激光拉曼光谱实验讲
激光拉曼光谱的测定详述
实验四 激光拉曼光谱的测定093858 张亚辉一. 实验目的1、了解拉曼光谱的基本原理,掌握显微共焦激光拉曼光谱仪的使用方法。
2、测量一些常规物质和复杂样品的拉曼光谱。
二. 实验原理当用波长比试样粒径小得多的频率为υ的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。
散射光中除了存在入射光频率υ外,还观察到频率为υ±△υ的新成分,这种频率发生改变的现象就被称为拉曼效应。
υ即为瑞利散射,频率υ+△υ称为拉曼散射的斯托克斯线,频率为υ-△υ的称为反斯托克斯线。
△υ通常称为拉曼频移,多用散射光波长的倒数表示,计算公式为11λλν-=∆式中,λ和λ0分别为散射光和入射光的波长。
△υ的单位为cm -1。
由于拉曼谱线的数目、频移、强度直接与分子振动或转动能级有关。
因此,研究拉曼光谱可以提供物质结构的有关信息。
自从激光问世以来,拉曼光谱的研究取得了长足进展,已广泛应用于物理、化学、生物以及生命科学等研究领域。
图1显微共焦激光拉曼光谱仪结构显微镜样品双瑞利滤光片狭缝光栅CCD 检测器激光扩束器三、实验仪器和试剂1. 显微共焦激光拉曼光谱仪 Renishaw inVia (英国雷尼绍公司)Renishaw 显微共焦激光拉曼光谱仪原理:本系所用的是英国雷尼绍显微共聚焦激光拉曼光谱仪(图2),它具有诸多优势如:高稳定性、高重复性高重复光谱,重复性:≦±0.2波数;激光阻挡水平高 (杂散光抑制水平高);高灵敏度 (贯穿于整个仪器设计中):各激发光波长配以各自独立的引入光学元件(反射镜等), 使到达样品的激光功率最大。
透射式光谱仪设计,以避免散焦缺陷。
并对各激发光波段配以相应的透镜, 使每激光谱段分别都达到最佳透过效率,获得最高的通光效率。
2. 粉碎机、载玻片、盖玻片、胶头滴管3. 测试样品常规物质:CCl 4,KNO 3 复杂样品:不同淀粉类作物 自备样品:不同材料的小挂件 四.实验步骤1. 打开主机和计算机电源,同时打开激光器后面的总电源开关,将仪器预热20分钟左右。
实验八激光拉曼光谱一、实验目的本实验主要通过记录CCl4分子的
实验八 激光拉曼光谱一、实验目的本实验主要通过记录CCl 4分子的振动拉曼谱,学习和了解拉曼散射的基本原理、拉曼光谱实验及分析方法。
二、实验原理当波数为0~v 的单色光入射到介质上时,除了被介质吸收、反射和透射外,总会有一部分光被散射。
按散射光相对于入射光波数的改变情况,可将散射光分为三类:第一类,其波数基本不变或变化小于10-5cm -1,这类散射称为瑞利散射;第二类,其波数变化大约为0.1cm-1,称为布里渊散射;第三类是波数变化大于lcm -1的散射,称为拉曼散射;从散射光的强度看,瑞利散射最强,拉曼散射光最弱。
图1是用氩离子激光照射样品,用光电记录法得到的振动拉曼光谱。
其中最强的一支光谱0~v 和入射光的波数相同,是瑞利散射。
此外还有几对较弱的谱线对称地分布在0~v 两侧,其位移0~<∆v 的散线称为斯托克斯线,0~>∆v的散射线称为反斯托克斯射。
拉曼散射光谱具有以下明显的特征:图1 振动拉曼散射光谱1.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移v ~∆与入射光的波长无关;2.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧;3.一般情况下,斯托克斯线比反斯托克斯线的强度大。
拉曼散射的半径典量子解释按量子论的观点,频率为ω0的入射单色光可以看作是具有能量为 ω0的光子。
当光子与物质分子碰撞时有两种可能,一种是弹性碰撞,另一种是非弹性碰撞。
在弹性碰撞过程中,没有能量交换,光子只改变运动方向,这就是瑞利散射;而非弹性碰撞不仅改变运动方向,而且有能量交换,这就是拉曼散射。
处于基态E0的分子受到入射光子 ω0的激发跃迁到一受激虚态,而受激虚态是不稳定的,很快向低能级跃迁。
如果跃迁到基态E0,把吸收的能量 ω0以光子的形式释放出来,这就是弹性碰撞,为瑞利散射。
如果跃迁到电子基态中的某振动激发态E n上,则分子吸收部分能量 ωk,并释放出能量为 (ω0-ωk)的光子,这是非弹性碰撞,产生斯托克斯线。
激光拉曼光谱实习报告
一、实习背景激光拉曼光谱技术是一种基于拉曼散射现象的非破坏性化学分析技术,广泛应用于化学、物理、生物、材料科学等领域。
为了深入了解这一先进的光谱技术,我参加了为期两周的激光拉曼光谱实习。
二、实习目的1. 了解激光拉曼光谱的基本原理和实验操作流程。
2. 掌握激光拉曼光谱仪器的使用方法和维护保养。
3. 通过实际操作,提高对拉曼光谱数据的分析和解读能力。
4. 了解激光拉曼光谱在各个领域的应用。
三、实习内容1. 激光拉曼光谱原理及仪器介绍实习的第一天,我们学习了激光拉曼光谱的基本原理。
拉曼散射是指光在经过物质后发生散射,被散射后的光子与原来的光子的频率差即为拉曼频移。
激光拉曼光谱利用一束单色激光激发样品,通过测量激发光与散射光的频率差异,获得样品的振动光谱信息。
实习期间,我们了解了不同型号的激光拉曼光谱仪,包括操作界面、功能模块、仪器维护等方面的知识。
2. 激光拉曼光谱实验操作在实习的第二周,我们进行了实际操作,学习如何使用激光拉曼光谱仪进行样品分析。
(1)样品制备:根据实验要求,我们制备了不同形态的样品,如固体、液体和气体等。
对于固体样品,我们采用了压片法、切片法等方法进行制备;对于液体样品,我们使用毛细管法;对于气体样品,我们采用气体池法。
(2)样品测量:将制备好的样品放置在样品台上,调整激光功率、光斑大小、测量时间等参数,进行拉曼光谱测量。
(3)数据采集与处理:通过光谱仪软件对采集到的拉曼光谱数据进行处理,包括光谱平滑、背景扣除、峰位校正等。
3. 激光拉曼光谱数据分析在实习的最后阶段,我们学习了如何分析拉曼光谱数据。
通过对已知物质的拉曼光谱特征峰进行比对,我们可以确定样品的化学成分和结构信息。
此外,我们还学习了如何根据拉曼光谱数据计算样品的分子振动频率、力常数等物理参数。
四、实习总结通过两周的激光拉曼光谱实习,我收获颇丰。
以下是我对本次实习的总结:1. 激光拉曼光谱技术具有非破坏性、高灵敏度、高分辨率等优点,在各个领域都有广泛的应用。
激光拉曼实验报告
激光拉曼实验报告激光拉曼实验报告引言:激光拉曼光谱是一种非常强大的光谱分析技术,可以提供有关物质的结构、组成和化学环境的详细信息。
本文将介绍我们进行的一项激光拉曼实验,以及实验过程中的观察和结果。
实验目的:本次实验的目的是利用激光拉曼光谱仪对不同样品进行分析,了解其分子结构和化学组成。
我们选择了几种常见的物质作为实验样品,包括水、酒精和苯。
实验装置:我们使用的激光拉曼光谱仪由激光器、样品台、光谱仪和数据处理系统组成。
激光器产生高能量的激光光束,样品台用于放置样品,光谱仪用于收集和分析样品散射的光信号,数据处理系统用于处理和解读光谱数据。
实验步骤:1. 准备样品:我们使用纯净水、纯度99%的酒精和苯作为实验样品。
将样品放置在透明的玻璃盒中,以确保激光光束能够透过样品进行散射。
2. 调整仪器:根据不同样品的特性,调整激光器的功率和波长,以及光谱仪的参数,以获得最佳的信号强度和分辨率。
3. 开始测量:将样品放置在样品台上,打开激光器,使激光光束照射到样品上。
光谱仪会收集样品散射的光信号,并将其转化为光谱图。
4. 数据处理:将光谱图导入数据处理系统,进行峰识别和峰拟合,以确定样品中的分子振动模式和化学键信息。
5. 结果分析:根据光谱图和数据处理结果,分析样品的分子结构和化学组成。
实验观察:在实验过程中,我们观察到了不同样品的光谱图有明显的差异。
水的光谱图显示出了特征性的水分子振动峰,酒精的光谱图显示出了酒精分子的振动模式,而苯的光谱图则显示出了苯分子的芳香振动峰。
结果分析:通过对光谱图和数据处理结果的分析,我们可以确定样品中的分子结构和化学组成。
例如,在水的光谱图中,我们观察到了OH键的振动峰,确认了水分子的存在。
在酒精的光谱图中,我们观察到了C-O键的振动峰,证实了酒精分子的存在。
在苯的光谱图中,我们观察到了芳香环的振动峰,确认了苯分子的存在。
实验总结:激光拉曼实验是一种非常有用的光谱分析技术,可以提供有关物质的结构和组成的详细信息。
(整理)激光拉曼光谱0
激光拉曼光谱实验讲义引言一 实验目的1、了解拉曼散射的基本原理2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。
二 实验原理当波束为0ν的单色光入射到介质上时,除了被介质吸收、反射和透射外,总会有一部分被散射。
按散射光相对于入射光波数的改变情况,可将散射光分为三类:第一类,其波数基本不变或变化小于5110cm --,这类散射称为瑞利散射;第二类,其波数变化大约为10.1cm -,称为布利源散射;第三类是波数变化大于11cm -的散射,称为拉曼散射;从散射光的强度看,瑞利散射最强,拉曼散射最弱。
在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散射。
在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。
当入射的光量子与分子相碰撞时,可以是弹性碰撞的散射也可以是非弹性碰撞的散射。
在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,光量子转移一部分能量给散射分子,或者从散射分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ∆=-,当光量子把一部分能量交给分子时,光量子则以较小的频率散射出去,称为频率较低的光(斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能量,从而处于激发态1E ,如图(1b ),这时的光量子的频率为0ννν'=-∆;当分子已经处于振动或转动的激发态1E 时,光量子则从散射分子中取得了能量E ∆(振动或转动能量),以较大的频率散射,称为频率较高的光(反斯托克斯线),这时的光量子的频率为0ννν'=+∆。
如果考虑到更多的能级上分子的散射,则可产生更多的斯托克斯线和反斯托克斯线。
激光拉曼光谱实验报告
激光拉曼光谱实验报告激光拉曼光谱实验报告引言:激光拉曼光谱是一种非常重要的光谱分析技术,它可以通过激光与样品相互作用而产生的拉曼散射光,来获取样品的结构信息和分子振动信息。
本实验旨在探究激光拉曼光谱的原理与应用,并通过实验验证其在化学分析中的可行性和准确性。
实验原理:激光拉曼光谱是基于拉曼散射效应的,当激光与样品相互作用时,光子与样品中的分子发生相互作用,部分光子的能量被转移给分子,导致分子的振动和转动状态发生变化。
当光子重新散射出来时,其能量与入射光子相比发生了变化,这种能量差就是拉曼散射光的频率差,也称为拉曼位移。
通过测量拉曼散射光的频率差,可以获得样品的结构信息和分子振动信息。
实验步骤:1. 准备样品:选择一种具有明确结构和振动特征的样品,如苯乙烯。
将样品制备成适当浓度的溶液。
2. 调整仪器:打开激光拉曼光谱仪,调整激光器的功率和波长,确保光束的稳定性和一致性。
3. 校准仪器:使用标准样品进行校准,以确保光谱仪的准确性和可靠性。
4. 测量样品:将样品溶液放置在光谱仪的样品室中,调整光谱仪的参数,如激光功率、积分时间等,开始测量样品的拉曼光谱。
5. 数据分析:将测得的拉曼光谱数据进行处理和分析,通过比对标准谱图和已知结构的样品,确定拉曼峰的对应关系和分子结构。
实验结果与讨论:通过实验测量得到的苯乙烯的拉曼光谱如下图所示。
在光谱中可以观察到多个峰,每个峰对应着分子的不同振动模式。
通过与已知标准谱图的对比,可以确定这些峰的对应关系,从而推断出样品中分子的结构和组成。
在苯乙烯的拉曼光谱中,我们可以观察到几个显著的峰,如1450 cm^-1处的峰对应着苯环的C=C键伸缩振动,800 cm^-1处的峰对应着苯环的C-H键伸缩振动。
这些峰的位置和强度可以提供关于分子结构和键的信息,如键长、键强度等。
激光拉曼光谱在化学分析中有着广泛的应用。
通过测量样品的拉曼光谱,可以快速、无损地获取样品的结构信息和化学成分。
(仪器分析)16.1激光拉曼光谱原理培训资料
激光拉曼光谱的原理和基本原理
1 拉曼散射
2 拉曼散射过程
拉曼散射是指光在物质中传播时发生频 率的变化,进而产生散射光,用于分析 物质的结构和成分。
拉曼散射光的频率与物质的振动状态有 关,通过测量散射光的频移可以获得物 质的拉曼光谱。
激光拉曼光谱在信号强度、背景干扰等 方面存在一定的局限性,对样品的要求 较高。
激光拉曼光谱的实验方法和操作流程
1
样品准备
准备样品并将其放置在激光拉曼光谱仪中以进行分析。
2
光谱采集
通过激光照射样品,采集拉曼散射光,曼光谱进行数据处理和分析,以获取样品的结构和成分信息。
(仪器分析)16.1激光拉曼 光谱原理培训资料
仪器分析简介
激光拉曼光谱概述
1 原理概述
激光拉曼光谱是一种 无损、非接触的光谱 分析技术,通过激光 与样品相互作用来获 取样品分子的信息。
2 应用范围
激光拉曼光谱被广泛 应用于材料科学、生 物医学、环境分析等 领域,可用于物质的 鉴定和组成分析。
3 优势和局限性
激光拉曼光谱仪的构造和工作原理
1 核心组件
2 工作原理
激光源、光路系统、样品仓、光谱仪等 是激光拉曼光谱仪的核心组件。
激光拉曼光谱仪通过激光照射样品产生 拉曼散射光,并将散射光分析为拉曼光 谱进行物质结构和成分的分析。
激光拉曼光谱在实际应用中的优势和 局限性
1 优势
2 局限性
激光拉曼光谱具有高灵敏度、非破坏性、 无需样品处理等优势,适用于分析多种 不同类型的样品。
激光拉曼光谱的应用领域和案例介绍
材料科学
(完整)激光拉曼光谱法讲解
(完整)激光拉曼光谱法讲解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)激光拉曼光谱法讲解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)激光拉曼光谱法讲解的全部内容。
第三节激光拉曼光谱法在分子的振动中,有些振动由于偶极矩的变化表现了红外活性,能吸收红外光,从而出现了红外吸收谱带(见第二章第二节),但有些振动却表现了拉曼活性,产生了拉曼光谱谱带.这两种方法都能提供分子振动的信息,起到相互补充的作用,采用这两种方法,可获得振动光谱的全貌.拉曼光谱是一种散射光谱。
在20世纪30年代,拉曼散射光谱曾是研究分子结构的主要手段.后来随着实验内容的深人,由于拉曼效应太弱,所以随着红外光谱的迅速发展,拉曼光谱的地位随之下降。
自1960年激光问世,并将这种新型光源引入拉曼光谱后,拉曼光谱出现了新的局面,已广泛应用于有机、无机、高分子、生物、环保等各个领域,成为重要的分析工具。
而且由于它的一些特点,如水和玻璃散射光谱极弱,因而在水溶液、气体、同位素、单晶等方面的应用具有突出的特长.近几年又发展了傅里叶变换拉曼光谱仪,使它在高分子结构研究中的作用与日俱增。
3.1基本概念3.1.1拉曼散射及拉曼位移拉曼光谱为散射光谱。
当一束频率为V0的人射光照射到气体、液体或透明晶体样品上时,绝大部分可以透过,大约有0.1%的入射光与样品分子之间发生非弹性碰撞,即在碰撞时有能量交换,这种光散射称为拉曼散射;反之,若发生弹性碰撞,即两者之间没有能量交换,这种光散射称为瑞利散射。
在拉曼散射中,若光子把一部分能量给样品分子,得到的散射光能量减少,在垂直方向测量到的散射光中,可以检测频率为(V0—△E/h)的线,称为斯托克斯(stokes)线,如图3—1所示,如果它是红外活性的话,△E/h的测量值与激发该振动的红外频率一致。
激光拉曼光谱实验报告
激光拉曼光谱实验陈述之答禄夫天创作摘要:频后得到的532nm4种振动模式,且频率的实验值与尺度值比误差低于2%。
又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为0.013、0.853、0.869、0.940,和尺度值0和0.75比较偏大。
关键词:拉曼散射、分子振动、退偏一,引言1928年,印度物理学家拉曼(C.V.Raman)和克利希南(K.S.Krisman)实验发现,当光穿过液体苯时被分子散射的光发生频率变更,这种现象称为拉曼散射。
几乎与此同时,苏联物理学家兰斯别而格(ndsberg)和曼杰尔斯达姆(L.Mandelstamm)也在晶体石英样品中发现了类似现象。
在散射反斯托克斯线。
这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。
拉曼效应是单色光与分子或晶体物质作用时发生的一种非弹性散射现象。
拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。
因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。
目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。
20世纪60年代激光的问世促进了拉曼光谱学的发展。
由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。
而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。
拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。
它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤丈量。
拉曼光谱的分析方向有定性分析、结构分析和定量分析。
到的532nm谱。
二,实验原理1,分子的振动由N 个原子组成的分子具有3N 个自由度。
由于分子质心有3个平移自由度,非线性分子有3个转动自由度,因此其余3N-6个自由度是描述分子中的原子振动的。
激光拉曼实验讲义
振动拉曼光谱及实验光照射介质时,除被介质吸收、反射和透射外,总有一部分被散射。
散射光按频率可分成三类:第一类,散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ,或者说波数变化小于10-5cm-1,这类散射通常称为瑞利(Rayleigh)散射;第二类,散射光频率与入射光频率有较大差别,频率变化大于3×1010Hz,或者说波数变化大于1cm-1,这类散射就是所谓拉曼(Raman)散射;散射光频率与入射光频率差介于上述二者之间的散射被称为布里渊(Brillouin)散射。
从散射光的强度看,瑞利散射的强度最大,一般都在入射光强的10-3左右,常规拉曼散射的强度是最弱的,一般小于入射光强的10-6。
用光电方法记录的某一样品的振动拉曼光谱如图1-7-1所示。
设v是入射光的波数,v是散射光的波数,散射光与入射光的波数差定义为△v=v-v0。
那么,对于拉曼散射谱,△v<0的散射光线称为红伴线或斯托克斯(Stokes)线;△v>0的散射线称为紫伴线或反斯托克斯(anti-Stokes)线。
拉曼光谱在外观上有三个明显的特征:第一,对同一样品,同一拉曼线的波数差△v与入射光波长无关;其次在以波数为变量的拉曼光谱图上,如果以入射光波数为中心点,则斯托克斯线和反斯托克斯线对称地分裂在入射光的两边;第三,斯托克斯的强度一般都大于反斯托克斯线的强度。
拉曼光谱的上述特点是散射体内部结构和运动状态的反映,也是拉曼散射固有机制的体现。
拉曼散射现象在实验上首先由印度科学家拉曼(C。
V。
Raman)和前苏联科学家曼杰斯塔姆(л〃и〃мандепь-щгам)分别在1928年发现。
由于拉曼散射强度很弱,早先的拉曼光谱工作主要限于线性拉曼谱,在应用以上结构化学的分析工作居多。
但是60年代激光技术的出现和接收技术的不断改进,拉曼光谱突破了原先的局限,获得了迅猛的发展,在实验技术上,迅速地出现了如共振拉曼散射以及高阶拉曼散射、反转拉曼反射、受激拉曼散射和相干反斯托克斯散射等非线性拉曼散射和时间分辨与空间分辨拉曼散射等各种新的光谱技术,由于拉曼光谱技术的发展,凝聚态中的电子波、自旋波和其它元激发所引起的拉曼散射不断被观察到,使之也都成为拉曼光谱的研究对象。
拉曼光谱实验报告
拉曼光谱实验报告一、实验目的:通过拉曼光谱实验,了解拉曼效应的原理和应用,并掌握拉曼光谱的实验方法和数据处理。
二、实验原理:拉曼效应是一种光与物质相互作用的效应,由散射光的频率发生变化而引起。
当光经过样品散射后,部分光子的频率发生改变,发生频移的光子称为拉曼散射光。
拉曼散射光可以分为斯托克斯散射和反斯托克斯散射。
斯托克斯散射是指光子的频率减小,能量减小,反斯托克斯散射则相反。
三、实验仪器和材料:1.激光器2.拉曼光谱仪3.样品四、实验步骤:1.将样品放置在拉曼光谱仪样品台上,并调整相应参数。
2.打开激光器,调节激光器到适当的功率。
3.打开光谱仪,选择所需的波长范围,并确定激发光。
4.开始采集拉曼光谱数据,记录下实验数据。
五、实验结果和分析:通过实验,我们得到了一些拉曼光谱数据。
根据斯托克斯散射和反斯托克斯散射的原理,我们可以观察到散射光的频率发生变化。
根据拉曼光谱的峰位和峰强,可以进一步分析样品的分子结构和成分。
六、实验结论:通过拉曼光谱实验,我们可以观察到样品的拉曼散射光,进而分析样品的分子结构和成分。
拉曼光谱技术在材料科学、化学分析等领域有着广泛的应用。
本次实验使我们对拉曼效应的原理和应用有了更深入的了解,并掌握了拉曼光谱实验的方法和数据处理技巧。
七、实验心得:本次实验中,我们首先了解了拉曼效应的基本原理,并通过实验验证了拉曼效应的存在。
在实验中,激光器的功率调节是一个重要的环节,过高或过低的功率都会对实验结果产生影响。
此外,选择适当的波长范围和光谱仪的参数设置也是非常关键的。
在数据处理过程中,需要对拉曼光谱进行峰位和峰强的分析,以得到更准确的结论。
综上所述,本次拉曼光谱实验使我对拉曼效应有了更深入的认识,同时也掌握了拉曼光谱实验的方法和数据处理技巧。
这对我的科研和实验能力的提升有着积极的意义。
激光拉曼光谱课程
2)红外光谱中,由C N,C=S,S-H伸缩振动产生的谱带一 般较弱或强度可变,而在拉曼光谱中则是强谱带。
3)环状化合物的对称振动常常是最强的拉曼谱带。
4)在拉曼光谱中,X=Y=Z,C=N=C,O缩振动是弱谱带。 红外光谱与此相反。
其输出激光波长为6328埃,功率在100mW以下。
样品的放置方法
为了提高散射强度,样品的放置方式非常重要。 气体的样品可采用内腔方式,即把样品放在激
光器的共振腔内。 液体和固体样品是放在激光器的外面。
激光Raman光谱仪
laser Raman spectroscopy 激光光源:He-Ne激光器,波长632.8nm;
1960年以后,激光技术的发展使拉曼技术得以复兴。由于激光束的 高亮度、方向性和偏振性等优点,成为拉曼光谱的理想光源。随探测 技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工 业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。
吴大猷先生
1935年在北大完成了第一篇关于拉曼散射 的论文‘四氯乙烯拉曼线的退极化’(《中 国化学学会会志》第四卷) ,也是该领域国 内的第一篇论文。
在不同方向上的分子被入射光电场极化程度是不同的。
在激光拉曼光谱中,完全自由取向的分子所散射的光也可 能是偏振的,因此一般在拉曼光谱中用退偏振比(或称去偏 振度)ρ表征分子对称性振动模式的高低。
I
I //
I∥和I⊥—3—的分别谱代带表称与为激偏光振电矢谱量带平,行表和示垂分直的子谱有线较的高强的度 对称振4 动模式 。
●将负拉曼位移,
即ν0-ν1称为Stokes线(斯托克斯线)。
激光拉曼实验报告
激光拉曼实验报告引言激光拉曼光谱是一种基于拉曼散射现象的光谱技术,它在材料科学、生物医学、环境监测等领域有着广泛的应用。
本实验旨在通过激光拉曼光谱技术来分析样品的分子结构和化学成分,以及探索拉曼散射的物理原理。
实验步骤1. 实验准备在进行激光拉曼实验前,首先需要准备实验所需的设备和材料。
主要的设备包括激光器、光谱仪、样品支架等。
材料方面可以选择不同类型的样品进行测试,如有机化合物、无机晶体、生物分子等。
2. 调节激光器将激光器调节至适当的功率和波长。
根据实验需要,选择合适的激光波长,一般常用的有532 nm和785 nm。
通过调节激光器的参数,可以获得稳定的激光输出。
3. 收集拉曼光谱将样品放置于样品支架上,并将支架放置在光谱仪中。
在实验过程中,需要注意避免样品受到外界干扰,如光线、温度变化等。
通过激光照射样品,收集样品散射的拉曼光谱。
4. 数据分析将收集到的光谱数据进行分析。
通过观察谱线的位置和强度,可以判断样品的分子结构和化学成分。
对于未知样品,可以与已知的标准光谱进行对比,以确定样品的成分。
结果与讨论本实验选取了几种常见的有机化合物作为样品进行测试。
经过收集和分析光谱数据,观察到了特定的拉曼峰和强度变化。
通过与已知有机化合物的光谱进行对比,成功地确定了样品的成分。
实验结果表明,激光拉曼光谱技术在材料分析中具有很高的应用潜力。
结论本实验通过激光拉曼光谱技术成功地分析了不同样品的分子结构和化学成分。
实验结果表明,激光拉曼光谱技术是一种非常有效的分析工具,可以在材料科学、生物医学等领域中得到广泛应用。
通过进一步的研究和探索,我们可以进一步提高激光拉曼光谱技术的灵敏度和分辨率,以满足更高级别的科学研究需求。
参考文献•Smith, E., & Dent, G. (2005). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.•Matousek, P., & Morris, M. D. (Eds.). (2012). Emerging Raman applications and techniques in biomedical and pharmaceutical fields (Vol. 113).Springer Science & Business Media.。
拉曼光谱实验报告(二)
引言概述:本文是关于拉曼光谱实验的实验报告,主要包括实验目的、实验原理、实验装置、实验步骤、实验结果与分析等内容。
拉曼光谱是一种非常重要的光谱分析技术,通过对样品散射的光进行分析,可以获取样品的分子结构信息。
本次实验旨在通过实际操作,加深对拉曼光谱的理解,并探究样品的分子结构。
实验目的:本次实验的主要目的是探究拉曼光谱的基本原理和实验方法,并利用实验结果对样品的分子结构进行分析。
通过这个实验,我们可以更好地了解拉曼光谱的应用领域以及它在材料、化学、生物等领域中的重要性。
实验原理:拉曼光谱是一种通过激光散射来测定分子振动能级的光谱技术。
当激光照射到样品上时,部分光被样品吸收,而另一部分光则被样品散射。
被散射的光中,有一部分光的频率发生了改变,这种频率的变化受到样品中分子的振动能级的影响。
通过测量散射光中频率变化的大小,我们可以推断样品的分子结构信息。
实验装置:本次实验所使用的拉曼光谱仪主要包括激光器、样品室、光学系统和光电转换器等部分。
激光器产生高能量密度的激光光束,样品室用于放置待测样品,光学系统负责收集散射的光并传递给光电转换器。
光电转换器将光信号转换为电信号,并经过放大、滤波等处理后,以图表或曲线的形式表现出来。
实验步骤:1.准备样品和实验装置:首先选择合适的样品进行实验,并确保实验装置的正常运行。
2.调节激光器:通过调节激光器的功率和波长,使得激光的参数符合实验要求。
3.放置样品:将待测样品放置在样品室中,并调整样品室的位置以确保光路的顺利通过。
4.启动光谱仪:按照仪器的使用说明启动光谱仪,并进行系统的初始化和校准。
5.测量样品:通过调节激光器的位置和样品的角度,使得样品的散射光尽可能最大化。
使用光谱仪记录样品的光谱图,并进行数据分析。
实验结果与分析:根据实验记录的光谱图,我们可以从中得到关于样品分子结构的信息。
通过与标准光谱进行比对,我们可以确定样品的化学成分及其可能的结构。
通过分析光谱图中的峰值数量、强度、位置等参数,我们也可以了解样品中不同的分子振动模式。
激光拉曼实验报告
激光拉曼及荧光光谱实验一、实验目的1、 了解激光拉曼的基本原理和基本知识以及用激光拉曼的方法鉴别物质成分和分子结构的原理;2、 掌握LRS – II 激光拉曼/荧光光谱仪的系统结构和操作方法;3、 研究四氯化碳CCL4、苯C 6H 6等物质典型的振动—转动光谱谱线特征。
二、实验原理2.1 基本原理分子有振动。
原子分双子的振动按经典力学的观点可以看成是简谐振子,其能量为A 是振幅,k 是力常数。
按照量子力学,简谐振子的能量是量子化的,t=0,1,2,3,···,是振动量子数,f 是振子的固有振动频率。
如果在同一电子态中,有振动能级的跃迁,那么产生的光子能量hf t t E E h )('12-=-=ν 波数为CO 在红外部分有4.67微米、2.35微米、1.58微米等光谱带,其倒数之比近似为1:2:3。
当Δt =1时,测得的ν~反映了分子键的强弱。
分子有转动。
双原子分子的转动轴是通过质心而垂直于联接二原子核的直线的。
按照经典力学,转动的动能是式中P 是角动量,I是转动惯量, 222211r m r m I += 可以证明IP I E 22122==ω222121r r m m m m I μ=+=222212121kA kx mv E =+=2121m m m m m +=hft E )21(+=mk f π21=,3,2,)(1~12ωωωωλν=∆=-'=-==t cft t hc E E上式中r1,r2和r分别代表两原子到转轴的距离及两原子之间的距离,μ称为约化质量。
按照量子力学,角动量应等于代入上式得此式可以从量子力学直接推得,J称为转动量子数。
当J=0,1,2,3,···等值时,相应的J(J+1)=0,2,6,12,···,所以能级的间隔是I h 22π的2,4,6,8,···倍。
15拉曼光谱实验讲义
拉曼光谱实验1 引言拉曼散射效应是以此现象的发现者——印度物理学家C.V.Raman的名字命名的。
拉曼于1928年首先在液体中观察到这种现象,并记录了散射光谱。
拉曼光谱和红外光谱同属分子振动光谱,但它们的机理却不同:红外光谱是分子对红外光的特征吸收,而拉曼光谱则是分子对光的散射。
由于拉曼散射光的频率位移对应于分子的能级跃迁,因此拉曼光谱技术便成为人们研究分子结构的新的手段之一。
20世纪40年代,由于当时的仪器技术水平所限,也由于红外光谱技术的迅速发展,拉曼光谱一度处于低潮阶段。
60年代初,激光器的出现为拉曼光谱提供了理想的光源,再加上计算机的发展,使激光拉曼光谱逐步成为分子光谱学中一个活跃的分支。
拉曼光谱技术以其信息丰富,制样简单,水的干扰小等独特的优点,广泛应用于生物分子、高聚物、半导体、陶瓷、药物、禁违毒品、爆炸物以及化学化工产品的分析中。
2 方法原理2.1 拉曼散射效应当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是改变方向发生散射,而光的频率仍与激发光的频率相同,这种散射称为瑞利散射;约占总散射光强度的10-6~10-10的散射,不仅改变了光的传播方向,而且散射光的频率也改变了,不同于激发光的频率,称为拉曼散射。
产生拉曼散射的原因是光子与分子之间发生了能量交换,见图1。
受激虚态El激发态E。
基态图1 拉曼散射效应能级图对于斯托克斯(Stokes)拉曼散射来说,分子由处于振动基态E0被激发至激发态E1,分子得到的能量为⊿E,恰好等于光子失去的能量:⊿E=E1一E0(1)与之相对应的光子频率改变⊿ν,为⊿ν=⊿E/h式中h为普郎克常数。
此时,Stokes散射的频率为ν,νs =ν0-⊿E/h,⊿ν=ν0-νs斯托克斯散射光的频率低于激发光频率ν0。
同理,仅斯托克斯(Anti—Stokes)散射光的频率νas为νas =ν0+⊿E/h,⊿ν=νas-ν0反斯托克斯散射光的频率高于激发光频率。
拉曼光谱实验报告
拉曼光谱实验报告1.1样品的准备检测拉曼光谱时一般不需要制备样品,特别是带有显微镜的激光拉曼光谱仪。
在检测时,样品是固体,只需要将样品直接放在测样品台上进行测试。
如果是液体样品并且是易挥发的,可先将其倒入一个无色透明的玻璃瓶,盖好瓶盖,然后放在测样品台上进行检测。
如果液体样品是不易挥发的,可将其倒入一个小的培养皿中,再放在测样品台上进行检测。
1.2分子骨架、基团的定性分析技术拉曼光谱研究对称分子的非极性基团或分子骨架振动产生谱带的情况。
主要用来鉴别化学物质的种类、特殊的结构特征或特征基团,它与红外吸收光谱互为补充。
拉曼位移的大小、强度及拉曼峰形状是鉴定化学键、官能团的重要依据。
利用偏振特性,拉曼光谱还可以作为分子异构体判断的依据。
对于像S-S、C=C、N=N、C=S、C-C、CºC等这类基团,如果分子中这类基团的环境接近对称,他的振动在红外吸收光谱中极为微弱,但可用拉曼光谱检测。
另外,拉曼光谱是检测环状化合物的有力工具。
利用拉曼光谱的标准谱图或利用拉曼光谱标准谱库的检索功能,对未知物拉曼光谱图进行比对,也是拉曼光谱定性分析的一个重要手段。
1.3表面分子结构分析技术当分子被吸附在粗糙金属表面时,其拉曼光谱强度会增加104 ~ 106倍,即表面增强拉曼散射效应(SERS)。
利用这种技术,我们可以检测吸附在金属表面的单层和亚单层分子,并给出表面分子的结构信息。
高灵敏度拉曼光谱检测技术也可以用来研究分子的吸附动力学,利用SERS强度与时间的关系可以得到吸附速率常数。
当具有共振拉曼效应的分子被吸附在粗糙金属表面时,拉曼信号也能增强100 ~ 1000倍,即表面增强共振拉曼散射(SERRS)。
SERRS常用于荧光干扰化合物的拉曼检测。
当化合物分子吸附在粗糙金属表面时,其荧光猝灭,容易获得高质量的SERRS光谱。
1.4深度扫描技术利用拉曼光谱仪的数字显微共焦技术可以检测一些复合材料的深度分布和材料性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉曼光谱的研究一实验目的1、了解拉曼散射的基本原理2、学习激光拉曼/荧光光谱仪的使用方法,知道简单的谱线分析方法。
3、测试CCl的拉曼光谱。
4二实验仪器激光拉曼光谱仪(LRS-Ⅲ),计算机,打印机,待测样品等。
三实验原理ν的单色光入射到介质上时,除了被介质吸收、反射和透射外,总当波束为会有一部分被散射。
按散射光相对于入射光波数的改变情况,可将散射光分为三--,这类散射称为瑞利散射;第类:第一类,其波数基本不变或变化小于5110cm二类,其波数变化大约为11cm-0.1cm-,称为布利源散射;第三类是波数变化大于1的散射,称为拉曼散射;从散射光的强度看,瑞利散射最强,拉曼散射最弱。
在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散射。
图1在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。
当入射的光量子与分子相碰撞时,可以是弹性碰撞的散射也可以是非弹性碰撞的散射。
在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a);在非弹性碰撞过程中光量子与分子有能量交换,光量子转移一部分能量给散射分子,或者从散射分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ∆=-,当光量子把一部分能量交给分子时,光量子则以较小的频率散射出去,称为频率较低的光(斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能量,从而处于激发态1E ,如图(1b ),这时的光量子的频率为0ννν'=-∆;当分子已经处于振动或转动的激发态1E 时,光量子则从散射分子中取得了能量E ∆(振动或转动能量),以较大的频率散射,称为频率较高的光(反斯托克斯线),这时的光量子的频率为0ννν'=+∆。
如果考虑到更多的能级上分子的散射,则可产生更多的斯托克斯线和反斯托克斯线。
最简单的拉曼光谱如图2所示,在光谱图中有三种线,中央的是瑞利散射线,频率为0ν,强度最强;低频一侧的是斯托克斯线,与瑞利线的频差为ν∆,强度比瑞利线的强度弱很多,约为瑞利线的强度的几百万分之一至上万分之一;高频的一侧是反斯托克斯线,与瑞利线的频差亦为ν∆,和斯托克斯线对称的分布在瑞利线两侧,强度比斯托克斯线的强度又要弱很多,因此并不容易观察到反斯托克斯线的出现,但反斯托克斯线的强度随着温度的升高而迅速增大。
斯托克斯线和反斯托克斯线通常称为拉曼线,其频率常表示为0νν±∆,ν∆称为拉曼频移,这种频移和激发线的频率无关,以任何频率激发这种物质,拉曼线均能伴随出现。
因此从拉曼频移,我们又可以鉴别拉曼散射池所包含的物质。
拉曼散射强度正比于入射光的强度,并且在产生拉曼散射的同时,必然存在强度大于拉曼散射至少一千倍的瑞利散射。
因此,在设计或组装拉曼光谱仪和进行拉曼光谱实验时,必须同时考虑尽可能增强入射光的光强和最大限度地收集散射光,又要尽量地抑制和消除主要来自瑞利散射的背景杂散光,提高仪器的信噪比。
CCI 4(四氯化碳)分子的对称性质和振动拉曼谱在本实验中,我们选择CCL 4作为实验样品。
根据前面叙述的原理,简略地介绍它的分子结构及对称性质和振动拉曼光谱之间的联系,为实验提供一个谱图分析的基础。
1.CCL4的分子结构及其对称性 CCL4分子由一个碳原子和四个氯原子组成,它的结构如图3所示,四个氯原子位于正四面体的四个顶点,碳原子在正四面体的中心。
物体绕其自身的某一轴旋转一定角度、或进行反演(r→-r)、或旋转加反演之后物体又自身重合的操作称操作。
对称操作与前面讲到的物体的对称变换在物理上是等价的。
CCL4分子所具有的旋转和旋转—反演轴列于图4。
由该图可以看到,CCL4分子的对称操作有24个(包括不动操作E)。
这24个对称操作分别归属于五种对称素。
对称素是物体对称性质的更简洁的表述。
CCL4分子的五种对称素是:E, 3C m2, jC38,piC26,6iC m±4,上述符号的具体含义是Cn 旋转轴,下标表示转角为2π/n;i反演;m旋转轴方位是x ,y ,z轴j旋转轴方位在过原点O的体对角线方向,j=1,2,3,4;p旋转轴方位在过原点O、立方体相对棱边中点联线方向,p=a,b,c,d,e,f ;+或—顺时针或逆时针旋转方向。
上面符号前面的阿拉伯数字代表该对称素包含的对称操作数。
2.CCL4分子的振动方式与振动拉曼谱大家知道,N个原子构成的分子,当N≥3时,有(3N-6)个内部振动自由度,因此CCL4分子应有9个简正振动方式,这9个简正振动方式还可以分成四类,图4就是这9个简正振动方式及其分类示意图。
这四类振动根据其反演对称性不同还有对称振动和反对称振动之分,其中除第I类是对称振动外,其余三类都是反对称振动。
同一类振动,不管其具体振动方式如何,都有相同的振动能,所以如果某个分子有l类振动,则一般说来,最多只可能有l条基本振动拉曼线。
当然,如果考虑到振动间耦合引起的微扰,有的谱线分裂成两条,如图1-7-1中最弱的双重线就是由于最强和弱强的两条谱线所对应的振动的耦合造成的微扰,使最弱线分裂成双重线。
每类振动所具有的振动方式数目对应于量子力学中能级简并的重数,所以如果某一类震动有g 个振动方式,就称为该类振动是g重简并的。
根据以上讨论的拉曼光谱基本原理,一方面可以在分析分子结构及其对称性的基础上, 图4 图5推测出该分子拉曼光谱的基本概貌,如谱线数目、大致位置、偏振性质和它们的相对强度;另一方面,我们又可以从实验上确切知道谱线的数目和每条线的波数、强度及其应对应的振动方式(为此有时需辅以红外光谱等手段)。
上述两个方面工作的结合和对比,使得人们可以利用拉曼光谱获得有关分子的结构和对称性的信息。
在拉曼光谱基本原理讨论中,除了分子结构和振动方式以外,并没有涉及分子的其他属性,因而可以推出:同一空间结构但原子成分不同的分子,其拉曼光谱的基本面貌应是相同的。
人们在实际工作中就利用这一推断,把一个结构未知的分子的拉曼光谱和结构已知的分子的拉曼光谱进行比对,以确定该分子的空间图3 CCL 4分子结构图结构及其对称性。
当然,结构相同的不同分子其原子、原子间距和原子间相互作用等情况还是可能有很大差别的,因而不同分子的拉曼光谱在细节上还是不同的。
每一种分子都有其特征的拉曼光谱,因此利用拉曼光谱也可以鉴别和分析样品的化学成分和结构性质。
外界条件的变化对分子结构和运动会产生程度不同的影响,所以拉曼光谱也常被用来研究物质的浓度、温度和压力等效应。
四、LRS-Ⅲ型激光拉曼光谱仪简介:(一)规格与主要技术指标1.1规格参数:单色仪:相对孔径比D/f = 1/5.5光栅1200L/mm闪耀波长 500nm狭缝宽度 0—2mm 连续可调示值精度 0.01mm/格接收单元:光电倍增管日产 R6249倍增管电源0-1500V宽带放大器:带宽>100MHz陷波滤波片:波长532nm(仅3型提供)光谱带宽<20nm单光子计数器:积分时间0-30分钟最大计数为107阈值电压0-2.6V 1-256挡(10mv/挡)激光光源:半导体激光器 532nm输出功率≥40mW稳定度≤2%计算机:联想商用机打印机:利盟彩色喷墨打印机1.2 主要技术指标:波长范围:200-800nm (单色仪)波长准确度:≤0.4nm波长重复性:≤0.2nm杂散光:≤10-3线色散倒数: 2.7nm/mm谱线半宽度:≤0.2nm (波长在586nm处)(二)仪器的结构LRS – II激光拉曼/荧光光谱仪的总体结构如图6所示。
图6 激光拉曼/荧光光谱仪的结构示意图2.2.1 单色仪:图7 单色仪的光学结构示意图单色仪的光学结构如图7所示。
S1为入射狭缝,M1为准直镜,G 为平面衍射光栅,衍射光束经成像物镜M2会聚,平面镜M3反射直接照射到出射狭缝S2上,在S2外侧有一光电倍增管PMT ,当光谱仪的光栅转动时,光谱讯号通过光电倍增管转换成相应的电脉冲,并由光子计数器放大、计数,进入计算机处理,在显示器的荧光屏上得到光谱的分布曲线。
2.2.2 激光器:本仪器采用40mw 半导体激光器,该激光器输出的激光为偏振光。
其操作步骤参照半导体激光器说明书。
2.2.3 外光路系统:S1外光路系统主要由激发光源(半导体激光器)五维可调样品支架S ,偏振组件P1和P2以及聚光透镜C1和C2等组成(见图8)。
图8 外光路系统示意图激光器射出的激光束被反射镜R 反射后,照射到样品上。
为了得到较强的激发光,采用一聚光镜C1使激光聚焦,使在样品容器的中央部位形成激光的束腰。
为了增强效果,在容器的另一侧放一凹面反射镜M2。
凹面镜M2可使样品在该侧的散射光返回,最后由聚光镜C2把散射光会聚到单色仪的入射狭缝上。
调节好外光路,是获得拉曼光谱的关键,首先应使外光路与单色仪的内光路共轴。
一般情况下,它们都已调好并被固定在一个钢性台架上。
可调的主要是激光照射在样品上的束腰应恰好被成像在单色仪的狭缝上。
是否处于最佳成像位置可通过单色仪扫描出的某条拉曼谱线的强弱来判断。
2.2.4 偏振部件:作偏振测量实验时,应在外光路中放置偏振部件。
它包括改变入射光偏振方向的偏振旋转器,还有起偏器和检偏器。
2.2.5 探测系统:拉曼散射是一种极微弱的光,其强度小于入射光强的10-6,比光电倍增管本身的热噪声水平还要低。
用通常的直流检测方法已不能把这种淹没在噪声中的信号提取出来。
单光子计数器方法利用弱光下光电倍增管输出电流信号自然离散的特征,采用脉冲高度甄别和数字计数技术将淹没在背景噪声中的弱光信号提取出来。
与锁定放大器等模拟检测技术相比,它基本消除了光电倍增管高压直流漏电和各倍增极热噪声的影响,提高了信噪比;受光电倍增管漂移,系统增益变化的影响较小;它输出的是脉冲信号,不用经过A/D 变换,可直接送到计算机处理。
在非弱光测量时,通常是测量光电倍增管的阳极电阻上的电压。
测得的信号或电压是连续信号。
当弱光照射到光阴极时,每个入射光子以一定的概率(即量子效率)使光阴极发射一个电子。
这个光电子经倍增系统的倍增最后在阳极回路中形成一个电流脉冲,通过负载电阻形成一个电压脉冲,这个脉冲称为单光子脉冲。
除光电子脉冲外,还有各倍增极的热发射电子在阳极回路中形成的热发射噪声脉冲。
热电子受倍增的次数比光电子少,因而它在阳极上形成的脉冲幅度较低。
M2此外还有光阴极的热发射形成的脉冲。
噪声脉冲和光电子脉冲的幅度的分布如图2-4所示。
脉冲幅度较小的主要是热发射噪声信号,而光阴极发射的电子(包括光电子和热发射电子)形成的脉冲幅度较大,出现“单光电子峰”。