八年级数学下利用一次函数解决实际问题专题练习含答案-精品.doc
人教版八年级数学下册一次函数专项练习带答案
一、解答题1.如图,在平面直角坐标系中,存在直线y1=2x和直线y2=-x+3(1) 直接写出直线y2=-x+3与坐标轴的交点坐标:__________、__________(2) 求出直线y1=2x和直线y2=-x+3的交点坐标(3) 结合图象,直接写出0<y2<y1的解集:_________________2.“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.3.某市的出租车收费y(元)与路程x(千米)之间的函数关系如图所示.(1)图中AB段的意义是.(2)当x>2时,y与x的函数关系式为.(3)张先生打算乘出租车从甲地去丙地,但需途径乙地办点事,已知甲地到乙地的路程为1km,乙地至丙地的路程超过3km,现有两种打车方案:方案一:先打车从甲地到乙地,办完事后,再打另一部出租车去丙地;方案二:先打车从甲地到乙地,让出租车司机等候,办完事后,继续乘该车去丙地(出租车等候期间,张先生每分钟另付0.2元,假设计价器不变).张先生应选择哪种方案较为合算?试说明理由.4.已知长方形周长为20.(1)写出长y 关于宽x 的函数解析式(x 为自变量);(2)在直角坐标系中,画出函数图像.5.在平面直角坐标系xoy 中,已知一次函数()10y mx m =≠与()20y kx b k =+≠相交于点()12A ,,且()20y kx b k =+≠与y 轴交于点()03B ,..1)求一次函数1y 和2y 的解析式;.2.当120y y >>时,求出x 的取值范围.6.(本题满分12分) 在平面直角坐标系中,直线443y x =-+交x 轴、y 轴分别于点A 、点B ,将△AOB 绕坐标原点逆时针旋转90得到△COD .直线CD 交直线AB 于点E ,如图1.(1))求:直线CD 的函数关系式.(2)如图2,连接OE ,过点O 作OF OE ⊥交直线CD 于点F ,如图2.① 求证:OEF ∠=45.② 求:点F 的坐标.(3)若点P 是直线DC 上一点,点Q 是x 轴上一点(点Q 不与点O 重合),当△DPQ 和△DOC 全等时,直接写出点P 的坐标.7.如图1,在平面直角坐标系中Rt △AOB ≌Rt △DCA ,其中B (0,4),C (2,0).连接BD .(1)求直线BD的解析式;(2)点E是直线AD上一点,连接BE,以BE,ED为一组邻边作▱BEDF,当▱BEDF的面积为3时,求点E的坐标;(3)如图2,将△DAC沿x轴向左平移,平移距离大于0,记平移后的△DAC为△D′A′C′,连接D′A,D′B,当△D′AB 为等腰三角形时,直接写出点D′的坐标.8.如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.(1)求点A、B、D的坐标;(2)求直线BD的表达式.9.如图,四边形OABC为直角梯形,已知AB.OC,BC.OC,A点坐标为(3,4),AB=6.(1)求出直线OA的函数解析式;(2)求出梯形OABC的周长;(3)若直线l经过点D(3,0),且直线l将直角梯形OABC的面积分成相等的两部分,试求出直线l的函数解析式.(4)若直线l经过点D(3,0),且直线l将直角梯形OABC的周长分为5:7两部分,试求出直线l的函数解析式.10.(本题满分10分)如图,直线y=34-x+6与x 轴交于点B ,与y 轴交于点A .以AB 为边画正方形ABCD .(1)求△AOB 的面积;(2)求点C 的坐标;(3)已知点Q (-4,0),点P 从点Q 出发,以每秒2个单位的速度沿x 轴的正方向运动,设运动时间为t 秒,当t 为何值时,△PBC 是等腰三角形.11.如图,在平面直角坐标系中,一次函数y=kx+5的图象经过点A (1,4),点B 是一次函数y=kx+5的图象与正比例函数23y x =的图象的交点.(1)求点B 的坐标.(2)求△AOB 的面积.12.某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每天可售出50个.根据销售经验,售价每提高1元.销售量相应减少1个。
知识点详解人教版八年级数学下册第十九章-一次函数专题练习试题(含答案及详细解析)
人教版八年级数学下册第十九章-一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=22、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B 车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y (千米),则能大致表示y与x之间函数关系的图象是()A.B.C.D.3、下列函数中,为一次函数的是()A.12yx=B.2y x C.1y=D.1y x=-+4、下列各图中,不能表示y是x的函数的是()A.B.C.D.5、一次函数的一般形式是(k,b是常数)()A.y=kx+b B.y=kx C.y=kx+b(k≠0)D.y=x6、小赵想应聘超市的牛奶销售员,现有甲、乙两家超市待选,每月工资按底薪加上提成合算,甲、乙两超市牛奶销售员每月工资y(元)与员工销售量x(件)之间的关系如图所示,则下列说法错误的是()A.销量小于500件时,选择乙超市工资更高 B.想要获得3000元的工资,甲超市需要的销售量更少C.在甲超市每销售一件牛奶可得提成3元D.销售量为1500件时,甲超市比乙超市工资高出800元7、关于一次函数y=﹣2x+3,下列结论正确的是()A.图象与x轴的交点为(32,0)B.图象经过一、二、三象限C.y随x的增大而增大D.图象过点(1,﹣1)8、已知点A(-2,y1)和B(-1,y2)都在直线y=-3x-1上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定9、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0 B .x <0 C .x <﹣1 D .x >﹣110、如图所示,若一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组1122,y k x b y k x b =+⎧⎨=+⎩的解是( )A .2,3x y =-⎧⎨=⎩B .3,2x y =⎧⎨=-⎩C .2,3x y =⎧⎨=⎩D .2,3x y =-⎧⎨=-⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直线23y x =-+,则它与x 轴的交点坐标为________,与坐标轴围成的三角形面积为_______.2、甲、乙两施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务.下表根据每天工程进度绘制而成的.下列结论:①甲队每天修路20米;②乙队第一天修路15米;③乙队技术改进后每天修路35米;④前7天甲、乙两队修路长度相等.其中正确的结论有_______.(填序号).3、直线y=2x-3与x轴的交点坐标是______,与y轴的交点坐标是______.4、在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx>﹣x+3的解集是______.5、直线y=-3x+12与x轴的交点坐标是______.三、解答题(5小题,每小题10分,共计50分)1、如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.(1)求这两个函数的表达式;(2)求两直线与y轴围成的三角形的面积.2、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.(1)N95型和一次性成人口罩每箱进价分别为多少元?(2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?(3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?3、测得一弹簧的长度L(厘米)与悬挂物体的质量x(千克)有下面一组对应值:试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x千克的物体时的弹簧的长度L.(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?(4)若要求弹簧的长度不超过20厘米,则所挂物体的质量不能超过多少千克?4、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P 从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.5、如图,已知点A(-2,4),B(4,2),C(2,-1).(1)先画出△ABC,再作出△ABC关于x轴对称的图形△A1A1A1,则点A1的坐标为________;(2)P为x轴上一动点,请在图中画出使△PAB的周长最小时的点P,并直接写出此时点P的坐标(保留作图痕迹).---------参考答案-----------一、单选题1、D【解析】【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.2、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤45、45<x≤43、43<x≤2三段求出函数关系式,进而得到当x=43时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B车到达甲地时间为120÷90=43小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x ≤43时,y =60(x -45)+90(x -45)=150x -120; 当43<x ≤2是,y =60x ;由函数解析式的当x =43时,y =150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.3、D【解析】【分析】根据一次函数的定义即可求解.【详解】 A.12y x=不是一次函数, B.2y x 不是一次函数, C.1y =不是一次函数,D.1y x =-+是一次函数故选D .【点睛】一次函数的定义一般地,形如y=kx+b (k ,b 是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.4、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.5、C【解析】【分析】根据一次函数的概念填写即可.【详解】解:把形如y=kx+b((k,b是常数,k≠0)的函数,叫做一次函数,故选:C.【点睛】本题考查了一次函数的概念,做题的关键是注意k≠0.6、D【解析】【分析】根据函数图象分别求得甲、乙两超市每月工资y (元)与员工销售量x (件)之间的函数关系式,根据一次函数的性质逐项分析判断【详解】解:根据函数图性,设甲的解析式为:111y k x b =+,乙的解析式为:222y k x b =+将()()0,1000,500,2500代入111y k x b =+,得11110005002500b k b =⎧⎨+=⎩ 解得1131000k b =⎧⎨=⎩ ∴131000y x =+将()()0,1500,500,2500代入222y k x b =+,得22215005002500b k b =⎧⎨+=⎩解得2221500k b =⎧⎨=⎩ ∴221500y x =+A.根据函数图像可知,当500x <时,12y y <,即选择乙超市工资更高,故该选项正确,符合题意;B.当13000y =时,20003x =,当23000y =时,15007502x ==,20007503<,即想要获得3000元的工资,甲超市需要的销售量更少,故该选项正确,符合题意; C.根据题意,甲超市的工资为131000y x =+,0x =时,1000y =,即底薪为1000元,当500x =时,2500y =,则()250010005003-÷=,即在甲超市每销售一件牛奶可得提成3元,故该选项正确,符合题意;D.当1500x =时,11000315005500y =+⨯=,22150015004500y =⨯+=,55004500=1000-(元), 即销售量为1500件时,甲超市比乙超市工资高出1000元,故该选项不正确,不符合题意; 故选D【点睛】本题考查了一次函数的应用,根据函数图象求得解析式是解题的关键.7、A【解析】【分析】利用一次函数图象上点的坐标特征,可判断出选项A 符合题意;利用一次函数图象与系数的关系,可判断出选项B 不符合题意;利用一次函数的性质,可判断出选项C 不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D 不符合题意.【详解】解:A .当y =0时,﹣2x +3=0,解得:x =32,∴一次函数y =﹣2x +3的图象与x 轴的交点为(32,0),选项A 符合题意;B .∵k =﹣2<0,b =3>0,∴一次函数y =﹣2x +3的图象经过第一、二、四象限,选项B 不符合题意;C .∵k =﹣2<0,∴y随x的增大而减小,选项C不符合题意;D.当x=1时,y=﹣2×1+3=1,∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.故选:A.【点睛】本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.8、A【解析】【分析】首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系.【详解】解:∵一次函数y=-3x-1中,k=-3<0,∴y随x的增大而减小,∵-2<-1,∴y1>y2.故选:A.【点睛】此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性.9、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.10、A【解析】【分析】根据两个一次函数的交点坐标即可得.【详解】 解:一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 相交于点(2,3)P -,∴方程组1122y k x b y k x b =+⎧⎨=+⎩的解为23x y =-⎧⎨=⎩, 故选:A .【点睛】本题考查了利用一次函数的交点确定方程组的解,掌握函数图象法是解题关键.二、填空题1、 3,02⎛⎫ ⎪⎝⎭ 94【解析】【分析】先令y=0即可求出直线与x轴的交点坐标,再令x=0及可求出直线与y轴的交点坐标,由三角形的面积公式即可得出结论.【详解】解:∵令x=0,则y=3,令y=0,则x=32,∴直线y=−2x+3与x轴的交点坐标是(32,0);直线与两坐标轴围成的三角形的面积=12×32×3=94.故答案为:3,02⎛⎫⎪⎝⎭;94【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、①②③【解析】【分析】根据表格数据准确分析分析计算即可;【详解】由表格可以看出乙队是第五天停工的,所以甲队每天修路:16014020-=(米),故①正确;乙队第一天修路352015-=(米),故②正确;乙队技术改进之后修路:2151602035--=(米),故③正确;前7天,甲队修路:207140⨯=(米),乙队修路:270140130-=,故④错误;综上所述,正确的有①②③.故答案是:①②③.【点睛】本题主要考查了行程问题的实际应用,准确分析判断是解题的关键.3、(32,0)##(1.5,0)(0,﹣3)【解析】【分析】分别根据x、y轴上点的坐标特点进行解答即可.【详解】令y=0,则2x﹣3=0,解得:x32=,故直线与x轴的交点坐标为:(32,0);令x=0,则y=﹣3,故直线与y轴的交点坐标为:(0,﹣3).故答案为(32,0),(0,﹣3).【点睛】本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.4、x>1【解析】【分析】利用函数与不等式的关系,找到正比例函数高于一次函数图像的那部分对应的自变量取值范围,即可求出解集.【详解】解:由图可知:不等式kx >﹣x +3,正比例函数图像在一次函数上方的部分,对应的自变量取值为x >1.故此不等式的解集为x >1.故答案为:x >1.【点睛】本题主要是考查了一次函数与不等式,熟练地应用函数图像求解不等式的解集,培养数形结合的能力,是解决该类问题的要求.5、( 4,0)【解析】【分析】令y =0,求出x 的值即可得出结论.【详解】312y x =-+,∴当0y =时,0312x =-+,得4x =,即直线312y x =-+与x 轴的交点坐标为:( 4,0),故答案为( 4,0).【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于令y =0三、解答题1、(1)A =34A ,A =2A −5;(2)A ΔAAA =10【解析】【分析】(1)由点A的坐标及勾股定理即可求得OA与OB的长,从而可得点B的坐标,用待定系数法即可求得函数的解析式;(2)由点A的坐标及OB的长度即可求得△AOB的面积.【详解】∵A(4,3)∴OA=OB=√32+42=5,∴B(0,-5),设直线OA的解析式为y=kx,则4k=3,k=34,∴直线OA的解析式为A=34A,设直线AB的解析式为A=A′A+A,把A、B两点的坐标分别代入得:{4A ′+A=3A=−5,∴{A ′=2A=−5,∴直线AB的解析式为y=2x-5.(2)A△AAA=12×5×4=10.【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴围成的三角形面积等知识,本题重点是求一次函数的解析式.2、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可;(2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值;(3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得:{10A+20A=32500 30A+40A=87500,解得:{A=2250A=500,答:N95型和一次性成人口罩每箱进价分别为2250元、500元.(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得:2250(1+10%)A+500×80%(80﹣A)≤115000.解得:a≤40.∵a取正整数,0<a≤40.∴a的最大值为40.答:最多可购进N95型40箱.(3)解:设购进的口罩获得最大的利润为w,则依题意得:w=500a+100(80﹣a)=400a+8000,又∵0<a≤40,∴w随a的增大而增大,∴当a=40时,W=400×40+8000=24000元.即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.答:最大利润为24000元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.3、(1)A=0.5A+12;(2)17㎝;(3)12千克;(4)不能超过16千克【解析】【分析】(1)观察即可得规律:弹簧称所挂重物质量x与弹簧长度L之间是一次函数关系,然后由待定系数法求解即可;(2)将x=10代入解析式,求出L的值,即可求得答案;(3)将L=18代入求出即可;(4)根据题意列出不等式求解即可.【详解】解:(1) ∵弹簧称所挂重物质量x(kg)与弹簧长度L(cm)之间是一次函数关系,∴设L=kx+b,取点(0,12)与(1,12.5),则{A=12A+A=12.5,解得:{A=12A=0.5,故L与x之间的关系式为A=0.5A+12.(2)将A=10,代入A=0.5A+12,得A=0.5A+12=0.5×10+12=17(cm)∴所挂物体的质量为10千克时,弹簧的长度是17cm(3)将A=18,代入A=0.5A+12,得18=0.5A+12,解得A=12∴若测得弹簧的长度是18厘米,则所挂物体的质量为12千克.(4)∵弹簧的长度不超过20厘米,即L≤20,∴0.5A+12≤20,得A≤16∴若要求弹簧的长度不超过20厘米,则所挂物体的质量不能超过16千克. 【点睛】此题考查了一次函数的应用.解题的关键是根据题意求得一次函数的解析式.4、(1)PQ=5cm;(2)t=5;(3)S四边形APQB=30﹣5t+t2.3【解析】【分析】(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.【详解】解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,∵∠C=90°,∴PQ=√AA2+AA2=√(5−A)2+(2A)2,∵t=2,∴PQ=√32+42=5cm,(2)∵∠C=90°,∴当CP=CQ时,△PCQ是等腰三角形,∴5﹣t=2t,解得:t=53,∴t=53秒时,△PCQ是等腰三角形;(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ=12AA⋅AA−12AA⋅AA=12×5×12−12×(5−A)×2A=30﹣5t+t2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.5、(1)作图见解析,(2,1);(2)作图见解析,(2,0).【解析】【分析】(1)在坐标系中标出A、B、C三点,再顺次连接,即为△AAA;根据轴对称的性质找到A、B、C三点关于x轴的对应点A1、A1、A1,再顺次连接,即为△A1A1A1,最后写出A1的坐标即可.(2)根据轴对称的性质结合两点之间线段最短,即可直接连接A1A,即A1A与x轴的交点为点P,再直接写出点P坐标即可.【详解】(1)△AAA和△A1A1A1如图所示,根据图可知A1(2,1).故答案为:(2,1).(2)∵AB长度不变,△AAA的周长=AA+AA+AA,∴只要AA+AA最小即可.如图,连结A1A交x轴于点P,∵两点之间线段最短,∴AA+AA=AA1+AA≥A1A,设A1A解析式为A=AA+A,过A1(-2,-4),B(4,2),代入得,{−4=−2A+A2=4A+A解得:{A=1A=−2,∴A1A的解析式为A=A−2,当A=0时,即0=A−2,解得:A=2.∴点P坐标为 (2,0).当点P坐标为(2,0)时,△AAA周长最短.【点睛】本题主要考查作图-轴对称变换,解题的关键是根据轴对称变换的定义作出变换后的对应点及掌握轴对称的性质.。
4.5 第1课时 利用一次函数解决实际问题 湘教版数学八年级下册课时习题(含答案)
4.5 一次函数的应用第1课时利用一次比例函数解决实际问题要点感知1函数图象由两个一次函数拼接在一起,我们要按照图象实行分段处理,每段看它适合哪种函数模型.预习练习1-1如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费__________元.要点感知2 同一坐标系中若有多条直线,我们要对每条直线进行处理,重在找出这些函数的交点坐标和每个图形的起始坐标(交点的求法一般将两个函数的表达式联立在一起,组成方程组,方程组的解便是交点坐标).预习练习2-1在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)2-2 如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须__________.知识点1 利用一次函数解决分段计费问题1.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A.0.4元B.0.45元C.约0.47元D.0.5元2.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费__________元.3.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?知识点2 利用一次函数解决相交直线问题4. “五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时第4题图第5题图5.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是( )A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发________小时时,行进中的两车相距8千米.8.小李和小陆沿同一条路行驶到B地,他们离出发地的距离s和行驶时间t之间的函数关系的图象如图.已知小李离出发地的距离s和行驶时间t之间的函数关系为s=2t+10.则:(1)小陆离出发地的距离s和行驶时间t之间的函数关系为:_________________;(2)他们相遇的时间t=__________.9.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲多少米?10.电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差__________元.11.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量x(度)0<x≤140(2)小明家某月用电120度,需交电费__________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费M元,小刚家某月用电290度,交电费153元,求M的值.参考答案预习练习1-17.4预习练习2-1 D2-2大于41.A2.723.(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x>20);(2)∵小颖家四月份、五月份分别交水费45.6元、38元,∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.∴45.6=2.8(x1-20)+40,38=2x2.∴x1=22,x2=19.∵22-19=3,∴小颖家五月份比四月份节约用水3吨.4.C5.D6.B7.或8.(1)s=10t(2)9.根据图形可得:甲的速度是=8(米/秒),乙的速度是:=7(米/秒),∴根据题意得:100-×7=12.5(米).当甲跑到终点时,乙落后甲12.5米.答:当甲跑到终点时,乙落后甲12.5米.10.1011.(1)140<x≤230x>230(2)54(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入,得解得则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=x-7(140<x≤230).(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故108-63=45(元),230-140=90(度),45÷90=0.5(元),则第二档电费为0.5元/度;∵小刚家某月用电290度,交电费153元,290-230=60(度),153-108=45(元),45÷60=0.75(元),M=0.75-0.5=0.25.答:M的值为0.25.。
八年级数学 一次函数实际应用 练习及答案详解
19.已知某市 2013 年企业用水量 x(吨)与该月应交的水费 y(元)之间的函数关系如图. (1)当 x≥50 时,求 y 关于 x 的函数关系式; (2)若某企业 2013 年 10 月份的水费为 620 元,求该企业 2013 年 10 月份的用水量; (3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自 2014 年 1 月开始对月用水量 超过 80 吨的企业加收污水处理费,规定:若企业月用水量 x 超过 80 吨,则除按 2013 年收费标准收 取水费外, 超过 80 吨部分每吨另加收 求这个企业该月的用水量.
)
2.已知直线 y=mx+n,其中 m,n 是常数且满足:m+n=6,mn=8,那么该直线经过( A.第二、三、四象限 B.第一、二、三象限 C.第一、三、四象限 ) C.第三象限
)
D.第一、二、四象限
3.一次函数 y=﹣2x+1 的图象不经过下列哪个象限( A.第一象限 B.第二象限
D.第四象限 )
17.如图 1 所示,在 A,B 两地之间有汽车站 C 站,客车由 A 地驶往 C 站,货车由 B 地驶往 A 地.两车同 时出发,匀速行驶.图 2 是客车、货车离 C 站飞路程 y1,y2(千米)与行驶时间 x(小时)之间的函 数关系图象. (1)填空:A,B 两地相距 千米; (2)求两小时后,货车离 C 站的路程 y2 与行驶时间 x 之间的函数关系式; (3)客、货两车何时相遇?
10.小敏从 A 地出发向 B 地行走,同时小聪从 B 地出发向 A 地行走,如图所示,相交于点 P 的两条线段 l1、l2 分别表示小敏、小聪离 B 地距离 y km 与已用时间 x h 之间的关系,则小敏、小聪行走速度分别 是( ) B.3 km/h 和 3 km/h C.4 km/h 和 4 km/h D.4 km/h 和 3 km/h
人教版八年级数学下册一次函数的应用(基础)典型例题讲解+练习及答案.doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】一次函数的应用(基础)责编:杜少波【学习目标】1. 能从实际问题的图象中获取所需信息;2. 能够将实际问题转化为一次函数的问题并准确的列出一次函数的解析式;3. 能利用一次函数的图象及其性质解决简单的实际问题;4. 提高解决实际问题的能力.认识数学在现实生活中的意义,发展运用数学知识解决实际问题的能力.【要点梳理】【:393616 一次函数的应用,知识要点】要点一、数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型.要点二、正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.要点诠释:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点.要点三、选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.【典型例题】类型一、简单的实际问题1、(2016•吉林)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距km.【思路点拨】(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y 乙关于x 的函数解析式即可; (3)求出乙距A 地240km 时的时间,乘以甲的速度即可得到结果. 【答案与解析】解:(1)根据图象得:360÷6=60km/h ; (2)当1≤x≤5时,设y 乙=kx+b , 把(1,0)与(5,360)代入得:05360k b k b +=⎧⎨+=⎩,解得:k=90,b=﹣90, 则y 乙=90x ﹣90; (3)令y 乙=240,得到x=113, 则甲与A 地相距60×113=220km , 故答案为:(1)60;(3)220【总结升华】本题考查了识别函数图象的能力,解决问题的关键是确定函数解析式. 举一反三:【:393616 一次函数的应用,例3】【变式】小刚、小强两人进行百米赛跑,小刚比小强跑得快,如果两人同时跑,小刚肯定赢,现在小刚让小强先跑若干米,图中的射线a ,b 分别表示两人跑的路程与时间的关系,根据图象判断:小刚的速度比小强的速度每秒快( ) A .1米 B .1.5米 C .2米 D .2.5米【答案】D ;提示:由图象知小刚让小强先跑20米,用8秒时间追上小强,所以每秒快2.5米.故选D .图象的交点表示的实际意义:小刚用时8秒追上小强,距离出发点64米. 2、(2015•淮安)小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中折线ABCDE 表示小丽和学校之间的距离y (米)与她离家时间x (分钟)之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离; (2)当8≤x≤15时,求y 与x 之间的函数关系式.【思路点拨】(1)根据函数图象,小丽步行5分钟所走的路程为3900﹣3650=250米,再根据路程、速度、时间的关系,即可解答;(2)利用待定系数法求函数解析式,即可解答.【答案与解析】解:(1)根据题意得:小丽步行的速度为:(3900﹣3650)÷5=50(米/分钟),学校与公交站台乙之间的距离为:(18﹣15)×50=150(米);(2)当8≤x≤15时,设y=kx+b,把C(8,3650),D(15,150)代入得:,解得:∴y=﹣500x+7650(8≤x≤15).【总结升华】本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息,利用得到系数法求函数解析式.类型二、方案选择问题3、某经营世界著名品牌的总公司,在我市有甲、乙两家分公司,这两家公司都销售香水和护肤品.总公司现香水70瓶,护肤品30瓶,分配给甲、乙两家分公司,其中40瓶给甲公司,60瓶给乙公司,且都能卖完,两公司的利润(元)如下表.(1)假设总公司分配给甲公司x瓶香水,求:甲、乙两家公司的总利润W与x之间的函数关系式;(2)在(1)的条件下,甲公司的利润会不会比乙公司的利润高?并说明理由;(3)若总公司要求总利润不低于17370元,请问有多少种不同的分配方案,并将各种方案设计出来每瓶香水利润每瓶护肤品利润甲公司180 200乙公司160 150【思路点拨】(1)设总公司分配给甲公司瓶香水,用表示出分配给甲公司的护肤品瓶数、乙公司的香水和护肤品瓶数,根据已知列出函数关系式.(2)根据(1)计算出甲、乙公司的利润进行比较说明.(3)由已知求出x的取值范围,通过计算得出几种不同的方案.【答案与解析】解:(1)依题意,甲公司x瓶香水,甲公司的护肤品瓶数为:40-x,乙公司的香水和护肤品瓶数分别是:70-x ,30-(40-x )=x -10.W =180x +200(40-x )+160(70-x )+150(x -10)=-30x +17700. 故甲、乙两家公司的总利润W 与x 之间的函数关系式W =-30x +17700 (2)甲公司的利润为:180x +200(40-x )=8000-20x , 乙公司的利润为:160(70-x )+150(x -10)=9700-10x , 8000-20x -(9700-10x )=-1700-10x <0, ∴甲公司的利润不会比乙公司的利润高.(3)由(1)得:0400700100x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩ ,解得:10≤x ≤40,再由W =-30x +17700≥17370得:x ≤11, ∴10≤x ≤11,∴有两种不同的分配方案.①当x =10时,总公司分配给甲公司10瓶香水,甲公司护肤品30瓶,乙公司60瓶香水,乙公司0瓶护肤品.②当x =11时,总公司分配给甲公司11瓶香水,甲公司29瓶护肤品,乙公司59瓶香水,乙公司1瓶护肤品.【总结升华】此题考查的知识点是一次函数的应用,关键是先求出函数关系式,再对甲乙公司利润进行比较,通过求自变量的取值范围得出方案. 举一反三:【变式】健身运动已成为时尚,某公司计划组装A 、B 两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案;(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少?【答案】 解:(1)设该公司组装A 型器材x 套,则组装B 型器材(40-x )套,依题意,得73(40)24046(40)196x x x x +-≤⎧⎨+-≤⎩解得22≤x ≤30.由于x 为整数,∴x 取22,23,24,25,26,27,28,29,30. ∴组装A 、B 两种型号的健身器材共有9种组装方案. (2)总的组装费用y =20x +18(40-x )=2x +720. ∵k =2>0,∴y 随x 的增大而增大.∴当x =22时,总的组装费用最少,最少组装费用是2×22+720=764元. 总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套.4、2011年秋冬北方严重干旱,凤凰社区人畜饮用水紧张,每天需从社区外调运饮用水120吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水? (2)设从甲厂调运饮用水x 吨,总运费为W 元,试写出W 关于与x 的函数关系式,怎样安排调运方案才能是每天的总运费最省?【答案与解析】 解:(1)设从甲厂调运饮用水x 吨,从乙厂调运饮用水y 吨,根据题意得2012141526700,120.x y x y ⨯+⨯=⎧⎨+=⎩ 解得50,70.x y =⎧⎨=⎩∵50<80,70<90,∴符合条件.故从甲、乙两水厂各调用了50吨、70吨饮用水.(2)设从甲厂调运饮用水x 吨,则需从乙厂调运水(120-x )吨,根据题意可得80,12090.x x ⎧⎨-⎩≤≤解得3080x ≤≤. 总运费()201214151203025200W x x x =⨯+⨯-=+,(3080x ≤≤) ∵W 随x 的增大而增大,故当30x =时,26100W =最小元.∴每天从甲厂调运30吨,从乙厂调运90吨,每天的总运费最省.【总结升华】本题的最值问题是利用解不等式和一次函数的性质,并要注意自变量的实际取值范围. 举一反三:【变式】(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A 、B 两贫困村的计划.现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A 、B 两村的运费如下表:目的地 车型 A 村(元/辆) B 村(元/辆) 大货车 800 900 小货车 400 600 (1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【答案】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x 为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
2020—2021年最新湘教版八年级数学下册《利用一次函数解决实际问题》课时练习及答案.docx
湘教版2017—2018学年八年级数学下学期4.5 一次函数的应用1 利用一次函数解决实际问题要点感知1 函数图象由两个一次函数拼接在一起,我们要按照图象实行分段处理,每段看它适合哪种函数模型.预习练习1-1 如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费__________元.要点感知2 同一坐标系中若有多条直线,我们要对每条直线进行处理,重在找出这些函数的交点坐标和每个图形的起始坐标(交点的求法一般将两个函数的表达式联立在一起,组成方程组,方程组的解便是交点坐标).预习练习2-1 在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)2-2 如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须__________.知识点1 利用一次函数解决分段计费问题1.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A.0.4元B.0.45元C.约0.47元D.0.5元2.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费__________元.3.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?知识点2 利用一次函数解决相交直线问题4. “五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时5.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是( )A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.8.小李和小陆沿同一条路行驶到B地,他们离出发地的距离s和行驶时间t 之间的函数关系的图象如图.已知小李离出发地的距离s和行驶时间t之间的函数关系为s=2t+10.则:(1)小陆离出发地的距离s和行驶时间t之间的函数关系为:_________________;(2)他们相遇的时间t=__________.9.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲多少米?10.电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差__________元.11.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量0<x≤x(度) 140(2)小明家某月用电120度,需交电费__________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.参考答案预习练习1-1 7.4预习练习2-1 D2-2 大于41.A2.723.(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x >20);(2)∵小颖家四月份、五月份分别交水费45.6元、38元,∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.∴45.6=2.8(x1-20)+40,38=2x2.∴x1=22,x2=19.∵22-19=3,∴小颖家五月份比四月份节约用水3吨.4.C5.D6.B7.23或438.(1)s=10t(2)549.根据图形可得:甲的速度是648=8(米/秒),乙的速度是:6488=7(米/秒),∴根据题意得:100-1008×7=12.5(米).当甲跑到终点时,乙落后甲12.5米. 答:当甲跑到终点时,乙落后甲12.5米.10.1011.(1)140<x≤230 x>230(2)54(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c ,将(140,63),(230,108)代入,得14063,230108.a c a c +=+=⎧⎨⎩解得127.a c ==-⎧⎪⎨⎪⎩, 则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=12x-7(140<x ≤230).(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故108-63=45(元),230-140=90(度),45÷90=0.5(元),则第二档电费为0.5元/度;∵小刚家某月用电290度,交电费153元,290-230=60(度),153-108=45(元),45÷60=0.75(元),m=0.75-0.5=0.25. 答:m 的值为0.25.。
一次函数应用题含答案
一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。
人教版 八年级数学下册 第19章 专题练习:《一次函数图像综合:实际应用(行程、收费等)》(二)
人教版八年级数学下册第19章专题:《一次函数图像综合:实际应用(行程、收费等)》(二)1.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=;b=;m=.(2)求线段BC所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.2.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,根据图象所提供的信息分析,解决下列问题:(1)甲队的工作速度;(2)分别求出乙队在0≤x≤2和2≤x≤6时段,y与x的函数解析式,并求出甲乙两队所挖河渠长度相等时x的值;(3)当两队所挖的河渠长度之差为5m时x的值.3.疫情过后地摊经济迅速兴起,小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?4.甲、乙两车分别从A,B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(小时),y与x之间的函数图象如图所示.(1)图中,m=,n=;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)在甲车返回到A地的过程中,当x为何值时,甲、乙两车相距190千米?5.如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;货车的速度是千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间x之间的函数表达式;(3)试求客车与货两车何时相距40千米?6.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是(填①或②).(2)在图①中当x≥1时,求y与x的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.7.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人距离景点A的路程(米)关于时间t(分)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙距离景点C的路程不超过300米,则乙从景点B步行到景点C的速度至少为多少?8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.如图,l A、l B分别表示A步行与B骑车在同一公路上同时出发,距甲地的路程S(千米)与B出发的时间t(小时)的关系.已知B骑车一段路后,自行车发生故障,进行修理.(1)B出发时与A相距千米,B出发后小时与A相遇;(2)求出A距甲地的路程S A(千米)与时间t(小时)的关系式,并求出B修好车后距甲地的路程S B(千米)与时间t(小时)的关系式.(写出计算过程)(3)请通过计算说明:若B的自行车不发生故障,保持出发时的速度前进,在途中何时与A相遇?10.某食品工厂将一种食品的加工任务平均分给甲、乙两个生产组共同完成.甲、乙两组同时以相同的效率开始工作,中途乙组因升级设备,停工了一段时间.乙组设备升级完毕后,工作效率有所提升,在完成本组任务后,还帮助甲组加工了60千克,最后两组同时停工,完成了此次加工任务.两组各自加工的食品量y(千克)与甲组工作时间x(小时)的关系如图所示.(1)甲组每小时加工食品千克,乙组升级设备停工了小时;(2)设备升级完毕后,乙组每小时可以加工食品多少千克?(3)求a、b的值.参考答案1.解:(1)由图可得,a=1500÷150=10,b=10+5=15,m=(3000﹣1500)÷(22.5﹣15)=1500÷7.5=200,故答案为:10,15,200;(2)设线段BC所在的直线的解析式为y=kx+m,∵点B(15,1500),点C(22.5,3000)在直线y=kx+m上,∴,得即线段BC所在的直线的解析式为y=200x﹣1500;(3)∵小军的速度是120米/分,∴线段OD所在直线的解析式为y=120x,令120x=200x﹣1500,解得,x=18.75∴小军第二次与爸爸相遇时距图书馆的距离是3000﹣120×18.75=750(米),答:小军第二次与爸爸相遇时距图书馆的距离是750米.2.解:(1)甲队的工作速度为:60÷6=10(米/小时);(2)当0≤x≤2时,设y与x的函数解析式为y=kx,可得2k=30,解得k=15,即y=15x;当2≤x≤6时,设y与x的函数解析式为y=nx+m,可得,解得,即y=5x+20,∴;10x=5x+20,解得x=4,即甲乙两队所挖河渠长度相等时x的值为4;(3)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.3.解:(1)设降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=kx+b,∵AB段过点(40,160),(80,260),∴,解得,,即降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=2.5x+60(x>40);(2)设当销售量为a千克时,小李销售此种水果的利润为150元,2.5a+60﹣2a=150,解得,a=180,答:当销售量为180千克时,小李销售此种水果的利润为150元.4.解:(1)m=300÷(180÷1.5)=2.5,n=300÷[(300﹣180)÷1.5]=3.75,故答案为:2.5;3.75;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)乙车的速度为:(300﹣180)÷1.5=80(千米/时),甲车返回时的速度为:300÷(5.5﹣2.5)=100(千米/时),根据题意得:80x﹣100(x﹣2.5)=190,解得x=3.答:当x=3时,甲、乙两车相距190千米.5.解:(1)由函数图象可得,A,B两地相距:480+120=600(km),货车的速度是:120÷3=40(km/h).故答案为:600;40;(2)y=40(x﹣3)=40x﹣120(x>3);(3)分两种情况:①相遇前:80x+40x=600﹣40解之得x=…(8分)②相遇后:80x+40x=600+40解之得x=综上所述:当行驶时间为小时或小时,两车相遇40千米.6.解:(1)图中表示会员卡支付的收费方式是②.故答案为:②(2)当x≥1时,设手机支付金额y(元)与骑行时间x(时)的函数关系式为y=kx+b (k≠0),将(1,0),(1.5,2)代入y=kx+b,得:,解得:,∴当x≥1时,手机支付金额y(元)与骑行时间x(时)的函数关系式为y=4x﹣4.(3)设会员卡支付对应的函数关系式为y=ax,将(1.5,3)代入y=ax,得:3=1.5a,解得:a=2,∴会员卡支付对应的函数关系式为y=2x.令2x=4x﹣4,解得:x=2.由图象可知,当0<x<2时,陈老师选择手机支付比较合算;当x=2时,陈老师选择两种支付都一样;当x>2时,陈老师选择会员卡支付比较合算.7.解:(1)设S甲=kt,将(90,5400)代入得:5400=90k,解得:k=60,∴S甲=60t;当0≤t≤30,设S乙=at+b,将(20,0),(30,3000)代入得出:,解得:,∴当20≤t≤30,S乙=300t﹣6000.当S甲=S乙,∴60t=300t﹣6000,解得:t=25,∴乙出发后25分钟与甲第一次相遇.(2)由题意可得出;当甲到达C地,乙距离C地300米时,乙需要步行的距离为:5400﹣3000﹣300=2100(米),乙所用的时间为:90﹣60=30(分钟),故乙从景点B步行到景点C的速度至少为:=70(米/分),答:乙从景点B步行到景点C的速度至少为70米/分.8.解:(1)由图象可得,甲店团体票是200元,个人票为(元);乙店人数小于或等于10人时,个人票为(元),乙店人数大于10人而又不超过20人时,价格为600元.∴y甲=25x+200,;(2)当0≤x≤10时,令25x+200=60x,得x=,当10≤x≤20时,令25x+200=600,得x=16,答:当人数不超过5人时,小王公司应该选择在乙店吃小龙虾更省钱;当人数超过5人小于16人时,小王公司应该选择在甲店吃小龙虾更省钱;当人数为16人时到两个店的总费用相同;当人数超过16人时,小王公司应该选择在乙店吃小龙虾更省钱.9.解:(1)由图形可得B出发时与A相距10千米B出发后3小时与A相遇;故答案为:10,3;(2)设S A的解析式为;S A=k2t+b,由题意得:,解得:,则S A的解析式为;S A=t+10,设S B的解析式为S B=mt+n,由题意得:解得:,∴S B的解析式为S B=10t﹣7.5;(3)如图,设B不发生故障时的解析式为:y=k2t,根据题意得:7.5=0.5k2,解得:k2=15,则解析式为y=15t,由,解得:,∴当t=时,与A相遇10.解:(1)由图象可得,甲组每小时加工食品:210÷7=30(千克);乙组升级设备停工了:4﹣2=2(小时),故答案为:30;2;(2)(210﹣30×2)÷(7﹣4)=50(千克/时),答:设备升级完毕后,乙组每小时可以加工食品50千克;(3)根据题意得,50(b﹣4)=30(b﹣2)+60×2,解得b=13,∴a=30×2+50×(13﹣4)=510.。
2020-2021学年人教版八年级数学下册 第19章 《一次函数》实际应用 解答题综合练习(三)
人教版八年级数学下册第19章《一次函数》实际应用解答题综合练习(三)1.甲、乙两人从同一点出发,沿着跑道训练400米速度跑,甲比乙先出发,并且匀速跑完全程,乙出发一段时间后速度提高为原来的3倍.设甲跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发s,乙提速前的速度是每秒米,m=,n =;(2)当x为何值时,乙追上了甲?(3)在乙提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过20米时,请你直接写出x的取值范围.2.某校的甲、乙两位老师住同一个小区,该小区与学校相距3000米.甲从小区步行去学校,出发10分钟后乙才出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点,立即步行走回学校,结果甲、乙两位老师同时到了学校.设甲步行的时间为x(分),图中线段OA和折线B﹣C﹣A分别表示甲、乙与小区的距离y(米)与甲的步行时间x (分)的函数关系的图象,根据图象解答下列问题:(1)乙出发时甲离开小区的的路程为米;(2)求乙骑公共自行车和乙步行的速度分别为每分钟多少米?(3)当10≤x≤25时,求乙与小区的距离y与x的函数关系式;(4)直接写出乙与小区相距3150米时,乙用时分钟.3.为落实“精准扶贫”精神,市农科院专家指导贫困户李大爷种植优质百香果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.(1)观察图示,直接写出日销售量的最大值为.(2)根据图示,求李大爷家百香果的日销售量y与上市时间x的函数解析式,并求出第15天的日销售量.4.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),按照方案二所需费用为y2(元),其函数图象如图所示.(1)求方案一所需费用y1与x之间的函数关系式;(2)中学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.5.某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额y(元)与销售量x(千克)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前苹果的销售单价是元/千克;(2)求降价后销售金额y(元)与销售量x(千克)之间的函数解析式,并写出自变量的取值范围;(3)该水果店这次销售苹果盈利了多少元?6.某班为了丰富学生的课外活动,计划购买一批“名著经典”,河南省某市A、B两家书店分别推出了自己的优惠方案:A书店:每套“名著经典”标价120元,若购买超过20套,超过部分按每套标价的八折出售;B书店:每套“名著经典”标价120元,若购买超过15套,超过部分按每套标价的九折出售,然后每套再优惠10元.若用字母x表示购买“名著经典”的数量,字母y表示购买的价格,其函数图象如图所示.(1)分别写出选择购买A、B书店“名著经典”的总价y与数量x之间的函数关系式;(2)请求出图中点M的坐标,并简要说明点M表示的实际意义;(3)根据图象直接写出选择哪家书店购买“名著经典”更合算?7.甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.(1)A,B两城相距千米,乙车比甲车早到小时;(2)甲车出发多长时间与乙车相遇?(3)若两车相距不超过30千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?8.用充电器给某手机充电时,其屏幕的起始画面如图①.经测试,在用快速充电器和普通充电器对该手机充电时,其电量y(单位:%)与充电时间x(单位:h)的函数图象分别为图②中的线段AB、AC.根据以上信息,回答下列问题:(1)在目前电量20%的情况下,用充电器给该手机充满电时,快速充电器比普通充电器少用小时.(2)求线段AB、AC对应的函数表达式;(3)已知该手机正常使用时耗电量为每小时10%,在用快速充电器将其充满电后,正常使用ah,接着再用普通充电器将其充满电,其“充电﹣耗电﹣充电”的时间恰好是6h,求a的值.9.小明骑自行车保持匀速从甲地到乙地,到达乙地后,休息了一段时间,然后以相同的速度原路返回,停在甲地.设小明出发x(min)后,到达距离甲地y(m)的地方,图中的折线表示的是y与x之间的函数关系.(1)甲、乙两地的距离为,a=;(2)求小明从乙地返回甲地过程中,y与x之间的函数关系式;(3)在小明从甲地出发的同时,小红从乙地步行至甲地,保持100m/min的速度不变,到甲地停止.小明从甲地出发多长时间,与小红相距200米?10.已知小明家与学校在一条笔直的公路旁,学校离小明家2200m.一天,小明从家出发去上学,匀速走了400m时看到路旁有一辆共享单车,此时用了5min、小明用1min开锁后骑行6min到达学校,给出的图象反映了这个过程中小明离家的距离ym与离开家的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开小明家的时间/min2 4 5 6离小明家的距离/m160400(Ⅱ)填空:①小明骑车的速度为m/min;②当小明离家的距离为1900m时,他离开家的时间为min;(Ⅲ)当0≤x≤12时,直接写出y关于x的函数解析式.11.敦煌到格尔木铁路开通后,l1与l2分别是从敦煌北开往格尔木的动车和从格尔木站开往敦煌北的高铁到敦煌北的距离与行驶时间的图象,两车同时出发,设动车离敦煌北的距离为y1(千米),高铁离敦煌北的距离为y2(千米),行驶时间为t(小时),y1和y2与t的函数关系如图所示:(1)高铁的速度为km/h;(2)动车的速度为km/h;(3)动车出发多少小时与高铁相遇?(4)两车出发经过多长时间相距50千米?12.已知A,B两地相距200km,甲、乙两辆货车装满货物分别从A,B两地相向而行,图中l1,l2分别表示甲、乙两辆货车离A地的距离s(km)与行驶时间t(h)之间的函数关系.请你根据以上信息,解答下列问题:(1)分别求出直线l1,l2所对应的函数关系式;(2)何时甲、乙货车行驶的路程之和超过220km?13.某校学生食堂共有座位3600个,某天午餐时,食堂中学生人数y(人)与时间x(分钟)变化的函数关系图象如图中的折线OAB.(1)试分别求出当0≤x≤20与20≤x≤38时,y与x的函数关系式;(2)已知该校学生数有6000人,考虑到安全因素,学校决定对剩余2400名同学延时用餐,即等食堂空闲座位不少于2400个时,再通知剩余2400名同学用餐.请结合图象分析,这2400名学生至少要延时多少分钟?14.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为km/h;乙车速度为km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km?15.如图1,小明与妈妈购物结束后,同时从超市(点A)出发,沿AB步行回家(点B),小明先把部分物品送回家,然后立即沿原路返回,帮妈妈拿余下的物品,已知两人的速度大小均保持不变,设步行x(min)时两人之间的距离为y(m),从出发到再次相遇,y与x的函数关系如图2所示,根据图象,解决下列问题.(1)图2中点P的实际意义为;(2)小明与妈妈的速度分别为多少?(3)当x为何值时,两人相距100m?参考答案1.解:(1)由图象可得,乙比甲晚出发10s,乙提速前的速度是每秒40÷(30﹣10)=2(米),m=30+[(400﹣40)÷(2×3)]=90,n=400÷(360÷90)=100,故答案为:10,2,90,100;(2)由题意可得,甲的速度为360÷90=4(m/s),4x=40+6(x﹣30),解得x=70,即当x为70s时,乙追上了甲;(3)由题意可得,|4x﹣[40+6(x﹣30)]|=20,解得x=60或x=80,即60≤x≤80时,甲、乙之间的距离不超过20米;当4x=400﹣20时,解得x=95,即95≤x≤100时,甲、乙之间的距离不超过20米;由上可得,当甲、乙之间的距离不超过20米时,x的取值范围是60≤x≤80或95≤x≤100.2.解:(1)由题意,得甲步行的速度为:3000÷30=100(米/分钟),因为甲从小区步行去学校,出发10分钟后乙才出发,所以出发时甲离开小区的的路程为:100×10=1000(米),故答案为:1000;(2)根据题意,得乙骑公共自行车的速度为:100×18÷(18﹣10)=225(米/分钟),225×(25﹣10)=3375(米),所以点C的坐标为(25,3375),故乙步行的速度为:(3375﹣3000)÷(30﹣25)=75(米/分钟);(3)当10≤x≤25时,设乙与小区的距离y与x的函数关系式为y=kx+b,则,解得,所以当10≤x≤25时,乙与小区的距离y与x的函数关系式为y=225x﹣2250;(4)乙与小区相距3150米时,乙用时为:3150÷225=14(分钟)或15+(3375﹣3150)÷75=18(分钟),故答案为:14或18.3.解:(1)由图象可得,日销售量的最大值为960千克,故答案为:960千克;(2)当0≤x≤12时,设y与x的函数关系式为y=kx,12k=960,得k=80,即当0≤x≤12时,y与x的函数关系式为y=80x;当12<x≤20时,设y与x的函数关系式为y=ax+b,,得,即当12<x≤20时,y与x的函数关系式为y=﹣120x+2400,由上可得,y与x的函数关系式为y=;当x=15时,y=﹣120×15+2400=600,答:李大爷家百香果的日销售量y与上市时间x的函数解析式为y=,第15天的日销售量是600千克.4.解:(1)设y1=k1x+b,根据题意,得:,解得,∴方案一所需费用y1与x之间的函数关系式为y1=15x+30;(2)设y2与x之间的函数关系式为y2=k2x,∵打折前的每次健身费用为15÷0.6=25(元),∴k2=25×0.8=20;∴y2=k2x,当健身8次时,选择方案一所需费用:y1=15×8+30=150(元),选择方案二所需费用:y2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.5.解:(1)由图可得,降价前苹果的销售单价是:640÷40=16(元/千克),故答案为:16;(2)降价后销售的苹果千克数是:(760﹣640)÷(16﹣4)=10(千克).∴销售的苹果总数为40+10=50(千克).设降价后销售金额y(元)与销售量x(千克)之间的函数解析式是y=kx+b,∵该函数过点(40,640),(50,760),∴,解得:.即降价后销售金额y(元)与销售量x(千克)之间的函数解析式是y=12x+160(40<x≤50);(3)该水果店这次销售苹果盈利了:760﹣8×50=360(元).答:该水果店这次销售苹果盈利了360元.6.解:(1)由题意可知,当0≤x≤20,当y A=120x;当x>20时,y A=120×20+(x﹣20)×120×0.8=96x+480;∴y A与数量x之间的函数关系式为y A=,当0≤x≤15时,y B=120x,当x>15时,y B=120×15+(x﹣15)×(120×0.9﹣10)=98x+330,∴y B与数量x之间的函数关系式为y B=;(2)由96x+480=98x+330,得x=75,此时y=96×75+480=7680,∴点M的坐标为(75,7680),点M表示的实际意义为当买75套“名著经典”,在A、B两家书店所付的钱数相同,均为7680元;(3)观察图象可知:当0≤x≤15或x=75时,在A、B两家书店所付的钱数相同;当15<x<75时,选择B书店更合算;当x>75时,选择A书店更合算.7.解:(1)由图象可得,A,B两城相距300千米,乙车比甲车早到5﹣4=1(小时),故答案为:300,1;(2)由图象可得,甲车的速度为300÷5=60(千米/时),乙车的速度为300÷(4﹣1)=100(千米/时),设甲车出发a小时与乙车相遇,60a=100(a﹣1),解得a=2.5,即甲车出发2.5小时与乙车相遇;(3)设甲车出发b小时时,两车相距30千米,由题意可得,|60b﹣100(b﹣1)|=30,解得b=或b=,=(小时),即两车都在行驶过程中可以通过无线电通话的时间有小时.8.解:(1)由图象可知快速充电器给该手机充满电需2小时,普通充电器给该手机充满电需6小时,∴用充电器给该手机充满电时,快速充电器比普通充电器少用4小时;故答案为:4;(2)设线段AB的函数表达式为y1=k1x+b1,将(0,20),(2,100)代入y1=k1x+b1,,∴,∴线段AB的函数表达式为:y=40x+20;设线段AC的函数表达式为y2=k2x+b2,将(0,20),(6,100)代入y2=k2x+b2,∴,∴,∴线段AC的函数表达式为:y2=+20;(3)根据题意,得×(6﹣2﹣a)=10a,解得a=.答:a的值为.9.解:(1)由图象可知,甲、乙两地的距离为2000m;a=24﹣10=14;故答案为:2000m;14;(2)设y=kx+b,把(14,2000)与(24,0)代入得:,解得:k=﹣200,b=4800,则y=﹣200x+4800;(3)小明骑自行车的速度为:2000÷10=200(m/min),根据题意,得(200+100)x=2000﹣200或(200+100)x=2000+200或200(x﹣4)=4000﹣200,解得x=6或x=或x=23,答:小明从甲地出发6分钟或分钟或23分钟,与小红相距200米.10.解:(Ⅰ)当x=4时,y=400÷5×4=320;当x=6时,y=400;故答案为:320;400;(Ⅱ)①小明骑车的速度为:(2200﹣400)÷(12﹣6)=300(m/min);②当小明离家的距离为1900m时,他离开家的时间为:6+(1900﹣400)÷300=11(min),故答案为:①300;②11;(Ⅲ)当0≤x≤5时,y=80x;当5<x≤6时,y=400;当6<x≤12时,设y关于x的函数解析式为y=kx+b,根据题意,得:,解得,∴y=300x﹣1400.11.解:(1)由图象可得,高铁的速度为300÷1.5=200(km/h),故答案为:200;(2)由图象可得,动车的速度为300÷2=150(km/h),故答案为:150;(3)设动车出发a小时与高铁相遇,200a+150a=300,解得a=,即动车出发小时与高铁相遇;(4)设两车出发经过b小时相距50千米,200b+150b=300﹣50或200b+150b=300+50,解得b=或b=1,即两车出发经过小时或1小时相距50千米.12.解:(1)设l1对应的函数关系式为s1=k1t,∵l1过点(6,200),∴200=6k,得k1=,即l1对应的函数关系式为s1=;设l2对应的函数关系式为s2=k2t+200,∵l2过点(5,0),∴0=5k2+200,得k2=﹣40,即l2所对应的函数关系式为s2=﹣40t+200;(2)由题意可得,,解得t>3,答:3小时后,甲、乙货车行驶的路程之和超过220km.13.解:(1)当0≤x≤20时,设y与x的函数关系式为y=kx,20k=3600,得k=180,即当0≤x≤20时,y与x的函数关系式为y=180x,当20≤x≤38时,设y与x的函数关系式为y=ax+b,,得,即当20≤x≤38时,y与x的函数关系式为y=﹣200x+7600;(2)∵空闲座位不少于2400个时,∴有人坐的座位不大于1200个,∵y=﹣200x+7600,∴当y=1200时,﹣200x+7600=1200,解得,x=32,答:至少要延时32分钟.14.解:(1)由图象可知,甲车速度为:(100﹣60)÷(1.5﹣0.5)=40÷1=40(km/h),乙车的速度为:60÷0.5﹣40=120﹣40=80(km/h),故答案为:40,80;(2)①由题意可得,S=80×0.5+40x﹣80(x﹣1.5)=﹣40x+160,当80×0.5+40x=80(x﹣1.5)时,解得x=4,即S与x的函数表达式是S=﹣40x+160(1.5≤x≤4),补全的函数图象如右图所示;②当0.5≤x≤1.5时,60+40(x﹣0.5)=80,解得x=1,当1.5≤x≤4时,40x+80×0.5﹣80(x﹣1.5)=80,解得x=2,即从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离在1小时或2小时时为80km.15.解:(1)由题意可得,图2中点P的实际意义为小明从超市出发步行8min时,正好将部分物品送到家,故答案为:小明从超市出发步行8min时,正好将部分物品送到家;(2)由图可得,小明的速度为:800÷8=100(m/min),妈妈的速度为:[800﹣(10﹣8)×100]÷10=60(m/min),即小明与妈妈的速度分别为100m/min、60m/min;(3)当0<x≤8时,100x﹣60x=100,解得x=2.5,当8<x≤10时,100(x﹣8)+60x=800﹣100,解得x=,当x>10时,小明再次到家以前,100(x﹣10)﹣60(x﹣10)=100,解得x=12.5,∵小明再次回到家用时为[800﹣60×10]÷100=2(min),∵10+2=12<12.5,∴x=12.5时不合实际,舍去;由上可得,当x为2.5或时,两人相距100m.。
八年级数学下册一次函数的实际应用选择题专项练习 含答案
八年级数学下册一次函数的实际应用选择题专项练习1.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发后步行的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有()A.1个B.2个C.3个D.4个2.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm3.2021年环青龙湖半程马拉松的赛程是21.0975公里,甲乙两选手的行程y(千米)随时间x(时)变化的图象(全程)如图所示.有下列说法:①第1小时两人都跑了10千米;②起跑1小时过后,甲在乙的后面;③在起跑后的0.5至1.5小时,甲比乙跑得更慢;④乙比甲先到达终点.其中正确的说法有()A.1个B.2个C.3个D.4个4.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距km.其中正确的结论是()A.①③B.①④C.②③D.②③④5.在我国川西高原某山脉间有一河流,当河流中的水位上升到一定高度时因河堤承压有溃堤的危险.于是水利工程师在此河段的某处河堤上修了一个排水的预警水库联通另一支流.当河流的水位超过警戒位时就有河水流入预警的水库中,当水库有一定量的积水后,就会自动打开水库的排水系统流入另一支流.当河流的水位低于警戒位时水库的排水系统的排水速度则变慢.假设预警水库的积水时间为x分钟,水库中积水量为y吨,图中的折线表示某天y与x的函数关系,下列说法中:①这天预警水库排水时间持续了80分钟;②河流的水位超过警戒位时预警水库的排水速度比进水速度少25吨/分;③预警水库最高积水量为1500吨;④河流的水位低于警戒位时预警水库的排水速度为30吨/分.其中正确的信息判断是()A.①④B.①③C.②③D.②④6.杆秤是我国传统的计重工具.如图,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的质量.称重时,若秤砣到秤纽的水平距离为x(单位:cm)时,秤钩所挂物重为y (单位:kg),则y是x的一次函数.下表记录了四次称重的数据,其中只有一组数据记录错误,它是()组数 1 2 3 4x/cm 1 2 4 7y/kg0.80 1.05 1.65 2.30A.第1组B.第2组C.第3组D.第4组7.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度为()A.10米/秒B.11米/秒C.12米/秒D.13米/秒8.在一条公路上每隔100千米有一个仓库(如图),共有五个仓库.1号仓库存有10吨货物,2号仓库存有20吨货物,5号仓库存有40吨货物,其余两个仓库是空的.现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.5元的运费,那么最少要花()元运费才行.A.5000 B.5500 C.6000 D.65009.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为40米/分;②乙用9分钟追上甲;③整个过程中,有4个时刻甲乙两人的距离为90米;④乙到达终点时,甲离终点还有280米.其中正确的结论有()A.①③B.①②④C.①③④D.①②③④10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1 B.2 C.3 D.411.在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C站,乙车由B地驶往A地,两车同时出发,匀速行驶甲、乙两车离C站的距离y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论:①A、B两地相距360千米;②甲车速度比乙车速度快15千米/时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇.其中正确的结论有()A.1 B.2个C.3个D.4个12.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地13.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地.设甲、乙两车距A地的路程为y千米,甲车行驶的时间为x小时,y与x之间的关系如图所示,对于以下说法:①甲车从A地到达B地的行驶时间为2小时;②甲车返回时,y与x之间的关系式是y=﹣100x+550;③甲车返回时用了3个小时;④乙车到达A地时,甲车距A地的路程是170千米.其中正确的结论是()A.①②B.②③C.③④D.②③④14.甲、乙两船沿直线航道AC匀速航行.甲船从起点A出发,同时乙船从航道AC中途的点B出发,向终点C航行.设t小时后甲、乙两船与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图.下列说法:①乙船的速度是40千米/时;②甲船航行1小时到达B处;③甲、乙两船航行0.6小时相遇;④甲、乙两船的距离不小于10千米的时间段是0≤t≤2.5.其中正确的说法的是()A.①②B.①②③C.①②④D.①②③④15.甲、乙两辆摩托车同时从相距40km的A、B两地出发,相向而行、图中l1,l2、分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.6小时甲摩托车行驶到A、B两地的中点C.经过小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离B地km16.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论:①m=1;②a=40;③甲车从A地到B地共用了7小时;④当两车相距50km时,乙车用时为h.其中正确结论的个数是().A.4 B.3 C.2 D.117.一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则下列说法中错误的是()A.每分钟进水5LB.每分钟出水3.75LC.容器中水为25L的时间是8min或14minD.第2或min时容器内的水恰为10升18.有甲、乙两车从A地出发去B地,甲比乙车早出发,如图中m1、m2分别表示两车离开A地的距离y(km)与行驶时间t(h)之间的函数关系.现有以下四个结论:①m1表示甲车,m2表示乙车;②乙车出发4小时后追上甲车;③两车相距100km的时间只有甲车出发11小时的时候;④若两地相距260km,则乙车先到达B地,其中正确的是()A.①②③④B.②③④C.①②③D.①②④19.有一个进水管和一个出水管的容器,从某时刻开始5分钟内只进水不出水,在随后的20分钟内既进水又出水,在第25分钟开始只出水不进水,每分钟的进水量和出水量是两个常数,容器内水量(L)与时间(min)之间的函数关系如图所示,求在第33分钟时,容器内剩余水量为()A.8 B.10 C.12 D.1420.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,判断下列说法中错误的是()A.小明从家步行到学校共用了20分钟B.小明从家步行到学校的平均速度是90米/分C.当t<8时,s与t的函数解析式是s=120tD.小明从家出发去学校步行15分钟时,到学校还需步行360米参考答案1.解:由图可得,甲步行的速度为:180÷3=60米/分,故①正确,乙走完全程用的时间为:1800÷(12×60÷9)=22.5(分钟),故②正确,乙追上甲用的时间为:12﹣3=9(分钟),故③正确,乙到达终点时,甲离终点距离是:1800﹣(3+22.5)×60=270米,故④正确,故选:D.2.解:设弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=kx+b,∵该函数经过点(6,15),(20,22),∴,解得,即弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=0.5x+12,当x=0时,y=12,即弹簧不挂物体时的长度为12cm,故选:A.3.解:由图象可得,第1小时两人相遇,都跑了10千米,故①正确;由纵坐标看出,起跑后1小时后,甲在乙的后面,故②正确;由纵坐标看出,起跑后0.5小时,甲在乙的前面,起跑后1小时,乙追上甲,起跑后1.5小时,乙在甲的前面,所以在起跑后的0.5至1.5小时,甲比乙跑得更慢,故③正确;④起跑后2小时,乙到达终点,2小时后,甲才到达终点,所以乙比甲先到达终点,故④正确;故选:D.4.解:由图可得,乙车出发1.5小时后甲已经出发一段时间,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是40÷3=(km/h),故③正确;当乙车出发2小时时,两车相距:[20+40×(2﹣1.5)]﹣×2=(km),故④正确;故选:D.5.解:由图象得:0~10分,水库开始积水,10~30分,水库有一定量的积水,水库的排水系统打开,30~80分时,水库停止进水,只排水,这天预警水库排水时间持续了80﹣10=70分钟,故①错误;=25(吨/分),也就是水位超过警戒位时预警水库的排水速度比进水速度少25吨/分,②正确;从图象看出预警水库积水量为1500吨时停止进水,并不能反映出预警水库的最高积水量,③错误;从图象看出河流的水位低于警戒位时预警水库的排水速度为1500÷(80﹣30)=30(吨/分),④正确.故选:D.6.解:设y=kx+b,把x=1,y=0.80,x=2,y=1.05代入可得:,解得,∴y=0.25x+0.55,当x=4时,y=0.25×4+0.55=1.55,∴第3组数据不在这条直线上,当x=7时,y=0.25×7+0.55=2.30,∴第4组数据在这条直线上,故选:C.7.解:设甲车的速度为v1m/s,乙车的速度为v2m/s,由图象可知:开始时,乙车与甲车相距300米,乙车用100秒追上了甲车,∴100v1+300=100v2,装完货物后,甲乙两车行驶了20秒后,两车相距500米,∴20v1+20v2=500,∴,解得:,故选:B.8.解:设把所有的货物集中存放在x号仓库里,需要的总运费为w元,当x≤2时,w=10×(x﹣1)×100×0.5+20×(2﹣x)×100×0.5+40×(5﹣x)×100×0.5=﹣2500x+11500,∵﹣2500<0,∴w随x的增大而减小,∴当x=2时,w取得最小值,最小值=﹣2500×2+11500=6500;当2<x≤5时,w=10×(x﹣1)×100×0.5+20×(x﹣2)×100×0.5+40×(5﹣x)×100×0.5=﹣500x+7500,∵﹣500<0,∴w随x的增大而减小,∴当x=5时,w取得最小值,最小值=﹣500×5+7500=5000.∵6500>5000,∴最少要花5000元运费才行.故选:A.9.解:由题意可得:甲步行的速度为=40(米/分);故①结论正确;由图可得,甲出发9分分钟时,乙追上甲,故乙用6分钟追上甲,故②结论错误;由函数图象可得:当y=90时,有4个时刻甲乙两人的距离为90米,故③结论正确;设乙的速度为x米/分,由题意可得:9×40=(9﹣3)x,解得x=60,∴乙的速度为60米/分;∴乙走完全程的时间==20(分),乙到达终点时,甲离终点距离是:1200﹣(3+20)×40=280(米),故④结论错误;故正确的结论有①③④共3个.故选:C.10.解:由图可得,甲乙两地的距离为150×3=450(千米),故①正确;∵两车相遇时轿车比货车多行驶了90千米,两车相遇时正好是3小时,∴轿车每小时比货车多行驶30千米,∴轿车的速度为:[450÷3﹣30]÷2+30=90(千米/小时),故②错误;货车的速度为:[450÷3﹣30]÷2=60(千米/小时),故③错误;轿车到达乙地用的时间为:450÷90=5(小时),此时两车间的距离为:60×5=300(千米),故④正确;由上可得,正确的是①④,故选:B.11.解:①A、B两地相距=360+80=440(千米),故①错误,②甲车的平均速度==60(千米/小时),乙车的平均速度==40(千米/小时),∴甲车速度比乙车速度快60﹣40=20(千米/小时),故②错误•,③440÷40=11(小时),∴乙车行驶11小时后到达A地,故③正确,④设t小时相遇,则有:(60+40)t=440,∴t=4.4(小时),∴两车行驶4.4小时后相遇,故④正确,故选:B.12.解:由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/h),故选项B正确;王浩月的速度为:24÷1﹣8=16(km/h),王浩月从开始到到达目的地用的时间为:24÷16=1.5(h),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3﹣1.5=1.5h到目的地,故选项D正确;故选:C.13.解:①300÷(180÷1.5)=2.5(小时),所以甲车从A地到达B地的行驶时间是2.5小时,故①错误;②设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴y与x之间的函数关系式是y=﹣100x+550,故②正确;③5.5﹣2.5=3,∴甲车返回时用了3个小时,故③正确;④乙车的速度为(300﹣180)÷1.5=80(千米/小时),300÷80=3.75,x=3.75时,y=﹣100×3.75+550=175千米,所以乙车到达A地时甲车距A地的路程是175千米,故④错误,所以②③正确,故选:B.14.解:乙船从B到C共用时3小时,走过路程为120千米,因此乙船的速度是40千米/时,①正确;乙船经过0.6小时走过0.6×40=24千米,甲船0.6小时走过60﹣24=36千米,所以甲船的速度是36÷0.6=60千米/时,开始甲船距B点60千米,因此经过1小时到达B点,②正确;航行0.6小时后,甲乙距B点都为24千米,但是乙船在B点前,甲船在B点后,二者相距48千米,因此③错误;开始后,甲乙两船之间的距离越来越小,甲船经过1小时到达B点,此时乙离B地40千米,航行2.5小时后,甲离B地:60×1.5=90千米,乙离B地:40×2.5=100千米,此时两船相距10千米,当2.5<t≤3时,甲乙的距离小于10,因此④正确;综上所述,正确的说法有①②④.故选:C.15.解:由图象可得,乙摩托车的速度较快,故选项A正确;经过0.6小时甲摩托车行驶到A、B两地的中点,故选项B正确;甲车的速度为40÷1.2=(km/h),乙车的速度为:40÷1=40(km/h),故甲乙两车相遇的时间为:=(小时),故选项C错误;当乙摩托车到达A地时,甲摩托车距离B地×(1.2﹣1)=km,故选项D正确;故选:C.16.解:由题意,得m=1.5﹣0.5=1,故①结论正确;120÷(3.5﹣0.5)=40(km/h),则a=40,故②结论正确;设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得:,解得,当y=260时,260=40x﹣20,解得:x=7,∴甲车从A地到B地共用了7小时,故③结论正确;当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得:,解得,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=,当40x﹣20+50=80x﹣160时,解得:x=,∴,,所以乙车行驶小时或小时,两车恰好相距50km,故④结论错误.∴正确结论的个数是3个.故选:B.17.解:A.每分进水的速度为:20÷4=5(L/min);B.出水管的出水速度是每分钟5﹣==3.75(L/min);C.设当4≤x≤12时,求y与x的函数解析式为y=kx+b,根据题意得,解得,∴y=x+15(4≤x≤12);设tmin时该容器内的水恰好为25升,根据题意得,t+15=25或30﹣3.75×(t﹣12)=25,解得t=8或.即容器中水为25L的时间是8min或min;D.设m分钟时该容器内的水恰好为10升,根据题意得,5m=10或30﹣3.75×(m﹣12)=10,解得m=2或,即第2或min时容器内的水恰为10升.故说法中错误的是C.故选:C.18.解:由题意可得,m1表示甲车,m2表示乙车,故①正确;甲的速度为160÷4=40(km/h),乙车的速度为120÷(4﹣2)=60(km/h),设乙车出发a小时后追上甲车,60a=40(a+2),解得,a=4,即乙车出发4小时后追上甲车,故②正确;当t=2时,甲乙两车相距40×2=80(km),故两车相距100km的时间只有在两车相遇之后,设甲车出发b小时时,两车相距100km,60(b﹣2)﹣40b=100,解得,b=11,即两车相距100km的时间只有甲车出发11小时的时候,而如果甲车出发不到11小时乙就到达B地,则此小题的说法错误,故③错误;260÷40=6.5(小时),260÷60=4(小时),∵6.5>4+2,∴若两地相距260km,则乙车先到达B地,故④正确;故选:D.19.解:当5≤x<25时,设y=kx+b,将(5,30),(15,40)代入得,解得:,故y=x+25,当x=25时,设y=25+25=50,当25≤x<35时,设y=k1x+b1,将(25,50),(35,0)代入,解得:,故y=﹣5x+175,当x=33时,设y=﹣5×33+175=10,故选:B.20.解:由图象可知,小明从家步行到学校共用了20分钟,故A正确;根据图象,小明从家步行到学校共用了20分钟,所以小明的平均速度为1800÷20=90(米/分),故B正确;当1<8时,小明走的路程为960米,速度为960÷8=120(米/分),s与t的函数解析式是s=120t,故C正确;当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∴s=70t+400;当t=15时,s=1450,1800﹣1450=350(米),∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故D错误.故选:D.。
八年级数学一次函数的应用专题练习汇总(含答案)
一次函数的应用专题练习汇总1.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.2.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;②求出预估利润的最大值,并写出此时购进三款手机各多少部3.如图,某工厂D与A,B两地有公路、铁路相连,且A→C→D与B→E→D距离相等,BE=2CD,C→D→E的距离为120千米,A→C→D比C→D→E的距离远10千米.这家工厂从A地购买一批每吨1000元的原料运回工厂,全部制成产品后(加工过程中有材料损耗),以每吨8000元把全部产品运到B地销售.已知公路运输费用为1.5元/吨•千米,铁路运输费用为1.2元/吨•千米,这两次运输共支出公路运费15000元,铁路运输97200元.请回答下列问题:(1)设该工厂从A地购买了x吨原料,运往B地的产品为y吨,根据题意,完成表格的填空:4.现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w 元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费5.为增强公民的节水意识,合理利用水资源,某市自1月1日起对市区民用水价格进行调整,实行阶梯式水价,调整后的收费价格如下表所示:(1)若小亮家1月份的用水量是7m3,直接写出小亮家1月份的电费;(2)若调价后每月支出的水费为y(元),每月的用水量为x(m3),求y与x之间的函数关系式并注明自变量的取值范围;(3)若小亮家2、3月份共用水16m3(3月份用水量2月份),共缴费26元,问小亮家2、3月份的用水量各是多少?6.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?7.某服装店购进10套A服装和20套B服装的费用为2000元,20套A服装和10套B服装的费用为2200元.(1)求每套A服装和B服装的进价;(2)该商店计划一次购进两种款式的服装共100套,其中A款进货量不少于65套,进货费用不超过7500元,计划A每套售价120元,B每套售价90元,设购进A款x套,这100套的销售总利润为y元.①求y与x的函数关系式;②该商店购进A、B各多少套,才能使销售利润最大?(3)若实际进货时,厂家只对A款出厂价上调m(0<m<20)元,若商店保持A、B两种的售价不变,请你根据以上信息及(2)中的条件,直接设计出使这100套服装销售总利润最大的进货方案.8.为了迎接“五•一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价﹣进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么该专卖店要获得最大利润应如何进货?一次函数的应用答案1.分析(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意列出方程组求解;(2)①据题意得,y=﹣50n+16500,②利用不等式求出n的范围,又因为y=﹣50x+16500是减函数,所以n取37,y取最大值;(3)据题意得,y=150(110﹣n)+(100+m)n,即y=(m﹣50)n+16500,分三种情况讨论,①当30<m<50时,y随n的增大而减小,②m=50时,m﹣50=0,y=16500,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,解得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B 型手机n部,则购进A型手机(110﹣n)部,则y=150(110﹣n)+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (n≥36);②∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n 为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)根据题意,得:y=150(110﹣n)+(100+m)n=(m﹣50)n+16500,其中,36≤n≤80,①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机36≤n≤80的整数时,均获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.2.解:(1)60﹣x﹣y;(2)由题意,得900x+1200y+1100(60﹣x﹣y)=61000,整理得y=2x﹣50.(3)①由题意,得P=1200x+1600y+1300(60﹣x﹣y)﹣61000﹣1500,P=1200x+1600y+78000﹣1300x﹣1300y﹣61000﹣1500,P=﹣100x+300y+15500,P=﹣100x+300(2x﹣50)+15500,整理得P=500x+500.②购进C型手机部数为:60﹣x﹣y=110﹣3x.根据题意列不等式组,得,解得29≤x≤34.∴x范围为29≤x≤34,且x为整数.∵P 是x的一次函数,k=500>0,∴P随x的增大而增大.∴当x取最大值34时,P有最大值,最大值为17500元.此时购进A型手机34部,B型手机18部,C型手机8部3.解:(1)根据题意,得,解得CD=10,BE=20.则AC=120,DE=110.(2)根据题意,得,解得:.因此,这批产品全部销售后获得的利润为:300×8000﹣400×1000﹣15000﹣97200=1887800(元).4.解:(1)设大货车用x辆,则小货车用(18﹣x)辆,根据题意得16x+10(18﹣x)=228,解得x=8,∴18﹣x=18﹣8=10.答:大货车用8辆,小货车用10辆;(2)w=720a+800(8﹣a)+500(9﹣a)+650[10﹣(9﹣a)]=70a+11550,∴w=70a+11550(0≤a≤8且为整数);(3)由16a+10(9﹣a)≥120,解得a≥5.又∵0≤a≤8,∴5≤a≤8且为整数.∵w=70a+11550,且70>0,所以w随a的增大而增大,∴当a=5时,w最小,最小值为w=70×5+11550=11900.答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.5.解:(1)小亮家1月份的电费=5×1+(7﹣5)×2=9(元);(2)当0<x≤5时,y=x;当5<x≤8时,y=1×5+2(x ﹣5)=5+2x﹣10=2x﹣5;当x>8时,y=1×5+2×(8﹣5)+4(x﹣8)=5+6+4x﹣32=4x﹣21;∴y=.(2)设2月份用水am3,3月份用水(16﹣a)m3,∵3月份用水高于2月份用水量,∴16﹣a>a,∴a<8,当0<x≤5时,16﹣a>11,根据题意得:a+4(16﹣a)﹣21=26,解得:a=>5,舍去;当5<x≤8时,8≤16﹣a<11,根据题意得:2a﹣5+4(16﹣a)﹣21=26,解得:a=6,∴a=6,16﹣a=10.∴该用户2月份用水6m3,3月份用水10m3购进75双.(2)因为甲种运动鞋不少于65双,所以65≤x≤75,总利润w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,∵当10<a<20时,10﹣a<0,w随x的增大而减少,∴当x=65时,w有最大值,此时运动鞋店应购进甲种运动鞋65双,乙种运动鞋35双.7.解:(1)设每套A服装的进价为a元,B服装的进价为b元,依题意得:,解得:.答:每套A服装的进价为80元,B服装的进价为60元;(2)①∵购进A款服装x套,则购进B款服装(100﹣x)套,∵进货费用不超过7500元,∴80x+60(100﹣x)≤7500,∴x≤75,∵A款进货量不少于65套,∴65≤x≤75,∴y=(120﹣80)x+(90﹣60)(100﹣x)=0x+3000(65≤x≤75,且x为正整数).②∵在y=30x+3000中,k=10>0,∴y随x的增大而增大,∴当x=75时,y取最大值,此时100﹣x=25.故商店购进75套A服装和25套B 服装才能使销售利润最大;(3)由已知得:y=(120﹣80﹣m)x+(90﹣60)(100﹣x)=(10﹣m)x+3000,当m<10时,10﹣m>0,则购进75套A服装和25套B服装销售利润最大;当m=10时,10﹣m=0,则A、B两种服装随意搭配(65≤A种服装≤75),销售利润一样多;当m>10时,10﹣m∠0,则购进商店购进65套A服装和35套B服装才能使销售利润最大.8.解:(1)设购进甲种服装x件,则乙种服装是(200﹣x)件,根据题意得:180x+150(200﹣x)=32400,解得:x=80,200﹣x=200﹣80=120(件),则购进甲、乙两种服装80件、120件;(2)设购进甲种服装y件,则乙种服装是(200﹣y)件,根据题意得:,解得:70≤y≤80,又∵y是正整数,∴共有11种方案;(3)设总利润为W元,W=(140﹣a)y+130(200﹣y)即w=(10﹣a)y+26000.①当0<a<10时,10﹣a>0,W随y增大而增大,∴当y=80时,W有最大值,即此时购进甲种服装80件,乙种服装120件;②当a=10时,利润是26000元不符合题意;③当10<a<20时,10﹣a<0,W随y增大而减小.当y=70时,W有最大值,即此时购进甲种服装70件,乙种服装130件.。
2020—2021年新人教版初中数学八年级下册一次函数实际问题例题+同步练习题及答案精品试卷.docx
第04课一次函数实际问题同步练习【例1】某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【例2】某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.【例3】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y 与x之间的函数关系.根据图象回答以下问题:①甲、乙两地之间的距离为km;②图中点B的实际意义;③求慢车和快车的速度;④求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.【例4】我市某草莓种植农户喜获丰收,共收获草莓2000kg.经市场调查,可采用批发、零售两种销售方式,这两种销售方式每kg草莓的利润如下表:销售方式批发零售利润(元 6 12设按计划全部售出后的总利润为y元,其中批发量为xkg.(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该农户按计划全部售完后获得的最大利润.【例5】一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?【例6】某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费1.8元,超计划部分每吨按2.0元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①当用水量小于等于3000吨时:;②当用水量大于3000吨时:.(2)某月该单位用水3200吨,水费是元;若用水2800吨,水费元.(3)若某月该单位缴纳水费9400元,则该单位用水多少吨?【例7】某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?课堂同步练习一、选择题:1、已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限2、目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是( )A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1003、向一个容器内匀速地注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图像所示.这个容器的形状可能是下图中的()4、“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A.2小时B.2.2小时C.2.25小时D.2.4小时第4题图第5题图5、有一个安装有进出水管的30升容器,水管每单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信息给出下列说法:①每分钟进水5升;②当4≤x≤12时,容器中水量在减少;③若12分钟后只放水,不进水,还要8分钟可以把水放完;④若从一开始进出水管同时打开需要24分钟可以将容器灌满.以下说法中正确的有( )A.1个B.2个C.3个D.4个6、甲、乙两名自行车运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有()A.1个B.2个C.3个D.4个7、笔直的海岸线上依次有A、B、C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,甲、乙两船与B港的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示,下列说法:①A、B港口相距400km;②甲船的速度为100km/h;③B、C港口相距200km;④乙出发4h时两船相距220km.其中正确的个数是()A.4个B.3个C.2个D.l 个第7题图第8题图8、济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A.4小时B.4.4小时C.4.8小时D.5小时9、如图,正方形ABCD的边长为2,动点P从点C出发,在正方形的边上沿着C→B→A的方向运动(点P与A不重合). 设点P的运动路程为x, 则下列图象中,表示△ADP的面积y与x的函数关系的是( )10、如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2B.4+C.6D.4第10题图第11题图第12题图11、小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5 倍;③a=24;④b=480.其中正确的是()A.①②③B.①②④C.①③④ D.①②③④12、如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为()A.(,)B.(3,3)C.(,)D.(,)二、填空题:13、已知(﹣2,y1),(﹣1.5,y2),(1,y3)是直线y=2x+b(b为常数)上的三个点,则y1,y2,y3的大小关系是.(用“>”表示)14、某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.15、一次函数y=3x﹣2的图象与坐标轴围成的三角形的面积是.16、已知一次函数y=kx+b与y=mx+n的图像如图,若0<kx+b<mx+n,则x 取值范围为__________.第16题图第17题图第18题图17、如图,直线y=x+2于x、y轴分别交于点A、B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C移动的距离为.18、如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A 顺时针旋转90°后得到△AO′B′,则直线AB′的函数解析式是.19、如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为_________.第19题图第20题图20、如图,直线l:y=x+2交y轴于点A,以AO为直角边长作等腰Rt△AOB,再过B点作等腰Rt△A1BB1交直线l于点A1,再过B1点再作等腰Rt△A2B1B2交直线l 于点A2,以此类推,继续作等腰Rt△A3B2B3,......,Rt△A n B n﹣1B n,其中点A0A1A2…A n 都在直线l上,点B0B1B2…B n都在x轴上,且∠A1BB1,∠A2B1B2,∠A3B2B3…∠A n﹣1B n B n﹣1都为直角.则点A3的坐标为,点A n的坐标为.三、简答题:21、某空调公司推销员的月收入y(元)与每月的销售量x(件)成一次函数关系,当他售出10件时月收入为800元,当他售出20件时月收入为1300元.(1)求y与x之间的函数关系式.(2)若想获得至少3800元的月收入,则该推销员每月至少要推销多少件空调?22、小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段y1,y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系.(1)试用文字说明:交点P所表示的实际意义.(2)试求出A,B两地之间的距离.23、为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量xm3之间的函数关系.其中线段AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?24、泗阳华润苏果超市准备购进A、B两种品牌的书包共100个,已知两种书包的进价如下表所示,设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为y元.(1)将表格的信息填写完整;(2)求y关于x的函数表达式;(3)如果购进两种书包的总费用不超过4500元且购进B种书包的数量不大于A种书包的3倍,那么超市如何进货才能获利最大?并求出最大利润.25、立一次函数关系解决问题:甲、乙两校为了绿化校园,甲校计划购买A种树苗,A种树苗每棵24元;乙校计划购买B种树苗,B种树苗每棵18元.两校共购买了35棵树苗.若购进B种树苗的数量少于A种树苗的数量,请给出一种两校总费用最少的方案,并求出该方案所需的总费用.26、某超市计划购进一批甲、乙两种玩具,若甲种玩具的进价为每件30元,乙种玩具的进价为每件27元;(1)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受七折优惠;若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系;(2)在(1)的条件下,超市决定在甲、乙两种玩具中选购一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.一次函数实际问题同步测试题一、选择题:1、一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()2、已知一次函数y=kx-k,若y随着x的增大而减小,则该函数的图象经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3、当x=5时一次函数y=2x+k和y=3kx-4的值相同,那么k和y的值分别为()A. 1,11B. -1,9C. 5,11D. 3,34、小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是()A 37.2分钟B 48分钟C 30分钟D 33分钟第4题图第6题图第8题图5、直线y=mx+n(m≠0)经过二、三、四象限,且与x轴交点坐标是(-2,0),则不等式mx+n>0解集是()A.x>-2B.x<-2C.x>0D.无法确定6、一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论错误的是( )A.摩托车比汽车晚到1 hB. A,B两地的路程为20 kmC.摩托车的速度为45 km/hD.汽车的速度为60 km/h7、已知整数x满足-5≤x≤5,y1=x+1,y2=-2x+4,对任意一个x,m都取y1,y2中的较小值,则m的最大值是A.1B.2C.24D.-98、明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示。
精品试题冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)
八年级数学下册第二十一章一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,甲乙两人沿同一直线同时出发去往B 地,甲到达B 地后立即以原速沿原路返回,乙到达B 地后停止运动,已知运动过程中两人到B 地的距离y (km )与出发时间t (h )的关系如图所示,下列说法错误的是( )A .甲的速度是16km/hB .出发时乙在甲前方20kmC .甲乙两人在出发后2小时第一次相遇D .甲到达B 地时两人相距50km2、当2m >时,直线2y x m =+与直线4y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限3、平面直角坐标系xOy 中,点P 的坐标为()3,44m m -+,一次函数4123y x =+的图像与x 轴、y 轴分别相交于点A 、B ,若点P 在AOB 的内部,则m 的取值范围为( )A .1m >-或0m <B .31m -<<C .10m -<<D .11m -≤≤4、一次函数21y x =-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限5、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较6、已知正比例函数y =3x 的图象上有两点M (x 1,y 1)、N (x 2,y 2),如果x 1>x 2,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定7、如图,李爷爷要围一个长方形菜园ABCD ,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m ,设边BC 的长为xm ,边AB 的长为ym (x >y ).则y 与x 之间的函数表达式为( )A .y =﹣2x +24(0<x <12)B .y =﹣12x +12(8<x <24)C .y =2x ﹣24(0<x <12)D .y =12x ﹣12(8<x <24) 8、如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A .0,0k b >>B .y 随x 的增大而增大C .当0x >时,0y <D .关于x 的方程2kx b +=的解是1x =9、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min 后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min 的时间修好了自行车,并立刻以原速到位于家正西方500m 的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y (m )与小豪的出发时间x (min )之向的函数图象,请根据图象判断下列哪一个选项是正确的( )A .小豪爸爸出发后12min 追上小豪B .小李爸爸的速度为300m /minC .小豪骑自行车的速度为250m /minD .爸爸到达公司时,小豪距离书店500m10、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,下列说法中错误的是( )A .两人出发1小时后相遇B .王明跑步的速度为8km/hC .陈启浩到达目的地时两人相距10kmD .陈启浩比王明提前1.5h 到目的地第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、直线y 1=-x +m 和y 2=2x +n 的交点如图,则不等式-x +m <2x +n 的解集是_____.2、正比例函数(1)y k x =+图像经过点(1,-1),那么k =__________.3、如图,直线y =kx +b 交坐标轴于A ,B 两点,则关于x 的不等式kx +b <0的解集是_____.4、正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过______的直线,我们称它为直线y =kx .5、已知函数()325m y m x -=-+是关于x 的一次函数,则m =______.三、解答题(5小题,每小题10分,共计50分)1、某校计划为在校运会上表现突出的12名志愿者每人颁发一件纪念品,李老师前往购买钢笔和笔记本作为纪念品,如果买10支钢笔和2本笔记本,需230元;如果买8支钢笔和4本笔记本,需220元.(1)求钢笔和笔记本的单价;(2)售货员提示:当购买的钢笔超过6支时,所有的钢笔打9折.设购买纪念品的总费用为w 元,其中钢笔的支数为a .①当6a >时,求w 与a 之间的函数关系式;②李老师购买纪念品一共花了210元钱,他可能购买了多少支钢笔?2、已知 A 、B 两地相距 3km ,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km )与他行驶所用的时间 x (min )之间的关系.根据图像解答下列问题:(1)甲骑车的速度是 km/min ;(2)若在甲出发时,乙在甲前方 1.2km 的 C 处,两人均沿同一路线同时匀速出发前往 B 地,在第 4 分钟甲追上了乙,两人到达 B 地后停止.请在下面同一平面直角坐标系中画出乙离 B 地的距离 y 乙(km )与所用时间 x (min )的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.3、如图,直线l 1的函数解析式为y =﹣x +1,且l 1与x 轴交于点A ,直线l 2经过点B ,D ,直线l 1,l 2交于点C .(1)求直线l 2的函数解析式;(2)求△ABC 的面积.4、如图,长方形AOBC 在直角坐标系中,点A 在y 轴上,点B 在x 轴上,已知点C 的坐标是(8,4).(1)求对角线AB 所在直线的函数关系式;(2)对角线AB 的垂直平分线MN 交x 轴于点M ,连接AM ,求线段AM 的长;(3)若点P 是直线AB 上的一个动点,当△PAM 的面积与长方形OACB 的面积相等时,求点P 的坐标.5、已知一次函数y kx b =+的图象经过点()1,1A --和()1,3B .(1)求此一次函数的表达式;(2)点()3,5C --是否在直线AB 上,请说明理由.-参考答案-一、单选题1、D【解析】【分析】由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.【详解】解:由图可知:甲10小时所走路程是80×2=160(km),∴甲的速度是16km/h,故A正确,不符合题意;∵出发时甲距B地80千米,乙距B地60千米,∴发时乙在甲前方20km,故B正确,不符合题意;由图可得乙的速度是60÷10=6(km/h),∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),即甲2小时比乙多走20km,∴甲乙两人在出发后2小时第一次相遇,故C正确,不符合题意;∵甲5小时达到B地,此时乙所走路程为5×6=30(km),∴甲到达B地时两人相距60-30=30(km),故D不正确,符合题意;故选:D.【点睛】本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.2、B【解析】【分析】根据一次函数解析式中k b 、的值,判断函数的图象所在象限,即可得出结论.【详解】 解:一次函数4y x =-+中,10k =-<,40b =>∴函数图象经过一二四象限∵在一次函数2y x m =+中,10k =>,24b m =>∴直线2y x m =+经过一二三象限函数图象如图∴直线2y x m =-+与4y x =-+的交点在第二象限故选:B .【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.3、C【解析】【分析】 由4123y x =+求出A ,B 的坐标,根据点P 的坐标得到点P 在直线443y x =-+上,求出直线与y 轴交点C 的坐标,解方程组求出交点E 的坐标,即可得到关于m 的不等式组,解之求出答案.【详解】 解:当4123y x =+中y =0时,得x =-9;x =0时,得y =12, ∴A (-9,0),B (0,12),∵点P 的坐标为()3,44m m -+,当m =1时,P (3,0);当m =2时,P (6,-4),设点P 所在的直线解析式为y=kx+b ,将(3,0),(6,-4)代入, ∴4,43k b =-=,∴点P 在直线443y x =-+上, 当x =0时,y =4,∴C (0,4),4123443y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得38x y =-⎧⎨=⎩,∴E (-3,8), ∵点P 在AOB 的内部,∴3304448m m -<<⎧⎨<-+<⎩, ∴-1<m <0,故选:C ..【点睛】此题考查了一次函数与坐标轴的交点,两个一次函数图象的交点,解一元一次不等式组,确定点P 在直线443y x =-+上是解题的关键. 4、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数21y x =-+的图象经过第一、二、四象限,此题得解.【详解】解:∵k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,∴一次函数y =-2x +1的图象不经过第三象限.故选:C .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b >0⇔y=kx+b 的图象在一、二、四象限”是解题的关键.5、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.6、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1>x 2即可得出结论.【详解】∵正比例函数y =3x 中,k =3>0,∴y 随x 的增大而增大,∵x 1>x 2,∴y 1>y 2.故选:A .【点睛】本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x 的系数的关系是解题的关键.7、B【解析】【分析】根据菜园的三边的和为24m ,进而得出一个x 与y 的关系式,然后根据题意可得关于x 的不等式,求解即可确定x 的取值范围.【详解】解:根据题意得,菜园三边长度的和为24m ,即224y x +=, 所以1122y x -+=,由y >0得,11202x -+>,解得24x <,当x y >时,即1122x x >-+,解得8x >,∴824x <<,故选:B .【点睛】题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.8、D【解析】【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.9、B【解析】【分析】根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(563,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.【详解】解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:(5x+5×12x)÷5=32x(m/min),∵公司位于家正西方500米,∴(563−10−2)×32x=500+(5+2.5)x,解得x=200,∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×32=300m/min,爸爸到达公司时,丁丁距离商店路程为:3500-(563−12)×(300+200)=5003m.综上,正确的选项为B.故选:B.【点睛】本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.10、C【解析】【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A 正确;王明跑步的速度为24÷3=8(km/h ),故选项B 正确;陈启浩的速度为:24÷1-8=16(km/h ),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h ),故陈启浩到达目的地时两人相距8×1.5=12(km ),故选项C 错误;陈启浩比王提前3-1.5=1.5h 到目的地,故选项D 正确;故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题1、x <1【解析】略2、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k +1,即可得出k 值.【详解】解:∵正比例函数(1)y k x =+的图象经过点(1,-1),∴-1=k+1,∴k=-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.3、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x<-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.4、原点【解析】略5、4【解析】【分析】由一次函数的定义可知x 的次数为1,即|3−m |=1,x 的系数不为0,即()20m -≠,然后对()3120m m -=-≠,计算求解即可.【详解】 解:由题意知()3120m m -=-≠,解得2m =(舍去),4m =故答案为:4.【点睛】本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求解参数.三、解答题1、 (1)钢笔的单价为20元,笔记本的单价为15元.(2)①3180612w a a ;②6支或10支【解析】【分析】(1)设钢笔的单价为x 元,笔记本的单价为y 元,再根据买10支钢笔和2本笔记本,需230元;买8支钢笔和4本笔记本,需220元,列方程组,再解方程组即可;(2)①当6a >时,由总费用等于购买钢笔与笔记本的费用之和可列函数关系式,②分两种情况列方程,当6a ≤或6,a 再解方程可得答案.(1)解:设钢笔的单价为x 元,笔记本的单价为y 元,则102230,84220x y x y解得:20,15x y答:钢笔的单价为20元,笔记本的单价为15元.(2)解:①当6a >时,w 与a 之间的函数关系式为:0.9201512w a a3180,a所以w 与a 之间的函数关系式为3180612.w a a②当6a ≤时,则201512210,a a解得:6,a =当6a >时,3180210,a解得:10,a =所以李老师购买纪念品一共花了210元钱,他可能购买了6支或10支钢笔.【点睛】本题考查的是二元一次方程组的应用,一次函数的应用,掌握“确定相等关系列二元一次方程组与一次函数的关系式”是解本题的关键.2、 (1)0.5(2)见解析(3)(187,97),它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km 【解析】【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(187,97),它的意义是当出发18 7min后,乙离B的距离和甲离A地的距离都是97km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为x km/min,由题意得0.5×4-4x=1.2,∴x=0.2,又A、B两地相距3km,A、C两地相距1.2km,∴B、C两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:(3)解:由(1)(2)可知,y 甲=0.5x ,y 乙=1.8-0.2x ,由0.5x =1.8-0.2x 得x =187, 当x =187时,y 甲=y 乙=97, ∴两个函数图象的交点坐标为(187,97), 它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km . 【点睛】 本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.3、 (1)y =12x ﹣3 (2)256 【解析】【分析】(1)设直线l 2的解析式为()0y kx b k =+≠,将点B 、点D 两个点代入求解即可确定函数解析式;(2)当y =0时,代入直线1l 解析式确定点A 的坐标,即可得出ABC 的底边长,然后联立两个函数解析式得出交点坐标,点C 的纵坐标即为三角形的高,利用三角形面积公式求解即可得.(1)解:设直线l 2的解析式为()0y kx b k =+≠,由直线l 2经过点()6,0B ,()4,1D -可得:6041k b k b +=⎧⎨+=-⎩, 解得:123k b ⎧=⎪⎨⎪=-⎩, ∴直线l 2的解析式为132y x =-; (2) 当y =0时,代入直线1l 解析式可得:10x -+=,解得1x =,∴()1,0A ,∴615AB =-=, 联立1321y x y x ⎧=-⎪⎨⎪=-+⎩, 解得:8353x y ⎧=⎪⎪⎨⎪=-⎪⎩,∴85,33C⎛⎫-⎪⎝⎭,∴15255236 ABCS=⨯⨯=.【点睛】题目主要考查利用待定系数法确定一次函数解析式,一次函数交点问题,理解题意,熟练掌握运用一次函数的性质是解题关键.4、(1)142y x=-+;(2)5;(3)点P的坐标为(1285,-445)或(-1285,845)【解析】【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−12x +4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.【详解】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有408bk b=⎧⎨=+⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴对角线AB所在直线的函数关系式为y=-12x+4.(2)∵∠AOB=90°,∴勾股定理得:AB=∵MN垂直平分AB,∴BN=AN=12AB=∵MN为线段AB的垂直平分线,∴AM=BM设AM=a,则BM=a,OM=8-a,由勾股定理得,a2=42+(8-a)2,解得a=5,即AM=5.(3)(方法一)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=-43x+4.∵点P在直线AB:y=-12x+4上,∴设P点坐标为(m,-12m+4),点P到直线AM:43x+y-4=0的距离h2m.△PAM的面积S△PAM=12AM•h=54|m|=SOABC=AO•OB=32,解得m=±1285,故点P的坐标为(1285,-445)或(-1285,845).(方法二)∵S长方形OACB=8×4=32,∴S△PAM=32.设点P的坐标为(x,-12x+4).当点P在AM右侧时,S△PAM=12MB•(yA-yP)=12×5×(4+12x-4)=32,解得:x=1285,∴点P的坐标为(1285,-445);当点P在AM左侧时,S△PAM=S△PMB-S△ABM=12MB•yP-10=12×5(-12x+4)-10=32,解得:x =-1285, ∴点P 的坐标为(-1285,845). 综上所述,点P 的坐标为(1285,-445)或(-1285,845). 【点睛】 本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A 、B 点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM 的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m 的一元一次方程;(方法二)利用分割图形求面积法找出关于x 的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P 有两个.5、 (1)一次函数的表达式为21y x =+;(2)点()3,5C --在直线AB 上,见解析【解析】【分析】(1)把(-1,-1)、(1,3)分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程求出k 与b 的值,从而得到一次函数解析式;(2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.(1)解:将()1,1A --和()1,3B 代入y kx b =+,得31k b k b +=⎧⎨-+=-⎩, 解得2k =,1b =,∴一次函数的表达式为21y x =+(2)解:点C 在直线AB 上,理由:当3x =-时,()212315y x =+=⨯-+=-,∴点()3,5C --在直线AB 上.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ,将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.。
初二下学期压轴题练习--一次函数的实际应用(含答案)
专题11一次函数的实际应用一、选择题1.(2021八上·长清期中)某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为()A.23cmB.24cmC.25cmD.26cm2.(2021八上·长清期中)东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论中正确的是()①两人前行过程中的速度为200米/分;②m的值是15,n的值是3000;③东东开始返回时与爸爸相距1500米;④运动18分钟或30分钟时,两人相距900米.A.①②B.①②③C.①②④D.①②③④3.(2021八上·即墨期中)小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程(米)和所用时间(分钟)的关系图,则下列说法中错误的是()A.小明家和学校距离1200米B.小华乘公共汽车的速度是240米/分C.小华乘坐公共汽车后7:50与小明相遇D.小明从家到学校的平均速度为80米/分4.(2021八下·沙坪坝期末)矩形的一条边长为x,另一条边长为y,若它的周长是20,则y与x的函数关系式为()A.y=10﹣x(0<x<10)B.y=10(0<x<10)C.y=20﹣x(0<x<20)D.y=20(0<x<20)5.(2021八下·防城月考)A、B两地相距80km,甲、乙两人沿同一条路从A地到B地。
I1,l2分别表示甲、乙两人离开A地的距离s(kxm)与时间t(h)之间的关系。
人教版数学八年级下册:第十九章 一次函数 专题练习(附答案)
第十九章一次函数专题练习小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A B C D 4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A B C D 类型3动点问题中判断函数图象5.如图,在矩形ABCD 中,AB =3,BC =4,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,△ADP 的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A B C D 6.如图,点P 是菱形ABCD 边上的动点,它从点A 出发沿A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A B C D类型4 从函数图象中获取信息7.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 是曲线部分的最低点,则△ABC 的面积是( )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为 .小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( )A B C D5.如图,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A(1,-2),则k = ,b = .6.将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为 .7.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 .8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y 随x 的增大而增大. 请你根据他们的叙述构造满足上述性质的一个函数: .9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为.11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.12.已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)y的值随x值的增大而;(3)求图象与x轴的交点A,与y轴的交点B的坐标;(4)在(3)的条件下,求出△AOB的面积.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b ――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ; ④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1 k 2,且b 1 b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为 ; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为 ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是 .2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为 ; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k = .思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.小专题(四)一次函数与坐标轴围成的三角形【教材母题】点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象;(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(-3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.小专题(五)一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg时需付行李费2元,行李质量为50 kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数关系式;(2)求旅客最多可免费携带行李的质量.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?参考答案:小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( B )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( C )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是(B)A B CD4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( C )A B CD类型3动点问题中判断函数图象5.如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( D )A B CD6.如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( A )A B C D类型4从函数图象中获取信息7.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( D )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为7.小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( D ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( C )A .第一象限B .第二象限C .第三象限D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( C )A .第一象限B .第二象限C .第三象限D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( A )A B C D5.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,-2),则k=2,b=-4.6.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.7.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x 的增大而减小,则k所有可能取得的整数值为-1.8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y随x的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数:y=2x-1(答案不唯一).9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是m>n.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为(2n-1,2n-1).11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.解:(1)∵正比例函数y =kx 经过点(5,-10), ∴-10=5k ,解得k =-2. ∴这个函数的解析式为y =-2x.(2)将x =4代入y =-2x ,得y =-8≠-2, ∴点A(4,-2)不在这个函数图象上. (3)∵k =-2<0, ∴y 随x 的增大而减小. ∵x 1>x 2,∴y 1<y 2.12.已知一次函数y =2x +4.(1)在如图所示的平面直角坐标系中,画出函数的图象; (2)y 的值随x 值的增大而增大;(3)求图象与x 轴的交点A ,与y 轴的交点B 的坐标; (4)在(3)的条件下,求出△AOB 的面积.解:(1)函数图象如图所示. (3)A(-2,0),B(0,4). (4)由(3)可知,OA =2,OB =4, ∴S △AOB =12OA·OB=12×2×4=4.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ;④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1=k 2,且b 1≠b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为y =2x +2; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为y =-x ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是(0,4).2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为y =2x -9; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k =-34.思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.解:(1)直线y =-2x +4与x 轴的交点坐标为(2,0),与y 轴的交点坐标为(0,4). 设关于x 轴对称的直线解析式为y =mx +n ,则该直线经过点(2,0),(0,-4), ∴直线解析式为y =2x -4.设关于y 轴对称的直线解析式为y =sx +t ,则该直线经过点(-2,0),(0,4), ∴直线解析式为y =2x +4.(2)直线y =kx +b 关于x 轴对称的直线解析式为y =-kx -b ,关于y 轴对称的直线解析式为y =-kx +b.小专题(四) 一次函数与坐标轴围成的三角形【教材母题】 点P(x ,y)在第一象限,且x +y =8,点A 的坐标为(6,0).设△OPA 的面积为S.(1)用含x 的式子表示S ,写出x 的取值范围,画出函数S 的图象; (2)当点P 的横坐标为5时,△OPA 的面积为多少? (3)△OPA 的面积能大于24吗?为什么?解:(1)∵点A 和点P 的坐标分别是(6,0),(x ,y), ∴S =12×6×y =3y.∵x +y =8,∴y =8-x. ∴S =3(8-x)=24-3x. ∴S =-3x +24. ∵点P 在第一象限,∴x >0,y >0,即x >0,8-x >0.∴0<x <8. 图象如图所示.(2)当x =5时,S =-3×5+24=9. (3)不能.理由:令S >24,则-3x +24>24.解得x <0. ∵由(1),得0<x <8, ∴△OPA 的面积不能大于24.在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l 1在平面直角坐标系中,直线l 1与y 轴交于点A ,点B(-3,3)也在直线l 1上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上.(1)求点C 的坐标和直线l 1的解析式;(2)已知直线l 2:y =x +b 经过点B ,与y 轴交于点E ,求△ABE 的面积.解:(1)由题意,得点C 的坐标为(-2,1). 设直线l 1的解析式为y =kx +c , ∵点B(-3,3),C(-2,1)在直线l 1上,∴⎩⎪⎨⎪⎧-3k +c =3,-2k +c =1.解得⎩⎪⎨⎪⎧k =-2,c =-3. ∴直线l 1的解析式为y =-2x -3.(2)把点B 的坐标代入y =x +b ,得3=-3+b , 解得b =6.∴y =x +6.∴点E 的坐标为(0,6). ∵直线y =-2x -3与y 轴交于点A , ∴A 的坐标为(0,-3).∴AE =6+3=9. ∵B(-3,3),∴S △ABE =12×9×|-3|=13.5.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.解:(1)当x =0时,y =-13x +1=1.∴点B 的坐标为(0,1). 当y =0时,-13x +1=0,解得x =3.∴点A 的坐标为(3,0). 过点C 作CE ⊥x 轴,垂足为E ,∵△ABC 为等腰直角三角形,∠BAC =90°, ∴∠BAO +∠CAE =90°,AB =CA. 又∵∠BAO +∠ABO =90°, ∴∠ABO =∠CAE.在△ABO 和△CAE 中,⎩⎨⎧∠AOB =∠CEA ,∠ABO =∠CAE ,AB =CA ,∴△ABO ≌△CAE(AAS). ∴AE =BO =1,CE =AO =3. ∴OE =AO +AE =4. ∴点C 的坐标为(4,3).(2)过点P 作PF ⊥x 轴,垂足为F , 设直线BC 的解析式为y =kx +b(k ≠0). 将B(0,1),C(4,3)代入y =kx +b ,得 ⎩⎨⎧b =1,4k +b =3,解得⎩⎪⎨⎪⎧k =12,b =1. ∴直线BC 的解析式为y =12x +1.∴S =12OA·PF =12×3×(12x +1)=34x +32(0<x <4).(3)不能.理由如下: 当S =92时,34x +32=92,解得x =4. ∵0<x <4,∴△OPA 的面积不能等于92.小专题(五) 一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg 时需付行李费2元,行李质量为50 kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数关系式;(2)求旅客最多可免费携带行李的质量.解:(1)设y 与x 的函数关系式为y =kx +b.将(20,2),(50,8)代入y =kx +b ,得⎩⎨⎧20k +b =2,50k +b =8,解得⎩⎪⎨⎪⎧k =15,b =-2.∴当行李的质量x 超过规定时,y 与x 之间的函数关系式为y =15x -2. (2)当y =0时,15x -2=0, 解得x =10.答:旅客最多可免费携带行李10 kg.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.解:(1)设销售甲种特产x 吨,则销售乙种特产(100-x)吨,根据题意,得10x +(100-x)×1=235,解得x =15.∴100-x =85.答:这个月该公司销售甲、乙两种特产分别为15吨、85吨.(2)设利润为w 元,销售甲种特产a 吨,根据题意,得w =(10.5-10)a +(1.2-1)×(100-a)=0.3a +20.∵0≤a ≤20,∴当a =20时,w 取得最大值,w 最大=26.答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.由题意,得⎩⎨⎧x +y =100,4 000x +1 000y =160 000,解得⎩⎪⎨⎪⎧x =20,y =80. 答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨.由m ≤3(100-m),解得m ≤75,利润w =1 000m +400(100-m)=600m +40 000,∵600>0,∴w 随m 的增大而增大.∴m =75时,w 有最大值为85 000元.4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元.根据题意,得⎩⎨⎧20x +15y +7 000=24 000,10x -5y +1 000=2 000,解得⎩⎪⎨⎪⎧x =400,y =600.答:甲种办公桌每张400元,乙种办公桌每张600元.(2)设甲种办公桌购买a 张,则乙种办公桌购买(40-a)张,购买的总费用为M 元, 则M =400a +600(40-a)+2×40×100=-200a +32 000,∵a ≤3(40-a),∴a ≤30.∵-200<0,∴M 随a 的增大而减小.∴当a =30时,M 取得最小值,最小值为26 000元.答:购买甲、乙两种办公桌分别为30张、10张时,费用最少,为26 000元.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?解:(1)设每一个篮球的进价是x 元,则每一个排球的进价是90%x 元,依题意,得 3 600x +10=3 60090%x, 解得x =40.经检验,x =40是原方程的解.90%x =90%×40=36.答:每一个篮球的进价是40元,每一个排球的进价是36元.(2)设文体商店计划购进篮球m 个,总利润y 元,则y =(100-40)m +(90-36)(100-m)=6m +5 400.依题意,得⎩⎪⎨⎪⎧0<m <100,100-m ≥3m. 解得0<m ≤25且m 为整数.∵k =6>0,∴y 随m 的增大而增大.∴m =25时,y 最大,这时y =6×25+5 400=5 550.100-25=75(个).答:该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5 550元.6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?解:(1)y 甲=0.8x.y 乙=⎩⎪⎨⎪⎧x (0<x<2 000),0.7x +600(x ≥2 000). (2)当0<x<2 000时,0.8x<x ,到甲商店购买更省钱;当x ≥2 000时,若到甲商店购买更省钱,则0.8x<0.7x +600,解得x<6 000;若到乙商店购买更省钱,则0.8x>0.7x +600,解得x>6 000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6 000.故当购买金额按原价小于6 000元时,到甲商店购买更省钱;当购买金额按原价大于6 000元时,到乙商店购买更省钱;当购买金额按原价等于6 000元时,到甲、乙两商店购买一样.7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B ,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A 与终点B 之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y 与x 的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?解:(1)由图可得,起点A 与终点B 之间相距3 000米.(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点.(3)设甲龙舟队的y 与x 的函数关系式为y =kx.把(25,3 000)代入,可得3 000=25k ,解得k =120.∴甲龙舟队的y 与x 的函数关系式为y =120x(0≤x ≤25).设乙龙舟队的y 与x 函数关系式为y =ax +b.把(5,0),(20,3 000)代入,可得⎩⎨⎧0=5a +b ,3 000=20a +b ,解得⎩⎪⎨⎪⎧a =200,b =-1 000. ∴乙龙舟队的y 与x 的函数关系式为y =200x -1 000(5≤x ≤20).(4)令120x =200x -1 000,可得x =12.5.即当x =12.5时,两龙舟队相遇.当x <5时,令120x =200,则x =53(符合题意); 当5≤x <12.5时,令120x -(200x -1 000)=200,则x =10(符合题意);当12.5<x ≤20时,令200x -1 000-120x =200,则x =15(符合题意);当20<x ≤25时,令3 000-120x =200,则x =703(符合题意). 综上所述,甲龙舟队出发53分钟或10分钟或15分钟或703分钟时,两支龙舟队相距200米.。
(完整版)利用一次函数解决实际问题(含答案)
利用一次函数解决实际问题在利用一次函数解决实际问题时,会经常遇到这样的问题,在有的题目中,不论自变量x怎样变化,y和x的关系始终保持一次函数关系,而有的题目中,当自变量x发生变化时,随着x的取值范围不同,y和x的函数关系也不同,它们之间或者不再是一次函数,或者虽然还是一次函数,但函数的解析式发生了变化.这种变化反映在函数图像上时的主要特征,就是由一条直线变成几条线段或射线,我们把这类函数归类为分段函数.请同学们注意,这类函数在自变量的整个取值范围内不是一次函数,但把它适当分为几段后,每段内一般来说还仍然是一次函数。
因此,解这类分段函数的基本思路是:首先按照实际问题的意义,把x 的取值范围适当分为几段,然后,根据每段中的函数关系分别求解.请同学们完成下面的习题:1.商店在经营某种海产品中发现,其日销量y(kg)和销售单价x(元)/千克之间的函数关系如图所示.①写出y与之间的函数关系式并注明x的取值范围;②当单价为32元/千克时,日销售量是多少千克?③当日销售量为80千克时,单价是多少?第1题第2题2.(南京)某城市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20cm3时,按2元/立方米计费;月用水量超过20cm3时,超过的部分按2.6元/立方米计费.设每户家庭的月用水量为x cm3时,应交水费y元,①试求出0≤x≤20和x>20时,y与x之间的函数关系式.②小明家第二季度交纳水费的情况如下:月份四月五月六月交纳金额(元)30 34 42.6小明家这个季度共用水多少立方米?3.自2008年3月1日起,我国征收个人所得税的起点由1600元提高到2000元,即月收入超过2000元的部分为全月应纳税所得额.全月应纳税所得额的划分和相应的税率如下表所示.设某人的月工资收入为x(元),月缴纳个人所得税为y(元),①试求出y与x间的函数关系式并注明x的取值范围.②如果某人月工资为3000元,问此人依法缴纳个人所得税后,他的实际收入是多少元?4.如图所示,在矩形ABCD中,AB=6 cm AD=10cm,动点M从点B出发,以每秒1cm 的速度沿BA-AD-DC运动,当M运动到点C时,点M停止运动.设点M的运动时间为t(s),△BMC的面积为S(cm2).①点M分别到达点A、点D、点C时,点M的运动时间;②求S与t之间的函数关系式,并注明t的取值范围;③当t=6s时,求△BMC的面积;④当△BMC的面积是20cm2时,求点M的运动时间.B C M第4题5.甲乙两位同学骑自行车同时从A 地出发行驶到B 地,他们离出发点的距离s(千米)和行驶时间t(小时)之间的函数图像如图所示.根据图中提供的信息,①分别求出甲在停留前后s 与t 的函数关系式; ②求出乙的行驶过程中s 与t 的函数关系式;③比较甲在停留前后的速度和乙的速度,三个速度中 的速度最大, 的速度最小;④甲在停留之前超过乙的最大距离;⑤经过多长时间乙追上甲?乙追上甲时,他们距离出发地点多少千米?⑥甲停留以后又出发时,乙超过甲多少千米? ⑦乙在到达目的地后,甲距目的地还有多少千米?⑧假设甲乙到达目的地后均不停留,分别按原来的速度继续前进,问甲能否追上乙?若能追上,从两人开始出发时计时,经过几小时甲追上乙;若不能追上,请说明理由.6.(2008·济南)济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出 物资(调进物资与调出物资的速度均保持不变).储运部库存物资s(吨)与时间(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )小时.A.4B.4.4C.4.8D.5(小时)第5题第6题参考答案1.①20≤x≤30时,y=-5x+200;30≤x≤35时y=-10x+350;,②30;③24.2. ①0≤x≤20时,y=-2x;x>20时,y=2.6x+-1.2②15+17+21=533. 2000≤x<2500时,y=0.05x-100,y=0.1x-225 4500≤x<7500时,y=0.15x-4504. ①6s;16s;22;②0≤t<6时,s=5t;6≤t<16时,s=30;16≤t<22时,s=110-5t③20;④4s或18s5.①0≤t≤0.25时,s=18t; 1≤t≤2时,s=13.5t-9②s=12t.③甲在停留前的速度最大;乙的速度最小.④1.5千米.⑤0.375小时,4.5千米.⑥7.5千米.⑦6.75千米.⑧能追上,6小时.6. B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题技巧专题:利用一次函数解决实际问题
——明确不同类型的图象的端点、折点、交点等的意义
◆类型一费用类问题
一、建立一次函数模型解决问题
1.(2016 ·攀枝花中考 ) 某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14 吨( 含 14 吨) ,则每吨按政府补贴优惠价 m元收费;若每月用水量超过 14 吨,则超过部分每吨按市场价 n 元收费.小明家 3 月份用水 20 吨,交水费 49 元;4 月份用
水 18 吨,交水费 42 元.
(1)求每吨水的政府补贴优惠价和市场价;
(2)设每月用水量为 x 吨,应交水费为 y 元,请写出 y 与 x 之间的函数解析式;
(3)小明家 5 月份用水 26 吨,则他家应交水费多少元
二、分段函数问题
2.(2016 ·荆州中考 ) 为更新果树品种,某果园计划新购进A,B 两个品种的果树苗栽植培育,若计划购进这两种果树苗共45 棵,其中 A 种树苗的单价为 7 元/ 棵,购买 B 种树苗所需费用 y( 元) 与购买数
量 x( 棵) 之间存在如图所示的函数关系.
(1)求 y 与 x 的函数解析式;
(2)若在购买计划中, B 种树苗的数量不超过 35 棵,但不少于 A 种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
三、两个一次函数图象结合的问题
3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是
“滴滴顺风车”与“滴滴快车”的行驶里程x( 公里 ) 与计费 y( 元) 之间的函数关系图象,下列说法:①“快车”行驶里程不超过 5 公里计费 8 元;②“顺风车”行驶里程超过 2 公里的部分,每公里计费元;
③A点的坐标为,;④从哈尔滨西站到会展中心的里程是 15 公里,则“顺风车”要比“快车”少用元.其中正确的个数有 ()
A.1个B.2个C.3个D.4个
四、分类讨论思想
4.(2017 ·天门中考 ) 江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙( 单位:元) 与原价 x( 单位:元 ) 之间的函数关系如图所示:
(1)直接写出 y 甲,y 乙关于 x 的函数关系式;
(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省
钱
◆类型二路程类问题
一、两个一次函数图象结合的问题
5.(2017 ·青岛中考 )A,B 两地相距 60km,甲、乙两人从两地出发相向而行,甲先出发,图中l 1,l 2表示两人离 A 地的距离 s( km) 与时间 t( h) 的关系,请结合图象解答下列问题:
(1) 表示乙离 A 地的距离与时间关系的图象是________(填 l 1或l 2) ;甲的速度是 ________km/ h,乙的速度是 ________km/ h;
(2)甲出发多长时间两人恰好相距 5km
二、分段函数问题
6.(2016 ·新疆中考) 暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y( km) 与汽车行驶的时间x( h) 之间的函数图象如图所示.
(1)从小刚家到该景区乘车一共用了多少时间
(2)求线段 AB对应的函数解析式;
(3)小刚一家出发后离目的地有多远
◆类型三工程类问题
一、两个一次函数图象结合的问题
7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度 y( 米) 与挖掘时间 x( 天) 之间的关系如图所示,则下列说法中:
①甲队每天挖 100 米;②乙队开挖 2 天后,每天挖 50 米;③甲队比乙队提前 3 天完成任务;④当 x=2 或 6 时,甲、乙两队所挖管道长
度都相差 100 米.正确的有 ________(填序号 ) .
二、分段函数问题
8.(2016 ·绍兴中考 ) 根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00 打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的
3
水在 11:30 全部排完.游泳池内的水量Q(m) 和开始排水后的时间t( h) 之间的函数图象如图所示,根据图象解答下列问题:
(1)暂停排水需要多少时间排水孔的排水速度是多少
(2)当 2≤t ≤时,求 Q关于 t 的函数解析式.
参考答案与解析
1.解:(1) 设每吨水的政府补贴优惠价为m元,市场价
为
n 元.由
14m+( 20-14)n=49,m=2,
题意得解得
14m+( 18-14)n=42,n=.
答:每吨水的政府补贴优惠价为 2 元,市场价为元.
(2)当 0≤x≤14 时,y=2x;当x>14 时,y=14×2+ ( x-14) ×
2x(0≤x≤14),
=- 21. 综上所述,y=
-21(x>14).
(3)∵26> 14,∴小明家 5 月份水费为× 26-21=70( 元) .
答:小明家 5 月份应交水费 70 元.
2.解: (1) 当 0≤x≤20 时,设y与x的函数解析式为y=ax,把(20 ,160) 代入y=ax中,得a=8. 即y与x的函数解析式为y=8x;当 x>20时,设 y 与 x 的函数解析式为 y=kx+b,把(20,160),(40,
20k+b=160,
解得k=,
288) 代入y=kx+b中,得即 y 与 x 的
40k+b=288,b=32,
函数解析式为y=+32.综上所述, y 与 x 的函数解析式为y=
8x(0≤x≤20),
+32(x>20).
(2)∵ B 种树苗的数量不超过35棵,但不少于 A种树苗的数量,
x≤35,
∴∴≤ x≤35.设总费用为W元,则W=+32+7(45-x)x≥45-x,
=-+ 347. ∵k=- <0,∴y随x的增大而减小,∴当x=35,45- x =10 时,总费用最低,即购买B种树苗 35 棵,A种树苗 10 棵时,总
费用最低, W最低=-×35+347=326(元).
3.D
4.解: (1) 设y甲=kx,把 (2000 ,1600) 代入,得 2000k=1600,解得 k=,所以 y 甲=.当0<x<2000时,设 y 乙=ax,把(2000,2000) 代入,得 2000k=2000,解得k=1,所以y乙=x. 当x≥2000 时,设
2000m+n=2000,y 乙=mx+n,把(2000,2000),(4000,3400)代入,得
4000m+n=3400,
解得
m=,
n=600,
所以乙=
x(0<x<2000),
+600(x≥2000).
(2) 当 0<x<2000 时,<x,到甲商店购买更省钱;当x≥2000
时,若到甲商店购买更省钱,则<+600,解得x<6000;若到乙商店购买更省钱,则>+600,解得x>6000;若到甲、乙两商店购买一样省钱,则=+ 600,解得x=6000;故当购买金额按原价小于 6000 元时,到甲商店购买更省钱;当购买金额按原价大于6000 元时,到乙商店购买更省钱;当购买金额按原价等于6000 元时,到甲、乙两
商店购买花钱一样.
5.解:(1) l 2 30 20 解析:由题意可知,乙的函数图象是l2,
甲的速度是60 60
l 2,=30(km/h) ,乙的速度是=20(km/h) .故答案为
2 3
30,20.
(2)设甲出发 x h两人恰好相距5km.由题意30x+20( x-+5=60
或 30x+20( x-- 5=60,解得x=或 .
答:甲出发或两人恰好相距5km.
6.解: (1) 从小刚家到该景区乘车一共用了4h.
(2)设线段 AB对应的函数解析式为 y=kx+b.把点 A(1,80),B(3,
k+b=80,k=120,
320) 代入得解得∴y=120x-40(1≤ x≤3).3k+b=320,b=-40.
(3)当 x=时, y=120×-40=260,380-260=120(km).故小
刚一家出发后离目的地 120km.
7.①②④
8.解: (1) 暂停排水需要的时间为2-= (h) .∵排水时间为-
3 3
.=3(h) ,一共排水 900m,∴排水孔的排水速度是900÷3= 300(m /h)
(2) 当 2≤t≤时,设Q关于t的函数解析式为Q=kt+b,易知图
象过点, 0) .∵当t=时,排水 300×= 450(m3) ,此时Q=900-450
=450,∴点 (2 ,450) 在直线Q=kt+b上.把 (2 ,450) ,,0) 代入Q
2k+b=450,
解得k=-300,
=kt +b,得∴Q关于 t 的函数解析式+b=0,b=1050,
为 Q=-300t +1050.。