2015年浙江省温州市十校联合体高三上学期期中数学试卷含解析答案(文科)
浙江省温州市十校联合体2015届高三数学上学期期初联考试题 文(含解析)
浙江省温州市十校联合体2015届高三数学上学期期初联考试题 文(含解析)【试卷综评】命题把重点放在高中数学课程中最基础、最核心的内容上,充分关注考生在学习数学和应用数学解决问题中必须掌握的核心观念、思想方法、基本概念和常用技能。
试卷对中学数学的核心内容和基本能力,特别是对高中数学的主干知识进行较为全面地考查。
注重了知识之间的内在联系,重点内容重点考,没有片面追求知识及基本思想、方法的覆盖面,反映了新课程的理念.一、选择题:本大题有10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 【题文】1.设全集{}1,2,3,4,5U =,集合{}1,3,5A =,集合{}3,4B =,则()U C A B=( ) A .{}4 B .{}3,4 C .D .{}3【知识点】集合及其运算.A1 【答案解析】A 解析:因为全集{}1,2,3,4,5U =,集合{}1,3,5A =,集合{}3,4B =,所以2,4U C A,故4U C AB ,故选A. 【思路点拨】根据已知条件先求出U C A,然后再求()U C A B即可.【题文】2.已知函数()f x 为奇函数,且当0x >时, ()21,f x x x =+ 则()1f -= ( )A.2-B. 0C. 1D. 2【知识点】奇函数的性质;考查函数的求值. B1 B4【答案解析】A 解析:∵函数()f x 为奇函数,且当0x >时,()21,f x x x =+ ∴112f f ,故选A .【思路点拨】利用奇函数的性质11f f ,即可求得答案.【题文】3.若有直线m 、n 和平面α、β,下列四个命题中,正确的是 ( ) A .若//m α,//n α,则//m nB .若m α⊂,n α⊂,//m β,//n β,则//αβC .若αβ⊥,m α⊂,则m β⊥D .若αβ⊥,m β⊥,m α⊄,则//m α【知识点】面面平行的判定定理;线面平行的定理; 面面垂直的性质定理.G4 G5【答案解析】D 解析:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线;故选D .【思路点拨】由面面平行的判定定理和线面平行的定理判断A 、B 、D ;由面面垂直的性质定理判断C .【题文】4."等式sin()sin 2αγβ+=成立"是",,αβγ成等差数列 "的 ( ) A .充分不必要条件 B. 充要条件 C .必要不充分条件 D. 既不充分也不必要条件 【知识点】必要条件、充分条件与充要条件的判断.A2【答案解析】A 解析:若等式sin()sin 2αγβ+=成立,则()12kk αγπβ+=+-⋅,此时,,αβγ不一定成等差数列,若,,αβγ成等差数列,则2βαγ=+,等式sin()sin 2αγβ+=成立,所以“等式sin()sin 2αγβ+=成立”是“,,αβγ成等差数列”的.必要而不充分条件.故选A .【思路点拨】由正弦函数的图象及周期性以及等差数列进行双向判断即可.【题文】5.直线(21)10mx m y +-+=和直线330x my ++=垂直,则实数m 的值为( ) A .1 B .0 C .2 D .-1或0【知识点】直线的一般式方程;直线的垂直关系.H1 H2【答案解析】D 解析:∵直线mx+(2m-1)y+1=0和直线3x+my+3=0垂直, ∴3m+m (2m-1)=0,解得m=0或m=-1.故选:D . 【思路点拨】本题考查实数值的求法,解题时要认真审题,注意直线垂直的性质的合理运用. 【题文】6.如下图①对应于函数f(x),则在下列给出的四个函数中,图②对应的函数只能是( )A .y=f(|x|)B .y=|f(x)|C .y=f(-|x|)D .)(x f y -=【知识点】函数的图象;函数的图象与图象变化.B8【答案解析】C 解析:由图(2)知,图象对应的函数是偶函数,故B 错误,且当x >0时,对应的函数图象右侧与左侧关于y 轴对称,而y 轴左侧图象与(1)中的图象对应的函数y=f (x )的图象相同,故当x >0时,对应的函数是y=f (-x ),得出A 、D 不正确.故选C.【思路点拨】由题意可知,图2函数是偶函数,与图1对照,y 轴左侧图象相同,右侧与左侧关于y 轴对称,对选项一一利用排除法分析可得答案. 【题文】7.若{}n a 为等差数列,n S 是其前n 项和,且S15 =π10,则tan 8a 的值为( )A .3B . 3-C . 3±D .33-【知识点】等差数列的性质. D2【答案解析】B 解析:由等差数列{an}的前n 项和的性质,158S 15a 10,∴82a 3∴8tana 3,故选B .【思路点拨】由等差数列{an}的前n 项和的性质,n 为奇数时,12n n s na =,求出8a ,进而根据特殊角的三角函数值求出结果.【题文】8.过点(,0)引直线l 与曲线21y x =-交于A,B 两点 ,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )33B.33C.33D. 3【知识点】直线的斜率;直线与圆的关系. H1 H4【答案解析】B 解析:由21y x =-x2+y2=1(y ≥0).所以曲线21y x =-x 轴上方的部分(含与x 轴的交点),设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合, 则-1<k <0,直线l 的方程为y-0=k(x −2),即kx −y −2k =0.则原点O 到l 的距离d=221kk,l 被半圆截得的半弦长为222221 1()11k k k k =则S △ABO 2222222212(1)•1(1)1kk k k k k k=222222222(1)6(1)4462(1)(1)1k k k kk.令211t k=,则S △ABO =2462t t ,当t =34,即21314k =时,S △ABO 有最大值为12.此时由213 14k =,解得k=33-.故选B .【思路点拨】由题意可知曲线为单位圆在x 轴上方部分(含与x 轴的交点),由此可得到过C 点的直线与曲线相交时k 的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值.【题文】9.当x>3时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,3] B .[3,+∞) C .[72,+∞) D .(-∞, 72]【知识点】函数的单调性;不等式恒成立问题;基本不等式.B3 E6【答案解析】D 解析:因为不等式x+11-x ≥a 恒成立,所以有1111ax x 恒成立,令1t x ,32x t ,即11a tt 在2,恒成立,而函数11f ttt在2,上是增函数,故722af ,故选D.【思路点拨】先根据已知条件把原式转化为11a tt 在2,恒成立的问题,再借助于函数的单调性即可.【题文】10.如图,南北方向的公路l ,A 地在公路正东2 km 处,B 地在A 东偏北300方向23 km 处,河流沿岸曲线PQ 上任意一点到公路l 和到A 地距离相等。
浙江省温州市十校联合体高三上学期期中联考数学(文)试
2014学年第一学期十校联合体高三期中联考数 学 试 卷(文)(满分150分,考试时间:120分钟)一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设集合U={1,2,3,4},A={1, 2},B={2,4},则等于( )A.{1,4}B.{1,3,4}C.{2}D.{3}2.已知复数 z 满足,则( )A. B. C. D.23.点在第二象限是角的终边在第三象限的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设是两个不同的平面,是一条直线,以下命题正确的是( )A.若,则B.若,则C.若,则D.若,则5.已知是等差数列,其前项和为,若,则=( )A.15B.14C.13D.126.已知向量满足的夹角为与则向量且b b b a ,a )a (,2||,1|a |⊥+==( )0000150.120.60.30.D C B A7.同时具有性质“①最小正周期是,②图象关于直线对称”的一个函数是 ( )A. B. C. D .8.x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若取得最大值的最优解不唯一...,则实数的值为( ) A.或-1 B.2或 C.2或1 D.2或-19.已知函数当时,有解,则实数的取值范围为( )A. B. C. D.10.已知椭圆22122:1(0)x y C a b a b+=>>与圆,若在椭圆上不存在点P ,使得由点P 所作的圆的两条切线互相垂直,则椭圆的离心率的取值范围是( )A.0,2⎛ ⎝⎭B.0,2⎛ ⎝⎭C. D. 二、填空题(本大题共7小题,每小题4分,共28分。
)11.已知角的终边经过点(-4,3),则cos=__________12.某几何体的三视图如图所示,则该几何体的体积为____________13.设231log (1),2(),2x x x f x e x -⎧-≥⎪=⎨<⎪⎩, 则的值为14.设直线过点其斜率为1,且与圆相切,则的值为________15.函数的定义域为______________16.已知()sin 5f x a x =,若,则[]2lg(log 10)______f =17.已知为偶函数,当时,,则满足的实数的个数有________个三、解答题(本大题共5小题,共72分。
浙江省温州市十校联合体2015届高三第一次月考数学(文)试题及答案
温州市十校联合体2015届高三第一次月考数学(文)试题(完卷时间:120分钟, 满分:150分,本次考试不得使用计算器)一.选择题:本大题共10题,每小题5分,共50分.1.已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N =( )A.[0,1]B.(0,1)C.(0,1]D.[0,1) 2.下列四个函数中,既是奇函数又在定义域上单调递增的是( ) A .1y x =-B.tan y x = C .3y x =D .2log y x =3.已知点(cos ,tan )P αα在第三象限,则角α的终边在( )A. 第一象限B. 第二象限C.第三象限D.第四象限 4.设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >> 5.在ABC ∆中,G 为ABC ∆的重心,D 在边AC 上,且3CD DA =,则(A )17312GD AB AC =+ (B )11312GD AB AC =-- (C )17312GD AB AC =-+ (D )11312GD AB AC =-+6. 数列{a n }中,a 1 =1,对所有n ∈N +都有a 1 a 2…a n =n 2,则a 3+ a 5等于----- ( )A .1661B .925C .1625D .1531 7.函数2log 1()2xf x x x=--的图像为( )8在ABC ∆中,内角A,B,C 所对应的边分别,,,c b a ,若,3,6)(22π=+-=C b a c则ABC ∆的面积( )B A CGDA.3B.239 C.233 D.33 9.函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示,若12,(,)63x x ππ∈-,且12()()f x f x = (12x x ≠),则12()f x x +=( )A.1B.21C.22D.2310.已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|1f x ax ≥-恒成立,则a 的取值范围是( )(A )[2,0]- (B )[2,1]- (C) [4,0]- (D) [4,1]-二.填空题:本大题共7小题,每小题4分,共28分 11. =+++5lg 5lg 2lg 2lg 4log 3log 23212. 设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的 条件 13、奇函数()f x 在(0,)+∞上的解析式是()(1)f x x x =-,则()f x 的函数解析式是14.已知等差数列}{n a 的前n 项和为n S ,15355==a S 则数列}1{1+n n a a 的前2015项和为 .15.如图所示,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针针尖位置P(x,y).若初始位置为P 0(错误!未找到引用源。
【政治】浙江省温州市十校联合体2015届高三上学期期中联考
浙江省温州市十校联合体2015学年第一学期高三期中联考政治试卷第Ⅰ卷(选择题共52分)一、选择题(共26题,每题2分,共52分。
在每题给出的四个选项中,只有一项是符合题目要求的。
)1.为了刺激消费需求,温州各大商场2014年国庆节期间促销不断,但有市民认为:“每一份商品的品质都是由其成本堆积起来的,没有真正物美价廉的东西。
”这一观点蕴含的经济生活道理是A.商品的价格由其价值决定,它一定要等于其价值B.商品的价格受供求关系影响,它不会等于其价值C.商品的价格由其价值决定,它一定要反映其价值D.商品的价格受供求关系影响,但它不会偏离价值2.2013年某企业的生产条件处于全行业平均水平,其单位产品的价值量为144元,产量为10万件。
如果2014年该企业的劳动生产率提高15%,而全行业的劳动生产率提高20%,其他条件不变,则该企业2014年生产的商品价值总量将A. 变小B. 变大C. 不变D. 无法预测3.2014年小李采用按揭贷款的方式买了一套标价190万的新房,首付现金90万元,然后在25年内付清银行贷款100万元以及利息。
这里涉及的货币职能依次是A.价值尺度支付手段流通手段 B.支付手段流通手段价值尺度C.支付手段价值尺度流通手段 D.价值尺度流通手段支付手段4.实施“走出去”战略是我国对外开放新阶段的重大举措。
从“引进来”到“走出去”,意味着我国对外开放发展到了一个新层次。
实施“走出去”战略,意味着①减少吸引外资,加大对外投资②积极参与国际竞争与合作③调整我国贸易结构,使出口大于进口④鼓励和支持有竞争力的企业跨国经营A.①② B.③④ C.②③ D.②④5.中国人民银行外汇牌价显示:2014年6月8日,100美元兑换624.98元人民币,2014年10月8日,100美元兑换614.93元人民币。
这一趋势将有利于①我国出口贸易的发展②我国人们出国旅游、留学③我国对外投资的增加④吸引外商在我国投资A.①② B.②④ C.②③ D.①④6.2014年我国旅游业保持平稳较快增长,出境游人数预计达到1.1亿人次,同比增长13%。
浙江省温州市十校联合体高三数学上学期期初联考试题
俯视图侧视图正视图43242015学年第一学期十校联合体高三期初联考文科数 学试卷一、选择题:本大题有8小题,每小题5分,共40分.1.已知全集U =R ,集合{}012A =,,,{}234B =,,,则阴影部分所表示集合为( ▲ )A .{}2B .{}01,C .{}34,D .{}0,1,2,3,42.已知βα,角的终边均在第一象限,则“βα>”是“βαsin sin >”的( ▲ ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.若三棱锥的三视图如右图所示,则该三棱锥的体积为( ▲ )A .80B .40C .803D .4034.设n m ,为两条不同的直线,βα,为两个不同的平面,下列命题中为真命题的是( ▲ ) A.若//,n//m αα,则m//n B.若,m ααβ⊥⊥,则//m β C. 若βα//,m m ⊥,则βα⊥ D. 若//,m ααβ⊥,则m β⊥ 5.函数()2sin 1xf x x =+的图象大致为( ▲ )6.已知ABC ∆的面积为2,E,F 是AB,AC 的中点,P 为直线EF 上任意一点,则2PB PC BC •+u u u r u u u r u u u r 的最小值为( ▲ )A.2B.3C.37.已知函数222(1)0()4(3)0x k a x f x x x a x ⎧+-≥=⎨-+-<⎩ ()(),其中a R ∈,若对任意的非零实数1x ,存在唯一的非零实数212()x x x ≠,使得12()()f x f x =成立,则k 的取值范围为( ▲ ).08808A k k k k k ≤≥≤≤≤≥ B. C.0 D.或8.如图,已知双曲线22221(0,0)x y a b a b-=>>上有一点A,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足AF BF ⊥,设ABF α∠=,且,126ππα⎡⎤∈⎢⎥⎣⎦,则该双曲线离心率e 的取值范围为( ▲ ).3,232,132,233,13A ⎡⎤⎡⎤++⎣⎦⎣⎦⎡⎤⎡⎤++⎣⎦⎣⎦B. C. D.二、填空题(本大题共7小题,前四题每题6分,每空格3分,后三题,每题4分,共36分) 9.设函数31,1,()2,1.xx x f x x -<⎧=⎨≥⎩则(1)f = ▲ ; 若()1f a =,则a 的值为 ▲10.已知 ,255lg =x则x= ▲ ;设 m 52ba ==,且2b1a 1=+,则m= ▲11.设圆C :22()(21)1x k y k -+-+=,则圆C 的圆心轨迹方程为 ▲ ,若0k =时,则直线:310l x y +-=截圆C 所得的弦长= ▲12.“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{}n a 中,11=a ,12=a …)(12*++∈+=N n a a a n n n 则=7a ▲ ;若2017a m =,则数列{}n a 的前2015项和是 ▲(用m 表示).13.若实数y x ,满足不等式组330101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,,,则2||z x y =+的取值范围是 ▲14.如图,水平地面ABC 与墙面BCD 垂直,E,F 两点在线段BC 上,且满足4EF =,某人在地面ABC 上移动,为了保证观察效果,要求他到E,F 两点的距离和恰好为6,把人的位置记为P ,点R 在线段EF 上,满足RF=1,点Q在墙面上,且QR BC ⊥,2QR =,由点P 观察点Q 的仰角为θ,当PE 垂直面DBC 时,则tan θ= ▲15.已知,x y 为正数,且13310x y x y+++=,则3x y +的最大值为 ▲ 三、解答题:本大题有5小题,共 74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)已知(2sin ,sin cos )m x x x =-u r ,(3cos ,sin cos )n x x x =+r ,记函数()f x m n =⋅u r r .(1)求函数()f x 的最大以及取最大值时x 的取值集合;(2)设ABC ∆的角,,A B C 所对的边分别为,,a b c ,若()2f C =,3c =,求ABC ∆面积的最大值. 17.(本题满分15分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . \ 18.(本题满分15分)如图,在三棱锥P ABC -中,△PAB 和△CAB 都是以AB 为斜边的等腰直角三角形, 若22AB PC ==,D 是PC 的中点 (1)证明:AB ⊥PC ;(2)求AD 与平面AB C 所成角的正弦值.19.(本题满分15分)已知抛物线C:22(0)x py p =>的焦点为F ,直线220x y -+= 交抛物线C 于A 、B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q . (1)若直线AB 过焦点F ,求AF BF •的值;(2)是否存在实数p ,使ABQ ∆是以Q 为直角顶点的直角三角形?若存在,求出p 的值;若不存在,说明理由. 20.(本题满分15分)已知函数2()1,()||f x x g x x a =-=-.(1)当1a =时,求()()()F x f x g x =-的零点;(2)若方程|()|()f x g x =有三个不同的实数解,求a 的值; (3)求()()()G x f x g x =+在[2,2]-上的最小值()h a .2015学年第一学期十校联合体高三期初联考文科数学参考答案命题人:龙港高级中学 审核人: 温州八高一、选择题:(本大题有8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项题号 1 2 3 4 5 6 7 8 答案BDDCACDB二、填空题(本大题共7小题,前四题每题6分,每空格3分,后三题,每题4分,共36分)9. 2 、2310. 100 、1011. 210x y --= 、215512.13 、1m - 13.[]1,11- 14.31065315. 8三、解答题:本大题有5小题,共 74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分) 解(1)由题意,得22()23sin cos sin cos f x m n x x x x =⋅=+-u r r(1分)1cos 21cos 23232cos 222x xx x x -+=+-=- (3分) 2sin(2)6x π=-(4分)max 2y ∴= (5分)当()f x 取最大值时,即sin(2)16x π-=,此时22()62x k k Z πππ-=+∈,()3x k k Z ππ=+∈解得 (6分) 所以x 的取值集合为,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. (7分)(2)因()2f C =,由(1)得sin(2)16C π-=,又0C π<<,即112666C πππ-<-<, 所以262C ππ-=,解得3C π=, (10分)在ABC ∆中,由余弦定理2222cos c a b ab C =+-, (11分) 得223a b ab ab =+-≥,即3ab ≤, (13分) 所以1sin 2ABC S ab C ∆=(14分) 33344ab =≤ (15分) 所以ABC ∆面积的的最大值为334. 17 (本题满分15分)解:(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, (4分) 所以321)=2n+1n a n =+-(; (5分) n S =n(n-1)3n+22⨯=2n +2n . (7分) (Ⅱ)由(Ⅰ)知2n+1n a =, 所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅,(12分) 所以n T =111111(1-+++-)4223n n+1⋅-L =11(1-)=4n+1⋅n 4(n+1),(15分) 即数列{}n b 的前n 项和n T =n4(n+1).18.(本题满分15分) 解:(1)取AB 中点E ,连接PE,EC, 由于,PAB CAB ∆∆为等腰直角三角形,则CE AB ⊥,PE AB ⊥, (4分) 则AB ⊥平面PEC , (6分)所以PC AB ⊥ (7分)(2)取CE 中点O,再取OC 中点F ,连接PO,DF,AF , 由于,PAB CAB ∆∆为等腰直角三角形,又22,2===CE PE AB 所以,(8分) 又22PC =Q PEC ∴∆为正三角形 ( 9分),CE PO ⊥∴则⊥PO 平面ABC , (10分) ,//DF PO Θ,ABC DF 面⊥∴ (11分)所以DAF ∠为所求角. (12分)46=PO 可求,86=DH (13分) 又在PAC ∆中可求,414=AD (14分) .1421sin ==∠AD DH DAH 15分19. (本题满分15分)解:(1)∵ ()0,2F ,4p =, (2分) ∴ 抛物线方程为y x 82=,与直线22y x =+联立消去y 得: 016162=--x x , (4分) 设),(),,(2211y x B y x A ,则16,162121-==+x x x x , (5分) ∴ =++=++=)42)(42()2)(2(||||2121x x y y BF AF 80; (7分)(2)假设存在,由抛物线py x 22=与直线22y x =+联立消去y 得:0442=--p px x 设),(),,(2211y x B y x A ,则p x x p x x 4,42121-==+,(10分) 可得),2,2(p p Q (12分)由0=⋅得:0)2)(2()2)(2(2121=--+--p y p y p x p x ,即0)22)(222()2)(2(2121=-+-++--p x p x p x p x , ∴ 0488))(64(522121=+-++-+p p x x p x x ,(13分) 代入得01342=-+p p ,)(141舍或-==p p .(15分) 20.(本题满分15分)解:(1)当1a =时,222,1,()1|1|2, 1.x x x F x x x x x x ⎧- ≥⎪=---=⎨+- <⎪⎩, 1分令()0F x =得,当1x ≥时,20x x -=,1x =(0x =舍去) 当1x <时,220x x +-=,2x =-(1x =舍去)所以当1a =时,()F x 的零点为1,2- 3分 (2)方法一:方程|()|()f x g x =,即2|1|||x x a -=-,变形得22(1)(1)0x x a x x a +---+-=, 5分 从而欲使原方程有三个不同的解,即要求方程210x x a +--= (1) 与210x x a -+-= (2)满足下列情形之一:(Ⅰ)一个有等根,另一个有两不等根,且三根不等 (Ⅱ)方程(1)、(2)均有两不等根且由一根相同; 对情形(I ):若方程(1)有等根,则14(1)0a ∆=++= 解得 54a =-代入方程(2)检验符合;若方程(2)有等根,则14(1)0a ∆=--=解得54a =代入方程(1)检验符合; 7分对情形(Ⅱ):设0x 是公共根,则22000011x x a x x a +--=-+-,解得0x a =代入(1)得1a =±,1a =代入|()|()f x g x =检验得三个解为-2、0、1符合 1a =-代入|()|()f x g x =检验得三个解为2、0、-1符合故|()|()f x g x =有三个不同的解的值为54a =±或1a =±. 9分 方法二: 方程|()|()f x g x =,即2|1|||x x a -=-,变形得22(1)(1)0x x a x x a +---+-=, 5分 则2211a x x a x x =+-=-++或,再结合221,1y x x y x x =+-=-++,找出两个二次函数的公共点及顶点,y a =用直线去截,得到三个交点的情况即可。
2015届浙江省温州市十校联合体高三上学期期初联考文科数学试卷(带解析)
绝密★启用前2015届浙江省温州市十校联合体高三上学期期初联考文科数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:160分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,南北方向的公路 ,A 地在公路正东2 km 处,B 地在A 东偏北300方向2km处,河流沿岸曲线PQ 上任意一点到公路和到A 地距离相等.现要在曲线PQ 上一处建一座码头,向A 、B 两地运货物,经测算,从M 到A 、M 到B 修建费用都为a 万元/km ,那么,修建这条公路的总费用最低是( )万元A.(2+)a B.2(+1)a C.5a D.6a2、当x>3时,不等式x+≥恒成立,则实数的取值范围是( )A .(-∞,3]B .[3,+∞)C .[,+∞)D .(-∞,]3、若为等差数列,是其前项和,且S 15 =,则tan的值为( )A .B .C .D .4、如下图①对应于函数f (x ),则在下列给出的四个函数中,图②对应的函数只能是( )A .y=f (|x|)B .y=|f (x )|C .y=f (-|x|)D .5、直线和直线垂直,则实数的值为( )A .1B .0C .2D .-1或06、等式成立是成等差数列的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件7、已知函数为奇函数,且当时,则( )A .B .C .D .8、设全集,集合,集合,则=( )A .B .C .D .9、若有直线、和平面、,下列四个命题中,正确的是( )A .若,,则 B .若,,,,则C .若,,则D .若,,,则10、过点(,0)引直线与曲线交于A ,B 两点,O 为坐标原点,当△AOB的面积取最大值时,直线的斜率等于( )A .B .C .D .第II 卷(非选择题)二、填空题(题型注释)11、在直角坐标平面中,的两个顶点A 、B 的坐标分别为A (-1,0),B (1,0),平面内两点G 、M 同时满足下列条件:(1),(2),(3),则的顶点C 的轨迹方程为 ___.12、函数的图像与函数的图像所有交点的横坐标之和为 _.13、如图,等边△中,,则_________.14、若则的值为 ____ .15、设满足则的最小值为 _______ .16、若角的终边经过点P,则的值是 .17、一个组合体的三视图如图,则其体积为________________.三、解答题(题型注释)18、在平面直角坐标系xOy 中,M 、N 分别是椭圆的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C ,连结AC ,并延长交椭圆于点B ,设直线PA 的斜率为k. (1)若直线PA 平分线段MN ,求k 的值; (2)当k =2时,求点P 到直线AB 的距离d ,且求的面积.19、数列{}的前项和为,是和的等差中项,等差数列{}满足,.(1)求数列{},{}的通项公式;(2)若,求数列的前项和.20、在直三棱柱ABC —A 1B 1C 1中,CA=CB=CC 1=2,∠ACB=90°,E 、F 分别是BC 、的中点. (1)求证:;(2)求直线与平面所成角的正切值.21、已知函数.(1)求函数的最小正周期和单调递减区间; (2)设△的内角的对边分别为且,,若,求的值.22、设奇函数,且对任意的实数当时,都有(1)若,试比较的大小;(2)若存在实数使得不等式成立,试求实数的取值范围.参考答案1、C2、D3、B4、C5、D6、C7、A8、A9、D10、B11、(没有注明也给分)12、4.13、-3.14、2.15、2.16、.17、.18、(1);(2)d=,.19、(1),;(2).20、(1)祥见解析;(2).21、(1),;(2),.22、(1);(2).【解析】1、试题分析:依题意知曲线PQ是以A为焦点、l为准线的抛物线,根据抛物线的定义知:欲求从M到A,B修建公路的费用最低,只须求出B到直线l距离即可.因B地在A地东偏北300方向km处,∴B到点A的水平距离为3(km),∴B到直线l距离为:3+2=5(km),那么修建这两条公路的总费用最低为:5a(万元).故选C.考点:抛物线方程的应用.2、试题分析:因为当x>3时,不等式x+≥恒成立,所以有,记,设x-1=t,则在上是增函数,所以得,故选D.考点:函数的恒成立.3、试题分析:∵等差数列中,;故选B考点:1.等差数列的性质;2.三角诱导公式及特殊角三角函数值.4、试题分析:由图(2)知,图象对应的函数是偶函数,故B错误,且当x>0时,对应的函数图象右侧与左侧关于y轴对称,而y轴左侧图象与图(1)中的图象对应的函数y= f(x)的图象相同,故当x>0时,对应的函数是y=f(-|x|),得出A、D不正确.故选C.考点:函数的图象与图象变换.5、试题分析:若直线与直线垂直,则,解得m=-1,或m=0.故选D.考点:两条直线垂直的条件.6、试题分析:由成等差数列知,由等式成立不能推出,即不能推出成等差数列,所以等式成立是成等差数列的必要不充分条件;故选C.考点:充要条件.7、试题分析:由已知有,故选A.考点:函数的奇偶性.8、试题分析:由已知有,故选A.考点:集合的运算.9、试题分析:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知差两直线相交这一条件;C不对,由面面垂直的性质定理知,m必须垂直两平面的交线;故选:D.考点:空间中线面的位置关系.10、试题分析:由,得x2+y2=1(y≥0)∴曲线表示単位圆在x轴上方的部分(含于x轴的交点)由题知,直线斜率存在,设直线l的斜率为k,若直线与曲线有两个交点,且直线不与x轴重合则-1<k<0,∴直线l的方程为:,即则圆心O到直线l的距离直线l被半圆所截得的弦长为令则所以当,即,亦即时有最大值为,再注意到-1<k<0,所以,故选B.考点:直线与圆的位置关系.11、试题分析:由得,G为重心,由得,M为外心.所以M点在y轴上(M到AB两点距离相等).又,则GM∥AB.设M为(0,y),G为(x,y)(y≠0),由重心坐标公式得C为(3x,3y).再由MA=MC,得.整理得:9x2+3y2=1①.再设,由得.代入①得:,所以△ABC的顶点C的轨迹方程为.考点:1.椭圆的的标准方程;2.轨迹方程的求法.12、试题分析:函数与的图象有公共的对称中心(1,0),作出两个函数的图象,如图所示:当1<x4时,,而函数y2在(1,4)上出现1.5个周期的图象,在上是单调增且为正数函数,y2在(1,4)上出现1.5个周期的图象,在上是单调减且为正数,∴函数y2在处取最大值为,而函数y2在(1,2)、(3,4)上为负数与y1的图象没有交点,所以两个函数图象在(1,4)上有两个交点(图中C、D),根据它们有公共的对称中心(1,0),可得在区间(-2,1)上也有两个交点(图中A、B),并且:x A+x D=x B+x C=2,故所求的横坐标之和为4,故答案为:4.考点:1.函数的零点与方程的根的关系;2.数形结合思想.13、试题分析:由题意,得;,故答案为:-3.考点:平面向量数量积的运算.14、试题分析:因为,所以,故答案为:2.考点:分段函数值的求法.15、试题分析:首先作出不等式组所对应的平面区域,如图所示:然后作出直线,平移到经过点B(2,0)时,,故答案为:2. 考点:线性规划.16、试题分析:由角的终边经过点P,知,由三角函数的定义可知:,故答案为:.考点:三角函数的定义.17、试题分析:由已知组合体的视图可知,该组合体是由下边为一个底面直径为4,高为4的圆柱,上边为一个底面直径为4,高为3的圆锥组成,如图,所以其体积为:.故答案为:.考点:1.三视图;2.圆柱和圆锥的体积公式.18、试题分析:(1)由题设写出点M,N的坐标,求出线段MN中点坐标,根据线PA 过原点和斜率公式,即可求出k的值;(2)写出直线PA的方程,代入椭圆,求出点P,A的坐标,求出直线AB的方程,根据点到直线的距离公式,即可求得点P到直线AB的距离d;再联立直线AB的方程与椭圆的方程,利用韦达定理及弦长公式求出弦AB的长,从而由三角形的面积公式就可求出的面积.试题解析:(1)由题设知,a=2,b=,故M(-2,0),N(0,-),所以线段MN中点的坐标为.由于直线PA平分线段MN,故直线PA过线段MN 的中点,又直线PA过坐标原点,所以k==. 5分(2)直线PA的方程为y=2x,代入椭圆方程得,解得x=±,因此P,A.于是C,直线AC的斜率为=1,故直线AB的方程为x-y-=0.因此,d==. 10分,消去y,得15分考点:1.直线斜率的求法;2.椭圆的标准方程和简单的几何性质;3.直线与椭圆的位置关系.19、试题分析:(1)由a n是S n和1的等差中项,得S n=2a n-1,由a n=S n-S n-1可得数列递推式,从而可判断{a n}是等比数列,可求a n,由等差数列通项公式可求公差d,从而就可写出数列{},{}的通项公式;(2)由已知得,所以利用裂项相消法可求得.试题解析:(1)∵是和的等差中项,∴,当时,,,当时,, 2分, 4分∴数列是以为首项,为公比的等比数列,6分设的公差为,,.8分(2)14分考点:1.等差数列等比数列的通项公式;2.数列求和.20、试题分析:(1)欲证直线EF∥平面A1C1B,只需证明过EF的一个平面与平行平面A1C1B平行即可,由此只需取CC1的中点M,连接ME,MF,由E、F分别为AB、AA1的中点,可知FM∥A1C1,EM∥BC1,从而可得平面MEF∥平面A1C1B,再由面面平行的性质可得EF∥平面A1C1B.(2)因为三棱柱ABC—A1B1C1是直三棱柱,所以平面ABB1A1平面ABC,故过E 做AB的垂线,交AB于点H,连接HF,则,那么由线面角的概念可知∠EFH就是直线与平面所成角,在中由已知可求出∠EFH 的正切值.试题解析:(1)证:如下图,取CC1的中点M,连接ME,MF,则ME∥BC1,MF∥A1C1,所以平面MEF∥平面A1C1B,又EF平面MEF,EF∥平面A1C1B7分(也可以用线面平行的方法来求证)(2)解;如下图过E做AB的垂线,交AB于点H,连接HF,因为三棱柱ABC—A1B1C1是直三棱柱,所以平面ABB1A1平面ABC,由面面垂直的性质定理得:,故∠EFH即为所求之线面角.10分在直三棱柱ABC—A1B1C1中,由已知及平几知识可求得:,在中,14分考点:1.空间的线面平行的判定;2.直线与平面所成角的求法.21、试题分析:(1)利用两角和与二倍角公式对函数解析式化简成为的形式,利用三角函数的图象和性质求得最小正周期,由就可求得函数的单调递减区间;(2)由(1)及已知条件可求出角C的大小,再由由正弦定理可得,又因为,所以由余弦定理可再得到一个关于的方程,从而通过解方程组就可求出的值.试题解析:(1),3分则最小正周期是;5分;由,得的单调递减区间,8分(2),则,9分,,所以,所以,,11分因为,所以由正弦定理得,①12分由余弦定理得,即②11分,由①②解得:,.14分考点:1.三角恒等变形公式;2.三角函数的图象和性质;3.正弦定理和余弦定理.22、试题分析:(1)由a>b,得,所以f(a)+f(-b)>0,由是定义在R上的奇函数,能得到.(2)由在R上是单调递增函数,利用奇偶性、单调性可把中的符号“f”去掉,分离出参数c后转化为函数最值即可解决,注意存在实数使不等式成立,注意存在成立与恒成立是不同的.试题解析:(1)由已知得,又,,即6分(2)为奇函数,等价于8分又由(1)知单调递增,不等式等价于即10分由于存在实数使得不等式成立,12分的取值范围为15分考点:1.函数奇偶性与单调性的综合;2.函数存在成立问题.。
浙江省温州市十校联合体高三数学上学期期初联考试题 理(含解析)
浙江省温州市十校联合体2015届高三数学上学期期初联考试题 理(含解析)【试卷综评】命题把重点放在高中数学课程中最基础、最核心的内容上,充分关注考生在学习数学和应用数学解决问题中必须掌握的核心观念、思想方法、基本概念和常用技能。
试卷对中学数学的核心内容和基本能力,特别是对高中数学的主干知识进行较为全面地考查。
注重了知识之间的内在联系,重点内容重点考,没有片面追求知识及基本思想、方法的覆盖面,反映了新课程的理念.一、选择题:本大题有10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.【题文】1.设全集{}1,2,3,4,5U =,集合{}1,3,5A =,集合{}3,4B =,则()U C A B =( )A .{}4B .{}3,4C .{}2,3,4D .{}3【知识点】集合及其运算.A1 【答案解析】A 解析:因为全集{}1,2,3,4,5U =,集合{}1,3,5A =,集合{}3,4B =,所以{}2,4U C A =,故(){}4U C A B =,故选A. 【思路点拨】根据已知条件先求出U C A ,然后再求()U C A B 即可.【题文】2.已知函数()f x 为奇函数,且当0x >时, ()21,f x x x =+ 则()1f -= ( )A.2-B. 0C. 1D. 2【知识点】奇函数的性质;考查函数的求值. B1 B4【答案解析】A 解析:∵函数()f x 为奇函数,且当0x >时, ()21,f x x x =+∴()()112f f -=-=-,故选A .【思路点拨】利用奇函数的性质()()11f f -=-,即可求得答案.【题文】3.若有直线m 、n 和平面α、β,下列四个命题中,正确的是 ( )A .若//m α,//n α,则//m nB .若m α⊂,n α⊂,//m β,//n β,则//αβC .若αβ⊥,m α⊂,则m β⊥D .若αβ⊥,m β⊥,m α⊄,则//m α【知识点】面面平行的判定定理;线面平行的定理; 面面垂直的性质定理.G4 G5【答案解析】D 解析:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线;故选D .【思路点拨】由面面平行的判定定理和线面平行的定理判断A 、B 、D ;由面面垂直的性质定理判断C .【题文】4.在ABC ∆中,“sin A (2sin sin )C A -cos A =(2cos cos )C A +”是“角A 、B 、C 成等差数列”的 ( )A .充分不必要条件 B. 充要条件 C .必要不充分条件 D. 既不充分也不必要条件【知识点】两角差的余弦公式以及平方关系;充要条件. C 5 A2【答案解析】B 解析:因为sin A (2sin sin )C A -cos A =(2cos cos )C A +,整理可得: ()222cos cos sin sin cos sin A C A C A A -=--,即1c o s()2A C +=-,060B =;而角A 、B 、C 成等差数列可得060B =,故在ABC ∆中,“sin A (2sin sin )C A -cos A =(2cos cos )C A +”是“角A 、B 、C 成等差数列”的充要条件.故选B.【思路点拨】先利用两角差的余弦公式以及平方关系把原式化简,然后双向判断即可.【题文】5.直线(21)10mx m y +-+=和直线330x my ++=垂直,则实数m 的值为( )A .1B .0C .2D .-1或0【知识点】直线的一般式方程;直线的垂直关系.H1 H2【答案解析】D 解析:∵直线mx+(2m-1)y+1=0和直线3x+my+3=0垂直,∴3m+m (2m-1)=0,解得m=0或m=-1.故选:D .【思路点拨】本题考查实数值的求法,解题时要认真审题,注意直线垂直的性质的合理运用.【题文】6.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A ,B 的任意一点,AC=BC=4,PA =则二面角A-PB-C 的大小的正弦值为( ) ABC【知识点】二面角的求法.G5【答案解析】C 解析:如下图M连接CO ,∵AC=BC=4,PA =,∴AB =AB ⊥OC , 过O 在平面PAB 上作OM ⊥PB 于M ,连接CM ,由三垂线定理CM ⊥PB ,∴∠OMC 是二面角A-PB-C的平面角,易知CO=CM =,所以在Rt ABC ∆中sin OMC 3∠==, 故选C.【思路点拨】连接CO ,过O 在平面PAB 上作OM ⊥PB 于M ,连接CM ,∠OMC 是二面角A-PB-C 的平面角,由此能求出二面角A-PB-C 的大小的正弦值.【题文】7.若{}n a 为等差数列,n S 是其前n 项和,且S15 =π10,则tan 8a 的值为( )AB .C ..【知识点】等差数列的性质. D2【答案解析】B 解析:由等差数列{an}的前n 项和的性质,158S 15a 10p ==, ∴82a 3p=∴8tana =-故选B .【思路点拨】由等差数列{an}的前n 项和的性质,n 为奇数时,12n n s na +=,求出8a ,进而根据特殊角的三角函数值求出结果. 【题文】8.过点(,0)引直线l与曲线y =交于A,B 两点 ,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )B.C.D.【知识点】直线的斜率;直线与圆的关系. H1 H4【答案解析】B解析:由y =x2+y2=1(y ≥0).所以曲线y =x 轴上方的部分(含与x 轴的交点),设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合,则-1<k <0,直线l 的方程为y-0=k(x,即kx −y=0.则原点O 到l 的距离d=,l被半圆截得的半弦长为则S △ABO== 令211t k +=,则S △ABOt =34,即213 14k +=时,S △ABO 有最大值为12.此时由213 14k +=,解得k=B .【思路点拨】由题意可知曲线为单位圆在x 轴上方部分(含与x 轴的交点),由此可得到过C 点的直线与曲线相交时k 的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值.【题文】9.函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( )A .2B .3C .4D .6【知识点】正弦函数的图象;函数的零点与方程的根的关系.B9 C3【答案解析】C 解析:函数111y x =-与22sin y x p =的图象有公共的对称中心10(,),作出两个函数的图象,当1<x ≤4时,1y ≥13,而函数2y 在(1,4)上出现1.5个周期的图象,在5(2)2,上是单调增且为正数函数,2y 在(1,4)上出现1.5个周期的图象,在(52,3)上是单调减且为正数,∴函数2y 在x=52处取最大值为2≥23,而函数2y 在12(,)、34(,)上为负数与1y 的图象没有交点,所以两个函数图象在(1,4)上有两个交点(图中C 、D ),根据它们有公共的对称中心(1,0),可得在区间(-2,1)上也有两个交点(图中A 、B ),并且:xA+xD=xB+xC=2,故所求的横坐标之和为4,故选C. 【思路点拨】111y x =-的图象关于点10(,)中心对称,再由正弦函数的对称中心公式,可得函数22sin y x p =的图象的一个对称中心也是点10(,),故交点个数为偶数,且对称点的横坐标之和为2,即可得到结果.【题文】10.在直角坐标平面中,ABC ∆的两个顶点A 、B 的坐标分别为A (-1,0), B (1,0),平面内两点G 、M 同时满足下列条件:(1)GA GB GC O ++= ,(2)||||||MA MB MC ==,(3)//GM AB ,则ABC ∆的顶点C 的轨迹方程为( ) A. 2213x y += (0)y ≠ B. 2213x y -= (0)y ≠ C. 2213y x += (0)y ≠ D. 2213y x -= (0)y ≠ 【知识点】轨迹方程;椭圆的标准方程. H5 H9【答案解析】C 解析:由GA GB GC O ++=得,G 为重心,由||||||MA MB MC ==得,M 为外心.所以M 点在y 轴上(M 到AB 两点距离相等).又//GM AB ,则GM ∥AB .设M 为(0,y ),G 为(x ,y )(y ≠0),由重心坐标公式得C 为(3x ,3y ).再由MA=MC=22931x y +=①. 再设c (x',y'),由3x=x',3y=y'得x =3x ¢,y =3y ¢代入①得:(x′)2+2()3y ¢=1.所以△ABC 的顶点C 的轨迹方程为x2+ 23y =1 (y≠0).故选C .【思路点拨】由题目给出的条件,分别得到G 为三角形ABC 的重心,M 为三角形ABC 的外心,设出G 点坐标,由GM ∥AB ,可知M 和G 具有相同的纵坐标,由重心坐标公式得到C 点的坐标,然后由M 到A 和C 的距离相等列式可得G 的轨迹方程,利用代入法转化为C 的轨迹方程.二、填空题(本大题共7小题,每小题4分,共28分)【题文】11. 若角α的终边经过点P )54,53(-,则sin tan αα的值是【知识点】任意角的三角函数的定义. C1 【答案解析】1615 解析:OP=r=1,∴点P 在单位圆上,∴sin α=45-,tan α=445335-=-,得sin αtan α=(45-)×(43-)=1615.故答案为1615. 【思路点拨】求出OP 的距离,利用任意角的三角函数的定义求出sin α,tan α,即可求出sin αtan α的值得到结果.【题文】12.一个组合体的三视图如图,则其体积为________________【知识点】由三视图求体积.G2【答案解析】20p 解析:三视图复原的几何体是下部为底面半径为2高为4的圆柱,上部是底面半径为2为3的圆锥,所以几何体的体积为:2212423203p p p 创+创=.故答第12题图案为:20p .【思路点拨】利用三视图复原的几何体的形状,通过三视图的数据求解几何体的体积即可.【题文】13.若12322()log (1) 2.,,,x e x f x x x -⎧<⎪=⎨-≥⎪⎩则((2))f f 的值为 ____ .【知识点】分段函数求函数值.B1【答案解析】2 解析:由已知条件可知()233(2)log 21log 31f =-==,所以11((2))(1)22f f f e -===,故答案为2.【思路点拨】先求出(2)f 的值,再求((2))f f 即可.【题文】14. AB 为抛物线y2=2px(p>0)的过焦点(,0)2p F 的弦,若11(,)A x y ,22(,)B x y ,则1212y y x x = 。
浙江省温州市十校联合体高三数学上学期期初联考试题 文(含解析)-人教版高三全册数学试题
浙江省温州市十校联合体2016届高三数学上学期期初联考试题 文(含解析)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U =R ,集合{}012A =,,,{}234B =,,,则阴影部分所表示集合为( ▲ )A .{}2B .{}01,C .{}34,D .{}0,1,2,3,4 【答案】B . 【解析】试题分析:由题意知,阴影部分表示的为集合A 去掉A B ⋂的部分,所以其表示的为{}01,,故应选B .考点:1、集合间的相互关系;2.已知βα,角的终边均在第一象限,则“βα>”是“βαsin sin >”的( ▲ ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】D . 【解析】试题分析:当βα>时,不能推出βαsin sin >,例如:26παπ=+,3πβ=,而1sin sin(2)sin 662ππαπ=+==,3sin sin 32πβ==,所以sin sin αβ<;当βαsin sin >时,不能推出βα>,例如:3πα=,26πβπ=+,此时αβ<,故应选D .考点:1、三角函数的概念;3.若三棱锥的三视图如右图所示,则该三棱锥的体积为( ▲ )A .80B .40C .803 D .403【答案】D . 【解析】试题分析:由题意的三视图可知,原几何体是一个底面为直角边为5、4的直角三角形,其高为4,且顶点在底面的射影点分底面边长为3:2,所以原几何体的体积为1140(54)4323V =⨯⨯⨯⨯=,故应选D . 考点:1、三视图;4.设n m ,为两条不同的直线,βα,为两个不同的平面,下列命题中为真命题的是( ▲ ) A.若//,n//m αα,则m//n B.若,m ααβ⊥⊥,则//m β C. 若βα//,m m ⊥,则βα⊥ D. 若//,m ααβ⊥,则m β⊥ 【答案】C . 【解析】考点:1、直线与平面的平行的判定定理与性质定理;2、直线与平面垂直的判定定理与性质定理; 5.函数()2sin 1xf x x =+的图象大致为( ▲ ) 俯视图侧视图正视图4324【答案】A . 【解析】试题分析:因为()2sin 1xf x x =+,所以()0()()0f f f ππ==-=,所以排除选项,C D ;当0x π<<时,sin 0x >,所以当0x π<<时,()0f x >,所以排除选项B ,故应选A .考点:1、函数的图像;6.已知ABC ∆的面积为2,E,F 是AB,AC 的中点,P 为直线EF 上任意一点,则2PB PC BC •+的最小值为( ▲ )A.2B.3C.23 【答案】C . 【解析】试题分析:因为E,F 是AB,AC 的中点,所以EF 到BC 的距离等于点A 到BC 的距离的一半,所以2ABC PBC S S ∆∆=,而2ABC S ∆=,所以1PBC S ∆=,又1sin 2PBC S PB PC BPC ∆=⨯∠,所以2sin PB PC BPC ⨯=∠.所以2cos cos sin BPCPB PC PB PC BPC BPC→→∠⋅=⨯∠=∠.由余弦定理有:2222cos BC PB PC PB PC BPC =+-⨯∠.因为,PB PC 都是正数,所以222PB PC PB PC +≥⨯,222cos BC PB PC PB PC BPC ≥⨯-⨯∠,所以242cos cos 22cos sin BPCPB PC BC PB PC BPC PB PC PB PC BPC BPC-∠•+≥⨯∠+⨯-⨯∠=∠,令42cos sin BPC y BPC -∠=∠,则'224cos sin BPC y BPC -∠=∠,令'0y =,则1cos 2BPC ∠=,此时函数在1(0,)2上单调递增,在1(,1)2上单调递减,所以2PB PC BC •+的最小值为3C . 考点:1、平面向量的数量积的应用;2、解三角形;7.已知函数222(1)0()4(3)0x k a x f x x x a x ⎧+-≥=⎨-+-<⎩ ()(),其中a R ∈,若对任意的非零实数1x ,存在唯一的非零实数212()x x x ≠,使得12()()f x f x =成立,则k 的取值范围为( ▲ ).088A k k k ≤≥≤≤ B. C.0 0k ≤D.或8k ≥【答案】D . 【解析】试题分析:由于函数222(1)0()4(3)0x k a x f x x x a x ⎧+-≥=⎨-+-<⎩ () (),则0x =时,2()(1)f x k a =-,又由对任意的非零实数1x ,存在唯一的非零实数212()x x x ≠,使得12()()f x f x =成立,所以函数必须为连续函数,即在0x =附近的左右两侧函数值相等,所以22(3)(1)a k a -=-,即2(k 1)a 690a k +-+-=有实数解,所以264(k 1)(9)0k ∆=-+-≥,解得08k k ≤≥或,故应选D .考点:1、分段函数的应用;8.如图,已知双曲线22221(0,0)x y a b a b-=>>上有一点A,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足AF BF ⊥,设ABF α∠=,且,126ππα⎡⎤∈⎢⎥⎣⎦,则该双曲线离心率e 的取值范围为( ▲ ).3,232,132,233,13A ⎡⎤⎡⎤++⎣⎦⎣⎦⎡⎤⎡⎤++⎣⎦⎣⎦B. C. D.【答案】B . 【解析】试题分析:设左焦点为'F ,令'12,AF r AF r ==,则'2BF AF r ==,所以212r r a -=,因为点A 关于原点O 的对称点为B ,AF BF ⊥,所以OA OB OF c ===,所以222214r r c +=,所以22122()r r c a =-,因为2ABF AOF S S ∆∆=,所以212112sin 222r r c α=⨯,即2122sin 2r r c α=,所以222sin 2c c a α=-,所以211sin 2e α=-,因为,126ππα⎡⎤∈⎢⎥⎣⎦,所以1sin 22α⎡∈⎢⎣⎦,所以2211)1sin 2e α⎡⎤=∈⎣⎦-,所以1e ⎤∈⎦,故应选B .考点:1、双曲线的概念;2、双曲线的简单的基本性质;第Ⅱ卷(共110分)(非选择题共110分)二、填空题(每题5分,满分36分,将答案填在答题纸上) 9.设函数31,1,()2,1.xx x f x x -<⎧=⎨≥⎩则(1)f = ▲ ; 若()1f a =,则a 的值为 ▲ .【答案】22,3. 【解析】试题分析:由1(1)22f ==知第一空应填2;若()1f a =,则当1a <时,311a -=,即23a =;当1a ≥时,21a=,即0a =,不合题意,故应填23a =. 考点:1、分段函数; 10.已知 ,255lg =x则x= ▲ ;设 m 52ba ==,且2b1a 1=+,则m= ▲ .【答案】【解析】试题分析:因为lg 525x =,所以5lg log 252x ==,所以210100x ==;因为 m 52ba==,所以21log log 2m a m ==,51log log 5m b m ==,又因为2b1a 1=+,所以log 2log 52m m +=,即210m =,所以10m =. 故应填100,10.考点:1、对数函数;2、对数运算;11.设圆C :22()(21)1x k y k -+-+=,则圆C 的圆心轨迹方程为 ▲ ,若0k =时,则直线:310l x y +-=截圆C 所得的弦长= ▲ .【答案】210x y --=,2155. 【解析】试题分析:设圆心的坐标为(,)C x y ,则,21x k y k ==-,消去k 可得21y x =-,即为所求的圆C 的圆心轨迹方程;若0k =时,则圆心到直线的距离为23011215531d ⨯--==+,故应填210x y --=,2155. 考点:1、直线与圆的位置关系;12.“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{}n a 中,11=a ,12=a …)(12*++∈+=N n a a a n n n 则=7a ▲ ;若2017a m =,则数列{}n a 的前2015项和是▲ (用m 表示). 【答案】13,1m -. 【解析】考点:1、数列的求和;13.若实数y x ,满足不等式组330101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,,,则2||z x y =+的取值范围是 ▲ .【答案】[]1,11-. 【解析】试题分析:首先根据题意的二元一次不等式组可画出其所表示的平面区域如下图所示:当0x ≥时,2z x y =+即目标函数为2y x z =-+,根据图形可知,在点C 处取得最大值且为max 26111z =⨯-=,在点(0,1)-处取得最小值且为min 2011z =⨯-=-,所以此时2||z x y =+的取值范围是[]1,11-;当0x <时,2z x y =-+即目标函数为2y x z =+,所以在点B 处取得最大值且为max 2(2)13z =-⨯--=,在点(0,1)-处取得最小值且为min 2011z =⨯-=-,所以此时2||z x y =+的取值范围是[]1,3-,故应填[]1,11-.考点:1、二元一次不等式组所表示的平面区域;2、简单的线性规划问题;14.如图,水平地面ABC 与墙面BCD 垂直,E,F 两点在线段BC 上,且满足4EF =,某人在地面ABC 上移动,为了保证观察效果,要求他到E,F 两点的距离和恰好为6,把人的位置记为P ,点R 在线段EF 上,满足RF=1,点Q 在墙面上,且QR BC ⊥,2QR =,由点P 观察点Q 的仰角为θ,当PE 垂直面DBC 时,则tan θ= ▲ .【解析】试题分析: 由题意知,6PE PF +=(1),在直角三角形PEF 中,由勾股定理可知,222PE EF PF +=,即2216PE PF +=(2),联立(1)(2)可得53PE =,所以在直角三角形PER 中,由勾股定理可知,222PE ER PR +=,所以PR =,于是在直角三角形PRQ中,tan QR PR θ===考点:1、空间直线与平面的位置关系;2、空间的角; 15.已知,x y 为正数,且13310x y x y+++=,则3x y +的最大值为 ▲ . 【答案】8. 【解析】试题分析:因为13310x y x y +++=,所以13310()x y x y+=-+,所以()()213310()3x y x y x y ⎡⎤+=-++⎢⎥⎣⎦,即()()23103103y x x y x y x y ⎛⎫+=+--+⎪⎝⎭,令3t x y =+,则231010y x t t x y ⎛⎫+=-+- ⎪⎝⎭,而2y x x y +≥,所以210160t t -+≤,即28t ≤≤,故应填8. 考点:1、基本不等式的应用;2、一元二次不等式的解法;三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本题满分14分)已知(2sin ,sin cos )m x x x =-,(3cos ,sin cos )n x x x =+,记函数()f x m n =⋅. (1)求函数()f x 的最大以及取最大值时x 的取值集合;(2)设ABC ∆的角,,A B C 所对的边分别为,,a bc ,若()2f C =,c =ABC ∆面积的最大值.【答案】(1)max 2y =,,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)ABC ∆面积的的最大值为4.【解析】试题分析:(1)运用向量的数量积的定义可求出函数()f x 的表达式,然后根据三角函数的图像及其性质可得出其最大值,并求出此时x 满足的取值集合即可;(2)由已知条件知角C 的大小,再由余弦定理以及基本不等式即可得出ABC ∆面积的的最大值即可. 试题解析:(1)由题意,得22()23sin cos sin cos f x m n x x x x =⋅=+-1cos 21cos 222cos 222x xx x x -+=+-=- 2sin(2)6x π=-max 2y ∴=,当()f x 取最大值时,即sin(2)16x π-=,此时22()62x k k Z πππ-=+∈,解得()3x k k Z ππ=+∈ ,所以x 的取值集合为,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.(2)因()2f C =,由(1)得sin(2)16C π-=,又0C π<<,即112666C πππ-<-<, 所以262C ππ-=,解得3C π=,在ABC ∆中,由余弦定理2222cos c a b ab C =+-,得223a b ab ab =+-≥,即3ab ≤,所以1sin 2ABC S ab C ∆==≤所以ABC ∆面积的的最大值为4. 考点:1、平面向量的数量积;2、余弦定理;3、基本不等式; 17.(本题满分15分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;(Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 【答案】(Ⅰ)321)=2n+1n a n =+-(;n S =2n +2n .(Ⅱ)n T =n4(n+1).【解析】试题分析:(Ⅰ)设出等差数列{}n a 的公差为d ,然后根据已知即可列出方程组112721026a d a d +=⎧⎨+=⎩,进而求 出首项与公差,于是可得其通项公式和前n 项和即可;(Ⅱ)首先根据(Ⅰ)可得数列{}n b 的通项公式,再由裂项相消法即可得出数列{}n b 的前n 项和n T 的表达式,进而可得出结果. 试题解析:(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==,所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n . (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅, 所以n T =111111(1-+++-)4223n n+1⋅-=11(1-)=4n+1⋅n 4(n+1),即数列{}n b 的前n 项和n T =n4(n+1).考点:1、等差数列;2、等差数列的前n 项和;18.(本题满分15分)如图,在三棱锥PABC -中,△PAB 和△CAB 都是以AB 为斜边的等腰直角三角形, 若2AB PC ==D 是PC 的中点. (1)证明:AB ⊥PC ;(2)求AD 与平面ABC 所成角的正弦值.【答案】(1)取AB 中点E ,连接PE,EC,由于,PAB CAB ∆∆为等腰直角三角形,则CE AB ⊥,PE AB ⊥, 则AB ⊥平面PEC ,所以PC AB ⊥. (2).1421sin ==∠AD DH DAH 【解析】试题分析:(1)首先作出辅助线,即取AB 中点E ,连接PE,EC,然后根据,PAB CAB ∆∆为等腰直角三角形可知CE AB ⊥,PE AB ⊥, 由直线与平面垂直的判定定理知AB ⊥平面PEC ,进而可得出所证的结果;(2)首先作出辅助线取CE 中点O,再取OC 中点F ,连接PO,DF,AF ,根据几何体可计算出,,AB PE CE 的长度,进而判断出,PO CE ⊥于是可得DAF ∠即为所求角,再根据直线与平面的位置关系分别求出:PO ,DH ,AD ,进而求出所求角的正弦值即可.试题解析:(1)取AB 中点E ,连接PE,EC,由于,PAB CAB ∆∆为等腰直角三角形,则CE AB ⊥,PE AB ⊥, 则AB ⊥平面PEC ,所以PC AB ⊥.(2)取CE 中点O,再取OC 中点F ,连接PO,DF,AF ,由于,PAB CAB ∆∆为等腰直角三角形,又22,2AB PE CE ===,又22PC =,PEC ∴∆为正三角形,,CE PO ⊥∴则⊥PO 平面ABC ,,//DF PO ,ABC DF 面⊥∴ 所以DAF ∠为所求角.于是可得:64PO =,86=DH . 又在PAC ∆中可求,414=AD .1421sin ==∠AD DH DAH 考点:1、直线与平面垂直的判定定理;2、直线与平面所成的角的求法;19.(本题满分15分)已知抛物线C:22(0)x py p =>的焦点为F ,直线220x y -+= 交抛物线C 于A 、B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)若直线AB 过焦点F ,求AF BF •的值;(2)是否存在实数p ,使ABQ ∆是以Q 为直角顶点的直角三角形?若存在,求出p 的值;若不存在,说明理由.【答案】(1)80;(2)14p =. 【解析】试题分析:(1)由抛物线的方程可知其焦点F 的坐标,然后联立直线与抛物线的方程并消去y可得方程 016162=--x x ,再由韦达定理可知1212,x x x x +,即可求出所求的答案;(2)假设存在这样的实数p ,使ABQ ∆是以Q 为直角顶点的直角三角形,然后联立抛物线的方程与直线的方程可得方程 0442=--p px x ,由韦达定理知1212,x x x x +,进而可求出点Q 的坐标,再由0=⋅QB QA 即可得出关于p 一元二次方程,进而求解之即可得出所求的结果.试题解析:(1)∵ ()0,2F ,4p =, ∴ 抛物线方程为y x 82=,与直线22y x =+联立消去y 得: 016162=--x x ,设),(),,(2211y x B y x A ,则16,162121-==+x x x x , ∴ =++=++=)42)(42()2)(2(||||2121x x y y BF AF 80;(2)假设存在,由抛物线py x 22=与直线22y x =+联立消去y 得:0442=--p px x设),(),,(2211y x B y x A ,则p x x p x x 4,42121-==+,可得),2,2(p p Q由0=⋅QB QA 得:0)2)(2()2)(2(2121=--+--p y p y p x p x ,即0)22)(222()2)(2(2121=-+-++--p x p x p x p x ,∴ 0488))(64(522121=+-++-+p p x x p x x ,代入得01342=-+p p ,)(141舍或-==p p . 考点:1、抛物线的标准方程;2、直线与抛物线的综合问题;20.(本题满分15分)已知函数2()1,()||f x x g x x a =-=-.(1)当1a =时,求()()()F x f x g x =-的零点;(2)若方程|()|()f x g x =有三个不同的实数解,求a 的值;(3)求()()()G x f x g x =+在[2,2]-上的最小值()h a .【答案】(1)()F x 的零点为1,2-;(2)54a =±或1a =±;(3)251,()4211()1,()2251,()42a a h a a a a a ⎧-+≥⎪⎪⎪=--<<⎨⎪⎪--≤-⎪⎩. 【解析】试题分析:(1)由已知可求出函数()F x 的解析式,然后令()0F x =并分两种情况进行讨论:当1x ≥时和当1x <时,分别即可求出()F x 的零点;(2)将方程|()|()f x g x =转化为22(1)(1)0x x a x x a +---+-=,进一步转化为要求方程210x x a +--=和210x x a -+-=满足下列情形之一:(Ⅰ)一个有等根,另一个有两不等根,且三根不等(Ⅱ)两方程均有两不等根且由一根相同;最后并检验即可得出所求的结果;(3)分两种情况对其进行讨论:当12a ≤-时和当12a ≥时,并分别判断其在区间上的增减性,进而分别求出其对应情况下的最值即可得出所求的结果.试题解析:(1)当1a =时,222,1,()1|1|2, 1.x x x F x x x x x x ⎧- ≥⎪=---=⎨+- <⎪⎩, 令()0F x =得,当1x ≥时,20x x -=,1x =(0x =舍去)当1x <时,220x x +-=,2x =-(1x =舍去)所以当1a =时,()F x 的零点为1,2-.(2)方程|()|()f x g x =,即2|1|||x x a -=-,变形得22(1)(1)0x x a x x a +---+-=,从而欲使原方程有三个不同的解,即要求方程210x x a +--= (1) 与210x x a -+-= (2)满足下列情形之一:(Ⅰ)一个有等根,另一个有两不等根,且三根不等(Ⅱ)方程(1)、(2)均有两不等根且由一根相同;对情形(I ):若方程(1)有等根,则14(1)0a ∆=++= 解得 54a =-代入方程(2)检验符合; 若方程(2)有等根,则14(1)0a ∆=--=解得54a =代入方程(1)检验符合; 对情形(Ⅱ):设0x 是公共根,则22000011x x a x x a +--=-+-,解得0x a =代入(1)得1a =±,1a =代入|()|()f x g x =检验得三个解为-2、0、1符合1a =-代入|()|()f x g x =检验得三个解为2、0、-1符合故|()|()f x g x =有三个不同的解的值为54a =±或1a =±. (3) 因为2()()()1||G x f x g x x x a =+=-+-=221()1()x x a x a x x a x a ⎧+--≥⎨-+-<⎩, 当12a ≤-时,()G x 在1[2,]2--上递减,在1[,2]2-上递增, 故()G x 在[2,2]-上最小值为min 15()()24G x G a =-=--; 当12a ≥时2()1G x x x a =--+,在1[2,]2-上递减,在1[,2]2上递增, 故()G x 在[2,2]-上最小值为min 15()()24G x G a ==-+,当1122a -<<时,()G x 在[2,]a -上递减,当[,2]x a ∈时递增,故此时()G x 在[-2,2]上的最小值为2min ()()1G x G a a ==-.综上所述: 251,()4211()1,()2251,()42a a h a a a a a ⎧-+≥⎪⎪⎪=--<<⎨⎪⎪--≤-⎪⎩. 考点:1、函数与方程;2、一元二次方程的解法;2、分段函数的最值的求法;。
数学理卷·2015届浙江省温州十校(温州中学等)高三上学期期中联考(2014.11)
2014学年第一学期十校联合体高三期中联考数 学(理) 试 卷(满分150分,考试时间:120分钟)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{|20}A x x x =--<,{||1}B x x =<,则()A B =I R ð( ) A.(1,2) B.(1,2] C.[1,2) D.[1,2]2.设x R ∈,则“1x <”是“2x ≠”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 3.某几何体的三视图如图所示,且该几何体的体积是3, 则正视图中的x 的值是( ) A.2 B.92C.32D.34.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A.若m α⊥,//m n ,//n β,则αβ⊥ B.若αβ⊥,m α⊄,m β⊥,则//m α C.若m β⊥,m α⊂,则αβ⊥ D.若αβ⊥,m α⊂,n β⊂,则m n ⊥5.将函数π()2tan 36x f x ⎛⎫=+⎪⎝⎭的图象向左平移π4个单位,再向下平移1个单位,得到函数()g x 的图象,则()g x 的解析式为( )A.π()2tan()134x g x =+-B.π()2tan()134x g x =-+C.π()2tan()1312x g x =-+D.π()2tan()1312x g x =--6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半 径的圆和抛物线的准线相交,则y 0的取值范围是 ( ) A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)7.设等差数列{}n a 的前n 项和为n S ,若675S S S >>,则满足01<+n n S S 的正整数n 的值为( )A.13B.12C.11D. 108.设函数()g x 是二次函数,2,||1(),||1x x f x x x ⎧≥=⎨<⎩,若函数[()]f g x 的值域是[0,)+∞,则函数x()g x 的值域是( )A.(,1][1,)-∞-+∞UB.[0,)+∞C.(,1][0,)-∞-+∞UD.[1,)+∞9.若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,φ属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合{}X a b c =,,,对于下面给出的四个集合τ:①{{}{}{}}a c a b c τ=∅,,,,,; ②{{}{}{}{}}b c b c a b c τ=∅,,,,,,,; ③{{}{}{}}a a b a c τ=∅,,,,,; ④{{}{}{}{}}a c b c c a b c τ=∅,,,,,,,,. 其中是集合X 上的拓扑的集合τ的序号是( )A.①B.②C.②③D.②④10.设函数2()2,()ln 3xf x e xg x x x =+-=+-,若实数,a b 满足()()0f a g b ==,则( )A.()0()g a f b <<B.()0()f b g a <<C.0()()g a f b <<D.()()0f b g a <<第Ⅱ卷 (非选择题共100分)二、填空题(本大题共7小题,每小题4分,满分28分)11.已知函数,0,()ln ,0,x e x f x x x ⎧<=⎨>⎩则1[()]f f e =_______________.12.若点M (y x ,)为平面区域⎪⎩⎪⎨⎧≤≥++≥+-001012x y x y x 上的一个动点,则y x 2+的最大值是_______13.若数列{}n a 的前n 项和2133n n S a =+,则4a =___________ 14.已知33cos sin 65⎛⎫-+= ⎪⎝⎭παα,则7sin 6⎛⎫+= ⎪⎝⎭πα .15.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为________.16.已知,a b 是单位向量,0a b =r r g.若向量c r 满足1,c a b c --=r r r r则的最大值是______ 17.函数{}()min 2,2f x x x =-,其中{},min ,,a a ba b b a b≤⎧=⎨>⎩,若动直线y m =与函数()y f x =的图像有三个不同的交点,它们的横坐标分别为123,,x x x ,则123x x x ⋅⋅是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”______________三、解答题(本大题共5小题,满分72分。
浙江省温州十校2015届高三上学期期中联考数学(文)试题含解析
浙江省温州十校(温州中学等)2015届高三上学期期中联考数学(文)试题(解析版)【试卷综析】试卷贴近中学教学实际,在坚持对五个能力、两个意识考查的同时,注重对数学思想与方法的考查,体现了数学的基础性、应用性和工具性的学科特色.以支撑学科知识体系的重点内容为考点挑选合理背景,考查更加科学.试卷从多视角、多维度、多层次地考查数学思维品质,考查考生对数学本质的理解,考查考生的数学素养和学习潜能.一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 【题文】1.设集合U={1,2,3,4},A={1,2},B={2,4},则B)(A ⋂U C 等于( ) A.{1,4} B.{1,3,4} C.{2} D.{3} 【知识点】交、并、补集的混合运算.A1【答案解析】B 解析:∵集合U={1,2,3,4},A={1,2},B={2,4},∴A ∩B={2},∴∁U (A ∩B )={1,3,4},故选B . 【思路点拨】根据两个集合的并集的定义求得A ∩B ,再根据补集的定义求得∁U (A ∩B ). 【题文】2.已知复数 z满足(1)1z i +=+,则||z =( )21D.2【知识点】复数求模.L4【答案解析】A解析:∵(1)1z i +=+,∴()(11114i i z +-+===,所以||z =A .【思路点拨】首先根据所给的等式表示出z ,是一个复数除法的形式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母同时进行乘法运算,得到最简形式. 【题文】3.点(cos ,tan )P αα在第二象限是角α的终边在第三象限的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【知识点】必要条件、充分条件与充要条件的判断.A2 【答案解析】C 解析:若P (cos α,tan α)在第二象限,则cos 0tan 0αα<⎧⎨>⎩,则α位于第三象限,则点P (cos α,tan α)在第二象限是角α的终边在第三象限的充要条件, 故选:C 。
浙江省温州市十校联合体-第一学期高三数学文科期中联考试卷
浙江省温州市十校联合体2007-2008学年第一学期高三期中联考数学试卷(文科)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k第I 卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}1,0{=M ,则满足}2,1,0{=N M 的集合N 的个数是( )A .2B .3C .4D .82. 点(0,1)到直线2x —y+2=0的距离为 ( )3.已知数列}{n a 是等差数列,若3,244113==+a a a ,则数列}{n a 的公差等于( )A .1B .3C .5D .64.已知函数)()(),1,0(log 1)(1x f x fa a x x f a 是且-≠>+=的反函数. 若)(1x f -的图象过点(3,4),则a 等于( )A .2B .3C .33D .25. 某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法,抽出一个容量为n 的样本,样本中A 型号的产品有16件,那么此样本的容量n 等于 ( ) A .100 B .200 C .90 D .806.已知两个不同的平面α、β和两条不重合的直线,m 、n ,有下列四个命题 ( ) ①若α⊥m n m ,//,则α⊥n ②若βαβα//,,则⊥⊥m m ③若βαβα⊥⊂⊥则,,//,n n m m④若n m n m //,,,//则=βαα其中正确命题的个数是 ( )A .0个B .1个C .2个D .3个球的表面积公式S=42R π 其中R 表示球的半径,球的体积公式V=334R π,其中R 表示球的515)(33)(554)(55)(D C B A37.已知定义在R 上的函数f(x)满足f(x)=-f(x+),且f(-2)=f(-1)=-1,f(0)=2,2则f(1)+f(2)++f(2007)+f(2008)=( )A.-2B.-1C.0D.18.若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴的最小值( )A.1B.2C.2D.229.如图,半径为2的⊙○切直线MN 于点P ,射线PK 从 PN 出发绕点P 逆时针方向旋转到PM ,旋转过程中,PK 交⊙○于点Q ,设∠POQ 为x ,弓形PmQ 的面积为S =f(x), 那么f(x)的图象大致是 ( )AB CD10.已知函数,,,且、、,00)(32213213>+>+∈--=x x x x R x x x x x x f 13x x +>0,则)()()(321x f x f x f ++的值 ( ) A .一定大于零 B .一定小于零 C .等于零D .正负都有可能第II 卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2015-2016学年浙江省温州市十校联合体高三(上)期中数学试卷和答案(文科)
2015-2016学年浙江省温州市十校联合体高三(上)期中数学试卷(文科)一.选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知全集为R,集合A={x|x≥0},B={x|x2﹣6x+8≤0},则A∩∁R B=()A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4} 2.(5分)已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A. B.C. D.4.(5分)已知等比数列{a n}首项为1,公比q=2,前n项和为S n,则下列结论正确的是()A.∀n∈N*,S n<a n+1B.∀n∈N*,a n•a n+1≤a n+2C.∃n 0∈N*,a+a=2a∈N*,a+a=a+aD.∃n5.(5分)函数f(x)=sinx•ln|x|的图象大致是()A. B. C.D.6.(5分)若实数x,y满足不等式组,则z=x+2y的最大值是()A.6 B.7 C.8 D.97.(5分)如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,若二面角A﹣BD﹣E与二面角E﹣BD﹣C′的大小分别为和45°和30°,则=()A.B.2 C.D.8.(5分)若存在实数a,对任意实数x∈[0.m],均有(sinx﹣a)(cosx﹣a)≤0,则实数m的最大值是()A.B.C. D.二.填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.(6分)已知0<α<,sinα=,则cosα=;cos2α=.10.(6分)在等差数列{a n}中,若a4+a8=8,a7+a11=14,a k=18,则k=;数列{a n}的前n项和S n=.11.(6分)已知直线l:mx﹣y=4,若直线l与直线x﹣(m+1)y=1垂直,则m的值为;若直线l被圆C:x2+y2﹣2y﹣8=0截得的弦长为4,则m的值为.12.(6分)已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=﹣x2+ax,则f(﹣2)=;若函数f(x)为R上的单调减函数,则a的取值范围是.13.(4分)已知非零向量=3+3,||=||=1,若与的夹角为,则||=.14.(4分)若x∈[﹣,],则f(x)=的最大值为.15.(4分)设F为双曲线﹣=1(a>0,b>0)的右焦点,P是双曲线上的点,若它的渐近线上存在一点Q(第一象限内),使得=3,则双曲线离心率的取值范围为.三.解答题(本大题有5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(14分)△ABC中,已知sin2B+sin2C+sinBsinC=sin2A.(Ⅰ)求角A的大小;(Ⅱ)求2cos2﹣sin(﹣B)的最大值,并求取得最大值时角B、C的大小.17.(15分)已知{a n}是各项为正数的等比数列,S n为前n项和,满足+=,a3•S3=.(Ⅰ)求a n;(Ⅱ)设数列{a n}的前n项积为T n,求所有的正整数k,使得对任意的n∈N*,+<1恒成立.不等式S n+k18.(15分)如图,平面PAC⊥平面ABC,△PAC是正三角形,∠CAB=90°,AB=2AC.(Ⅰ)求证:AB⊥PC;(Ⅱ)求直线BC与平面PAB所成角的正弦值.19.(15分)已知抛物线C:x2=4y的焦点为F,O为坐标原点,过Q(0,m)作直线交抛物线C于A,B两点,点P在抛物线C上,且满足++=.(Ⅰ)记△OFA,△OFB,△OFP的面积分别为S1,S2,S3,求证:S12+S22+S32为定值;(Ⅱ)求△ABP的面积(用m表示).20.(15分)已知函数f(x)=ax2﹣bx+1(a,b∈R).(1)若函数f(x)的值域为[,+∞),且f(x+1)=f(﹣x),求函数f(x)的解析式;(2)设b=a+1,当0≤a≤1时,对任意x∈[0,2]都有m≥|f(x)|恒成立,求m的最小值.2015-2016学年浙江省温州市十校联合体高三(上)期中数学试卷(文科)参考答案与试题解析一.选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知全集为R,集合A={x|x≥0},B={x|x2﹣6x+8≤0},则A∩∁R B=()A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}【解答】解:∵A={x|x≥0},B={x|x2﹣6x+8≤0}=x{|2≤x≤4}∴∁R B={x|x>4或x<2},∴A∩(∁R B)={x|0≤x<2或x>4}故选:C.2.(5分)已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选:D.3.(5分)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A. B.C. D.【解答】解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,∴几何体的体积V=××π×22×4=.故选:D.4.(5分)已知等比数列{a n}首项为1,公比q=2,前n项和为S n,则下列结论正确的是()A.∀n∈N*,S n<a n+1B.∀n∈N*,a n•a n+1≤a n+2C.∃n 0∈N*,a+a=2aD.∃n∈N*,a+a=a+a【解答】解:由已知可得:a n=2n﹣1,=2n﹣1.A.∀n∈N*,S n=2n﹣1<2n=a n+1,因此正确;B.∀n∈N*,a n•a n+1=22n﹣1,a n+2=2n+1,当n>2时,22n﹣1﹣2n+1=2n(2n﹣1﹣2)>0,∴a n•a n+1=22n﹣1>a n+2,因此不正确;C.a n+a n+2=2n﹣1+2n+1=2n×,2a n+1=2n+1,∴a n+a n+2﹣2a n+1=﹣1>0,因此不存在n 0∈N*,a+a=2a,因此不正确;D.a n+a n+3=2n﹣1+2n+2=2n×,a n+a n+2=2n﹣1+2n+1=2n×,∴a n+a n+3﹣(a n+a n+2)=2n ×2>0,因此不存在n 0∈N*,a+a=a+a,因此不正确.故选:A.5.(5分)函数f(x)=sinx•ln|x|的图象大致是()A. B. C.D.【解答】解:f(﹣x)=sin(﹣x)ln|﹣x|=﹣sinxln|x|=﹣f(x),∴函数f(x)为奇函数,∴函数f(x)的图象关于原点对称,故排除B,C,当x→+∞时,﹣1≤sinx≤1,ln|x|→+∞,∴f(x)单调性是增减交替出现的,故排除,D,故选:A.6.(5分)若实数x,y满足不等式组,则z=x+2y的最大值是()A.6 B.7 C.8 D.9【解答】解:由约束条件作出可行域如图,化目标函数z=x+2y为,由图可知,当直线过A(8,0)时,直线在y轴上的截距最大,z有最大值为8.故选:C.7.(5分)如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,若二面角A﹣BD﹣E与二面角E﹣BD﹣C′的大小分别为和45°和30°,则=()A.B.2 C.D.【解答】解:取BD的中点O,连接AO,EO,C′O,∵菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,∴C′O⊥BD,AO⊥BD,OC′=OA,∴BD⊥平面AOC′,∴EO⊥BD,∵二面角A﹣BD﹣E与二面角E﹣BD﹣C′的大小分别为45°和30°,∴∠AOE=45°,∠EOC′=30°,∵OC′=OA,∴∠OC′E=∠OAE,由正弦定理得=,,∴,∴.故选:D.8.(5分)若存在实数a,对任意实数x∈[0.m],均有(sinx﹣a)(cosx﹣a)≤0,则实数m的最大值是()A.B.C. D.【解答】解:∵(sinx﹣α)(cosx﹣α)≤0,∴,或,∴sinx≤a≤cosx,或sinx≥a≥cosx;当x∈[0,]时sinx≤≤cosx;当x∈[,]时cosx≤≤sinx,∴m的最大值是.故选:C.二.填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.(6分)已知0<α<,sinα=,则cosα=;cos2α=.【解答】解:∵0<α<,sinα=,∴cosα===,∴cos2α=2cos2α﹣1=2×.故答案为:,.10.(6分)在等差数列{a n}中,若a4+a8=8,a7+a11=14,a k=18,则k=20;数列{a n}的前n项和S n=.【解答】解:在等差数列{a n}中,由a4+a8=8,得2a6=8,∴a6=4,由a7+a11=14,得2a9=14,∴a9=7.则公差d=,由a k=a6+(k﹣6)d=4+k﹣6=18,得k=20;a1=a6﹣5d=4﹣5=﹣1,∴.故答案为:20;.11.(6分)已知直线l:mx﹣y=4,若直线l与直线x﹣(m+1)y=1垂直,则m 的值为﹣;若直线l被圆C:x2+y2﹣2y﹣8=0截得的弦长为4,则m的值为±2.【解答】解:由直线垂直可得m+m+1=0,解得m=﹣;化圆C为标准方程可得x2+(y﹣1)2=9,∴圆心为(0,1),半径r=3,∵直线l被圆C:x2+y2﹣2y﹣8=0截得的弦长为4,∴圆心到直线l的距离d==,∴由点到直线的距离公式可得=,解得m=±2故答案为:﹣;±212.(6分)已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=﹣x2+ax,则f(﹣2)=4﹣2a;若函数f(x)为R上的单调减函数,则a的取值范围是a≤0.【解答】解:f(﹣2)=﹣f(2)=﹣(﹣4+2a)=4﹣2a;①当a≤0时,对称轴x=≤0,所以f(x)=﹣x2+ax+a+1在[0,+∞)上单调递减,由于奇函数关于原点对称的区间上单调性相同,所以f(x)在(﹣∞,0)上单调递减,所以a≤0时,f(x)在R上为单调递减函数,当a>0时,f(x)在(0,)递增,在(,+∞)上递减,不合题意,所以函数f(x)为单调减函数时,a的范围为a≤0.故答案为:4﹣2a;a≤0.13.(4分)已知非零向量=3+3,||=||=1,若与的夹角为,则||= 3.【解答】解:设=θ,∵非零向量=3+3,||=||=1,若与的夹角为,∴=+3,+18,∴=3+3cosθ,=18+18cosθ,化为﹣3=0,0,解得=3.故答案为:3.14.(4分)若x∈[﹣,],则f(x)=的最大值为﹣.【解答】解:化简可得f(x)======tanx+1﹣2﹣∵x∈[﹣,],∴tanx∈[﹣,1],∴函数f(x)=tanx+1﹣2﹣为增函数,∴最大值为1+1﹣2﹣=﹣,故答案为:﹣.15.(4分)设F为双曲线﹣=1(a>0,b>0)的右焦点,P是双曲线上的点,若它的渐近线上存在一点Q(第一象限内),使得=3,则双曲线离心率的取值范围为(1,4] .【解答】解:设双曲线﹣=1的右焦点F(c,0),一条渐近线方程为y=x,右顶点为P′(a,0),由|FP|≥|FP′|=c﹣a,当P与P′重合,Q与O重合,则有|OP′|=a,则3a≥c﹣a,即为c≤4a,即有e=≤4,由于e>1,则1<e≤4.故答案为:(1,4].三.解答题(本大题有5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(14分)△ABC中,已知sin2B+sin2C+sinBsinC=sin2A.(Ⅰ)求角A的大小;(Ⅱ)求2cos2﹣sin(﹣B)的最大值,并求取得最大值时角B、C的大小.【解答】解:(Ⅰ)由已知sin2B+sin2C+sinBsinC=sin2,(2分)得b2+c2﹣a2=﹣bc,∴cosA=﹣,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∵0<A<π,∴A=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)∵A=,∴B=﹣C,0.2cos2﹣sin(﹣B)=2+sin()=sin(C+).﹣﹣﹣﹣﹣﹣﹣(10分)∵0,∴<C+<,∴当C+=,2cos2﹣sin(﹣B)取最大值,解得B=C=.﹣﹣﹣(14分)17.(15分)已知{a n}是各项为正数的等比数列,S n为前n项和,满足+=,a3•S3=.(Ⅰ)求a n;(Ⅱ)设数列{a n}的前n项积为T n,求所有的正整数k,使得对任意的n∈N*,不等式S n+<1恒成立.+k【解答】解:(Ⅰ)设等比数列{a n}的首项为a1,a1>0,公比为q,(q>0),则由条件得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)解得a1=q=,则a n=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅱ)由(Ⅰ)知S n==1﹣,又T n=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)+<1恒对任意的n∈N*都成立,若存在正整数k,使得不等式S n+k则1﹣+()<1,即k<+2,正整数k只有取k=1﹣﹣﹣﹣﹣﹣﹣﹣(15分)18.(15分)如图,平面PAC⊥平面ABC,△PAC是正三角形,∠CAB=90°,AB=2AC.(Ⅰ)求证:AB⊥PC;(Ⅱ)求直线BC与平面PAB所成角的正弦值.【解答】解:(Ⅰ)∵平面PAC⊥平面ABC,∠CAB=90°,交线为AC;∴AB⊥平面PAC又∵PC⊂平面PAC,∴AB⊥PC;(Ⅱ)取AP的中点D,连接CD,DB.则CD⊥PA,∵AB⊥平面PAC,∴平面PAB⊥平面PAC,∵平面PAB∩平面PAC=PA,∴CD⊥平面PAB,则∠CBD为所求线面角;…(10分)由已知不妨设:AC=1,则CD=,AB=2,BC=…(12分)∴sin∠CBD==,即直线BC与平面PAB所成角的正弦值为…(14分)19.(15分)已知抛物线C:x2=4y的焦点为F,O为坐标原点,过Q(0,m)作直线交抛物线C于A,B两点,点P在抛物线C上,且满足++=.(Ⅰ)记△OFA,△OFB,△OFP的面积分别为S1,S2,S3,求证:S12+S22+S32为定值;(Ⅱ)求△ABP的面积(用m表示).【解答】解:(Ⅰ)证明:记A(x1,y1),B(x2,y2),P(x3,y3),由++=.知y1+y2+y3=3,且x i2=4y i(i=1,2,3),S12+S22+S32=(x12+x22+x32)=y1+y2+y3=3,所以S12+S22+S32为定值3;(Ⅱ)设直线AB方程为y=kx+m,联立,得x2﹣4kx﹣4m=0,所以△=16k2+16m>0,x1+x2=4k,x1x2=﹣4m,|AB|=•|x1﹣x2|=•=4,又x1+x2+x3=0,y1+y2+y3=3,所以x3=﹣4k,y3=3﹣(y1+y2)=3﹣4k2﹣2m,所以,P到直线AB的距离为d=,=|AB|•d=6|m﹣1|•,所以S△ABP而x32=4y3,所以16k2=12﹣16k2﹣8m,即8k2=3﹣2m,结合△>0,得﹣<m≤,=|m﹣1|•进一步整理得S△ABP=(﹣<m≤).20.(15分)已知函数f(x)=ax2﹣bx+1(a,b∈R).(1)若函数f(x)的值域为[,+∞),且f(x+1)=f(﹣x),求函数f(x)的解析式;(2)设b=a+1,当0≤a≤1时,对任意x∈[0,2]都有m≥|f(x)|恒成立,求m的最小值.【解答】解:(1)∵函数f(x)的值域为[,+∞),∴4a﹣b2=3a,∵f(x+1)=f(﹣x),∴(2a﹣b)x+a﹣b=bx,∴a=b=1,∴f(x)=x2﹣x+1;(2)当b=a+1,f(x)=ax2﹣(a+1)x+1,f(x)恒过点(0,1);当a=0时,f(x)=﹣x+1,m≥|f(x)|恒成立,∴m≥1;0<a≤1,开口向上,对称轴≥1,f(x)=ax2﹣(a+1)x+1=a(x﹣)2+1﹣,①当a=1时f(x)=x2﹣2x+1,|f(x)|在x∈[0,2]的值域为[0,1];要m≥|f(x)|,则m≥1;②当0<a<1时,根据对称轴分类:当x=<2,即,△=(a﹣1)2>0,f()=﹣()∈(﹣,0),又f(2)=2a﹣1<1,所以|f(x)|≤1;当x=≥2,即0;f(x)在x∈[0,2]的最小值为f(2)=2a﹣1;﹣1,所以|f(x)|≤1,综上所述,要对任意x∈[0,2]都有m≥|f(x)|恒成立,有m≥1∴m≥1.。
浙江省温州市十校联合体高三数学上学期期中联考试题 文
2011-2012学年第一学期温州市十校联合体高三期中联考数学试卷(文科)(完卷时间:120分钟, 满分:150分,本次考试不得使用计算器)一.选择题:本大题共10题,每小题5分,共50分. 1.若集合{}{|lg ,|A y y x B x y ====,则AB 为( ▲ )A .[0,1]B .(0,1]C . [0,)∞D .(],1-∞ 2.已知,αβ是平面,,m n 是直线,则下列命题中不正确的是( ▲ ).A.若//m n ,m α⊥,则n α⊥B.若//m α,n αβ=,则//m nC.若m α⊥,m β⊥,则//αβD.若m α⊥,m β⊂,则αβ⊥ 3.设等比数列{}n a 的前n 项和为n S ,已知423S S =, 则242a a -的值是 ( ▲ ) A .0 B .1 C .2D . 34.一空间几何体三视图如图所示, 则该几何体的体积为 ( ▲ ) A .32 B .34 C .2 D .65.函数2244()sin ()cos ()1f x x x ππ=++--是( ▲ ).A.周期为π的奇函数B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数6.“a>0”是“方程2310ax x --=至少有一个负数根”的 ( ▲ )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 7.下列命题中是假命题的是( ▲ )A .R m ∈∃,使342)1()(+-⋅-=m mx m x f 是幂函数,且在),0(+∞上递减B .0>∀a ,函数a x x x f -+=ln ln )(2有零点C .R ∈∃βα,,使βαβαsin cos )cos(+=+D .R ∈∀ϕ,函数)2sin()(ϕ+=x x f 都不是偶函数8.设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为(▲)A .B .C .D .9.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若x m x x g ln )(-+=的保值区间是[,)e +∞ ,则m 的值为( ▲ )A .1-B .1C .eD .e -二.填空题:本大题共7小题,每小题4分,共28分11.已知200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,求时速在[60,70]的汽车大约有__▲__辆.12.若复数i R a i a i,(21∈+-为虚数单位)是纯虚数,则实数a 的值为_ ▲___。
第一学期(温州)十校联合体高三期中联考数学试卷(文科)
第一学期(温州)十校联合体高三期中联数 学 试 卷(文科)一.选择题:本大题共10题,每小题5分,共50分.1.若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于A .{}|34x x x ≤>或B .{}|13x x -<≤C .{}|34x x ≤<D .{}|21x x -≤-<2.“x y =”是“x y =”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于 A .4B .5C .8D .104.已知复数1z i =-,则21z z =- A. 2B. -2C. 2iD. -2i 5.已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是 A. -1 B. 1C. -2D. 26.阅读右面的程序框图,则输出的S= A. 14 B. 20 C. 30 D.557.若l mn ,,是互不相同的空间直线,αβ,是不重合的平面,则下列命题中为真命题的是A.若l n αβαβ⊂⊂,,∥,则l n ∥B.若l αβα⊥⊂,,则l β⊥C.若l nm n ⊥⊥,,则l m ∥D.若l l αβ⊥,∥,则αβ⊥8.直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是 A .21) B .221) C .(221) D . 21)9.函数()cos 22sin f x x x =+的最小值和最大值分别为 A. -3,1B. -2,2C. -3,32D. -2,3210.下列4个命题111:(0,),()()23x x p x ∃∈+∞< 2:(0,1),p x ∃∈x x 3121log log >31p :(0,),()2x x ∀∈+∞>x 21log 411:(0,),()32x p x ∀∈<x 31log其中的真命题的个数是A.0 个B.1 个C. 2 个D.3个 二、填空题:本大题共7小题,每小题4分,共28分。
浙江省温州市十校联合体高三数学上学期期初联考试题 文(含解析)
浙江省温州市十校联合体2015届高三数学上学期期初联考试题 文(含解析)【试卷综评】命题把重点放在高中数学课程中最基础、最核心的内容上,充分关注考生在学习数学和应用数学解决问题中必须掌握的核心观念、思想方法、基本概念和常用技能。
试卷对中学数学的核心内容和基本能力,特别是对高中数学的主干知识进行较为全面地考查。
注重了知识之间的内在联系,重点内容重点考,没有片面追求知识及基本思想、方法的覆盖面,反映了新课程的理念.一、选择题:本大题有10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 【题文】1.设全集{}1,2,3,4,5U =,集合{}1,3,5A =,集合{}3,4B =,则()U C A B=( ) A .{}4 B .{}3,4 C .D .{}3【知识点】集合及其运算.A1 【答案解析】A 解析:因为全集{}1,2,3,4,5U =,集合{}1,3,5A =,集合{}3,4B =,所以{}2,4U C A =,故(){}4UC A B =,故选A.【思路点拨】根据已知条件先求出U C A ,然后再求()U C A B 即可.【题文】2.已知函数()f x 为奇函数,且当0x >时, ()21,f x x x =+ 则()1f -= ( )A.2-B. 0C. 1D. 2【知识点】奇函数的性质;考查函数的求值. B1 B4【答案解析】A 解析:∵函数()f x 为奇函数,且当0x >时,()21,f x x x =+ ∴()()112f f -=-=-,故选A .【思路点拨】利用奇函数的性质()()11f f -=-,即可求得答案.【题文】3.若有直线m 、n 和平面α、β,下列四个命题中,正确的是 ( ) A .若//m α,//n α,则//m nB .若m α⊂,n α⊂,//m β,//n β,则//αβC .若αβ⊥,m α⊂,则m β⊥D .若αβ⊥,m β⊥,m α⊄,则//m α【知识点】面面平行的判定定理;线面平行的定理; 面面垂直的性质定理.G4 G5【答案解析】D 解析:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线;故选D .【思路点拨】由面面平行的判定定理和线面平行的定理判断A 、B 、D ;由面面垂直的性质定理判断C .【题文】4."等式sin()sin 2αγβ+=成立"是",,αβγ成等差数列 "的 ( ) A .充分不必要条件 B. 充要条件 C .必要不充分条件 D. 既不充分也不必要条件 【知识点】必要条件、充分条件与充要条件的判断.A2 【答案解析】A 解析:若等式sin()sin 2αγβ+=成立,则()12kk αγπβ+=+-⋅,此时,,αβγ不一定成等差数列,若,,αβγ成等差数列,则2βαγ=+,等式sin()sin 2αγβ+=成立,所以“等式sin()sin 2αγβ+=成立”是“,,αβγ成等差数列”的.必要而不充分条件.故选A .【思路点拨】由正弦函数的图象及周期性以及等差数列进行双向判断即可.【题文】5.直线(21)10mx m y +-+=和直线330x my ++=垂直,则实数m 的值为( ) A .1 B .0 C .2 D .-1或0【知识点】直线的一般式方程;直线的垂直关系.H1 H2【答案解析】D 解析:∵直线mx+(2m-1)y+1=0和直线3x+my+3=0垂直, ∴3m+m (2m-1)=0,解得m=0或m=-1.故选:D . 【思路点拨】本题考查实数值的求法,解题时要认真审题,注意直线垂直的性质的合理运用. 【题文】6.如下图①对应于函数f(x),则在下列给出的四个函数中,图②对应的函数只能是( )A .y=f(|x|)B .y=|f(x)|C .y=f(-|x|)D .)(x f y -=【知识点】函数的图象;函数的图象与图象变化.B8【答案解析】C 解析:由图(2)知,图象对应的函数是偶函数,故B 错误,且当x >0时,对应的函数图象右侧与左侧关于y 轴对称,而y 轴左侧图象与(1)中的图象对应的函数y=f (x )的图象相同,故当x >0时,对应的函数是y=f (-x ),得出A 、D 不正确.故选C.【思路点拨】由题意可知,图2函数是偶函数,与图1对照,y 轴左侧图象相同,右侧与左侧关于y 轴对称,对选项一一利用排除法分析可得答案. 【题文】7.若{}n a 为等差数列,n S 是其前n 项和,且S15 =π10,则tan 8a 的值为( )AB .C ..【知识点】等差数列的性质. D2【答案解析】B 解析:由等差数列{an}的前n 项和的性质,158S 15a 10p ==,∴82a 3p=∴8tana =-故选B .【思路点拨】由等差数列{an}的前n 项和的性质,n 为奇数时,12n n s na +=,求出8a ,进而根据特殊角的三角函数值求出结果.【题文】8.过点(,0)引直线l与曲线y =交于A,B 两点 ,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )B.C.D.【知识点】直线的斜率;直线与圆的关系. H1 H4【答案解析】B解析:由y =x2+y2=1(y ≥0).所以曲线y =x 轴上方的部分(含与x 轴的交点),设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合, 则-1<k <0,直线l 的方程为y-0=k(x,即kx −y=0.则原点O 到l 的距离d=,l被半圆截得的半弦长为则S △ABO==令211t k +=,则S △ABOt =34,即213 14k +=时,S △ABO 有最大值为12.此时由213 14k +=,解得k=B .【思路点拨】由题意可知曲线为单位圆在x 轴上方部分(含与x 轴的交点),由此可得到过C 点的直线与曲线相交时k 的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值.【题文】9.当x>3时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,3] B .[3,+∞) C .[72,+∞) D .(-∞, 72]【知识点】函数的单调性;不等式恒成立问题;基本不等式.B3 E6【答案解析】D 解析:因为不等式x+11-x ≥a 恒成立,所以有()1111a x x ?++-恒成立,令1t x =-,32x t >\>,即11a tt ?+在()2,+?恒成立,而函数()11f t t t =++在()2,+?上是增函数,故()722a f ?,故选D.【思路点拨】先根据已知条件把原式转化为11a tt ?+在()2,+?恒成立的问题,再借助于函数的单调性即可.【题文】10.如图,南北方向的公路l ,A 地在公路正东2 km 处,B 地在A 东偏北300方向23 km 处,河流沿岸曲线PQ 上任意一点到公路l 和到A 地距离相等。
浙江省温州市十校联合体高三数学上学期期中联考试题 文
202X-202X 学年第一学期温州市十校联合体高三期中联考数学试卷(文科)完卷时间:120分钟, 满分:150分,本次考试不得使用计算器一.选择题:本大题共10题,每小题5分,共50分. 1.若集合{}{}|lg ,|1A y y x B x y x ====-,则AB 为 ▲A .[0,1]B .(0,1]C . [0,)∞D .(],1-∞ 2已知,αβ是平面,,m n 是直线,则下列命题中不正确的是 ▲A 若//m n ,m α⊥,则n α⊥B 若//m α,n αβ=,则//m nC 若m α⊥,m β⊥,则//αβD 若m α⊥,m β⊂,则αβ⊥ 3.设等比数列{}n a 的前n 项和为n S ,已知423S S =, 则242a a -的值是 ▲ A .0 B .1 C .2D . 34.一空间几何体三视图如图所示, 则该几何体的体积为 ( ▲ ) A .32 B .34 C .2 D .6 5函数2244()sin ()cos ()1f x x x ππ=++--是 ▲A 周期为π的奇函数B 周期为π的偶函数C 周期为2π的奇函数D 周期为2π的偶函数6.“a>0”是“方程2310ax x --=至少有一个负数根”的 ▲A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 7.下列命题中是假命题的是( ▲ )A .R m ∈∃,使342)1()(+-⋅-=m mx m x f 是幂函数,且在),0(+∞上递减B .0>∀a ,函数a x x x f -+=ln ln )(2有零点C .R ∈∃βα,,使βαβαsin cos )cos(+=+D .R ∈∀ϕ,函数)2sin()(ϕ+=x x f 都不是偶函数8.设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为( ▲ )OOO OA .B .C .D .9.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若x m x x g ln )(-+=的保值区间是[,)e +∞ ,则m 的值为( ▲ )A .1-B .1C .eD .e -二.填空题:本大题共7小题,每小题4分,共28分11.已知200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,求时速在[60,70]的汽车大约有__▲__辆12.若复数i R a i a i,(21∈+-为虚数单位)是纯虚数,则实数a 的值为_ ▲___。
浙江省温州市十校联合体2015届高三数学上学期第一次月考试卷 文(含解析)
浙江省温州市十校联合体2015届高三上学期第一次月考数学试卷(文科)一.选择题:本大题共10题,每小题5分,共50分.1.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1)C.(0,1] D.[0,1)2.(5分)下列四个函数中,既是奇函数又在定义域上单调递增的是()A.y=x﹣1 B.y=tanx C.y=x3D.y=log2x3.(5分)已知点P(cosα,tanα)在第三象限,则角α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限4.(5分)设a=log2π,b=logπ,c=π﹣2,则()A.a>b>c B.b>a>c C.a>c>b D.c>b>a5.(5分)如图所示,在△ABC中,G为△ABC的重心,D在边AC上,且=3,则()A.=+B.=﹣﹣C.=﹣+D.=﹣+6.(5分)数列{a n}中,a1=1,对于所有的n≥2,n∈N都有a1•a2•a3•…•a n=n2,则a3+a5等于()A.B.C.D.7.(5分)函数的大致图象为()A.B.C.D.8.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积是()A.B.C.D.39.(5分)函数f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<)的部分图象如图所示,如果,且f(x1)=f(x2),则f(x1+x2)=()A.B.C.D.110.(5分)已知函数,若|f(x)|≥ax﹣1恒成立,则a的取值范围是()A.[﹣2,0] B.[﹣2,1] C.[﹣4,0] D.[﹣4,1]二.填空题:本大题共7小题,每小题4分,共28分11.(4分)log23log34+lg22+lg2lg5+lg5=.12.(4分)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的条件.(填充分不必要、必要不充分、充分必要、既不充分又不必要)13.(4分)奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1﹣x),则f(x)的函数解析式是.14.(4分)已知等差数列{a n}的前n项和为S n,S5=3a5=15则数列{}的前2014项和为.15.(4分)如图所示,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针针尖位置P(x,y)若初始位置为,当秒针从P0(注此时t=0)正常开始走时,那么点P的纵坐标y与时间t的函数关系为.16.(4分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.17.(4分)设函数f(x)=若f(﹣4)=f(0),则函数y=f(x)﹣ln(x+2)的零点个数有个.三.解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知向量=(cosα,sinα),=(cosβ,sinβ),|﹣|=.(1)求cos(α﹣β)的值;(2)若0<α<,﹣<β<0,且sinβ=﹣,求sinα.19.(14分)已知函数f(x)的定义域是(0,+∞)且满足f(xy)=f(x)+f(y),f()=1,如果对于0<x<y,都有f(x)>f(y).(1)求f(1),f(2);(2)解不等式f(﹣x)+f(3﹣x)≥﹣2.20.(14分)在锐角△ABC中,三个内角A,B,C所对的边分别为a,b,c,若acsinC=(a2+c2﹣b2)sinB,(1)若,求∠A的大小.(2)若三角形为非等腰三角形,求的取值范围.21.(14分)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a,记T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n,求T n.22.(16分)已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数对称轴方程为x=﹣(1)求f(x)的解析式;(2)已知t<2,g(x)=[f(x)﹣x2﹣13]|x|,求函数g(x)在[t,2]上的最大值和最小值;(3)函数y=f(x)的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.浙江省温州市十校联合体2015届高三上学期第一次月考数学试卷(文科)参考答案与试题解析一.选择题:本大题共10题,每小题5分,共50分.1.(5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1)C.(0,1] D.[0,1)考点:交集及其运算.专题:集合.分析:先解出集合N,再求两集合的交即可得出正确选项.解答:解:∵M={x|x≥0,x∈R},N={x|x2<1,x∈R}={x|﹣1<x<1,x∈R},∴M∩N=[0,1).故选D.点评:本题考查交的运算,理解好交的定义是解答的关键.2.(5分)下列四个函数中,既是奇函数又在定义域上单调递增的是()A.y=x﹣1 B.y=tanx C.y=x3D.y=log2x考点:奇偶性与单调性的综合.专题:综合题;函数的性质及应用.分析:根据函数的奇偶性、单调性逐项判断即可.解答:解:y=x﹣1非奇非偶函数,故排除A;y=tanx为奇函数,但在定义域内不单调,故排除B;y=log2x单调递增,但为非奇非偶函数,故排除D;令f(x)=x3,定义域为R,关于原点对称,且f(﹣x)=(﹣x)3=﹣x3=﹣f(x),所以f(x)为奇函数,又f(x)在定义域R上递增,故选C.点评:本题考查函数的奇偶性、单调性的判断,属基础题,定义是解决该类问题的基本方法,应熟练掌握.3.(5分)已知点P(cosα,tanα)在第三象限,则角α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限考点:三角函数值的符号.专题:三角函数的求值.分析:利用点所在象限,推出三角函数的符号,然后判断角所在象限.解答:解:点P(cosα,tanα)在第三象限,所以,cosα<0角α的终边在第二、三象限.tanα<0角α的终边在第二、四象限.∴角α的终边在第二象限.故选:B.点评:本题考查角所在象限以及3所在象限的判断,基本知识的考查.4.(5分)设a=log2π,b=logπ,c=π﹣2,则()A.a>b>c B.b>a>c C.a>c>b D.c>b>a考点:对数值大小的比较.专题:函数的性质及应用.分析:根据对数函数和幂函数的性质求出,a,b,c的取值范围,即可得到结论.解答:解:log2π>1,logπ<0,0<π﹣2<1,即a>1,b<0,0<c<1,∴a>c>b,故选:C点评:本题主要考查函数值的大小比较,利用对数函数和幂函数的性质是解决本题的关键,比较基础.5.(5分)如图所示,在△ABC中,G为△ABC的重心,D在边AC上,且=3,则()A.=+B.=﹣﹣C.=﹣+D.=﹣+考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:利用重心的性质和向量的三角形法则即可得出.解答:解:如图所示,,==,=.∴==.故选:B.点评:本题考查了重心的性质和向量的三角形法则,属于基础题.6.(5分)数列{a n}中,a1=1,对于所有的n≥2,n∈N都有a1•a2•a3•…•a n=n2,则a3+a5等于()A.B.C.D.考点:数列的概念及简单表示法.专题:计算题.分析:由n≥2,n∈N时a1•a2•a3•…•a n=n2得当n≥3时,a1•a2•a3••a n﹣1=(n﹣1)2.然后两式相除a n=()2,即可得a3=,a5=从而求得a3+a5=.解答:解:当n≥2时,a1•a2•a3••a n=n2.当n≥3时,a1•a2•a3••a n﹣1=(n﹣1)2.两式相除a n=()2,∴a3=,a5=.∴a3+a5=.故选A点评:本题考查了数列的概念及简单表示法,培养学生观察、分析、归纳、推理的能力,提高学生分析问题和解决问题的能力.是基础题.7.(5分)函数的大致图象为()A.B.C.D.考点:函数的图象;指数函数的图像与性质.专题:压轴题;数形结合.分析:观察题设中的函数表达式,应该以1为界来分段讨论去掉绝对值号,化简之后再分段研究其图象.解答:解:由题设条件,当x≥1时,f(x)=﹣(x﹣)=当x<1时,f(x)=﹣(﹣x)=﹣(﹣x)=x故f(x)=,故其图象应该为综上,应该选D点评:本题考查绝对值函数图象的画法,一般要先去掉绝对值号转化成分段函数再分段做出图象.8.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积是()A.B.C.D.3考点:余弦定理.专题:解三角形.分析:将“c2=(a﹣b)2+6”展开,另一方面,由余弦定理得到c2=a2+b2﹣2abcosC,比较两式,得到ab的值,计算其面积.解答:解:由题意得,c2=a2+b2﹣2ab+6,又由余弦定理可知,c2=a2+b2﹣2abcosC=a2+b2﹣ab,∴﹣2ab+6=﹣ab,即ab=6.∴S△ABC==.故选:C.点评:本题是余弦定理的考查,在高中范围内,正弦定理和余弦定理是应用最为广泛,也是最方便的定理之一,2015届高考中对这部分知识的考查一般不会太难,有时也会和三角函数,向量,不等式等放在一起综合考查.9.(5分)函数f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<)的部分图象如图所示,如果,且f(x1)=f(x2),则f(x1+x2)=()A.B.C.D.1考点:由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的对称性.专题:计算题;三角函数的图像与性质.分析:通过函数的图象求出函数的周期,利用函数的图象经过的特殊点求出函数的初相,得到函数的解析式,利用函数的图象与函数的对称性求出f(x1+x2)即可.解答:解:由图知,T=2×=π,∴ω=2,因为函数的图象经过(﹣),0=sin(﹣+ϕ)∵,所以ϕ=,∴,,所以.故选C.点评:本题考查三角函数的解析式的求法,函数的图象的应用,函数的对称性,考查计算能力.10.(5分)已知函数,若|f(x)|≥ax﹣1恒成立,则a的取值范围是()A.[﹣2, 0] B.[﹣2,1] C.[﹣4,0] D.[﹣4,1]考点:函数恒成立问题.专题:计算题;综合题;函数的性质及应用.分析:分x的范围进行讨论,当x>0时,|f(x)|恒大于0,只要a≤0不等式|f(x)|≥ax ﹣1恒成立;x=0时对于任意实数a不等式|f(x)|≥ax﹣1恒成立;x<0时,把不等式|f(x)|≥ax﹣1取绝对值整理后分离参数a,然后利用基本不等式求解a的范围,最后取交集即可得到答案.解答:解:当x>0时,ln(x+1)>0恒成立则此时a≤0当x≤0时,﹣x2+2x的取值为(﹣∞,0],|f(x)|=x2﹣2xx2﹣2x≥ax﹣1(x≤0)x=0时,左边>右边,a取任意值都成立.x<0时,有a≥x+﹣2 即a≥﹣4综上,a的取值为 [﹣4,0].故选C.点评:本题考查了恒成立问题,考查了分类讨论的数学思想方法,训练了参数分离法,训练了利用基本不等式求函数的最值,是中高档题.二.填空题:本大题共7小题,每小题4分,共28分11.(4分)log23log34+lg22+lg2lg5+lg5=3.考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数的换底公式、lg2+lg5=1即可得出.解答:解:原式=+lg2(lg2+lg5)+lg5=2+lg2+lg5=2+1=3.故答案为:3.点评:本题考查了对数的换底公式、lg2+lg5=1,属于基础题.12.(4分)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的充分不必要条件.(填充分不必要、必要不充分、充分必要、既不充分又不必要)考点:必要条件、充分条件与充要条件的判断;集合的包含关系判断及应用.专题:应用题.分析:当a=1时,N={1},M={1,2},则是“N⊆M”为真命题;若N⊆M,则a2=1或a2=2,a=1不一定成立,从而可判断解答:解:当a=1时,N={1},M={1,2},则是“N⊆M”为真命题若N⊆M,则a2=1或a2=2,a=1不一定成立∴a=1是N⊆M的充分不必要条件故答案为:充分不必要条件点评:本题主要考查了充分条件与必要条件的判断,解题的关键是准确利用集合之间的包含关系的应用.13.(4分)奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1﹣x),则f(x)的函数解析式是.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:结合(0,+∞)上的解析式,利用f(﹣x)=﹣f(x)求x<0时的不等式;奇函数如果在x=0有定义,则f(0)=0解答:解:∵函数为奇函数,∴f(﹣x)=﹣f(x);设x<0,则﹣x>0,∴f(﹣x)=﹣x(1+x),∴f(x)=﹣f(﹣x)=x(1+x);又f(0)=0又f(x)在(0,+∞)上的解析式是f(x)=x(1﹣x),∴函数的解析式为:点评:本题主要考查利用函数的奇偶性来求函数的解析式,属于低档题.14.(4分)已知等差数列{a n}的前n项和为S n,S5=3a5=15则数列{}的前2014项和为.考点:数列的求和.专题:等差数列与等比数列.分析:依题意可求得等差数列{a n}的通项公式a n=n,利用裂项法得==﹣,从而可得数列{}的前2014项和.解答:解:∵数列{a n}为等差数列,3a5=15,∴a5=5;又S5===15,∴a3=3;∴公差d==1,∴a n=a3+(n﹣3)×d=3+(n﹣3)=n;∴==﹣,∴S2014=(1﹣)+(﹣)+…+(﹣)=1﹣=.故答案为:.点评:本题考查数列的求和,着重考查等差数列的通项公式与裂项法求和的综合应用,属于中档题.15.(4分)如图所示,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针针尖位置P(x,y)若初始位置为,当秒针从P0(注此时t=0)正常开始走时,那么点P的纵坐标y与时间t的函数关系为.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:首先确定函数的周期,再设函数的解析式,待定系数可求函数的解析式.解答:解:∵函数的周期为T=60,∴ω==,设函数解析式为y=sin(﹣t+φ)(顺时针走动为负方向)∵初始位置为P0(,),∴t=0时,y=,∴sinφ=,∴φ可取,∴函数解析式为y=sin(﹣t+)故答案为:点评:本题考查三角函数解析式的确定,涉及三角函数的周期性,属中档题.16.(4分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22.考点:向量在几何中的应用;平面向量数量积的运算.专题:平面向量及应用.分析:由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.解答:解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.17.(4分)设函数f(x)=若f(﹣4)=f(0),则函数y=f(x)﹣ln(x+2)的零点个数有4个.考点:根的存在性及根的个数判断.专题:数形结合;函数的性质及应用.分析:先求出b,再做出f(x)=与y=ln(x+2)的图象,即可得出结论.解答:解:∵函数f(x)=,f(﹣4)=f(0),∴b=4,∴f(x)=,f(x)=与y=ln(x+2)的图象如图所示,∴函数y=f(x)﹣ln(x+2)的零点个数有4个,故答案为:4.点评:本题考查根的存在性及根的个数判断,考查学生分析解决问题的能力,比较基础.三.解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知向量=(cosα,sinα),=(cosβ,sinβ),|﹣|=.(1)求cos(α﹣β)的值;(2)若0<α<,﹣<β<0,且sinβ=﹣,求sinα.考点:平面向量数量积的运算;两角和与差的余弦函数;两角和与差的正弦函数.专题:三角函数的求值;平面向量及应用.分析:(1)=1,同理=1.利用数量积运算性质|﹣|=,可得=,展开即可得出;(2)由0<α<,﹣<β<0,且sinβ=﹣,可得0<α﹣β<π,,sin(α﹣β)=.再利用sinα=sin[(α﹣β)+β]展开即可得出.解答:解:(1)=1,同理=1.∵|﹣|=,∴=,化为2﹣2(cosαcosβ+sinαsinβ)=,∴cos(α﹣β)=.(2)∵0<α<,﹣<β<0,且sinβ=﹣,∴0<α﹣β<π,=.∴sin(α﹣β)==.∴sinα=sin[(α﹣β)+β]=sin(α﹣β)cosβ+cos(α﹣β)sinβ==.点评:本题考查了数量积运算及其性质、同角三角函数基本关系式、两角和差的正弦余弦公式,考查了推理能力和技能数列,属于中档题.19.(14分)已知函数f(x)的定义域是(0,+∞)且满足f(xy)=f(x)+f(y),f()=1,如果对于0<x<y,都有f(x)>f(y).(1)求f(1),f(2);(2)解不等式f(﹣x)+f(3﹣x)≥﹣2.考点:抽象函数及其应用.专题:函数的性质及应用.分析:(1)令x=y=1易得f(1)=0;再令x=2,y=,可得f(2)值;(2)先求出f(4)=﹣2,由f(﹣x)+f(3﹣x)≥﹣2,得到f[x(x﹣3)]≥f(4),再由函数f(x)在定义域(0,+∞)上为减函数,能求出原不等式的解集.解答:解(1)∵f(xy)=f(x)+f(y)∴令x=y=1得f(1)=f(1)+f(1),∴f(1)=0再令x=2,y=,∴f(1)=f(2)+f()=0,∴f(2)=﹣1(2)∵对于0<x<y,都有f(x)>f(y).∴函数在(0,+∞)减函数,令x=y=2,∴令x=y=2得f(4)=f(2)+f(2)=﹣2,∵f(﹣x)+f(3﹣x)≥﹣2.∴f(x)+f(x﹣3)≥f(4),∴f[x(x﹣3)]≥f(4),∴,解得﹣1≤x<0∴原不等式的解集为[﹣1,0)点评:本题考查抽象函数及其应用,着重考查赋值法及函数单调性的应用,突出转化思想的考查,属于中档题.20.(14分)在锐角△ABC中,三个内角A,B,C所对的边分别为a,b,c,若acsinC=(a2+c2﹣b2)sinB,(1)若,求∠A的大小.(2)若三角形为非等腰三角形,求的取值范围.考点:余弦定理;正弦定理.专题:计算题;三角函数的图像与性质;解三角形.分析:(1)将已知等式变形,整理得,可得sinC=2sinBcosB=sin2B,由此可得C=2B或C+2B=π,最后结合三角形内角和定理和,即可算出∠A的大小.(2)根据三角形为非等腰三角形,结合(1)中化简的结果可得C=2B,从而将化简整理得.利用△ABC是锐角三角形,得到B∈(),结合余弦函数的图象与性质,即可得出的取值范围.解答:解:(1)∵acsinC=(a2+c2﹣b2)sinB∴…(2分)由此可得,sinC=2sinBcosB=sin2B…(3分)因此,C=2B或C+2B=π…(4分)(i)若C=2B,结合,可得,所以(舍去)…(5分)(ii)若C+2B=π,结合,则,可得…(6分)(2)∵三角形为非等腰三角形,∴可得C+2B=π不能成立,故C=2B由此可得∠A=π﹣B﹣C=π﹣3B…(8分)又∵三角形为锐角三角形,∴,A≠C,因此,可得且∠B≠…(10分)而…(12分)∵cosB∈(,)∪(,),∴可得=,)∪(,…(14分)点评:本题给出三角形中的边角关系,要求我们判断角A的大小并求的取值范围.着重考查了利用正余弦定理解三角形、三角形内角和定理与余弦函数的图象与性质等知识,属于中档题.21.(14分)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a,记T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n,求T n.考点:数列的求和;等差数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)由于a2是a1与a4的等比中项,可得,再利用等差数列的通项公式即可得出.(Ⅱ)利用(Ⅰ)可得b n=a=n(n+1),因此T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n=﹣1×(1+1)+2×(2+1)﹣…+(﹣1)n n•(n+1).对n分奇偶讨论即可得出.解答:解:(Ⅰ)∵a2是a1与a4的等比中项,∴,∵在等差数列{a n}中,公差d=2,∴,即,化为,解得a1=2.∴a n=a1+(n﹣1)d=2+(n﹣1)×2=2n.(Ⅱ)∵b n=a=n(n+1),∴T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n=﹣1×(1+1)+2×(2+1)﹣…+(﹣1)n n•(n+1).当n=2k(k∈N*)时,b2k﹣b2k﹣1=2k(2k+1)﹣(2k﹣1)(2k﹣1+1)=4kT n=(b2﹣b1)+(b4﹣b3)+…+(b2k﹣b2k﹣1)=4(1+2+…+k)=4×=2k(k+1)=.当n=2k﹣1(k∈N*)时,T n=(b2﹣b1)+(b4﹣b3)+…+(b2k﹣2﹣b2k﹣3)﹣b2k﹣1=n(n+1)=﹣.故T n=.点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式、分类讨论思想方法,属于中档题.22.(16分)已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数对称轴方程为x=﹣(1)求f(x)的解析式;(2)已知t<2,g(x)=[f(x)﹣x2﹣13]|x|,求函数g(x)在[t,2]上的最大值和最小值;(3)函数y=f(x)的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.考点:函数与方程的综合运用;函数的值域;函数解析式的求解及常用方法;二次函数的性质.专题:函数的性质及应用.分析:(1)根据函数对称轴方程为x=﹣,求得b的值,再由f(x)=x2+bx+c的图象过点(1,13),求出c的值,从而求得f(x)的解析式;(2)由题意可得 g(x)=(x﹣2)•|x|,画出它的图象,讨论t的范围,结合图象求出g(x)在[t,2]上的最值.(3)如果函数y=f(x)的图象上存在符合要求的点,设为P(m,n2),从而4n2﹣(2m+1)2=43,由此求得m、n的值,从而得出结论.解答:解:(1)∵二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数对称轴方程为x=﹣,∴∴b=1,c=11∴f(x)=x2+x+11;(2)g(x)=[f(x)﹣x2﹣13]|x|=(x﹣2)|x|,当x≤0时,g(x)=﹣(x﹣1)2+1,当x>0时,g(x)=(x﹣1)2﹣1,由此可知g(x)在[t,2]上的最大值 g(x)max=g(2)=0.当1≤t<2,g(x)min =g(t)=t2﹣2t.当1﹣≤t<1,g(x)min=g(1)=﹣1.当t<1﹣,g(x)min=g(t)=﹣t2+2t;3)如果函数y=f(x)的图象上存在符合要求的点,设为P(m,n2),其中m为正整数,n为自然数,则m2+m+11=n2,从而4n2﹣(2m+1)2=43,即[2n+(2m+1)][2n﹣(2m+1)]=43.注意到43是质数,且2n+(2m+1)>2n﹣(2m+1),2n+(2m+1)>0,所以,解得mm=10,n=11因此,函数y=f(x)的图象上存在符合要求的点,它的坐标为(10,121).点评:本题主要考查二次函数的性质应用,求二次函数在闭区间上的最值的方法,考查分类讨论、数形结合的数学思想,属于中档题.。
浙江省温州市十校联合体高三数学期中联考(文)
2009学年第一学期十校联合体高三期中联考数 学 试 卷(文科)一.选择题:本大题共10题,每小题5分,共50分.1.若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于A .{}|34x x x ≤>或B .{}|13x x -<≤C .{}|34x x ≤<D .{}|21x x -≤-<2.“x y =”是“x y =”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于 A .4B .5C .8D .104.已知复数1z i =-,则21z z =- A. 2B. -2C. 2ID. -2I5.已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是A. -1B. 1C. -2D. 26.阅读右面的程序框图,则输出的S=A. 14B. 20C. 30D.557.若l mn ,,是互不相同的空间直线,αβ,是不重合的平面,则下列命题中为真命题的是A.若l n αβαβ⊂⊂,,∥,则l n ∥B.若l αβα⊥⊂,,则l β⊥ C.若l n m n ⊥⊥,,则l m ∥D.若l l αβ⊥,∥,则αβ⊥8.直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是A . 1)B .11)C .(11)D . 1)9.函数()cos 22sin f x x x =+的最小值和最大值分别为A. -3,1B. -2,2C. -3,32D. -2,3210.下列4个命题111:(0,),()()23x x p x ∃∈+∞< 2:(0,1),p x ∃∈x x 3121log log >31p :(0,),()2x x ∀∈+∞>x 21log 411:(0,),()32x p x ∀∈<x 31log其中的真命题的个数是A.0 个B.1 个C. 2 个D.3个 二、填空题:本大题共7小题,每小题4分,共28分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年浙江省温州市十校联合体高三(上)期中数学试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合U={1,2,3,4},A={1,2},B={2,4},则∁U (A ∩B )=( )A .{2}B .{3}C .{1,4}D .{1,3,4}2.(5分)已知复数z 满足,则|z |=( )A .B .C .D .2 3.(5分)点P (cosα,tanα)在第二象限是角α的终边在第三象限的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(5分)设α,β是两个不同的平面,l 是一条直线,以下命题正确的是 ( )A .若β⊥α,l ⊥α,则l ∥βB .若l ∥β,l ∥α,则α∥βC .若l ⊥α,α∥β,则l ⊥βD .若l ∥α,α⊥β,则l ⊥β5.(5分)已知{a n }是等差数列,其前n 项和为S n ,若a 3=7﹣a 2,则S 4=( )A .15B .14C .13D .126.(5分),是两个向量,||=1,||=2,且(+)⊥,则与的夹角为( )A .30°B .60°C .120°D .150°7.(5分)同时具有性质“①最小正周期是π,②图象关于直线x=对称”的一个函数是( )A .y=sin (+) B .y=cos (x +) C .y=cos (2x ﹣) D .y=sin (2x ﹣)8.(5分)x,y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或﹣1 D.2或19.(5分)已知函数f(x)=x﹣m+5,当1≤x≤9时,f(x)>1有恒成立,则实数m的取值范围为()A.m<B.m<5 C.m<4 D.m≤510.(5分)已知椭圆C1:+=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是()A.(0,)B.(0,)C.[,1)D.[,1)二、填空题(本大题共7小题,每小题4分,共28分.)11.(4分)已知角α的终边经过点P(﹣4,3),则cosα=.12.(4分)某几何体的三视图如图所示,则该几何体的体积为13.(4分)设f(x)=,则f(f(2))的值为.14.(4分)设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为.15.(4分)函数f(x)=的定义域为.16.(4分)已知f(x)=asinx++5,若f[lg(lg2)]=3,则f[lg(log210)]=.17.(4分)已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,满足f[f (a)]=的实数a的个数为个.三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.)18.(14分)已知a,b,c为△ABC的三个内角A、B、C的对边,向量=(2sinB,2﹣cos2B),=(2sin2(+),﹣1),⊥,a=,b=1.(1)求角B的大小;(2)求c的值.19.(14分)等差数列{a n}中,a7=4,a19=2a9.数列{b n}满足b n=a n•.(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和S n.20.(14分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,AA1=AB=6,D为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A;(3)求三棱锥C﹣BC1D的体积.21.(15分)已知函数f(x)=x2+(b+1)x+1是定义在[a﹣2,a]上的偶函数,g (x)=f(x)+|x﹣t|,其中a,b,t均为常数.(1)求实数a,b的值;(2)试讨论函数y=g(x)的奇偶性;(3)若﹣≤t≤,求函数y=g(x)的最小值.22.(15分)如图,已知抛物线y2=2px(p>0)上点(2,a)到焦点F的距离为3,直线l:my=x+t(t≠0)交抛物线C于A,B两点,且满足OA⊥OB.圆E是以(﹣p,p)为圆心,p为直径的圆.(1)求抛物线C和圆E的方程;(2)设点M为圆E上的任意一动点,求当动点M到直线l的距离最大时的直线方程.2014-2015学年浙江省温州市十校联合体高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)设集合U={1,2,3,4},A={1,2},B={2,4},则∁U(A∩B)=()A.{2}B.{3}C.{1,4}D.{1,3,4}【解答】解:∵集合U={1,2,3,4},A={1,2},B={2,4},∴A∩B={2},∴∁U(A∩B)={1,3,4},故选:D.2.(5分)已知复数z满足,则|z|=()A.B.C.D.2【解答】解:∵,∴=,所以|z|=故选:A.3.(5分)点P(cosα,tanα)在第二象限是角α的终边在第三象限的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若P(cosα,tanα)在第二象限,则,即,则α位于第三象限,则点P(cosα,tanα)在第二象限是角α的终边在第三象限的充要条件,故选:C.4.(5分)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若β⊥α,l⊥α,则l∥βB.若l∥β,l∥α,则α∥βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【解答】解:A:若β⊥α,l⊥α,则l∥β或者l⊂β,所以A错误.B:若l∥β,l∥α,则α∥β或者α与β相交,所以B错误.C:根据线面垂直的定义可得:若l⊥α,α∥β,则l⊥β是正确的,所以C正确.D:若l∥α,α⊥β,则l⊥β或者l∥β或者l与β相交,所以D错误.故选:C.5.(5分)已知{a n}是等差数列,其前n项和为S n,若a3=7﹣a2,则S4=()A.15 B.14 C.13 D.12【解答】解:由题意可知a3=7﹣a2,a3+a2=7,S4=a1+a2+a3+a4=2(a3+a2)=14.故选:B.6.(5分),是两个向量,||=1,||=2,且(+)⊥,则与的夹角为()A.30°B.60°C.120° D.150°【解答】解:设,的夹角为θ,0°≤θ≤180°,则由题意可得()•=0,即+=1+1×2×cosθ=0,解得cosθ=﹣,∴θ=120°,故选:C.7.(5分)同时具有性质“①最小正周期是π,②图象关于直线x=对称”的一个函数是()A.y=sin(+)B.y=cos(x+)C.y=cos(2x﹣)D.y=sin(2x﹣)【解答】解:A、y=sin(+),∵ω=,∴T=4π,不合题意;B、y=cos(x+),∵ω=1,∴T=2π,不合题意;C、y=cos(2x﹣),∵ω=2,∴T=π,令2x﹣=0,即x=,不合题意;D、y=sin(2x﹣),∵ω=2,∴T=π,令2x﹣=,即x=,即图象关于直线x=对称,符合题意,故选:D.8.(5分)x,y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或﹣1 D.2或1【解答】解:由题意作出约束条件,平面区域,将z=y﹣ax化为y=ax+z,z相当于直线y=ax+z的纵截距,由题意可得,y=ax+z与y=2x+2或与y=2﹣x平行,故a=2或﹣1;故选:C.9.(5分)已知函数f(x)=x﹣m+5,当1≤x≤9时,f(x)>1有恒成立,则实数m的取值范围为()A.m<B.m<5 C.m<4 D.m≤5【解答】解:令t=,则由1≤x≤9可得t∈[1,3],由题意可得f(x)=g(t)=t2﹣mt+5=+5﹣>1在[1,3]上恒成立,故有g min(t)>1.①当<1时,函数g(t)在[1,3]上单调递增,函数g(t)的最小值为g(1)=6﹣m,由6﹣m>1,求得m<5,综合可得m<2.②当∈[1,3]时,函数g(t)在[1,]上单调递减,在(3]上单调递增,函数g(t)的最小值为g()=5﹣>1,由此求得﹣4<t<4,综合可得2≤m<4.③当>3时,函数g(t)在[1,3]上单调递减,函数g(t)的最小值为g(3)=14﹣3m,由14﹣3m>1,求得m<,综合可得m无解.综上可得,m<4,故选:C.10.(5分)已知椭圆C1:+=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是()A.(0,)B.(0,)C.[,1)D.[,1)【解答】解:由题意,如图若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,由∠APO>45°,即sin∠APO>sin45°,即>,则e=,故选:A.二、填空题(本大题共7小题,每小题4分,共28分.)11.(4分)已知角α的终边经过点P(﹣4,3),则cosα=.【解答】解:角α的终边上的点P(﹣4,3)到原点的距离为r=5,由任意角的三角函数的定义得cosα==.故答案为:.12.(4分)某几何体的三视图如图所示,则该几何体的体积为3【解答】解:由题意可知几何体是底面是底面为2的等边三角形,高为3的直三棱柱,所以几何体的体积为:=3.故答案为:3.13.(4分)设f(x)=,则f(f(2))的值为1.【解答】解:f(x)=,则f(2)=log33=1,f(f(2))=f(1)=e1﹣1=1.故答案为:1.14.(4分)设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为±2.【解答】解:由题意可得直线的方程y=x+a根据直线与圆相切的性质可得,∴a=±2故答案为:±215.(4分)函数f(x)=的定义域为{x|0<x≤2且x≠1} .【解答】解:由,得0<x≤2且x≠1.∴函数f(x)=的定义域为{x|0<x≤2且x≠1}.故答案为:{x|0<x≤2且x≠1}.16.(4分)已知f(x)=asinx++5,若f[lg(lg2)]=3,则f[lg(log210)]=7.【解答】解:由题意可得,f[lg(lg2)]=f[﹣lg(log210)]=3,∵f(x)=asinx++5,∴f(x)+f(﹣x)=10.∴f[lg(log210)]=10﹣f[lg(lg2)]=7,故答案为:7.17.(4分)已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,满足f[f (a)]=的实数a的个数为8个.【解答】解:令f(a)=x,则f[f(a)]=,变形为f(x)=;当x≥0时,f(x)=﹣(x﹣1)2+1=,解得x1=1+,x2=1﹣;∵f(x)为偶函数,∴当x<0时,f(x)=的解为x3=﹣1﹣,x4=﹣1+;综上所述,f(a)=1+或1﹣或﹣1﹣或﹣1+.当a≥0时,f(a)=﹣(a﹣1)2+1=1+,方程无解;f(a)=﹣(a﹣1)2+1=1﹣,方程有2解;f(a)=﹣(a﹣1)2+1=﹣1﹣,方程有1解;f(a)=﹣(a﹣1)2+1=﹣1+,方程有1解;故当a≥0时,方程f(a)=x有4解,由偶函数的性质,易得当a<0时,方程f(a)=x也有4解,综上所述,满足f[f(a)]=的实数a的个数为8,故答案为:8.三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.)18.(14分)已知a,b,c为△ABC的三个内角A、B、C的对边,向量=(2sinB,2﹣cos2B),=(2sin2(+),﹣1),⊥,a=,b=1.(1)求角B的大小;(2)求c的值.【解答】解:(1)根据已知,有,则则所以,又B∈(0,π),则或又a>b,所以B=(2)由余弦定理:b2=a2+c2﹣2accosB故有1=3+c2﹣3c解得c=2或c=1.19.(14分)等差数列{a n}中,a7=4,a19=2a9.数列{b n}满足b n=a n•.(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和S n.【解答】解:(1)设等差数列{a n}的公差为d,因为a7=4,a19=2a9,所以,解得a1=1,d=,所以等差数列{a n}的通项公式为;(2)由(1)得b n=a n•=(n+1)2n,所以数列{b n}的前n项和S n=2•21+3•22+4•23+…+n•2n﹣1+(n+1)2n,2S n=2•22+3•23+4•24+…+n•2n+(n+1)•2n+1,两式相减得﹣S n=2•21+(22+23+…+2n)﹣(n+1)2n+1=4+=4+22(2n﹣1﹣1)﹣(n+1)2n+1=﹣n2n+1.20.(14分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,AA1=AB=6,D为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A;(3)求三棱锥C﹣BC1D的体积.【解答】(1)证明:连接B1C交BC1于点O,连接OD,则点O为B1C的中点.∵D为AC中点,得DO为△AB1C中位线,∴A1B∥OD.∵OD⊂平面AB1C,A1B⊄平面BC1D,∴直线AB1∥平面BC1D;(2)证明:∵AA1⊥底面ABC,∴AA1⊥BD,∵底面ABC正三角形,D是AC的中点∴BD⊥AC∵AA1∩AC=A,∴BD⊥平面ACC1A1,∵BD⊂平面BC1D,∴平面BC1D⊥平面ACC1A;(3)解:由(2)知,△ABC中,BD⊥AC,BD=BCsin60°=3,∴S==,△BCD=V C1﹣BCD=••6=9.∴V C﹣BC1D21.(15分)已知函数f(x)=x2+(b+1)x+1是定义在[a﹣2,a]上的偶函数,g (x)=f(x)+|x﹣t|,其中a,b,t均为常数.(1)求实数a,b的值;(2)试讨论函数y=g(x)的奇偶性;(3)若﹣≤t≤,求函数y=g(x)的最小值.【解答】解:(1)∵函数f(x)=x2+(b+1)x+1是定义在[a﹣2,a]上的偶函数,∴,解得.(2)由(1)可得f(x)=x2+1得g(x)=f(x)+|x﹣t|=x2+|x﹣t|+1,x∈[﹣1,1].当t=0时,函数y=g(x)为偶函数.)当t≠0时,函数y=g(x)为非奇非偶函数.(3)g(x)=f(x)+|x﹣t|=,﹣≤t≤,当x≥t时,函数y=g(x)在[﹣1,1]上单调递增,则g(x)≥g(t)=t2+1.当x<t时,函数y=g(x)在[﹣1,1]上单调递减,则g(x)>g(t)=t2+1.综上,函数y=g(x)的最小值为1.22.(15分)如图,已知抛物线y2=2px(p>0)上点(2,a)到焦点F的距离为3,直线l:my=x+t(t≠0)交抛物线C于A,B两点,且满足OA⊥OB.圆E是以(﹣p,p)为圆心,p为直径的圆.(1)求抛物线C和圆E的方程;(2)设点M为圆E上的任意一动点,求当动点M到直线l的距离最大时的直线方程.【解答】解:(1)由题意得2+=3,得p=2,∴抛物线C和圆E的方程分别为:y2=4x;(x+2)2+(y﹣2)2=1.(2)设A(x1,y1),B(x2,y2).联立方程,整理得y2﹣4my+4t=0,由韦达定理得…①则,由OA⊥OB得x1x2+y1y2=0,即(m2+1)y1y2﹣mt(y1+y2)+t2=0,将①代入上式整理得t2+4t=0,由t ≠0得t=﹣4.故直线AB 过定点N (4,0).∴当MN ⊥l ,动点M 经过圆心E (﹣2,2)时到直线l 的距离d 取得最大值.由k MN ==﹣,得k l =3.此时的直线方程为l :y=3(x ﹣4),即3x ﹣y ﹣12=0.赠送—高中数学知识点【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n a n 是偶数时,正数a 的正的n n a 表示,负的n 次方根用符号n a -0的n 次方根是0;负数a 没有n 次方根.n a n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质 图象定义域 R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.x(0,1)O1y =x(0,1)O 1y =②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质。