跑道问题 精选例题练习习题(含知识点拨)
1、 掌握如下两个关系:
(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次 (2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次 2、遇见多人多次相遇、追及能够借助线段图进行分析 3、用比例解、数论等知识解环形跑道问题
本讲中的行程问题是特殊场地行程问题之一。是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:
路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:
环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
模块一、常规的环形跑道问题
【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每
分钟走59米.经过几分钟才能相遇?
【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。在他们第10次相遇后,王老师再走 米就回到出发点。
知识精讲
教学目标
环形跑道问题
胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人
各跑了多少圈?
【巩固】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-1-1-1.算式谜(一)
教学目标
数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题。
知识点拨
一、基本概念
填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指+、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法
(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质
(一)定义:整数可以分为奇数和偶数两类
(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.
(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.
(二)性质:①奇数≠偶数.
②整数的加法有以下性质:
奇数+奇数=偶数;
奇数+偶数=奇数;
偶数+偶数=偶数.
③整数的减法有以下性质:
奇数-奇数=偶数;
奇数-偶数=奇数;
偶数-奇数=奇数;
偶数-偶数=偶数.
④整数的乘法有以下性质:
奇数×奇数=奇数;
奇数×偶数=偶数;
偶数×偶数=偶数.
例题精讲
模块一、巧填算符
(一)巧填加减运算符号
【例1】在下面算式适当的地方添上加号,使算式成立。88888888=1000
【例2】在等号左边9个数字之间填写6个加号或减号组成等式:1 2 3 4 5 6 7 8 9=101 【例3】在下面的□中填入“+”、“一”,使算式成立:1110987654210
□□□□□□□□3□□
=
【巩固】在下面的□中填入“+”、“一”,使算式成立:11109876321
=
□□□□□□5□4□□
【例4】在下面算式中合适的地方,只添两个加号和两个减号使等式成立。123456789=100
(二)巧填四则混合算符号
【例5】请将四个4用四则运算符号、括号组成五个算式,使它们的结果分别等于5、6、7、8、9。
【例6】在下面式子中的W中选择填入+⨯使等式成立。
1W2W3W4W5W6W7W8W9W10=100
【例7】在下面算式合适的地方添上+-⨯
、、,使等式成立。12345678=1
【巩固】在下列算式中合适的地方添上+-⨯
、、,使等式成立。
①987654321=1993,②123456789=1993
【例8】在下面算式合适的地方添上+-⨯
、、号,使等式成立。3333333333333333=1992
【例9】在下面合适的地方添上适当的运算符号使算式成立.(相邻的几个数可以组成一个数)
=
22222222208
【例10】利用运符号及括号,把数1、3、7、9连成结果等于5的算式.
【例11】在方框中添加适当运算符号(不能添加括号),使等式成立.
(三)巧填算符综合
【例12】在下列算式中合适的地方,添上+、-、×、÷、()等运算符号,使算式成立。
①6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1993②2 2 2 2 2 2 2 2 2 2 2 2=1993
【例13】在+、-、×、÷、()中,挑出合适的符号,填入下面的数字之间,使算式成立,每个空都必须填入运算符号:① 9 8 7 6 5 4 3 2 1=1② 9 8 7 6 5 4 3 2 1=1000
【例14】在下列算式中合适的地方,添上()[],使等式成立。
① 1+2×3+4×5+6×7+8×9=303
②1+2×3+4×5+6×7+8×9=1395
③1+2×3+4×5+6×7+8×9=4455
【巩固】在下面的式子里加上()和[],使它们成为正确的等式。
①217-49×8+112÷4-2=89
②217-49×8+112÷4-2=1370
③217-49×8+112÷4-2=728
模块二、填横式数字谜
(一)策略问题
【例15】用火柴棍拼成的数字和符号如下图所示,那么用火柴棍拼成一个减法等式最少要用根火柴。
(二)奇偶分析法
【例16】将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数,这个结果最大为。
□□+□+□□□□+□□
=
÷÷
【巩固】 将1,3,5,7,9填入等号左边的5个方框中,2,4,6,8填入等号右边的4个方框中,使等式成
立,且等号两边的计算结果都是自然数,这个结果最小为 。
=÷÷□□+□+□□□□+□□
【例 17】 把1~8这八个数字写成两个四位数字,使它们的差等于1111.即:1111-=□□□□□□□□
【例 18】 将1~9这九个数字分别填入下面算式的九个□中+=⎧⎪-=⎨⎪⨯=⎩
□□□□□□□□□,使每个算式都成立。
(三)整除性质
【例 19】 将0、1、2、3、4、5、6这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成只有一
位数和两位数的整数算式.问填在方格内的数是多少?⨯==÷d d d d □
【例 20】 将1—9这9个数字分别填入下图的方框中,每个数字恰好用一次,使等式成立;现已将8填入,
则最左边的两个方框中所填的两位数是 。
==8÷-□□□□□□□□
【巩固】 从0~9这10个数字中选出9个互不相同的数字填入下图的方框中,使等式成立。图中已经填好一个
数字,请你填入其它数字。
==6÷-□□□□□□□□
【例 21】 在算式:2⨯=□□□□□□的六个方框中,分别填入2,3,4,5,6,7这六个数字,使算式成
立,并且算式的积能被13整除,那么这个乘积是 ?