数列与圆锥曲线压轴题
(完整word版)高考数学圆锥曲线压轴题分类训练(精华)
![(完整word版)高考数学圆锥曲线压轴题分类训练(精华)](https://img.taocdn.com/s3/m/14d2951877232f60dccca101.png)
卓越个性化教案 GFJW0901学生姓名 年级 高三 授课时间 教师姓名 课时02-圆锥曲线压轴题-分类训练【知识点】1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离0022Ax By C d A B++=+ ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:2121AB kx x =+-221212(1)[()4]k x x x x =++- 或12211AB y y k=+- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且 距离式方程:2222()()2x c y x c y a +++-+= 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅< 距离式方程:2222|()()|2x c y x c y a ++--+= (3)抛物线22(0)y px p =>(4)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:3.方法(1)点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba43-(2)联立消元法:设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。
高中数学圆锥曲线压轴题大全
![高中数学圆锥曲线压轴题大全](https://img.taocdn.com/s3/m/b0635dd7b90d6c85ed3ac65d.png)
高中数学圆锥曲线压轴题大全(总25页)-本页仅作为预览文档封面,使用时请删除本页-数学压轴题圆锥曲线类一1.如图,已知双曲线C :x a yba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:O M M F→⊥→; (II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P在A 、Q 之间,满足A P A Q →=→λ,试判断λ的范围,并用代数方法给出证明.2.已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,, 数列{}a n 满足a f n nN n=∈()(*) (I )求数列{}a n 的通项公式; (II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为Sa a ()()≥0,求S nS n n N ()()(*)--∈1; (III )在集合M N N kkZ ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得l i m ()n nb b b →∞+++12 存在,并求出这个极限值. 19. 设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程; (II )若A 、B 分别为l l 12、上的点,且2512||||A B F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线; (III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP O Q →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.3. 已知数列{}a n 的前n 项和为S n N n ()*∈,且S m m a n n=+-()1对任意自然数都成立,其中m 为常数,且m <-1. (I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,l i m (l g )l i m (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立?4.设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量AQ 所成的比为8∶5.(1)求椭圆的离心率; (2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程.5.(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.6.垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;2202为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 7.已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出过程).数学压轴题圆锥曲线类二1.如图,设抛物线2:xy C=的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB. 2.设A 、B 是椭圆λ=+223y x上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图)3. 已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足 ,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n (Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N ,使得当N n>时,对任意b>0,都有.51<n a4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.5.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+.(Ⅰ)求函数()g x 的解析式;(Ⅱ)解不等式()()1g x f x x ≥--;(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.数学压轴题圆锥曲线类三1.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca P F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.2.函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g += (Ⅰ)用0x 、)(0x f 、)(0x f '表示m ;(Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.3.已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()nn f x a x a x a x=+++,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.4.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程; (II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线AB 恒过定点,并求出该定点的坐标.5.椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.6.数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nn n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=….7.已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n .1.解:(I ) 右准线l 12:x a c =,渐近线l 2:y bax =∴=+M a c a b cF c c a b()()22220,,,, ,∴→=O M a c a b c ()2, M F c a c a b c b c a bc →=--=-()()22,,O M M F a b c a bc O M M F →⋅→=-=∴→⊥→2222220 ……3分(II ) e b a e a b =∴=-=∴=621222222,,||()M F b c a b c b b a cb a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ ……8分证明:设l 31:y k x =+,点P x y Q x y ()()1122,,, x =由x y y kx 22221-==+⎧⎨⎩得()1244022--+=kx k x l 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k ……11分 A P A Q x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x kk k k k k , -<<-∴<-<∴+>12202111422k k ,,()λλ∴+>∴-+>()1421022λλλλ∴λ的取值范围是(0,1)……13分 2.解:(I ) nN ∈* ∴=--+-=+-f n n n n f nn f n ()[()]()()111 ∴--=f n f n n()()1 ……1分 ∴-=-=-=f f f f f f ()()()()()()101212323……fn fn n ()()--=1 将这n 个式子相加,得fnf n n n ()()()-=++++=+012312f f n n n ()()()0012=∴=+∴=+∈a n n n N n()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为fn f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n()()()()112121=-++=12121222[()()]n n n n n……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,∴=N 201020122998,,……,均满足条件 它们构成首项为2010,公差为2的等差数列. 设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N m i n =2010 ……9分(IV )设b a nn=1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313141112111+++=-+-+-++-+=-+ [()()()()]()显然,其极限存在,并且l i m ()l i m []n nn b b b n →∞→∞+++=-+=122112 ……10分 注:b c a n n=(c 为非零常数),b b q q n a n n a n n n ==<<++()(||)12012121,等都能使l i m ()n n b b b →∞+++12 存在. 19.解:(I ) ec a =∴=2422,c a a c 22312=+∴==,, ∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()Mx y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] O P O Q xx y y xx k x x xx k xx x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k xx k k i i =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222 由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l . 14分3.解:(I )由已知S m m a n n ++=+-1111()()S m m a n n=+-()1 (2) 由()()12-得:a m a m a n n n ++=-11,即()m a m a n n+=+11对任意n N ∈*都成立 {} m m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m m a 111=+-() ∴====+∴==+≥∈---a b I q f m mm b f b bb n n N n n n n 11111113112,从而由()知,()()()* ∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n,即为等差数列,分()()*a m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-l i m (l g )l i m l g l g l i m ()l i m n b a n n n m m mm n bb bb b b n n n n nn n 121133131414151112112231·……由题意知lg mm +=11,∴+=∴=-m m m 110109, 13分4.解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=.由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分 ∴a x a x 231)135()138(022202=⇒=+.①, 4分 而AQ FA b x AQ b c FA ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分(2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分圆半径a ca cb r ==+=22222.10分由圆与直线l :033=++y x 相切得,a c =+2|3|, 又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分5.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++d n n a n n 2)1()1(1+++=+ 4分)2)(1()2)(1(1111a a a n nda n n n n -++=++=+++)3(2111a a n n -+=+. 7分又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 )2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-=-++++.当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M --- 则设)2(2111++=∴x x y y M A 的方程为直线①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121 =+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为22020201222242y yyx d +=+=+=于是……10分11221122220202020≥+=∴≤+∴≤∴=+y d y y y x 当1,1,1200取最小值时d y y =±=……12分7.解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)( ππππx f x f f x f fx f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g xx 得由,0)(),0(32),0(],,0[ .)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),( x g x g x >'∈πθ 分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)( x f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ 当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分 数学压轴题圆锥曲线类二1.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P=+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, ,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠FP∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB. 方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(0414********=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根, ∴,0])3(3)3([422>--+=∆k k λ ②且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ依题意,.)(3,212121y y x x k x x AB ++-=∴≠ ∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞).直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根,∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12, ∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )3.本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想. (Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a nn n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >- ∵.][log 22.2][log 2][log 2111,2221n b ba b n b n b a b a n n +<+=+>∴= 证法2:设n n f 13121)(+++= ,首先利用数学归纳法证不等式.,5,4,3,)(1 =+≤n bn f ba n(i )当n=3时, 由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k+≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k k k k ,)1(1)11)((1)()1()1()1(bk f bbk k f b b b k f k k b k ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤n bn f ba n又由已知不等式得 .,5,4,3,][log 22][log 21122 =+=+<n n b bb n ba n(Ⅱ)有极限,且.0lim =∞→n n a(Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a4.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则()2111222222,2242,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为 (Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,22tan 115tan y y PF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。
(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)
![(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)](https://img.taocdn.com/s3/m/033d591f551810a6f424862d.png)
圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C :y 2=2px (p >0)的焦点是椭圆M :+=1(a >b >0)的右焦点,且两曲线有公共点(,).(1)求椭圆M 的方程;(2)O 为坐标原点,A ,B ,C 是椭圆M 上不同的三点,并且O 为△ABC 的重心,试探究△ABC 的面积是否为定值.若是,求出这个定值;若不是,请说明理由. 2.已知直线11:ax ﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l 2的交点为M,当a 变化时,求点M 的轨迹C 的方程:(2)已知点D (2,0),过点E (﹣2,0)的直线1与C 交于A ,B 两点,求△ABD 面积的最大值. 3.已知椭圆C:+=1(a >b >0)的四个顶点围成的菱形的面积为4,点M 与点F 分别为椭圆C 的上顶点与左焦点,且△MOF 的面积为(点O 为坐标原点).(1)求C 的方程;(2)直线l 过F 且与椭圆C 交于P ,Q 两点,点P 关于O 的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C 1:+y 2=1,抛物线C 2:y=x 2﹣1,其中C 2与y 轴的交点为M,过坐标原点O的直线l 与C 2相交于点A ,B,直线MA ,MB 分别与C 1相交于点D ,E . (Ⅰ)证明:MA ⊥MB;(Ⅱ)记△MAB ,△MDE 的面积分别是S 1,S 2.问:是否存在直线l ,使得=.若存在,求出直线l 的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B 两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围. 12.已知椭圆经过点,离心率为,过右焦点F 且与x 轴不垂直的直线l 交椭圆于P ,Q 两点. ( I )求椭圆C 的方程; ( II )当直线l 的斜率为时,求△POQ 的面积;( III )在椭圆C 上是否存在点M ,使得四边形OPMQ 为平行四边形?若存在,求出直线l 的方程;若不存在,请说明理由. 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD|=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由. 14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E(,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N 使=2,求以F 1P 为直径的圆面积取值范围. 15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A ,B 两点,且.(I )求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 16.已知椭圆C :(a >b >0)的离心率,抛物线E :的焦点恰好是椭圆C的一个顶点.(1)求椭圆C 的标准方程;(2)过点P (0,1)的动直线与椭圆C 交于A,B 两点,设O 为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G ,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN |的最大值,并判断此时△OMN 的形状. 18.已知抛物线C :y 2=2px (p >0),其内接△ABC 中∠A=90°. (I)当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II )当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 19.如图,已知F 1,F 2分别是椭圆的左、右焦点,点P (﹣2,3)是椭圆C上一点,且PF 1⊥x 轴. (1)求椭圆C 的方程;(2)设圆M :(x ﹣m )2+y 2=r 2(r >0).①设圆M 与线段PF 2交于两点A,B ,若,且AB=2,求r 的值;②设m=﹣2,过点P 作圆M 的两条切线分别交椭圆C 于G ,H 两点(异于点P ).试问:是否存在这样的正数r,使得G,H 两点恰好关于坐标原点O 对称?若存在,求出r 的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C 的焦点且与长轴垂直的弦的长度为.(1)求椭圆C 的标准方程;.(2)过点A (﹣2,0)作两条相交直线l 1,l 2,l 1与椭圆交于P ,Q 两点(点P 在点Q 的上方),l 2与椭圆交于M ,N 两点(点M 在点N 的上方),若直线l 1的斜率为,,求直线l 2的斜率.21.在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0),直线y=x 与C 交于O ,T 两点,|OT |=4.(Ⅰ)求C 的方程; (Ⅱ)斜率为k (0)的直线l 过线段OT 的中点,与C 交于A,B 两点,直线OA,OB 分别交直线y=x ﹣2于M ,N 两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S△ABC=|AB|•d=.综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1.(2)由题意可知,点O为PP′的中点,则=2S△POQ.设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S△POQ =|OF|•|y1﹣y2|=.设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l 的斜率存在,设为k,则直线l 的方程为:y=kx, 由y=kx 和y=x 2﹣1,得x 2﹣kx ﹣1=0.设A(x 1,y 1),B(x 2,y 2), 于是x 1+x 2=k ,x 1•x 2=﹣1,又点M 的坐标为(0,﹣1). 所以k MA •k MB =•====﹣1.故MA ⊥MB ,即MD ⊥ME;(Ⅱ)设直线MA 的斜率为k 1,则直线MA 的方程为y=k 1x ﹣1. 联立y=x 2﹣1可得或则点A 的坐标为(k 1,k 12﹣1). 又直线MB 的斜率为﹣,同理可得点B 的坐标为(﹣,﹣1).于是S 1=|MA |•|MB |=|k 1|•••|﹣|•=.由椭圆方程x 2+4y 2=4和y=k 1x ﹣1, 得(1+4k 12)x 2﹣8k 1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y 轴上是否存在异于点P 的定点Q,使得直线l 变化时,总有∠PQA=∠PQB?若存在,求出点Q 的坐标;若不存在,请说明理由. 【解答】解:(1)∵,∴a 2=2c 2=b 2+c 2,b=c,a 2=2b 2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b 2=4,a 2=8,所以椭圆C 的方程为:;(2)当直线l 斜率存在时,设直线l 方程:y=kx+1, 由得(2k 2+1)x 2+4kx ﹣6=0,△=16k 2+24(2k 2+1)>0,设,假设存在定点Q (0,t)符合题意,∵∠PQA=∠PQB ,∴k QA =﹣k QB , ∴=,∵上式对任意实数k 恒等于零,∴4﹣t=0,即t=4,∴Q (0,4),当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点(0,﹣2),(0,2), 显然此时∠PQA=∠PQB ,综上,存在定点Q (0,4)满足题意. 7.已知椭圆,点在椭圆C 上,椭圆C 的四个顶点的连线构成的四边形的面积为.(1)求椭圆C 的方程;(2)设点A 为椭圆长轴的左端点,P 、Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP 、AQ 斜率分别为k 1、k 2,若k 1k 2=2,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由. 【解答】解:(1)由点在椭圆C 上可得:,整理为:9a 2+4b 2=4a 2b 2, 由椭圆C 的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a >b >0可解得:,故椭圆C 的方程为:.(2)设点P 、Q 的坐标分别为(x 1,y 1),(x 2,y 2),点A 的坐标为(﹣2,0), 故,可得y 1y 2=2(x 1+2)(x 2+2),设直线PQ 的方程为y=kx+m (直线PQ 的斜率存在), 可得(kx 1+m)(kx 2+m )=2(x 1+2)(x 2+2), 整理为:,联立,消去y 得:(4k 2+3)x 2+8kmx+(4m 2﹣12)=0,由△=64k 2m 2﹣4(4k 2+3)(4m 2﹣12)=48(4k 2﹣m 2+3)>0,有4k 2+3>m 2, 有,,故有:,整理得:44k 2﹣32km+5m 2=0,解得:m=2k 或,当m=2k 时直线PQ 的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意, 当时直线PQ 的方程为,即,过定点.8.已知椭圆Γ:=1(0<b <2)的左右焦点分别为F 1、F 2,上顶点为B ,O 为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q (1,0),点P 是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B 的直线l 与椭圆Γ相交于M 、N 两点,且直线BM 、BN 的斜率之和为1,证明:直线l 过定点. 【解答】解:(1)椭圆Γ:=1(0<b <2)的a=2,向量与的夹角为,可得|BF 1|=|BF 2|=a==2b=2,即b=1,则椭圆方程为+y 2=1;(2)设P (m ,n ),可得+n 2=1,即n 2=1﹣,•=(1﹣m ,﹣n )•(﹣m ,﹣n )=m 2﹣m+n 2=m 2﹣m+1=(m ﹣)2+,由﹣2≤m ≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6, 则•的范围是[,6];(3)证明:当直线l 的斜率不存在时,设M (x 1,y 1),N(x 2,y 2), 由k BM +k BN =+==1,x 1=x 2,y 1=﹣y 2,得x 1=﹣2,此时M ,N 重合,不符合题意;设不经过点P 的直线l 方程为:y=kx+m ,M (x 1,y 1),N (x 2,y 2), 由得(1+4k 2)x 2+8ktx+4t 2﹣4=0,x 1+x 2=﹣,x 1x 2=,k BM +k BN =+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.( I)求椭圆C的方程;( II)当直线l的斜率为时,求△POQ的面积;( III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I) 根据题意,解得,故椭圆C的方程为.…(5分)( II) 根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)( III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ 的中点.要使四边形OPMQ 为平行四边形,则N 为OM 的中点,所以.要使点M 在椭圆C 上,则,即12k 2+9=0,此方程无解.所以在椭圆C 上不存在点M ,使得四边形OPMQ 为平行四边形.….(14分) 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B 两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD |=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT |是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF 2⊥x 轴,|OD|=1, ∴AB ∥OD,∵O 为F 1F 2为的中点, ∴D 为BF 1的中点, ∵AD ⊥F 1B ,∴|AF 1|=|AB |=2|AF 2|=4|OD |=4, ∴2a=|AF 1|+|AF 2|=4+2=6, ∴a=3, ∴|F 1F 2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y),直线PA1:y﹣=x,令y=0,得xM=;直线PA2:y+=x,令y=0,得xN=;|OM|•|ON|=,∵+=1,∴6﹣y02=x2,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E (,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M,N 使=2,求以F 1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=, ∴2a=|EF 1|+|EF 2|=+=4,∴a=2,∴b 2=a 2﹣c 2=8﹣2=6, ∴椭圆方程为+=1,(Ⅱ)设点P 的坐标为(0,t),当直线MN 的斜率不存在时,可得M,N 分别是椭圆的两端点,可得t=±,当直线MN 的斜率存在时,设直线MN 的方程为y=kx+t ,M(x 1,y 1),N (x 2,y 2), 则由=2可得x 1=﹣2x 2,①,由,消y 可得(3+4k 2)x 2+8ktx+4t 2﹣24=0,由△>0,可得64k 2t 2﹣4(3+4k 2)(4t 2﹣24)>0,整理可得t 2<8k 2+6,由韦达定理可得x 1+x 2=﹣,x 1x 2=,②,由①②,消去x 1,x 2可得k 2=,由,解得<t 2<6, 综上得≤t 2<6,又以F 1P 为直径的圆面积S=π•,∴S 的范围为[,2π).15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A,B 两点,且.(I)求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 【解答】解:(Ⅰ)由题意可得:,∵平行于x 轴的直线交椭圆于A ,B 两点,且.∴,a=,∴c=2,b 2=a 2=﹣c 2=2. ∴椭圆C 的方程为(Ⅱ)设直线l 的方程为y=k (x ﹣2), 代入椭圆C 的方程,得(3k 2+1)x 2﹣12k 2x+12k 2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C 的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k 2+3)x 2+8kx ﹣8=0.其判别式△>0,x 1+x 2=﹣,x 1x 2=﹣.∴•+λ•=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)],=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN|的最大值,并判断此时△OMN 的形状. 【解答】解:(1)设F 1,F 2分别为(﹣c ,0),(c ,0) 可得,b 2=c 2﹣a 2=3a 2,又点(1,)在双曲线C 上,∴,解得,c=1.连接PQ ,∵OF 1=OF 2,OP=OQ ,∴四边形PF 1QF 2的周长为平行四边形. ∴四边形PF 1+PF 2=2>2,∴动点P 的轨迹是以点F 1、F 2分别为左右焦点的椭圆(除左右顶点),∴动点P 的轨迹方程(y ≠0);(2)∵x 12+x 22=2,,∴y 12+y 22=1.∴|OG |•|MN|=•=•=.∴当3﹣2x 1x 2﹣2y 1y 2=3+2x 1x 2+2y 1y 2⇒x 1x 2+y 1y 2=0时取最值, 此时OM ⊥ON ,△OMN 为直角三角形.18.已知抛物线C:y 2=2px (p >0),其内接△ABC 中∠A=90°. (I )当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II)当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 【解答】解:(I )设B (,y 1),C (,y 2),∵AB ⊥AC ,∴+y 1y 2=0,∴y 1y 2=﹣4p 2.∴设BC 的中点M (x ,y ),则=x ,y 1+y 2=2y ,∵y 12+y 22=(y 1+y 2)2﹣2y 1y 2, ∴px=4y 2+8p 2,∴M 的轨迹方程为:y 2=(x ﹣8p ). (II )A (,t 0),设直线BC 的方程为y=kx+b,B (,y 1),C (,y 2),∴k AB ==,k AC ==,∵AB⊥AC,∴•=﹣1.即y1y2+t(y1+y2)+t2+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t2+4p2=0.解得b=﹣t﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t,∴直线BC过定点(2p+,﹣t).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y),则H(﹣x,﹣y),不妨设x<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即kGP =﹣kHP,所以,化简得x0y=﹣6,即,代入,化简得,解得x=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。
圆锥曲线高考压轴题(精心整理)
![圆锥曲线高考压轴题(精心整理)](https://img.taocdn.com/s3/m/bb160a9152d380eb62946dfa.png)
A. 2: BB. 1: 2C. 1:D. 1: 3 园锥曲线单元检测卷迭様题(共10小陋)1. 椭圆ax2+by2=l 与直线y=l-x 交于A 、B 两点,过原点与銭段AB 中点的直线的斜率为车,则?的值为< ) 2 bA.更B.生C.距D.生 2 3 2 27 2. 点F 为椭圆W-J=l (a>b>0)的一个焦点,若棉圆上存在点A 使△AOF 为正三角形,那么棉圆的离心率为() A.亭 B.学 C.早 0. JJ-11 23. 已知P 是以F|, F2为焦点的棉圖(・>b>0)上的一点,若PFilPFj, tanZPF,F 24,则此神圖的码心率为() a l 戸 2A. -B. -C. -D.亞 2 3 3 3 4. 设F2是戏曲线力>°)的左、右两个焦点,若双曲线右支上存在一点P ,使(乔十折)•和=。
(0为坐a 1标原点),且1戶尸11 = 51”2|,则双曲线的离心率为( )A.罕B.「+lC.擊D.网5. 如圍所示,A, B, C 是双曲线打土=1 <*>0, b>0>上的三个点,AB 经过原点0, AC 经过右焦点F,若 \ [ / BF 丄AC 目|BF| = |CF|,则该双曲线的高心率是< ) \mA.罗B. J10C. ID. 3 6. 已知点F“ F2分别是双曲线W~4=l(a>0, d>0)的左、右焦点,ilFifi 垂直于x 轴的宜线与双曲线交于A, B 两点,若 a 2 b 2F2是锐角三角形,则该戏曲线高心率的取值范围是( )A. (1, JI) 7.设双曲线日-4=1仏>0, 6>0)的右焦点为F (c, 0),方程«x 2-bx-c=0的两支根分别为x“ x 2,则P (x o x 2A 2 b 2A.必在Sx 2-y 2=2内 C.必在Sx 2-y 2=Z± 8.已知点A (2, 0),抛物线C: x 2=4y 的焦点为F,射銭FA 与抛物銭C 相交于点II,与其准线相交于点N,则|FM|: |MN|9. 已知点A (-1, 0) , B (1, 0)及抛物线円2x,若抛物銭上点P 淆足iPAdlPBl,则m 的最大値为( )A. 3B. 2C.D. J2 B.(卩,2j) D. (1,1+41) B.必在圖x2+y2=2外D.以上三种情况都有可能10.已知抛物技C:y2=8x与点M (-2, 2> ,过C的焦点,且斜率为k的直线与C交于A, B两点,若島而“,则k=( )A. }B.手C. J2D. 2二.岫空as (共外顎)11.已知F|、F2分别为双曲线c:§-普=1的左、右焦点,点A€C,点H的坐标为(2, 0) , AM为匕Fg2的平分线,则IW12.已知F为双曲线C:己-己=1的左焦点,P, Q为C上的点,若PQ的长等于虚轴长的2倍,点A (5, 0)在线段PQ上,则^PQF9 16的周长为—.13.已知欄国C:^-+4=l(a>^>0)的高心率为尊,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若a2 b2 27? = 3 荷,则.14.设自姓x-3y-・=0 (-ifcO)与双曲线三书=1 <*>0, b>0)的两条渐近线分别交于点A, B.若点P (», 0)満足|PA|=|PB I ,则该双曲线的高心率是_.15.P是双曲线的右支上一点,M、N分别是圆(X-5) 2-y2=4和(x-5) 2_y2=i上的点,则| PM| | PN |的最大值9 16为—.三.《共6小第〉16.已知欄圜亨t/ = i上两个不同的点A, B关于且线尸皿对称. \f>co求实数■的取值范围;<2)求ZiAOB面积的最大值(0为坐标原点〉. -L——x17.如图,椭斷:1*4=1 (a>b>0)经过S A(O,-1),且离心率为手.A2b2 2< I )求棉圖E的方程;(ID经过点<1, 1> ,且斜牵为k的直线与椭應E交于不同的两点P, Q (均羟于点A〉,证明:直线AP 与AQ斜率之和为2.18.平面直甬坐标系xOy中,已知棉圈C; 4+4=1 (a>b>0>的离心率为华,目点(卩,在棉糜上. a1 b1 2 z< I >求棉圆c的方程j(I】)设椭圆E:土+J=1, P为椭圆C上任意一点,过点P的直线y=kx-m交椭圆E与A, B两点,射线P0交椭圆E于点Q. 4/ 4b2(I)求器的值;(D)求△"()面积的最大值.19.如圈,棉圖E:4+4=1(a>b>0)的陶心辜是孚,点P<o, 1)在短轴CD上,且无吨=T a2 b1 2(I)求欄圖E的方程;<D )设。
高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)
![高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)](https://img.taocdn.com/s3/m/c258eb2da66e58fafab069dc5022aaea998f4182.png)
高考数学复习---圆锥曲线压轴解答题常考套路归类真题专项练习题(含答案解析)1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =−+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求||CD 的最小值.【解析】(1)设,sin )H θθ是椭圆上任意一点,(0,1)P ,222221144144||12cos (1sin )1311sin 2sin 11sin 111111PH θθθθθ⎛⎫=+−=−−=−+≤⎭+ ⎪⎝,当且仅当1sin 11θ=−时取等号,故PH(2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++−= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=−⎪+⎪⎪⎨⎪=−⎛⎫⎪+ ⎪⎪⎝⎭⎩, 因为直线111:1y PA y x x −=+与直线132y x =−+交于C , 则111114422(21)1C x x x x y k x ==+−+−,同理可得,222224422(21)1D x x x x y k x ==+−+−.则224||(21)1C D x CD x k x −=+−====≥=当且仅当316k=时取等号,故CD2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x yC a ba b−=>>的右焦点为(2,0)F,渐近线方程为y=.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点()()1122,,,P x y Q x y在C上,且1210,0x x y>>>.过P且斜率为Q M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ AB∥;③||||MA MB=.注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)右焦点为(2,0)F,∴2c=,∵渐近线方程为y=,∴ba=∴b=,∴222244c a b a=+==,∴1a=,∴b=∴C的方程为:2213yx−=;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而12x x=,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为()2y k x=−,则条件①M在AB上,等价于()()2000022y k x ky k x=−⇔=−;两渐近线的方程合并为2230x y−=,联立消去y 并化简整理得:()22223440k x k x k −−+=设()()3344,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===−=−−, 设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y −+−=−+−, 移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤−−++−−+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x −⎡⎤⎡⎤−++−+=⎣⎦⎣⎦−,即()000N N x x k y y −+−=,即200283k x ky k +=−;由题意知直线PM的斜率为直线QM∴由))10102020,y y x x y y x x −=−−=−,∴)121202y y x x x −=+−, 所以直线PQ的斜率)1201212122x x x y y m x x x x +−−==−−,直线)00:PM y x x y =−+,即00y y =, 代入双曲线的方程22330x y −−=,即)3yy +−=中,得:()()00003y y ⎡⎤−=⎣⎦, 解得P的横坐标:100x y ⎛⎫+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎫−=++−=−−⎪−−⎭∴03x m y =, ∴条件②//PQ AB 等价于003m k ky x =⇔=, 综上所述:条件①M 在AB 上,等价于()2002ky k x =−;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=−;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==−−,∴③成立; 选①③推②:由①③解得:20223k x k =−,20263k ky k =−,∴003ky x =,∴②成立; 选②③推①:由②③解得:20223k x k =−,20263k ky k =−,∴02623x k −=−,∴()2002ky k x =−,∴①成立.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ−取得最大值时,求直线AB 的方程.【解析】(1)抛物线的准线为2px =−,当MD 与x 轴垂直时,点M 的横坐标为p , 此时=32pMF p +=,所以2p =, 所以抛物线C 的方程为24y x =;(2)[方法一]:【最优解】直线方程横截式设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my −−=,120,4y y ∆>=−,由斜率公式可得12221212444MN y y k y y y y −==+−,34223434444AB y y k y y y y −==+−, 直线112:2x MD x y y −=⋅+,代入抛物线方程可得()1214280x y y y −−⋅−=, 130,8y y ∆>=−,所以322y y =,同理可得412y y =,所以()34124422MN AB k k y y y y ===++ 又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===, 若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++, 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=, 34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x +. [方法二]:直线方程点斜式 由题可知,直线MN 的斜率存在.设()()()()11223344,,,,,,,M x y N x y A x y B x y ,直线():1MN y k x =− 由 2(1)4y k x y x=−⎧⎨=⎩得:()2222240k x k x k −++=,121x x =,同理,124y y =−.直线MD :11(2)2y y x x =−−,代入抛物线方程可得:134x x =,同理,244x x =. 代入抛物线方程可得:138y y =−,所以322y y =,同理可得412y y =,由斜率公式可得:()()21432143212121.22114AB MN y y y y y y k k x x x x x x −−−====−−⎛⎫− ⎪⎝⎭(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即k =所以当αβ−最大时,AB k =:AB x n +,代入抛物线方程可得240y n −−=,34120,4416y y n y y ∆>=−==−,所以4n =,所以直线:4AB x =+. [方法三]:三点共线设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设(),0P t ,若 P 、M 、N 三点共线,由221212,,44y y t y t PM PN y ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭,所以22122144y y t y t y ⎛⎫⎛⎫−=− ⎪ ⎪⎝⎭⎝⎭,化简得124y y t =-, 反之,若124y y t =-,可得MN 过定点(),0t 因此,由M 、N 、F 三点共线,得124y y =−,由M 、D 、A 三点共线,得138y y =−, 由N 、D 、B 三点共线,得248y y =−,则3412416y y y y ==−,AB 过定点(4,0)(下同方法一)若要使αβ−最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ−−===≤=+++ 当且仅当12k k =即2k =时,等号成立,所以当αβ−最大时,AB k =:4AB x =+. 【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线,MN AB的斜率关系,由基本不等式即可求出直线AB 的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;法二:常规设直线方程点斜式,解题过程同解法一;法三:通过设点由三点共线寻找纵坐标关系,快速找到直线AB 过定点,省去联立过程,也不失为一种简化运算的好方法.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛−−⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P −的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛−−⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B −−,所以2:23+=AB y x ,①若过点(1,2)P −的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,N ,代入AB 方程223y x =−,可得(3,T ,由MT TH =得到(5,H −.求得HN 方程:(22y x =−,过点(0,2)−. ②若过点(1,2)P −的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y −−+=. 联立22(2)0,134kx y k x y −−+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +−+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧−++=⎪+⎪⎨+−⎪=⎪+⎩,且1221224(*)34kx y x y k −+=+联立1,223y y y x =⎧⎪⎨=−⎪⎩可得111113(3,),(36,).2y T y H y x y ++− 可求得此时1222112:()36y y HN y y x x y x x −−=−+−−, 将(0,2)−,代入整理得12121221122()6()3120x x y y x y x y y y +−+++−−=, 将(*)代入,得222241296482448482436480,k k k k k k k +++−−−+−−= 显然成立,综上,可得直线HN 过定点(0,2).−5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,直线l 交C于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【解析】(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a −=>−上,所以224111a a −=−,解得22a =,即双曲线22:12x C y −=.易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y , 联立2212y kx m x y =+⎧⎪⎨−=⎪⎩可得,()222124220k x mkx m −−−−=, 所以,2121222422,2121mk m x x x x k k ++=−=−−,()()222222Δ16422210120m k m k m k =−+−>⇒−+>且≠k .所以由0AP AQk k +=可得,212111022y y x x −−+=−−, 即()()()()122121210x kx m x kx m −+−+−+−=, 即()()()1212212410kx x m k x x m +−−+−−=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+−−−−−= ⎪−−⎝⎭, 化简得,()2844410k k m k +−++=,即()()1210k k m +−+=,所以1k =−或12m k =−,当12m k =−时,直线():21l y kx m k x =+=−+过点()2,1A ,与题意不符,舍去, 故1k =−.(2)[方法一]:【最优解】常规转化不妨设直线,PA AQ 的倾斜角为π,2αβαβ⎛⎫<< ⎪⎝⎭,因为0AP AQ k k +=,所以παβ+=,由(1)知,212220x x m =+>,当,A B 均在双曲线左支时,2PAQ α∠=,所以tan 2α=2tan 0αα+,解得tan α=(负值舍去) 此时P A 与双曲线的渐近线平行,与双曲线左支无交点,舍去; 当,A B 均在双曲线右支时,因为tan PAQ ∠=()tan βα−=tan 2α=−2tan 0αα−,解得tan α,于是,直线):21PA y x =−+,直线):21QA y x =−+,联立)222112y x x y ⎧=−+⎪⎨−=⎪⎩可得,)23241002x x ++−,因为方程有一个根为2,所以P x =,P y=,同理可得,103Q x +=,Q y=53−. 所以5:03PQ x y +−=,163PQ =,点A 到直线PQ的距离d = 故PAQ △的面积为11623⨯=. [方法二]:设直线AP 的倾斜角为α,π02α⎛⎫<< ⎪⎝⎭,由tan PAQ ∠=tan 2PAQ ∠由2PAQ απ+∠=,得tan AP k α=1112y x −−,联立1112y x −=−221112x y −=得1x1y ,同理,2x 2y =12203x x +=,12689x x =而1||2|AP x −,2||2|AQ x −,由tan PAQ ∠=sin PAQ ∠故12121||||sin 2()4|2PAQSAP AQ PAQ x x x x =∠=−++= 【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线,PA PB 的斜率,从而联立求出点,P Q 坐标,进而求出三角形面积,思路清晰直接,是该题的通性通法,也是最优解;法二:前面解答与法一求解点,P Q 坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.。
圆锥曲线压轴小题(含答案 )
![圆锥曲线压轴小题(含答案 )](https://img.taocdn.com/s3/m/8b9c5625964bcf84b8d57b0a.png)
圆锥曲线压轴小题(含答案)1. 已知点 O 为双曲线 C 的对称中心,过点 O 的两条直线 l 1 与 l 2 的夹角为 60∘,直线 l 1 与双曲线 C 相交于点 A 1,B 1,直线 l 2 与双曲线 C 相交于点 A 2,B 2,若使 ∣A 1B 1∣=∣A 2B 2∣ 成立的直线 l 1 与 l 2 有且只有一对,则双曲线 C 离心率的取值范围是 ( )A. (2√33,2] B. [2√33,2) C. (2√33,+∞) D. [2√33,+∞)2. 已知椭圆 E:x 25+y 24=1 的一个顶点为 C (0,−2),直线 l 与椭圆 E交于 A ,B 两点,若 E 的左焦点为 △ABC 的重心,则直线 l 的方程为 ( )A. 6x −5y −14=0B. 6x −5y +14=0C. 6x +5y +14=0D. 6x +5y −14=03. 设双曲线 x 2a2−y 2b2=1(a >0,b >0) 的右焦点为 F ,过点 F 作与 x 轴垂直的直线 l 交两渐近线于 A ,B 两点,且与双曲线在第一象限的交点为 P ,设 O 为坐标原点,若 OP ⃗⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ (λ,μ∈R ),λ⋅μ=316,则双曲线的离心率为 ( )A. 2√33 B. 3√55 C. 3√22 D. 984. 双曲线 x 2a2−y 2b2=1 的左,右焦点分别为 F 1,F 2,过 F 1 作圆 x 2+y 2=a 2 的切线交双曲线的左,右支分别于点 B ,C ,且 ∣BC ∣=∣CF 2∣,则双曲线的渐近线方程为 ( )A. y =±3xB. y =±2√2xC. y =±(√3+1)xD. y =±(√3−1)x5. 已知“若点 P (x 0,y 0) 在双曲线 C:x 2a2−y 2b2=1(a >0,b >0) 上,则C 在点 P 处的切线方程为 C:xx 0a 2−yy 0b 2=1”,现已知双曲线 C:x 24−y212=1和点Q(1,t)(t≠±√3),过点Q作双曲线C的两条切线,切点分别为M,N,则直线MN过定点( )A. (0,2√3)B. (0,−2√3)C. (4,0)D. (−4,0)6. 设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,∣MF∣= 5,若以MF为直径的圆过点(0,2),则C的方程为( )A. y2=4x或y2=8xB. y2=2x或y2=8xC. y2=4x或y2=16xD. y2=2x或y2=16x7. 设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60∘的直线A1B1和A2B2,使∣A1B1∣=∣A2B2∣,其中A1,B1和A2,B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( )A. (2√33,2] B. [2√33,2) C. (2√33,+∞) D. [2√33,+∞)8. 如图,双曲线x 2a2−y2b2=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点P是双曲线右支上一点,PF1交左支于点Q,交渐近线y=bax于点R.M是PQ的中点,若RF2⊥PF1,且AM⊥PF1,则双曲线的离心率是( )A. √2B. √3C. 2D. √59. 已知m,n,s,t∈R∗,m+n=3,ms +nt=1,其中m,n是常数且m<n,若s+t的最小值是3+2√2,满足条件的点(m,n)是椭圆x2 4+y216=1一弦的中点,则此弦所在的直线方程为( )A. x−2y+3=0B. 4x−2y−3=0C. x+y−3=0D. 2x+y−4=010. 设双曲线x 2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2=( )A. 1+2√2B. 4−2√2C. 5−2√2D. 3+2√211. 已知抛物线y2=2px(p>0)的焦点F恰为双曲线x2a2−y2b2=1(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为( )A. √2B. √2+1C. 2D. 2+√212. 如图,斜线段AB与平面α所成的角为60∘,B为斜足,平面α上的动点P满足∠PAB=30∘,则点P的轨迹是( )A. 直线B. 抛物线C. 椭圆D. 双曲线的一支13. 已知定点M(1,54),N(−4,−54),给出下列曲线方程:① 4x+2y−1=0;② x2+y2=3;③ x22+y2=1;④ x22−y2=1.在曲线上存在点P满足∣MP∣=∣NP∣的所有曲线方程是( )A. ①③B. ②④C. ①②③D. ②③④14. 双曲线x 2a2−y2b2=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线上一点,满足∣PF2∣=∣F1F2∣,直线PF1与圆x2+y2=a2相切,则双曲线的离心率为( )A. 54B. √3 C. 2√33D. 5315. 过双曲线x 2a2−y2b2=1(a>0,b>0)的左焦点F1,作圆x2+y2=a2的切线交双曲线右支于点P,切点为T,PF1的中点M在第一象限,则以下结论正确的是( )A. b−a=∣MO∣−∣MT∣B. b−a>∣MO∣−∣MT∣C. b−a<∣MO∣−∣MT∣D. b−a=∣MO∣+∣MT∣16. 在椭圆x 216+y29=1内,通过点M(1,1)且被这点平分的弦所在的直线方程为( )A. 9x−16y+7=0B. 16x+9y−25=0C. 9x+16y−25=0D. 16x−9y−7=017. 已知椭圆C1:x2m2+y2=1(m>1)与双曲线C2:x2n2−y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( ) A. m>n且e1e2>1 B. m>n且e1e2<1 C. m<n且e1e2>1 D. m<n且e1e2<118. 已知点P为双曲线x 2a2−y2b2=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左右焦点,且∣F1F2∣=b2a,I为三角形PF1F2的内心,若S△IPF1=S△IPF2+λS△IF1F2成立,则λ的值为( )A. 1+2√22B. 2√3−1C. √2+1D. √2−119. 已知F1,F2为双曲线C:x2−y2=1的左、右焦点,点P在C上,∠F1PF2=60∘,则点P到x轴的距离为( )A. √32B. √62C. √3D. √620. 直线4kx−4y−k=0与抛物线y2=x交于A,B两点,若∣AB∣=4,则弦AB的中点到直线x+12=0的距离等于( )A. 74B. 2 C. 94D. 421. 设A为双曲线x 216−y29=1的右支上一动点,F为该双曲线的右焦点,连AF交双曲线于点B,过点B作直线BC垂直于双曲线的右准线,垂足为C,则直线AC必过定点( )A. (4110,0) B. (185,0) C. (4,0) D. (225,0)22. 已知抛物线y2=2px(p>0),△ABC的三个顶点都在抛物线上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,Q,且M,N,Q的纵坐标分别为y1,y2,y3.若直线AB,BC,AC的斜率之和为−1,则1y1+1y2+1y3的值为( )A. −12p B. −1pC. 1pD. 12p23. 设点P(x,y)是曲线a∣x∣+b∣y∣=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足√x2+y2+2x+1+√A2+y2−2x+1≤2√2,则√2a+b取值范围为( )A. (0,2]B. [1,2]C. [1,+∞)D. [2,+∞)24. 若直线mx+ny=4和⊙O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆x29+y24=1的交点个数为( )A. 至多1个B. 2个C. 1个D. 0个25. 平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹是( )A. 一条直线B. 一个圆C. 一个椭圆D. 双曲线的一支26. 直线y=x+3与曲线y 29−x∣x∣4=1( )A. 没有交点B. 只有一个交点C. 有两个交点D. 有三个交点27. 直线y=2k与曲线9k2x2+y2=18k2∣x∣(k∈R,且k≠0)的公共点的个数为( )A. 1B. 2C. 3D. 428. 已知双曲线C:x 2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作平行于C的渐近线的直线交C于点P.若PF1⊥PF2,则C的离心率为( )A. √2B. √3C. 2D. √529. 已知椭圆x 24+y2b2=1(0<b<2),左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若∣BF2∣+∣AF2∣的最大值为5,则b的值是( )A. 1B. √2C. 32D. √330. 若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的"自公切线".下列方程:① x2−y2=1,② y= x2−∣x∣,③ y=3sinx+4cosx,④ ∣x∣+1=√4−y2,对应的曲线中存在"自公切线"的有( )A. ①③B. ①④C. ②③D. ②④31. 设直线l与抛物线y2=4x相交于A,B两点,与圆(x−5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )A. (1,3)B. (1,4)C. (2,3)D. (2,4)32. 椭圆a2x2+y2=a2(0<a<1)上离顶点A(0,a)距离最大的点恰好是另一个顶点Aʹ(0,−a),则a的取值范围是( )A. (√22,1) B. [√22,1) C. (0,√22) D. (0,√22]33. 已知集合 M ={(x,y )∣x 2+y 2≤1},若实数 λ,μ 满足:对任意的(x,y )∈M ,都有 (λx,μy )∈M ,则称 (λ,μ) 是集合 M 的“和谐实数对”.则以下集合中,存在“和谐实数对”的是 ( )A. {(λ,μ)∣λ+μ=4}B. {(λ,μ)∣λ2+μ2=4}C. {(λ,μ)∣λ2−4μ=4}D. {(λ,μ)∣λ2−μ2=4}34. 已知两点 M (1,54) 、 N (−4,−54),给出下列曲线方程:① 4x +2y −1=0;② x 2+y 2=3;③x 22+y 2=1;④x 22−y 2=1.曲线上存在点 P 满足 ∣MP ∣=∣NP ∣ 的所有曲线方程是 ( ) A. ①②③ B. ②④ C. ①③ D. ②③④35. 过点 (√2,0) 引直线 l 与曲线 y =√1−x 2 相交于 A ,B 两点,O为坐标原点,当 △AOB 的面积取最大值时,直线 l 的斜率等于 ( )A. √33 B. −√33 C. ±√33D. −√336. 如图,一条直线与抛物线 y 2=2px (p >0) 交于 A ,B 两点,且OA ⊥OB ,OD ⊥AB 于 D ,若点 D 的坐标为 (2,1),则抛物线方程为 ( )A. y 2=54xB. y 2=52x C. y 2=5x D. y 2=10x37. 已知 F 是抛物线 y 2=x 的焦点,点 A,B 在该抛物线上且位于 x轴的两侧,OA ⃗⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =2(其中 O 为坐标原点),则 △ABO 与 △AFO 面积之和的最小值是 ( )A. 2B. 3C.17√28D. √1038. 已知点 C 在以 O 为圆心的圆弧 A B 上运动(含端点).OA⃗⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =0,OC⃗⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗⃗ +2yOB ⃗⃗⃗⃗⃗⃗ (x,y ∈R ),则 x 2+y 的取值范围是 ( )A. [−√22,√22]B. [12,√22]C. [−12,12]D. [−√22,12]39. 已知抛物线 y 2=4x 的焦点为 F ,点 P (x,y ) 为该抛物线上的动点,若点 A (−1,0),则 |PF ||PA | 的最小值为 ( )A. 12 B. √22 C. √32 D. 2√2340. P 是抛物线 y =x 2 上任意一点,则当 P 和直线 x +y +2=0 上的点距离最小时,P 与该抛物线的准线距离是 ( )A. 19 B. 12C. 1D. 241. 已知直线 l:y =k (x −2)(k >0) 与抛物线 C:y 2=8x 交于 A ,B两点,F 为抛物线 C 的焦点,若 ∣AF ∣=2∣BF ∣,则 k 的值是 ( )A. 13 B. 2√23 C. 2√2 D. √2442. 如图所示是一个正方体的表面展开图,A,B,C 均为棱的中点,D 是顶点,则在正方体中,异面直线 AB 和 CD 的夹角的余弦值为 ( )A. √25B. √35C.√105D. √5543. 如图,M ,N 是焦点为 F 的抛物线 y 2=4x 上的两个不同的点,且线段 MN 的中点 A 的横坐标为 3,直线 MN 与 x 轴交于 B 点,则点 B 的横坐标的取值范围是 ( )A. (−3,3]B. (−∞,3]C. (−6,−3)D. (−6,−3)∪(−3,3]44. 已知椭圆 M:x 24+y 2=1 的上、下顶点为 A ,B ,过点 P (0,2) 的直线 l 与椭圆 M 相交于两个不同的点 C ,D (C 在线段 PD 之间),则 OC⃗⃗⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ 的取值范围为 ( ) A. (−1,16)B. [−1,16]C. (−1,134) D. [−1,134)45. 若抛物线 y =4x 2 的焦点是 F ,准线是 l ,则过点 F 和点 M (4,4)且与准线 l 相切的圆有 ( )A. 0 个B. 1 个C. 2 个D. 4 个46. 如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线 AC ,BD ,设内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),若直线 AC与 BD 的斜率之积为 −14,则椭圆的离心率为 ( )A. 12B. √22C. √32D. 3447. 已知P1(x1,y1)是直线l:f(x,y)=0上的一点,P2(x2,y2)是直线l外一点,则方程f(x,y)+f(x1,y1)+f(x2,y2)=0表示的直线与直线l的位置关系是( )A. 平行B. 重合C. 垂直D. 斜交48. 已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为( )A. 4B. 3C. 2D. 149. 已知双曲线x 2a2−y2b2=1(a>0,b>0)上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=−12,则m的值为( )A. 34B. 32C. 54D. 5250. 已知抛物线M:y2=4x,圆N:(x−1)2+y2=r2(r>0),过点(1,0)的直线l与圆N交于C,D两点,交抛物线M于A,B两点,则满足∣AC∣=∣BD∣的直线l只有三条的必要条件是( )A. r∈(0,1]B. r∈(1,2]C. r∈(32,4) D. r∈[32,+∞)51. 已知P为抛物线y=12x2上的动点,点P在x轴上的射影为Q,点A的坐标是(6,172),则∣PA∣+∣PQ∣的最小值是( )A. 8B. 192C. 10 D. 21252. 已知双曲线x 2a2−y2b2=1(a>0,b>0)的左焦点为F1,左、右顶点分别为A1,A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为( )A. 相切B. 相交C. 相离D. 以上情况都有可能53. 已知 F 1,F 2 分别是椭圆 x 2A+y 23=1 的左,右焦点,A 是椭圆上一动点,圆 C 与 F 1A 的延长线,F 1F 2 的延长线以及线段 AF 2 相切,若 M (t,0) 为其中一个切点,则 ( )A. t =2B. t >2C. t <2D. t 与 2 的大小关系不确定54. 已知点 A ,B 是双曲线 x 2−y 22=1 上的两点,O 为坐标原点,且满足 OA ⃗⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =0,则点 O 到直线 AB 的距离等于 ( ) A. √2 B. √3 C. 2 D. 2√255. 已知椭圆 x 24+y 2b2=1(0<b <2),左右焦点分别为 F 1,F 2,过 F 1的直线 l 交椭圆于 A ,B 两点,若 ∣∣BF 2⃗⃗⃗⃗⃗⃗⃗⃗ ∣∣+∣∣AF 2⃗⃗⃗⃗⃗⃗⃗⃗ ∣∣ 的最大值为 5,则 b 的值是 ( )A. 1B. √2C. 32D. √356. 抛物线 y 2=2px (p >0) 的准线交 x 轴于点 C ,焦点为 F ,A ,B是抛物线的两点.已知 A ,B ,C 三点共线,且 ∣AF ∣,∣AB ∣,∣BF ∣ 成等差数列,直线 AB 的斜率为 k ,则有 ( ) A. k 2=14B. k A =√34C. k 2=12D. k 2=√3257. 已知椭圆 C:x 2a2+y 2b 2=1(a >b >0) 的离心率为 √32,过右焦点 F 且斜率为 k (k >0) 的直线与 C 相交于 A 、 B 两点.若 AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则 k = ( ) A. 1B. √2C. √3D. 258. 设直线 l:2x +y +2=0 关于原点对称的直线为 l ′,若 lʹ 与椭圆 x 2+y 24=1 的交点为 A 、 B ,点 P 为椭圆上的动点,则使 △PAB 的面积为12的点 P 的个数为 ( )A. 1B. 2C. 3D. 459. 已知抛物线y2=−x与直线y=k(x+1)相交于A、B两点,则△AOB的形状是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 钝角三角形60. 已知点F为抛物线y2=−8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且∣AF∣=4,则∣PA∣+∣PO∣的最小值为( )A. 6B. 2+4√2C. 2√13D. 4+2√561. 椭圆x 225+y216=1的左、右焦点分别为F1、F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则∣y2−y1∣的值是( )A. √53B. 103C. 203D. 5362. 点P在直线l:y=x−1上,若存在过P的直线交抛物线y=x2于A,B两点,且∣PA∣=∣AB∣,则称点P为“ A点”,那么下列结论中正确的是( )A. 直线l上的所有点都不是“ A点”B. 直线l上仅有有限个点是“ A点”C. 直线l上的所有点都是“ A点”D. 直线l上有无穷多个点(点不是所有的点)是“ A点”63. 过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则1p +1q等于( )A. 2aB. 12a C. 4a D. 4a64. 已知椭圆C:x 22+y2=1,点M1,M2,⋯,M5为其长轴AB的6等分点,分别过这五点作斜率为k(k≠0)的一组平行线,交椭圆C于P1,P2,⋯,P10,则10条直线AP1,AP2,⋯,AP10的斜率乘积为( )A. 14B. 116C. −18D. −13265. 椭圆4x2+9y2=144内有一点P(3,2),过点P的弦恰好以P为中点,那么这条弦所在直线的方程为( )A. 3x+2y−12=0B. 2x+3y−12=0C. 4x+9y−144=0D. 9x+4y−32=066. 如图,等腰梯形ABCD中,AB∥CD且AB=2AD,设∠DAB=θ,θ∈(0,π2),以A、B为焦点,且过点D的双曲线的离心率为e1;以C、D为焦点,且过点A的椭圆的离心率为e2,则( )A. 当θ增大时,e1增大,e1e2为定值B. 当θ增大时,e1减小,e1e2为定值C. 当θ增大时,e1增大,e1e2增大D. 当θ增大时,e1减小,e1e2减小67. 已知a>0,过M(a,0)任作一条直线交抛物线y2=2px(p>0)于P,Q两点,若1∣MP∣2+1∣MQ∣2为定值,则a=( )A. √2pB. 2pC. p2D. p68. 在抛物线y=x2+ax−5(a≠0)上取横坐标为x1=−4,x2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为( )A. (−2,−9)B. (0,−5)C. (2,−9)D. (1,−6)69. 椭圆C的两个焦点分别为F1(−1,0)和F2(1,0),若该椭圆C与直线x+y−3=0有公共点,则其离心率的最大值为( )A. √612B. √66C. √55D. √51070. 已知抛物线y=−x2+3上存在关于直线x+y=0对称的相异两点A、B,则∣AB∣等于( )A. 3B. 4C. 3√2D. 4√271. 记椭圆x 24+ny24n+1=1围成的区域(含边界)为Ωn(n=1,2,⋯),当点(x,y)分别在Ω1,Ω2,⋯上时,x+y的最大值分别是M1,M2,⋯,则limn→∞M n=( )A. 0B. 14C. 2D. 2√272. 已知曲线f(x)=x3+x2+x+3在x=−1处的切线恰好与抛物线y=2px2相切,则过该抛物线焦点且垂直于对称轴的直线与抛物线相交所得的线段长为( )A. 18B. 14C. 8D. 473. 已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且∣AK∣=√2∣AF∣,则△AFK的面积为( )A. 4B. 8C. 16D. 3274. 已知直线x+2y−3=0与圆x2+y2+x−6y+m=0相交于P,Q两点,O为坐标原点,若OP⊥OQ,则m等于( )A. 3B. −3C. 1D. −175. 中心在原点,焦点坐标为(0,±5√2)的椭圆被直线3x−y−2=0截得的弦的中点的横坐标为12,则椭圆方程为( )A. 2x 225+2y275=1 B. 2x275+2y225=1 C. x225+y275=1 D. x275+y225=176. 若方程√x2+1=a(x−1)恰有两个不同的实根,则实数a的取值范围是( )A. −1<a<−√22B. a<−√22或a>√22C. −1<a<−√22或√22<a<1 D. a<−1或−1<a<−√2277. 已知直线 y =k (x +2) (k >0) 与抛物线 C :y 2=8x 相交 A 、B 两点,F 为 C 的焦点.若 ∣FA ∣=2∣FB ∣,则 k = ( ) A. 13B. √23C. 23D. 2√2378. 已知抛物线 M :y 2=4x ,圆 N :(x −1)2+y 2=r 2(其中 r 为常数,r >0),过点 (1,0) 的直线 l 交圆 N 于 C 、 D 两点,交抛物线 M 于 A 、 B 两点,且满足 ∣AC∣=∣BD∣ 的直线 l 只有三条的必要条件是 ( ) A. r ∈(0,1]B. r ∈(1,2]C. r ∈(32,4)D. r ∈[32,+∞)79. 已知 O 是平面上的一个定点,A,B,C 是平面上不共线的三个点,动点 P满足 OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗∣∣AB ⃗⃗⃗⃗⃗ ∣∣+AC⃗⃗⃗⃗⃗∣∣AC ⃗⃗⃗⃗⃗ ∣∣),λ∈(0,+∞),则点 P 的轨迹一定通过△ABC 的 ( )A. 外心B. 内心C. 重心D. 垂心80. 点 P 在直线 l:y =x −1 上,若存在过 P 的直线交抛物线 y =x 2 于 A ,B 两点,且 ∣PA∣=∣AB∣,则称点 P 为" A 点",那么下列结论中正确的是 ( ) A. 直线 l 上的所有点都是" A 点" B. 直线 l 上仅有有限个点是" A 点" C. 直线 l 上的所有点都不是" A 点"D. 直线 l 上有无穷多个点(但不是所有的点)是" A 点"答案第一部分1. A2. B 【解析】设 A (x 1,y 1),B (x 2,y 2),椭圆x 25+x 24=1 的左焦点为(−1,0),因为点 C (0,−2),且椭圆左焦点 F 1 恰为 △ABC 的重心,所以x 1+x 2+03=−1,y 1+y 2−23=0,所以 x 1+x 2=−3,y 1+y 2=2, ⋯⋯① 因为x 125+y 124=1,x 225+y 224=1,所以两式相减得:(x 1+x 2)(x 1−x 2)5+(y 1+y 2)(y 1−y 2)4=0,将 ① 代入得:y 1−y 2x 1−x 2=65,即直线 l 的斜率为 k =y 1−y 2x 1−x 2=65,因为直线 l 过AB 中点 (−32,1),所以直线 l 的方程为 y −1=65(x +32),故答案为 6x −5y +14=0.3. A 【解析】双曲线的渐近线为:y =±ba x ,设焦点 F (c,0),则A (c,bc a ),B (c,−bca ),P (c,b 2a ), 因为 OP⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗ , 所以 (c,b 2a )=((λ+μ)c,(λ−μ)bca ), 所以 λ+μ=1,λ−μ=bc ,解得:λ=c+b 2c ,μ=c−b 2c , 又由 λμ=316,得:c 2−b 24c 2=316,解得:a 2c 2=34,所以,e =c a=2√33.4. C5. C【解析】设 M (x 1,y 1),N (x 2,y 2),则切点分别为 M ,N 的切线方程为x 1x 4−y 1y 12=1,x 2x 4−y 2y 12=1.因为点 Q (1,t ) 在两条切线上, 所以x 14−y 1t 12=1,x 24−y 2t 12=1.所以M,N两点均在直线x4−ty12=1上,即直线MN的方程为x4−ty12=1,显然直线过点(4,0).6. C7. A 【解析】先考虑焦点在x轴上的双曲线,由双曲线的对称性知,满足题意的这一对直线也关于x轴(或y轴)对称,又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围是大于30∘且小于等于60∘,即tan30∘<ba ≤tan60∘,所以13<b2a2≤3.又e2=(ca)2=c2a2=1+b2a2,所以43<e2≤4,解得2√33<e≤2.焦点在y轴上的双曲线与焦点在x轴上的双曲线的开口宽窄要求完全相同,所以离心率的范围一致.8. C 【解析】设PF1的方程为y=k(x+c),k>0,与渐近线方程y=ba x联立,可得R(ackb−ka,bckb−ka),把直线y=k(x+c)代入双曲线x 2a2−y2b2=1,可得(b2−a2k2)x2−2ca2k2x−a2c2k2−a2b2=0,设P(x1,y1),Q(x2,y2),可得x1+x2=2ca2k2b2−a2k2,即有中点M(ca 2k2b2−a2k2,cb2kb2−a2k2),由A(a,0),F2(c,0),RF2⊥PF1,可得k RF2=bck2ack−bc=−1k,即有bk2+2ak−b=0,解得k=c−ab(负的舍去),由AM⊥PF1,可得k AM=cb2kca2k2−ab2+a3k2=−1k,即为(c3+a3)k2=a(c2−a2),即有(c3+a3)(c−a)2=ab2(c2−a2)=a(c2−a2)2,化为c=2a,即e=ca=2.9. D 【解析】因为 m ,n ,s ,t 为正数,m +n =3,m s+nt=1,s +t 的最小值是 3+2√2,所以 (s +t )(ms +nt ) 的最小值是 3+2√2,所以 (s +t )(ms +nt )=m +n +mt s+ns t≥m +n +2√mn ,满足mt s=ns t时取最小值,此时最小值为 m +n +2√mn =3+2√2,得:mn =2,又:m +n =3,所以,m =1,n =2. 设以 (1,2) 为中点的弦交椭圆x 24+y 216=1 于 A (x 1,y 1),B (x 2,y 2),由中点坐标公式知 x 1+x 2=2,y 1+y 2=4,把 A (x 1,y 1),B (x 2,y 2) 分别代入 4x 2+y 2=16,得 {4x 12+y 12=16,4x 22+y 22=16,两式相减得 2(x 1−x 2)+(y 1−y 2)=0,所以 k =y 2−y 1x 2−x 2=−2.所以此弦所在的直线方程为 y −2=−2(x −1),即 2x +y −4=0.10. C【解析】如图,设 ∣AF 1∣=m ,则 ∣BF 1∣=√2m ,∣AF 2∣=m −2a ,∣BF 2∣=√2m −2a ,所以 ∣AB ∣=∣AF 2∣+∣BF 2∣=m −2a +√2m −2a =m ,得 m =2√2a ,又由 ∣AF 1∣2+∣AF 2∣2=∣F 1F 2∣2,可得 m 2+(m −2a )2=4c 2,即得 (20−8√2)a 2=4c 2,所以 e 2=c 2a 2=5−2√2.11. B 【解析】根据题意 p 2=c ,设抛物线与双曲线的一个交点为 A ,则有 A (c,2c ),因为点 A 在双曲线上,所以有 c 2a 2−4c 2b 2=1,整理得 e 2−2e −1=0,所以双曲线的离心率 e =1+√2.12. C 13. D 【解析】提示:对于①,可得 MN 的中点为 O (−32,0) 不在直线l:4x +2y −1=0 上,k MN =12,又直线 4x +2y −1=0 的斜率为 k l =−2,即 k l k MN =−1,所以线段 MN 的中垂线 y =−2x −3 不与 4x +2y −1=0 相交,所以①不成立;对于②,因为 (−32)2+02<3,所以 MN 的中点为 O (−32,0) 在圆 x 2+y 2=3 的内部,所以线段 MN 的中垂线与圆相交,所以②正确;对于③和④,只需联立线段 MN 的中垂线 y =−2x −3 与曲线方程,判断判别式即可,可得③和④都成立.14. D 【解析】设 PF 1 与圆相切于点 M ,因为 ∣PF 2∣=∣F 1F 2∣,所以 △PF 1F 2 为等腰三角形,设 N 为 PF 1 中点,则 F 2N ⊥PF 1,又 OM ⊥PF 1,O 为 F 1F 2 中点,所以 ∣F 1M ∣=12∣F 1N ∣=14∣PF 1∣,又因为在直角三角形 F 1MO 中,∣F 1M ∣2=∣F 1O ∣2−a 2=c 2−a 2=b 2,所以 ∣F 1M ∣=b =14∣PF 1∣ ⋯⋯①,又 ∣PF 1∣=∣PF 2∣+2a =2c +2a ⋯⋯②,c 2=a 2+b 2 ⋯⋯③,由①②③解得 e =c a=53.15. A【解析】连 OT ,则 OT ⊥F 1T ,在直角三角形 OTF 1 中,∣F 1T ∣=√∣OF 1∣2−∣OT∣2=b .连 PF 2,M 为线段 F 1P 的中点,O 为坐标原点,所以 ∣OM∣=12∣PF 2∣,所以∣MO∣−∣MT∣=12∣PF 2∣−(12∣PF 1∣−∣F 1T ∣)=12(∣PF 2∣−∣PF 1∣)+b =12×(−2a )+b =b −a.16. C 【解析】设以点 M (1,1) 为中点的弦两端点为 P 1(x 1,y 1),P 2(x 2,y 2), 则 x 1+x 2=2,y 1+y 2=2. 又 x 1216+y 129=1, ⋯⋯①x 2216+y 229=1, ⋯⋯②①−② 整理得:y 1−y 2x 1−x 2=−916,所以以点 M (1,1) 为中点的弦所在直线的斜率 k =−916. 所以中点弦所在直线方程为 y −1=−916(x −1),即 9x +16y −25=0.17. A 【解析】由题意知 m 2−1=n 2+1,即 m 2=n 2+2, (e 1e 2)2=m 2−1m 2⋅n 2+1n 2=(1−1m 2)(1+1n 2), 代入 m 2=n 2+2,得 m >n ,(e 1e 2)2>1. 18. D 19. B 20. C【解析】直线 4kx −4y −k =0,即 y =k (x −14),即直线 4kx −4y −k =0 过抛物线 y 2=x 的焦点 (14,0),设A (x 1,y 1),B (x 2,y 2),则 ∣AB ∣=x 1+x 2+12=4,故 x 1+x 2=72,则弦 AB 的中点的横坐标是 74,弦 AB 的中点到直线 x +12=0 的距离是 74+12=94.21. A 【解析】设 AB:x =my +5,与双曲线方程联立得 (9m 2−16)y 2+90my +81=0,设 A (x 1,y 1),B (x 2,y 2),则 y 1+y 2=−90m 9m 2−16,y 1y 2=819m 2−16.右准线方程为 x =165,所以 C (165,y 2),则 AC:y −y 2=y 2−y 1165−x 1(x −165),令y =0,化简可得 x =4110.特殊法:设 A (5,94),则 B (5,−94),C (165,−94).故 k AC =94−(−94)5−165=52,直线AC 为 y −94= 52(x −5),即:10x −4y −41=0,与 x 轴交点为 (4110,0),可得答案.22. B 23. D 【解析】因为 √x 2+y 2+2x +1+√x 2+y 2−2x +1=√(x +1)2+y 2+√(x −1)2+y 2≤2√2,所以一动点 P (x,y ) 的轨迹是以点 (−1,0) 和点 (1,0) 为焦点椭圆及其内部,椭圆的方程为x 22+y 2=1,又曲线a ∣x ∣+b ∣y ∣=1 表示的区域为一平行四边形,因为曲线 a∣x∣+b ∣y ∣=1(a ≥0,b ≥0) 上任意一点,其坐标 (x,y ) 均满足 √x 2+y 2+2x +1+√x 2+y 2−2x +1≤2√2,即平行四边形在椭圆的内部,所以有 {1b ≤1,1a≤√2解得 {b ≥1,√2a ≥1, 所以 √2a +b ≥2.24. B 【解析】由直线与圆没有交点可得 ∣−4∣√m 2−n 2>2,即 m 2+n 2<4,n 2<4−m 2, 所以n 29+m 29+4−m 24=1−5m 236<1,所以点 (m,n ) 在椭圆x 29+y 24=1 的内部,故经过点 (m,n ) 的直线与椭圆由 2 个交点. 25. A26. D 【解析】当 x >0 时,曲线为 y 29−x 24=1,将直线 y =x +3 代入曲线方程得 x =0(舍)或 x =245,故此时有一个交点;当 x ≤0 时,曲线为y 29+x 24=1,将直线 y =x +3 代入曲线方程得 x =0 或x =−2413,故此时有两个交点. 因此共有 3 个交点.27. D 【解析】将 y =2k 代入 9k 2x 2+y 2=18k 2∣x∣ 得:9k 2x 2+4k 2=18k 2∣x∣⇒9∣x∣2−18∣x∣+4=0,显然该关于∣x∣的方程有两正解,即x有四解,所以交点有4个.28. D 【解析】设点P坐标为(x P,y P),由已知,直线PF2的方程为y=b a (x−c),代入双曲线方程得x P=a2+c22c,y P=−b32ac,因为PF1⊥PF2,所以k PF1⋅k PF2=−1,即−b32aca2+c22c+c⋅ba=−1,化简得b4=a4+3a2c2,即(c2−a2)2=a4+3a2c2,即c2=5a2,所以e2=5,e=√5.29. D 【解析】由椭圆的方程可知a=2,由椭圆的定义可知,∣AF2∣+∣BF2∣+∣AB∣=4a=8,所以∣AB∣=8−(∣AF2∣+∣BF2∣)≥3,由椭圆的性质可知过椭圆焦点的弦中,通径最短,则2b 2a=3.所以b2=3,即b=√3.30. C【解析】①中x2−y2=1是一个等轴双曲线,它不存在"自公切线";②如图所示,曲线在点(−12,−14)和点(12,−14)处的切线重合;③y=3sinx+4cosx=5sin(x+φ)(tanφ=43).如图,在所有的最高点处的切线重合,所以③存在"自公切线";④中曲线如图所示,不存在"自公切线".31. D 【解析】设 A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则 {y 12=4x 1,y 22=4x 2,所以(y 1+y 2)(y 1−y 2)=4(x 1−x 2)⋯∗.①当 x 1=x 2,即直线 l 斜率不存在时,此时一定存在 2 条满足题意的直线,如图:②当 x 1≠x 2 时,设直线 l 的斜率为 k ,∗ 式化为 2y 0⋅y 1−y 2x 1−x 2=4,即 ky 0=2.由直线与圆相切得y 0−0x 0−5⋅k =−1,即 ky 0=5−x 0=2,所以 x 0=3,即点M 在直线 x =3 上.而 x =3 与抛物线交点为 N(3,±2√3),与 x 轴的交点为 P (3,0), 圆心到 N 、 P 的距离分别为 4、2.当 r =4 时,点 N 在圆上,没有对应的直线满足要求;当 r =2 时,点 M 在 x 轴上,没有对应的直线满足要求;当 2<r <4 时,过点 M 作圆的切线即可满足要求,如图所示:这样的切线恰有两条,从而直线 l 恰有 4 条,则 2<r <4.32. B 【解析】提示:由对称性,可设椭圆上任意一点 P 的坐标为 (x 0,y 0),所以 x 02=1−y 02a2,∣AP ∣2=1−y 02a2+(y 0−a )2=(a 2−1a 2)y 02−2ay 0+a 2+1.因为 0<a <1,所以 a 2−1a 2<0,关于 y 0 的二次函数图象开口向下,所以对称轴 y 0=a 3a 2−1≥−a .解得 √22≤a <1.33. C 【解析】由实数 λ,μ 满足:对任意的 (x,y )∈M ,都有 (λx,μy )∈M ,即 λ2x 2+μ2y 2≤1 ,所以 ∣λ∣≤1 , ∣μ∣≤1 .而 {∣λ∣≤1,∣μ∣≤1.构成的区域如图:A 、B 、D 选项的集合所表示的曲线均与 (λ,μ) 所表示的区域无交点,C 选项所表示的抛物线与区域有交点,符合题意.34. D 【解析】由题意,知 P 点必在线段 MN 的垂直平分线上. ∵ MN 的中点为 (−32,0),直线 MN 斜率为 12,∴ MN 的垂直平分线方程是 y =−2x −3,它显然与①中的直线平行,∴ 排除A 、C ;注意到选项B 、D 的区别,联立垂直平分线方程与椭圆方程,解得③中曲线上存在符合题设条件下的 P 点. 35. B【解析】如图,设直线 AB 的方程为 x =my +√2 (显然 m <0 ),A (x 1,y 1),B (x 2,y 2),P(√2,0),联立 {x =my +√2,y =√1−x 2. 消去 x 得 (1+m 2)y 2+2√2my +1=0,由题意得 Δ=8m 2−4(1+m 2)>0,所以 m 2>1,由根与系数的关系得 y 1+y 2=−2√2m1+m 2,y 1⋅y 2=11+m 2,所以 S △AOB =S △POB −S △POA =12⋅∣OP ∣⋅∣y 2−y 1∣=√22⋅√8m 2(1+m2)2−41+m 2=√22⋅√4(m 2−1)(1+m 2)2令 t =1+m 2(t >2), 所以 S △AOB=√2⋅√t−2t 2=√2⋅√−2(1t −14)2+18, 所以当 1t=14,即 t =4,m =−√3 时,△AOB 的面积取得最大值,此时,直线l 的斜率为 −√33. 36. B 【解析】设 A (x 1,y 1),B (x 2,y 2),依题意,k OD =12,k AB =−2, 所以直线 AB 方程为 y −1=−2(x −2),即 y =−2x +5, 代入抛物线方程得 4x 2−(20+2p )x +25=0, 所以 {x 1+x 2=10+p 2,x 1x 2=254. ⋯⋯①又因为 OA ⊥OB ,所以 x 1x 2+y 1y 2=5x 1x 2−10(x 1+x 2)+25=0, ⋯⋯②, 将 ① 代入 ② 得 5×254−10×10+p 2+25=0,解得 p =54,所以抛物线方程为 y 2=52x .来自QQ 群33944496337. B 【解析】我们设 A (x 1,y 1),B (x 2,y 2),直线 AB 方程为 x =my +t .直线 AB 交 x 轴于点 M (t,0). 联立直线和抛物线的方程消去 x 得y 2−my −t =0,因为 OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =2,所以 x 1x 2+y 1y 2=y 12y 22+y 1y 2=2,解得 y 1y 2=−2,即 t =2,所以 AB 过 x 轴上定点 M (2,0).S △ABO =12∣OM ∣∣y 1−y 2∣=∣y 1−y 2∣,S △AFO =12∣OF ∣∣y 1∣=18∣y 1∣,所以S △ABO +S △AFO =∣y 1−y 2∣+18∣y 1∣=98∣y 1∣+2∣y 1∣≥3,当且仅当 98∣y 1∣=2∣y 1∣,即 ∣y 1∣=43时,等号成立.38. B 【解析】建立如图所示的坐标系,可设 A (1,0),B (0,1),设 ∠AOC =α(0≤α≤π2),则 OC⃗⃗⃗⃗⃗ (cosα,sinα), 所以 OC⃗⃗⃗⃗⃗ =(x,2y )=(cosα,sinα),所以 x 2+y =12(cosα+sinα)=√22sin (α+π4)(0≤α≤π2). 由 π4≤α+π4≤3π4,可得 sin (α+π4)∈[√22,1],即 x2+y ∈[12,√22].来自QQ 群33944496339. B 【解析】抛物线 y 2=4x 的准线方程为 l:x =−1. 过点 P 作 PFʹ⊥l ,垂足为 Fʹ,由抛物线的定义,得 |PF |=|PFʹ|, 故 |PF ||PA|=|PFʹ||PA |=cos∠PAF ,即求 cos∠PAF 的最小值,又 0≤∠PAF <π2,故需使 ∠PAF 最大. 当直线 PA 与抛物 y 2=4x 相切时,∠PAF 最大,|PF ||PA |取得最小值,这时,设直线 PA 的方程为 y =k (x +1), 联立 {y =k (x +1),y 2=4x,消去 y 得,k 2x 2+(2k 2−4)x +k 2=0, 则 Δ=(2k 2−4)2−4k 4=0, 所以 k 2=1, 解得 k =±1.故此时 tan∠PAF =1,∠PAF =π4,所以 cos∠PAF =√22.40. B41. C 【解析】法一 据题意画图,作 AA 1⊥lʹ,BB 1⊥lʹ,BD ⊥AA 1 .设直线 l 的倾斜角为 θ,∣AF ∣=2∣BF ∣=2r , 则 ∣AA 1∣=2∣BB 1∣=2∣AD ∣=2r , 所以有 ∣AB ∣=3r ,∣AD ∣=r ,则 ∣BD ∣=2√2r ,k =tanθ=tan∠BAD =∣BD∣∣AD∣=2√2 .法二 直线 y =k (x −2) 恰好经过抛物线 y 2=8x 的焦点 F (2,0),由 {y 2=8x,y =k (x −2).可得 ky 2−8y −16k =0,因为 ∣FA ∣=2∣FB ∣,所以 y A =−2y B .则 y A +y B =−2y B +y B =8k,所以 y B =−8k,y A ⋅y B =−16,所以−2y B 2=−16,即 y B =±2√2,又 k >0,故 k =2√2 .42. C 【解析】如图,还原正方体,连接 A 1B 1,B 1D 1,A 1D 1 . ∠D 1B 1A 1 即为所求角.设正方形的边长为 2,则 A 1B 1=2√2,A 1D 1=B 1D 1=√5. 在 △D 1B 1A 1 中用余弦定理,得 AB 和 CD 的夹角的余弦值为√105. 43. A 【解析】(i )若直线 MN 的斜率不存在,则点 B 的坐标为 (3,0). (ii )若直线 MN 的斜率存在,设 A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2).则由 {y 12=4x 1,y 22=4x 2,得 y 12−y 22=4(x 1−x 2),所以y 1−y 2x 1−x 2(y 1+y 2)=4,即 k MN =2t ,所以直线 MN 的方程为 y −t =2t(x −3), 所以点 B 的横坐标 x B =3−t 22.由 {y −t =2t (x −3),y 2=4x, 消去 x 得 y 2−2ty +2t 2−12=0.由 Δ>0 得 t 2<12,又 t ≠0, 所以 x B =3−t 22∈(−3,3).综上,点 B 的横坐标的取值范围为 (−3,3].44. D 【解析】当直线斜率不存在时,直线方程为 x =0,C (0,1),D (0,−1),此时 OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =−1; 当直线斜率存在时,设斜率为 k ,C (x 1,y 1),D (x 2,y 2),则直线方程为 y =kx +2,与椭圆方程联立得 (1+4k 2)x 2+16kx +12=0,Δ=(16k )2−48(1+4k 2)=64k 2−48>0,得 k 2>34,x 1+x 2=−16k 1+4k2,x 1x 2=121+4k 2,所以OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+2k (x 1+x 2)+4=(1+k 2)⋅121+4k 2+2k ⋅−16k 1+4k2+4=−4k 2+161+4k 2=−1+171+4k 2,因为 k 2>34,所以 1+4k 2>4,0<171+4k2<174,所以 −1<OC ⃗⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ <134. 综上,OC ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ 的取值范围是 [−1,134). 45. C【解析】由已知,过点 F 和点 M (4,4) 且与准线 l 相切的圆的圆心在抛物线 y =4x 2 上,又因为此圆过 F 和 M ,所以圆心在 MF 的垂直平分线上,抛物线 y =4x 2 与 MF 的垂直平分线的交点有两个,故过点 F 和点 M (4,4) 且与准线 l 相切的圆有 2 个.46. C 【解析】因为内外两个椭圆的离心率相同,不妨设 B 点坐标为 (0,tb ),A 点坐标为 (ta,0),设直线 BD 斜率为 k 1,AC 斜率为 k 2,则 BD 的方程为 y =k 1x +tb ,AC 的方程为 y =k 2x −k 2ta .由 BD 、 AC 与椭圆相切易得k 12a 2+b 2=t 2b 2 ⋯⋯① k 22a 2+b 2=k 22t 2a 2 ⋯⋯② 由①得 k 12=(t 2−1)b 2a 2 ⋯⋯③ 由②得 k 22=b 2a 2(t 2−1) ⋯⋯④又因为 k 1k 2=−14,所以 a =2b ,从而椭圆的离心率为 √32.47. A 【解析】P 1(x 1,y 1) 是直线 l 上的一点,故有 f (x 1,y 1)=0,P 2(x 2,y 2) 是直线 l 外一点,故 f (x 2,y 2)≠0,是一个非零实数,从而 f (x,y )+f (x 1,y 1)+f (x 2,y 2)=0 表示的直线与直线 l 平行且不重合. 48. A 【解析】根据题意,S △ABC =12×∣AB∣×ℎ=12×2√2×ℎ=2, 解得 ℎ=√2,即点 C 到直线 AB 的距离为 √2.问题转化为与直线 AB 距离为 √2 的直线与抛物线交点的个数. 由两平行线间的距离公式,得与直线 AB 距离为 √2 的直线方程为y =−x 或 y =−x +4,分别将直线与抛物线方程联立,解得这两直线与抛物线分别有 2 个交点,因此,共有 4 个不同的 C 点满足条件.49. B 【解析】∵ 双曲线上的一点到双曲线左、右焦点的距离之差为 4,∴a =2.∵ A (x 1,2x 12),B (x 2,2x 22) 关于直线 y =x +m 对称,∴{2x 12−2x 22x 1−x 2=−1,x 1+x 22+m =2x 12+2x 222,整理得 x 1+x 2=−12,m =32.50. D【解析】(i ) 当 l 与 x 轴垂直时,直线 l:x =1 与抛物线 M 交于点 (1,±2),与圆 N 交于点 (1,±r ),显然满足 ∣AC ∣=∣BD ∣.(ii ) 当 l 与 x 轴不垂直时,设直线 l 的方程为 x =my +1.由 {x =my +1,y 2=4x, 消去 x ,得 y 2−4my −4=0.设 A (x 1,y 1),B (x 2,y 2),且 y 1<y 2,则 y 1+y 2=4m,y 1y 2=−4, 所以 (y 1−y 2)2=(y 1+y 2)2−4y 1y 2=16(m 2+1). 由 {x =my +1,(x −1)2+y 2=r 2, 解得 y =±√r 2m 2+1. 设 C (x 3,y 3),D (x 4,y 4),且 y 3<y 4,则 (y 3−y 4)2=4r 2m 2+1.由 ∣AC ∣=∣BD ∣,得 ∣y 3−y 1∣=∣y 4−y 2∣,即 ∣y 1−y 2∣=∣y 3−y 4∣. 由此,16(m 2+1)=4r 2m 2+1,解得 r =2(m 2+1),来自QQ 群339444963显然,当 r >2 时,m 有两解,对应的直线 l 有两条.又当 r =2 时,m =0,此时直线 l 斜率不存在,即为第一种情况 综合(i )(ii ),当 r ≥2 时,对应的直线 l 有三条,故D 适合.51. B 【解析】抛物线的准线方程为 y =−12,设抛物线焦点为 F ,则点 F 坐标为 (0,12).根据抛物线的定义可得 ∣PQ ∣=∣PF ∣−12,所以 ∣PA∣+∣PQ ∣=∣PF ∣+∣PQ ∣−12.所以 ∣PA∣+∣PQ ∣ 的最小值为 ∣FQ ∣−12=192.52. A 【解析】提示:如图,设 PF 1 的中点为 M ,因为 OM 为 △PF 1F 2 的中位线,所以 ∣OM ∣=12∣PF 2∣,设以线段 PF 1 、A 1A 2 为直径的两圆的半径分别是 r 、 a ,则两圆的圆心距为 ∣OM ∣=12∣PF 2∣=12(2a−∣PF 1∣)=12(2a −2r )=a −r ,所以两圆的位置关系是内切.53. A 【解析】由已知得圆 C 是 △AF 1F 2 的旁切圆, 点 M 是圆 C 与 x 轴的切点,设圆 C 与直线 F 1A 的延长线,AF 2 分别相切于点 P ,Q ,则由切线的性质可知:∣AP ∣=∣AQ ∣,∣F 2Q ∣=∣F 2M ∣,∣F 1M ∣=∣F 1P ∣, 所以∣MF 2∣=∣QF 2∣=(∣F 1A ∣+∣AF 2∣)−(∣AF 1∣+∣AQ ∣)=2a−∣AF 1∣−∣AP ∣=2a−∣F 1P ∣=2a−∣F 1M ∣,所以 ∣MF 1∣+∣MF 2∣=2a , 所以 t =a =2.54. A 【解析】由于双曲线为中心对称图形,为此可考察特殊情况,设 A 为 y =x 与双曲线在第一象限的交点,则不妨设 B 为直线 y =−x 与双曲线在第四象限的一个交点,因此直线 AB 与 x 轴垂直,点 O 到 AB 的距离即为点 A 或点 B 的横坐标的值,联立直线与双曲线的方程,求出 x 的值即可. 55. D【解析】由椭圆的定义得 ∣AF 1∣+∣AF 2∣=2a =4,∣BF 1∣+∣BF 2∣=2a =4,所以 ∣AF 1∣+∣BF 1∣=4a −(∣BF 2∣+∣BF 1∣),因为 ∣∣BF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣+∣∣AF 2⃗⃗⃗⃗⃗⃗⃗ ∣∣ 的最大值为 5,所以 ∣AF 1∣+∣BF 1∣ 的最小值为 3,当直线 l 与 x 轴垂直的时候,∣AF 1∣+∣BF 1∣ 最小,所以此时 A (−c,32),代入椭圆方程解得 b =√3.56. D 【解析】设直线 AB 的方程为 y =k (x +p2),A (x 1,y 1),B (x 2,y 2) ,联立直线与抛物线得 k 2x 2+(k 2p −2p )x +p 2k 24=0,所以 x 1+x 2=2p−k 2p k 2,x 1x 2=p 24,又 ∣AF ∣,∣AB ∣,∣BF ∣ 成等差数列,所以 2∣AB ∣=∣AF ∣+∣。
圆锥曲线压轴解答题22题(含详细答案,可直接打印)
![圆锥曲线压轴解答题22题(含详细答案,可直接打印)](https://img.taocdn.com/s3/m/fe8ef099fd0a79563c1e726a.png)
圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.(I)求椭圆C的方程;(II)当直线l的斜率为时,求△POQ的面积;(III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.13.已知F1、F2是椭圆C:(a>b>0)的左、右焦点,过F2作x轴的垂线与C交于A、B两点,F1B与y轴交于点D,AD⊥F1B,且|OD|=1,O为坐标原点.(1)求C的方程;(2)设P为椭圆C上任一异于顶点的点,A1、A2为C的上、下顶点,直线PA1、PA2分别交x轴于点M、N.若直线OT与过点M、N的圆切于点T.试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由.14.已知椭圆C:+=1的两个焦点分别是F1(﹣,0),F2(,0),点E(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是y轴上的一点,若椭圆C上存在两点M,N使=2,求以F1P 为直径的圆面积取值范围.15.已知椭圆的右焦点为F,离心率为,平行于x轴的直线交椭圆于A,B两点,且.(I)求椭圆C的方程;(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.18.已知抛物线C:y2=2px(p>0),其内接△ABC中∠A=90°.(I)当点A与原点重合时,求斜边BC中点M的轨迹方程;(II)当点A的纵坐标为常数t0(t0∈R)时,判断BC所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由.19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P 在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S=|AB|•d=.△ABC综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q 面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1..(2)由题意可知,点O为PP′的中点,则=2S△POQ设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S=|OF|•|y1﹣y2|=.△POQ设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l的斜率存在,设为k,则直线l的方程为:y=kx,由y=kx和y=x2﹣1,得x2﹣kx﹣1=0.设A(x1,y1),B(x2,y2),于是x1+x2=k,x1•x2=﹣1,又点M的坐标为(0,﹣1).所以k MA•k MB=•====﹣1.故MA⊥MB,即MD⊥ME;(Ⅱ)设直线MA的斜率为k1,则直线MA的方程为y=k1x﹣1.联立y=x2﹣1可得或则点A的坐标为(k1,k12﹣1).又直线MB的斜率为﹣,同理可得点B的坐标为(﹣,﹣1).于是S1=|MA|•|MB|=|k1|•••|﹣|•=.由椭圆方程x2+4y2=4和y=k1x﹣1,得(1+4k12)x2﹣8k1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵,∴a2=2c2=b2+c2,b=c,a2=2b2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b2=4,a2=8,所以椭圆C的方程为:;(2)当直线l斜率存在时,设直线l方程:y=kx+1,由得(2k2+1)x2+4kx﹣6=0,△=16k2+24(2k2+1)>0,设,假设存在定点Q(0,t)符合题意,∵∠PQA=∠PQB,∴k QA=﹣k QB,∴=,∵上式对任意实数k恒等于零,∴4﹣t=0,即t=4,∴Q(0,4),当直线l斜率不存在时,A,B两点分别为椭圆的上下顶点(0,﹣2),(0,2),显然此时∠PQA=∠PQB,综上,存在定点Q(0,4)满足题意.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由点在椭圆C上可得:,整理为:9a2+4b2=4a2b2,由椭圆C的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a>b>0可解得:,故椭圆C的方程为:.(2)设点P、Q的坐标分别为(x1,y1),(x2,y2),点A的坐标为(﹣2,0),故,可得y1y2=2(x1+2)(x2+2),设直线PQ的方程为y=kx+m(直线PQ的斜率存在),可得(kx1+m)(kx2+m)=2(x1+2)(x2+2),整理为:,联立,消去y得:(4k2+3)x2+8kmx+(4m2﹣12)=0,由△=64k2m2﹣4(4k2+3)(4m2﹣12)=48(4k2﹣m2+3)>0,有4k2+3>m2,有,,故有:,整理得:44k2﹣32km+5m2=0,解得:m=2k或,当m=2k时直线PQ的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意,当时直线PQ的方程为,即,过定点.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.【解答】解:(1)椭圆Γ:=1(0<b<2)的a=2,向量与的夹角为,可得|BF1|=|BF2|=a==2b=2,即b=1,则椭圆方程为+y2=1;(2)设P(m,n),可得+n2=1,即n2=1﹣,•=(1﹣m,﹣n)•(﹣m,﹣n)=m2﹣m+n2=m2﹣m+1=(m﹣)2+,由﹣2≤m≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6,则•的范围是[,6];(3)证明:当直线l的斜率不存在时,设M(x1,y1),N(x2,y2),由k BM+k BN=+==1,x1=x2,y1=﹣y2,得x1=﹣2,此时M,N重合,不符合题意;设不经过点P的直线l方程为:y=kx+m,M(x1,y1),N(x2,y2),由得(1+4k2)x2+8ktx+4t2﹣4=0,x1+x2=﹣,x1x2=,k BM+k BN=+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、且斜率为的直线与椭圆的一个交点在x轴上的射影恰,过F好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.(I)求椭圆C的方程;(II)当直线l的斜率为时,求△POQ的面积;(III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I)根据题意,解得,故椭圆C的方程为.…(5分)(II)根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)(III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ的中点.要使四边形OPMQ为平行四边形,则N为OM的中点,所以.要使点M在椭圆C上,则,即12k2+9=0,此方程无解.所以在椭圆C上不存在点M,使得四边形OPMQ为平行四边形.….(14分)13.已知F1、F2是椭圆C:(a>b>0)的左、右焦点,过F2作x轴的垂线与C交于A、B两点,F1B与y轴交于点D,AD⊥F1B,且|OD|=1,O为坐标原点.(1)求C的方程;(2)设P为椭圆C上任一异于顶点的点,A1、A2为C的上、下顶点,直线PA1、PA2分别交x轴于点M、N.若直线OT与过点M、N的圆切于点T.试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF2⊥x轴,|OD|=1,∴AB∥OD,∵O为F1F2为的中点,∴D为BF1的中点,∵AD⊥F1B,∴|AF1|=|AB|=2|AF2|=4|OD|=4,∴2a=|AF1|+|AF2|=4+2=6,∴a=3,∴|F1F2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y0),直线PA1:y﹣=x,令y=0,得x M=;直线PA2:y+=x,令y=0,得x N=;|OM|•|ON|=,∵+=1,∴6﹣y02=x02,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C:+=1的两个焦点分别是F1(﹣,0),F2(,0),点E(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是y轴上的一点,若椭圆C上存在两点M,N使=2,求以F1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=,∴2a=|EF1|+|EF2|=+=4,∴a=2,∴b2=a2﹣c2=8﹣2=6,∴椭圆方程为+=1,(Ⅱ)设点P的坐标为(0,t),当直线MN的斜率不存在时,可得M,N分别是椭圆的两端点,可得t=±,当直线MN的斜率存在时,设直线MN的方程为y=kx+t,M(x1,y1),N(x2,y2),则由=2可得x1=﹣2x2,①,由,消y可得(3+4k2)x2+8ktx+4t2﹣24=0,由△>0,可得64k2t2﹣4(3+4k2)(4t2﹣24)>0,整理可得t2<8k2+6,由韦达定理可得x1+x2=﹣,x1x2=,②,由①②,消去x1,x2可得k2=,由,解得<t2<6,综上得≤t2<6,又以F1P为直径的圆面积S=π•,∴S的范围为[,2π).15.已知椭圆的右焦点为F,离心率为,平行于x轴的直线交椭圆于A,B两点,且.(I)求椭圆C的方程;(Ⅱ)过点F且斜率不为零的直线l与椭圆C交于M,N两点,在x轴上是否存在定点E,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由题意可得:,∵平行于x轴的直线交椭圆于A,B两点,且.∴,a=,∴c=2,b2=a2=﹣c2=2.∴椭圆C的方程为(Ⅱ)设直线l的方程为y=k(x﹣2),代入椭圆C的方程,得(3k2+1)x2﹣12k2x+12k2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k2+3)x2+8kx﹣8=0.其判别式△>0,x1+x2=﹣,x1x2=﹣.∴•+λ•=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)],=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值.当直线AB斜率不存在时,直线AB即为直线CD,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.【解答】解:(1)设F1,F2分别为(﹣c,0),(c,0)可得,b2=c2﹣a2=3a2,又点(1,)在双曲线C上,∴,解得,c=1.连接PQ,∵OF1=OF2,OP=OQ,∴四边形PF1QF2的周长为平行四边形.∴四边形PF1+PF2=2>2,∴动点P的轨迹是以点F1、F2分别为左右焦点的椭圆(除左右顶点),∴动点P的轨迹方程(y≠0);(2)∵x12+x22=2,,∴y12+y22=1.∴|OG|•|MN|=•=•=.∴当3﹣2x1x2﹣2y1y2=3+2x1x2+2y1y2⇒x1x2+y1y2=0时取最值,此时OM⊥ON,△OMN为直角三角形.18.已知抛物线C:y2=2px(p>0),其内接△ABC中∠A=90°.(I)当点A与原点重合时,求斜边BC中点M的轨迹方程;(II)当点A的纵坐标为常数t0(t0∈R)时,判断BC所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由.【解答】解:(I)设B(,y1),C(,y2),∵AB⊥AC,∴+y1y2=0,∴y1y2=﹣4p2.∴设BC的中点M(x,y),则=x,y1+y2=2y,∵y12+y22=(y1+y2)2﹣2y1y2,∴px=4y2+8p2,∴M的轨迹方程为:y2=(x﹣8p).(II)A(,t0),设直线BC的方程为y=kx+b,B(,y1),C(,y2),∴k AB==,k AC==,∵AB⊥AC,∴•=﹣1.即y1y2+t0(y1+y2)+t02+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t02+4p2=0.解得b=﹣t0﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t0,∴直线BC过定点(2p+,﹣t0).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF 2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y0),则H(﹣x0,﹣y0),不妨设x0<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即k GP=﹣k HP,所以,化简得x0y0=﹣6,即,代入,化简得,解得x 0=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P 在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。
【高考数学经典习题】圆锥曲线压轴题(含答案)8
![【高考数学经典习题】圆锥曲线压轴题(含答案)8](https://img.taocdn.com/s3/m/93843f12ed630b1c59eeb5ab.png)
【高考数学经典习题】圆锥曲线压轴题(含答案)8未命名一、解答题1.(题文)已知离心率为的椭圆C:经过点(0,-1),且F1、F2分别是椭圆C的左、右焦点,不经过F1的斜率为k的直线l与椭圆C相交于A、B两点. (Ⅰ)求椭圆C的方程;(Ⅱ)如果直线AF1、l、BF1的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.2.(题文)已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)直线与椭圆交于两点,以为直径的圆与轴正半轴交于点.是否存在实数,使得的内切圆的圆心在轴上?若存在,求出的值;若不存在,请说明理由.3.在直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的左焦点为F,A是C上的动点,且满足AF的最小值为2.(1)求椭圆C的标准方程;(2)在椭圆C上任取一点B,使OA OB⊥,求证:点O到直线AB的距离为定值. 4.已知抛物线的顶点在原点,准线方程为,是焦点,过点的直线与抛物线交于两点,直线分别交抛物线于点.(1)求抛物线的方程及的值;(2)记直线的斜率分别为,证明:为定值.5.(题文)(题文)已知椭圆:,斜率为的动直线与椭圆交于不同的两点、.(1)设为弦的中点,求动点的轨迹方程;(2)设、为椭圆的左、右焦点,是椭圆在第一象限上一点,满足,求面积的最大值. 6.动点在抛物线上,过点作垂直于轴,垂足为,设.(I )求点的轨迹的方程;(II )设点,过点的直线交轨迹于两点,设直线的斜率分别为,求的最小值.7.给定椭圆2222:1(0)x y C a b a b+=>>.称圆心在原点O圆C 的“准圆”.若椭圆C 的一个焦点为F ,其短轴上的一个端点到F . (1)求椭圆C 的方程和其“准圆”方程;(2)点P 是椭圆C 的“准圆”上的一个动点,过动点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,试判断12,l l 是否垂直?并说明理由. 8.已知椭圆的离心率为,以原点为圆心,以椭圆的半长轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程; (Ⅱ)设点在椭圆上运动,与关于原点对称,且,当的面积最小时,求直线的方程.9.(题文)已知点是圆上的任意一点,点为圆的圆心,点与点关于原点对称,线段的垂直平分线与线段交于点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设点,若直线轴,且与曲线交于另一点,直线与直线交于点.(1)证明:点恒在曲线上;(2)求面积的最大值. 10.双曲线的一条渐近线方程是:,且曲线过点.(1)求双曲线的方程; (2)设曲线的左、右顶点分别是、,为曲线上任意一点,、分别与直线交于、,求的最小值.11.(题文)已知双曲线的一条渐近线方程为 ,焦距为 .(1)求双曲线 的方程;(2)若直线 与双曲线 交于 两点,且点 在第一象限,过点 作 轴的垂线,交 轴于点 ,交双曲线 于另一点 ,连结 交双曲线 于点 ,求证: .12.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为())12,F F ,直线0x =与椭圆C 的—个交点为(),点A 是椭圆C 上的任意—点,延长1AF 交椭圆C 于点B ,连接22,BF AF . (1)求椭圆C 的方程;(2)求2ABF ∆的内切圆的最大周长.13.已知椭圆( )经过点 ,且其离心率为, 、分别为椭圆 的左、右焦点.设直线 与椭圆 相交于 , 两点, 为坐标原点.(I )求椭圆 的标准方程;(II )当 时,求 的面积的最大值;(III )以线段 , 为邻边作平行四边形 ,若点 在椭圆 上,且满足 ,求实数 的取值范围. 14.已知椭圆的两个焦点为 ,其短轴长是 ,原点 到过点 和 两点的直线的距离为.(1)求椭圆 的方程;(2)若点 是定直线 上的两个动点,且 ,证明:以 为直径的圆过定点,并求 定点的坐标. 15.已知椭圆的左、右焦点分别为,为该椭圆上任意一点,且的最大值为.(I)求椭圆的离心率;(II)已知椭圆的上顶点为,动直线与椭圆交于不同的两点,且,证明:动直线过定点,并求出该定点坐标.16.椭圆M:的焦距为,点关于直线的对称点在椭圆上.(1)求椭圆M的方程;(2)如图,椭圆M的上、下顶点分别为A,B,过点P的直线与椭圆M相交于两个不同的点C,D.①求的取值范围;②当与相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.17.如图所示,如图所示,已知椭圆,⊙,点是椭圆的左顶点直线与⊙相切于点.(1)求椭圆的方程;(2)若⊙的切线与椭圆相交于两点,求面积的取值范围. 18.已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点且斜率为的直线与椭圆相交于两点,直线分别交直线于两点,线段的中点为. 记直线的斜率为,求证:为定值.19.如图,抛物线的焦点为,取垂直于轴的直线于抛物线交于不同的两点,,过,作圆心为的圆,使抛物线上其余点均在圆外,且.(1)求抛物线和圆的方程;(2)过点作倾斜角为的直线,且直线与抛物线和圆依次交于,求的最小值.20.已知椭圆(),其离心率与双曲线的离心率互为倒数,而直线过椭圆的一个焦点.(I)求椭圆的方程;(II)如图,以椭圆的左顶点为圆心作圆,设圆与椭圆交于两点,,求的最小值,并求出此时圆的方程.21.已知椭圆的离心率,一个焦点为.(1)求椭圆的方程;(2)设是椭圆与轴负半轴的交点,过点作椭圆的两条弦和,且. (i)直线是否过定点,如果是求出该点坐标,如果不是请说明理由;(ii)若是等腰直角三角形,求直线的方程.22.已知抛物线的焦点为,直线与轴的交点为,与的交点为 ,且.(1)求 的方程;(2)设 ,动点 在曲线 上,曲线 在点 处的切线为 .问:是否存在定点 ,使得 与 都相交,交点分别为 ,且 与 的面积之比是常数?若存在,求 的值;若不存在,说明理由.23.如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为,点(2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点.①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .24.设顶点在原点,焦点在x 轴上的拋物线过点()2,4P ,过P 作抛物线的动弦PB PA ,,并设它们的斜率分别为DC . (1)求拋物线的方程;(2)若0=+PB PA k k ,求证:直线AB 的斜率为定值,并求出其值; (3)若1PA PB k k =,求证:直线AB 恒过定点,并求出其坐标.25.如图,已知椭圆()222210x y a b a b+=>>的左、右焦点为()()121,0,1,0,F F P -为椭圆上一点,Q 为椭圆上顶点,M 在1PF 上,122,0F M MP PO F M =⋅=.(1)求当离心率12e =时的椭圆方程; (2)求满足题设要求的椭圆离心率的取值范围;(3)当椭圆离心率最小时,若过0,7⎛- ⎝⎭的直线l 与椭圆交于,A B (不同于点Q )两点,试问:AQB ∠是否为定值?并给出证明. 26.已知椭圆的方程为,它的一个顶点为 ,离心率为. (1)求椭圆的方程;(2)设直线 与椭圆交于 两点,坐标原点 到直线 的距离为,求 面积的最大值.27.在平面直角坐标系 中,已知椭圆的左顶点为 ,右焦点为 ,为椭圆 上两点,圆 .(1)若 轴,且满足直线 与圆 相切,求圆 的方程;(2)若圆 的半径为 ,点 满足,求直线 被圆 截得弦长的最大值.28.如图,在平面直角坐标系 中,已知椭圆的离心率为,长轴长为4,过椭圆的左顶点 作直线 ,分别交椭圆和圆 于相异两点 .(1)若直线 的斜率为 ,求的值; (2)若,求实数 的取值范围.29.在平面直角坐标系 中,已知抛物线 上一点到准线的距离与到原点 的距离相等,抛物线的焦点为 . (1)求抛物线的方程;(2)若 为抛物线上一点(异于原点 ),点 处的切线交 轴于点 ,过 作准线的垂线,垂足为点 .试判断四边形 的形状,并证明你的结论.30.在平面直角坐标系xOy 中,已知点3(1,)2P 在椭圆2222:1(0)x y C a b a b+=>>上,P到椭圆C 的两个焦点的距离之和为4. (1)求椭圆C 的方程;(2)若点,M N 是椭圆C 上的两点,且四边形POMN 是平行四边形,求点,M N 的坐标.31.已知两点 ,直线 、 相交于点 ,且这两条直线的斜率之积为.(1)求点 的轨迹方程;(2)记点 的轨迹为曲线 ,曲线 上在第一象限的点 的横坐标为1,直线 、 与圆相切于点 、 ,又 、 与曲线 的另一交点分别为 , ,求 的面积的最大值(其中点 为坐标原点).32.如图,设抛物线 的准线与 轴交于 ,焦点为 ;以 为焦点,离心率的椭圆 与抛物线 在 轴上方的交点为 ,延长 交抛物线于点 是抛物线 上一动点,且 在 与 之间运动.(1)当 时,求椭圆 的方程;(2)当 的边长恰好是三个连续的自然数时,求 面积的最大值. 33.已知A 为椭圆上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有.(Ⅰ)求椭圆离心率;(Ⅱ)设,试判断是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.34.设抛物线的准线与轴交于点,焦点;椭圆以和为焦点,离心率.设是与的一个交点.(1)椭圆的方程;(2)直线过的右焦点,交于两点,且等于的周长,求的方程.35.已知椭圆的离心率为,其短轴的下端点在抛物线的准线上.(1)求椭圆的方程;(2)设为坐标原点,是直线上的动点,为椭圆的右焦点,过点作的垂线与以为直径的圆相交于两点,与椭圆相交于两点,如图所示.①若,求圆的方程;②设与四边形的面积分别为,若,求的取值范围.36.已知抛物线 上一点 到焦点F 距离是.(1)求抛物线C 的方程;(2)过F 的直线与抛物线C 交于A 、B 两点,是否存在一个定圆恒以AB 为直径的圆内切,若存在,求该定圆的方程;若不存在,请说明理由. 37.已知椭圆C:的离心率为,直线 与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设 是椭圆的上顶点,过点 分别作直线 交椭圆于 , 两点,设两直线的斜率分别为,,且 , 证明:直线 过定点(,-l).38.已知椭圆C :2222by a x +=1(a>0,b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线一1=0与以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(I)求椭圆C 的方程;(Ⅱ)设点B ,C ,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线CD ,CB ,OB ,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2=k 3k 4. (i)求k 1k 2的值: (ii)求OB 2+ OC 2的值. 39.设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形. (1)求椭圆的方程和“相关圆”的方程; (2)过“相关圆”上任意一点作相关圆”的切线与椭圆交于两点,为坐标原点.若,证明原点到直线的距离是定值,并求的取值范围.40.已知抛物线方程为22(0)x py p =>,其焦点为F ,点O 为坐标原点,过焦点F 作斜率为(0)k k ≠的直线与抛物线交于,A B 两点,过,A B 两点分别作抛物线的两条切线,设两条切线交于点M .(1)求OA OB ⋅;(2)设直线MF 与抛物线交于,C D 两点,且四边形ACBD 的面积为2323p ,求直线AB 的斜率k .41.已知椭圆 : 的焦距为4,设右焦点为 ,过原点 的直线 与椭圆 交于 , 两点,线段 的中点为 ,线段 的中点为 ,且. (1)求弦 的长;(2)若直线 的斜率为 ,且,求椭圆 的长轴长的取值范围. 42.已知过抛物线的焦点,斜率为的直线交抛物线于()11,,A x y ()22,B x y (12x x <)两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值43.已知椭圆的离心率为,点在椭圆上.(I )求椭圆C 的方程; (II )设椭圆的左右顶点分别是A 、B ,过点的动直线与椭圆交于M ,N 两点,连接AN 、BM 相交于G 点,试求点G 的横坐标的值.44.如图椭圆的离心率为,其左顶点在圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆的另一个交点为,与圆的另一个交点为.(i)当时,求直线的斜率;(ii)是否存在直线,使得? 若存在,求出直线的斜率;若不存在,说明理由.45.已知椭圆:的焦距为4,设右焦点为,过原点的直线与椭圆交于,两点,线段的中点为,线段的中点为,且.(1)若离心率,求椭圆的方程;(2)求椭圆的长轴长的取值范围.46.已知为圆上的动点,点,线段的垂直平分线与半径相交于点,记点的轨迹为.(1)求曲线的方程;(2)当点在第一象限,且时,求点的坐标.47.已知焦点在轴上的椭圆的中心是原点,离心率等于,以椭圆的长轴和短轴为对角线的四边形的周长为,直线与轴交于点,与椭圆交于、两个相异点,且.(Ⅰ) 求椭圆的方程;(Ⅱ)若,求的取值范围.48.已知椭圆的离心率为,右顶点为.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线交椭圆于两点,设直线的斜率为,直线斜率为.求证:为定值,并求此定值.49.已知椭圆C:的离心率为,且点在C上.(1)求椭圆C的方程;(2)直线l经过点,且与椭圆C有两个交点A、B,是否存在直线l0:x = x0(其中x0> 2),使得A、B到l0的距离d A、d B满足恒成立?若存在,求x0的值;若不存在,请说明理由.50.已知椭圆的右焦点为,短轴长为2,点为椭圆上一个动点,且的最大值为.(1)求椭圆的方程;(2)设不在坐标轴上的点的坐标为,点为椭圆上异于点的不同两点,且直线平分,试用表示直线的斜率.参考答案1.(Ⅰ);(Ⅱ),直线过定点.【解析】试题分析:(Ⅰ)根据条件,和椭圆的性质,得到椭圆的标准方程;(Ⅱ)设直线的方程:,和椭圆方程联立,得到根与系数的关系,并且,用坐标表示,结合根与系数的关系,得到,最后代入得到的取值范围;根据以上所求关系得到线段的中点,并且设出直线AB 的方程,经过整理得到,得到定点.试题解析:(Ⅰ)由条件知(),且b=1,解得a2=2,椭圆C的方程为.(Ⅱ)令直线l的方程为,代入椭圆方程得:.由得,解之得.令A(x1,y1),B(x2,y2),则.由条件得,即.因为,,即.将代入中,得..由上知,,于是得AB中点坐标为,中垂线方程为:.将代入得:,整理得:.故AB的中垂线过定点.考点:1.椭圆方程;2.直线与椭圆的位置关系.【思路点睛】本题第二问考察是否过定点问题,一般考察直线过定点问题,首先是设直线,斜率存在时设,然后通过方程发现的等量关系,代入后即得到直线所过定点,或是通过特殊情况先发现定点,然后通过条件证明点和定点,三点共线;而本题所采用就是第一种方法,根据直线方程与椭圆方程联立,得到根与系数的关系,和将本题所给的三个斜率成等差数列的等式转化为坐标的关系,就会得到的等量关系和中点坐标,最后代入中垂线方程,问题就迎刃而解了.2.(1);(2)或.【解析】试题分析:(1)由椭圆:的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为,求出,由此能求出椭圆方程;(2)依题意知,设,,,则,由此能求出存在满足条件的值.试题解析:(1)设焦点,则,从而,由题意有,即,解得,又由,于是,解得,椭圆的方程为.(2)依题意可知,且,于是直线的斜率为,直线的斜率为,则,,,,相加得.联立消去,整理得,,.把两边同时平方,可得,代入可得,化简可得,或,解得,或,即存在满足条件的值,,或.考点:椭圆的简单性质.【方法点晴】本题考查椭圆方程的求法,考查满足条件的直线的斜率的求法,是中档题,解题时要认真审题,在第一问中利用离心率以及过焦点且与轴垂直的弦长求出椭圆的方程,也是在高考中常见的表达形式;在第二问中利用设而不求的思想设出三点的坐标,先利用内切圆的圆心在轴上,即等价于直角的角平分线轴上,得,转化为斜率,联立直线的方程与椭圆的方程结合维达定理,代入求解.3.(1)2214xy+=;(2)证明见解析.【解析】试题分析: (1)由AF 的最小值为23-可得23a c -=-,由离心率为3可知,再由的关系最后可求得的值,得到椭圆的标准方程;(2)当AB 的斜率不存在时很容易求得O 到AB 的距离,当AB 的斜率存在时可设直线方程的斜截式y kx m =+,联立椭圆方程,由根与系数的关系得122841km x x k +=-+,21224441m x x k -=+,再由OA OB ⊥可建立等式,求得224(1)5m k =+,代入点到直线的距离公式可得距离为定值. 试题解析:(1)解:根据题意有2{a c c a -==, 解方程组得:2,a c ==∴21b =,∴椭圆C 的标准方程为2214x y +=. (2)证明:当AB 的斜率不存在时,AB 的方程为x =±O 到AB 的距离为d =; 当AB 的斜率存在时,可设AB 的方程为y kx m =+,1122(,),(,)A x y B x y ,由22{14y kx mx y =++=,得222(41)8440k x kmx m +++-=, ∵22222(8)4(41)(44)16(14)0km k m k m ∆=-+-=-->,∴122841km x x k +=-+,21224441m x x k -=+, ∴2212121212()()()y y kx m kx m k x x km x x m =++=+++,222222224484414141m km m k k km m k k k --=⋅-⋅+=+++, ∵OA OB ⊥,∴22112212122544(,)(,)041m k OA OB x y x y x x y y k --⋅==+==+, ∴224(1)5m k =+, ∴点O 到直线AB :0kx y m -+=的距离5d ===, 故O 到AB 的距离为定值.考点:椭圆的性质、直线与椭圆的位置关系.4.(1) ;(2)证明见解析.【解析】试题分析:(1)根据抛物线的定义即可得出抛物线方程,再联立 的方程,消去 ,由韦达定理可得 的值;(2)设出 的坐标,由斜率公式表示出 ,消去变量即可得出的定值.试题解析:(1)依题意,设抛物线方程为y 2=-2px(p>0),由准线x = =1,得p =2, 所以抛物线方程为y 2=-4x ,设直线PQ 的方程为x =my -2,代入y 2=-4x ,消去x ,整理得y 2+4my -8=0, 从而y 1y 2=-8.(2)证明 设M(x 3,y 3),N(x 4,y 4),则. 设直线PM 的方程为x =ny -1,代入y 2=-4x ,消去x ,整理得y 2+4ny -4=0,所以y 1y 3=-4,同理y 2y 4=-4.故,为定值. 考点:1、抛物线的标准方程;2、抛物的几何性质;3、斜率公式;4、直线方程. 5.(1)();(2).【解析】试题分析:(1)设,,,两式相减结合,可求得;(2)由求出点坐标,设直线的方程为,面积用表示,最后用基本不等式求最值.试题解析:(1)设,①②①-②得:,,即,又由中点在椭圆内部得,所以点的轨迹方程为,(2)由,得点坐标为,设直线的方程为,代入椭圆方程中整理得:,由得,则,,,所以,当时,.考点:1、点差法求轨迹方程;2、利用基本不等式求解析几何中的最值.【方法点睛】本题主要考查“点差法”求轨迹方程以及利用基本不等式求解析几何中的最值,属于难题.对于有弦关中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.本题(1)就是利用“点差法”求解的.6.(I);(II).【解析】试题分析:(I)设点,,则由,得,因为点在抛物线上,∴;(II)联立,利用根与系数关系得到,下面分情况讨论.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,,直线不经过点即且时,,化简得故.试题解析:(I)设点,,则由,得,因为点在抛物线上,∴.(II)方法一:由已知,直线的斜率一定存在,设点,,则联立,得,,由韦达定理,得.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,直线不经过点即且时,∵,,故,所以的最小值为1.方法二:同上,,所以的最小值为1.方法三:设点,,由直线过交轨迹于两点得:,化简整理得:令则,.而.考点:1.直线与圆锥曲线的位置关系;2.根与系数关系.【方法点晴】圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.跟与系数的关系是解这类题目的必备工具,另外题目运算量较大,需要一定的运算能力.7.(Ⅰ)2213xy+=,224x y+=;(Ⅱ)垂直.【解析】试题分析:(1)由“椭圆C的一个焦点为F,其短轴上的一个端点到F”知:12c a b====⇒=从而可得椭圆的标准方程和“准圆”的方程;(2)分两种情况讨论:①12,l l当中有一条直线斜率不存在;②直线12,l l斜率都存在.对于①可直接求出直线12,l l的方程并判断其是不互相垂直;对于②设经过准圆上点()00,,P x y与椭圆只有一个公共点的直线为()00y t x x y=-+与椭圆方程联立组成方程组()0022{13y tx y txxy=+-+=消去y得到关于x的方程:()()()2220000136330t x t y tx x y tx++-+--=由0∆=化简整理得:()22200003210x t x y t y-++-=22004x y+=→()()22300003230x t x y t x-+--=而直线12,l l的斜率正是方程的两个根12,t t,从而121t t⋅=-12l l⇒⊥(1)2,1c a b==∴=∴椭圆方程为2213xy+=准圆方程为224x y+=(2)①12,l l当中有一条无斜率时,不妨设1l无斜率,因为1l与椭圆只有一个共公点,则其方程为x=当1l方程为x1l与准圆交于点)),1-此时经过点)(或)1-)且与椭圆只有一个公共眯的直线是1y=(或1y=-)即2l为1y=(或1y=-),显然直线12,l l垂直;同理可证1l方程为x =12,l l 也垂直.②当12,l l 都有斜率时,设点()00,,P x y 其中22004x y +=设经过点()00,,P x y 与椭圆只有一个公共点的直线为()00y t x x y =-+则由()0022{13y tx y tx x y =+-+=消去y ,得()()()2220000136330t x t y tx x y tx ++-+--=由0∆=化简整理得:()22200003210x t x y t y -++-=因为22004x y +=,所以有()()22300003230x t x y t x -+--=设12,l l 的斜率分别为12,t t ,因为12,l l 与椭圆只有一个公共点 所以12,t t 满足上述方程()()22300003230x t x y t x -+--= 所以121t t ⋅=-,即12,l l 垂直, 综合①②知,12,l l 垂直.考点:1、椭圆的标准方程;2、直线与圆锥曲线的综合问题. 8.(Ⅰ);(Ⅱ),或.【解析】试题分析:(Ⅰ)根据离心率可以得到 的一个关系,再由椭圆与直线相切可以得到 的一个关系,再联立 即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时地特殊情况,并求出其面积;其次当直线的斜率 存在并且不为零时,用 表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.试题解析:(Ⅰ)以原点为圆心,以椭圆的半长轴长为半径的圆的方程为,因为该圆与直线相切,所以有,解得.又,所以,故.所以椭圆的方程为.(Ⅱ)当为长轴(或短轴)时,依题意知,点是椭圆的上顶点或下顶点(左顶点或右顶点),此时.当直线的斜率存在且不为时,设直线的斜率为,,,则直线的方程为,由,解得所以由知,为等腰三角形,为线段的中点,,所以直线的方程为,由,解得.当且仅当,即时,上式中的等号成立,此时的面积的最小值为,因为,所以的面积的最小值为,此时直线的方程为,或.考点:1、椭圆;2、基本不等式;3、三角形的面积.【思路点晴】本题是一个关于圆锥曲线方面的综合性问题,属于难题.解决本题的基本思路是:(Ⅰ)根据离心率可以得到的一个关系,再由椭圆与直线相切可以得到的一个关系,再联立即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时的特殊情况,并求出其面积;其次当直线的斜率存在并且不为零时,用表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.9.(Ⅰ);(Ⅱ)(1)证明见解析;(2).【解析】试题分析:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.试题解析:(Ⅰ)由题设得圆的圆心为,半径为,,又,所以,由椭圆的定义知,动点的轨迹是以为焦点,以为长轴长的椭圆.设此椭圆方程为,且焦距为,则即所以动点的轨迹的方程为.(Ⅱ)(1)设,则,且,所以直线,即①.直线,即.②联立①②,解得,所以点的坐标是.则所以点恒在椭圆上.(2)设直线,,则由消去,并整理得,.因为恒成立,所以.所以.令,设,因为,所以函数在上单调递增,故.所以,即当时,的面积取得最大值,且最大值为. 考点:1、椭圆;2、导数在函数(三角形的面积)研究中的应用.【方法点晴】本题是一个关于椭圆的概念以及直线与其位置关系方面的综合性问题,属于难题.解决本题的基本思路及切入点是:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.10.(1);(2).【解析】试题分析:(1)由渐近线方程可先设出双曲线的方程,再把点的坐标代入即可求得双曲线的方程;(2)可设出、的斜率,并表示出点、的坐标,进而表示出的长,再结合基本不等式即可求得的最小值.试题解析:(1)由渐近线方程可知,双曲线的方程为,把代入可得,所以双曲线方程为.(2)由双曲线的对称性可知,在右支上时,取最小值.由上可得,,根据双曲线方程可得,所以设直线、的斜率分别为,则.的方程为,令,解得,的方程为,令,解得,所以.当且仅当,即时等号成立.考点:1、双曲线;2、基本不等式.11.(1);(2)证明见解析.。
圆锥曲线压轴小题必刷100题(学生版)
![圆锥曲线压轴小题必刷100题(学生版)](https://img.taocdn.com/s3/m/cfade5100a4c2e3f5727a5e9856a561252d32189.png)
圆锥曲线压轴小题必刷100题一、单选题1.已知圆C是以点M2,23和点N6,-23为直径的圆,点P为圆C上的动点,若点A2,0,点B1,1,则2PA-PB的最大值为()A.26B.4+2C.8+52D.22.已知点F1,F2分别为椭圆C:x2a2+y2b2=1a>b>0的左、右焦点,点M在直线l:x=-a上运动,若∠F1MF2的最大值为60°,则椭圆C的离心率是()A.13B.12C.32D.333.过x轴上点P a,0的直线与抛物线y2=8x交于A,B两点,若1AP2+1BP2为定值,则实数a的值为().A.1B.2C.3D.44.已知椭圆C:x2a2+y2b2=1(a>b>0)的两个顶点在直线x-2y-2=0上,F1,F2分别是椭圆的左、右焦点,点P是椭圆上异于长轴两个端点的任一点,过点P作椭圆C的切线l与直线x=-2交于点M,设直线PF1,MF2的斜率分别为k1,k2,则k1k2的值为()A.-13B.13C.-12D.-145.已知F是椭圆x2a2+y2=1(a>1)的左焦点,A是该椭圆的右顶点,过点F的直线l(不与x轴重合)与该椭圆相交于点M,N.记∠MAN=α,设该椭圆的离心率为e,下列结论正确的是()A.当0<e<1时,α<π2B.当0<e<22时,α>π2C.当12<e<22时,α>2π3D.当22<e<1时,α>3π46.已知过抛物线y2=4x的焦点F的直线与抛物线交于点A、B,若A、B两点在准线上的射影分别为M、N,线段MN的中点为C,则下列叙述不正确的是()A.AC⊥BCB.四边形AMCF的面积等于AC⋅MFC.AF+BF=AF⋅BFD.直线AC与抛物线相切7.如图,已知双曲线x2a2-y2b2=1b>a>0的左、右焦点分别为F1,F2,过右焦点作平行于一条渐近线的直线交双曲线于点A,若△AF1F2的内切圆半径为b4,则双曲线的离心率为()A.53B.54C.43D.328.在棱长为2的正四面体ABCD 中,点P 为△ABC 所在平面内一动点,且满足PA +PB =433,则PD的最大值为()A.3B.2103C.393D.29.已知点F 为抛物线y 2=4x 的焦点,M -1,0 ,点N 为抛物线上一动点,当NF NM最小时,点N 恰好在以M ,F 为焦点的双曲线上,则该双曲线的渐近线的斜率的平方为()A.3+23B.2+22C.5+12D.22-1410.已知F 1,F 2为双曲线x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,以F 1F 2为直径的圆与双曲线右支的一个交点为P ,PF 1与双曲线相交于点Q ,且PQ =3QF 1 ,则该双曲线的离心率为()A.873B.293C.32D.5211.若椭圆C :x 2a 2+y 2b2=1(a >b >0)上的点2,53 到右准线的距离为52,过点M 0,1 的直线l 与C 交于两点A ,B ,且AM =23MB,则l 的斜率为()A.13B.±13C.±12D.1912.已知双曲线C :x 29-y 27=1的左焦点为F ,过原点的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,则1FA -4FB的取值范围是()A.-16,37 B.-16,37C.-16,0 D.-16,+∞13.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M ,N 分别在双曲线C 的左、右两支上,点A 在x 轴上,且M ,N ,F 1三点共线,若AN =3F 2M,∠F 1NF 2=∠ANF 2,则双曲线C 的离心率为()A.5B.7C.3D.1114.已知抛物线C :y 2=2px p >0 ,F 为C 的焦点,过焦点F 且倾斜角为α的直线l 与C 交于A ,B 两点,则下面结论不正确的是()A.以A ,B 为直径的圆与抛物线C 的准线相切B.1AF +1BF=2p C.过点A ,B 分别作抛物线C 的切线,则两切线互相垂直D.记原点为O ,则S △AOB =p 2sin α15.已知点A 是抛物线C :x 2=2py p >0 的对称轴与准线的交点,点F 为抛物线的焦点,过A 作抛物线的一条切线,切点为P ,且满足PA =2,则抛物线C 的方程为()A.x 2=8yB.x 2=4yC.x 2=2yD.x 2=y16.过点P 2,1 斜率为正的直线交椭圆x 224+y 25=1于A ,B 两点.C ,D 是椭圆上相异的两点,满足CP ,DP分别平分∠ACB ,∠ADB .则ΔPCD 外接圆半径的最小值为()A.2155B.655C.2413D.191317.已知点P 在抛物线C :y 2=mx m ≠0 上,过点P 作抛物线x 2=2y 的切线l 1,l 2,切点分别为M ,N ,若G 1,1 ,且GP +GM +GN =0,则C 的准线方程为()A.x =-14B.x =14C.x =22D.x =-2218.已知点P (-1,0),设不垂直于x 轴的直线l 与抛物线y 2=2x 交于不同的两点A 、B ,若x 轴是∠APB 的角平分线,则直线l 一定过点A.12,0 B.(1,0)C.(2,0)D.(-2,0)19.已知F 1,F 2是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且|PF 2| |PF 1|,椭圆的离心率为e 1,双曲线的离心率为e 2,|PF 1|=|F 1F 2|,则3e 1+e 23的最小值为()A.4B.6C.4+22D.820.已知F 1,F 2分别为双曲线x 216-y 29=1的左,右焦点,过F 2且倾斜角为锐角α的直线与双曲线的右支交于A ,B 两点,记△AF 1F 2的内切圆半径为r 1,△BF 1F 2的内切圆半径为r 2,若r1r 2=3,则α的值为()A.75°B.30°C.45°D.60°21.如图,椭圆C :x 24+y 23=1,P 是直线x =-4上一点,过点P 作椭圆C 的两条切线PA ,PB ,直线AB 与OP 交于点M ,则sin ∠P MB 的最小值是()A.437 B.86565C.7210 D.3222.已知抛物线C :x 2=4y ,焦点为F ,圆M :x 2-2x +y 2+4y +a 2=0a >0 ,过F 的直线l 与C 交于A 、B 两点(点A 在第一象限),且FB=4AF ,直线l 与圆M 相切,则a =()A.0B.2115C.115D.323.已知A ,B ,C 为抛物线x 2=4y 上不同的三点,焦点F 为△ABC 的重心,则直线AB 与y 轴的交点的纵坐标t 的取值范围是()A.-12,32B.-12,1 ∪32,+∞ C.-12,1 ∪1,32D.1,3224.已知F 1、F 2是椭圆x 24+y 23=1的左、右焦点,点P 是椭圆上任意一点,以PF 1为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则QF 1 ⋅QF 2=A.23B.4C.3D.125.已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的右焦点为F 2,A 和B 为双曲线上关于原点对称的两点,且A在第一象限.连结AF 2并延长交E 于P ,连结BF 2,PB ,若△BF 2P 是以∠BF 2P 为直角的等腰直角三角形,则双曲线E 的离心率为()A.52B.5C.102D.1026.已知F 是椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点,若直线y =kx 与椭圆相交于A ,B 两点,且∠AFB =60°,则椭圆离心率的取值范围是()A.32,1B.0,32 C.0,12D.12,1 27.已知双曲线x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若F 2F 1+F 2A ⋅F 1A =0,则此双曲线的标准方程可能为()A.x 2-y 212=1 B.x 23-y 24=1C.x 216-y 29=1D.x 29-y 216=128.已知椭圆x 2a 2+y 2b2=1a >b >0 ,P 0,2 ,Q 0,-2 ,过点P 的直线l 1与椭圆交于A ,B ,过点Q 的直线l 2与椭圆交于C ,D ,且满足l 1⎳l 2,设AB 和CD 的中点分别为M ,N ,若四边形PMQN 为矩形,且面积为43,则该椭圆的离心率为().A.13B.23 C.23D.6329.已知单位向量a ,b 满足2a -b =2,若存在向量c ,使得c -2a ⋅c -b =0,则c的取值范围是()A.62,62+1 B.62-1,62C.62-1,62+1 D.6-1,6+130.设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 1的直线l 分别与双曲线C 左右两支交于M ,N 两点,以MN 为直径的圆过F 2,且MF 2 ⋅MN =12MN 2,则直线l 的斜率为()A.24B.22C.33D.3231.已知抛物线C :y 2=4x ,F 是抛物线C 的焦点,M 是抛物线C 上一点,O 为坐标原点,P (0,2),∠OPM 的平分线过FM 的中点,则点M 的坐标为()A.(1,2)B.(2,22)C.(4,4)D.94,332.已知B ,C 是椭圆x 24+y 23=1上的两个动点,A 12,0 ,则以A 为直角顶点的等腰直角△ABC 的个数为()A.2B.4C.6D.多于633.在平面直角坐标系xOy 中,圆O :x 2+y 2=3,T (2,m ),若圆O 上存在以M 为中点的弦AB ,且AB =2MT ,则实数m 的取值范围是A.[-2,0] B.(0,2]C.[-2,2]D.(-2,2)34.已知椭圆C :x 23+y 2=1,过x 轴上一定点N 作直线l ,交椭圆C 于A ,B 两点,当直线l 绕点N 任意旋转时,有1|AN |2+1|BN |2=t (其中t 为定值),则()A.t =9B.t =4C.t =3D.t =235.已知圆C 1:x 2+y 2=4与圆C 2:(x -1)2+(y -3)2=4,过动点P (a ,b )分别作圆C 1、圆C 2的切线PM ,PN ,(M ,N 分别为切点),若|PM |=|PN |,则a 2+b 2-6a -4b +13的最小值是()A.5B.13C.2510 D.8536.已知抛物线C :y 2=2x ,过点E a ,0 的直线l 与C 交于不同的两点P x 1,y 1 ,Q x 2,y 2 ,且满足y 1y 2=-4,以Q 为中点的线段的两端点分别为M ,N ,其中N 在x 轴上,M 在C 上,则PM 的最小值为()A.2B.22C.32D.4237.设抛物线y 2=2px p >0 的焦点为F ,过F 的两条直线l 1,l 2分别交抛物线于点A ,B ,C ,D ,且l 1,l 2的斜率k 1,k 2满足k 1+k 2=1k 1>0,k 2>0 ,若AB +CD 的最小值为30,则抛物线的方程为()A.y 2=6xB.y 2=3xC.y 2=32x D.y 2=2x38.设点P 为椭圆C :x 225+y 216=1上一点,F 1、F 2分别是椭圆C 的左、右焦点,且ΔPF 1F 2的重心为点G ,如果|PF 1|:|PF 2|=2:3,那么ΔGPF 1的面积为()A.423B.22C.823D.3239.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作直线l ,且直线l 与双曲线C 的一条渐近线垂直,垂足为A ,直线l 与另一条渐近线交于点B ,已知O 为坐标原点,若ΔOAB 的内切圆的半径为3-12a ,则双曲线C 的离心率为()A.233B.3+1C.433D.233或240.已知F 为抛物线4y 2=x 的焦点,点A ,B 都是抛物线上的点且位于x 轴的两侧,若OA ∙OB=15(O 为原点),则ΔABO 和ΔAFO 的面积之和的最小值为()A.652B.52C.54D.18二、多选题41.在平面直角坐标系xOy 中,已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过点F 且斜率大于0的直线交抛物线C 于A ,B 两点(其中A 在B 的上方),过线段AB 的中点M 且与x 轴平行的直线依次交直线OA ,OB ,l 于点P ,Q ,N .则()A.PM =NQB.若P ,Q 是线段MN 的三等分点,则直线AB 的斜率为22C.若P ,Q 不是线段MN 的三等分点,则一定有PQ >OQD.若P ,Q 不是线段MN 的三等分点,则一定有NQ >OQ42.已知双曲线C :x 2a2-y 25=1(a >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,圆O :x 2+y 2=a 2+5,P 是双曲线C 与圆O 的一个交点,且tan ∠PF 2F 1=3,则下列结论中正确的有()A.双曲线C 的离心率为102B.点F 1到一条渐近线的距离为5C.△PF 2F 1的面积为55D.双曲线C 上任意一点到两条渐近线的距离之积为243.曼哈顿距离(或出租车几何)是由十九世纪的赫尔曼·闵可夫斯基所创的词汇,是一种使用在几何度量空间的几何学用语.例如,在平面上,点P x 1,y 1 和点Q x 2,y 2 的曼哈顿距离为:L PQ =x 1-x 2 +y 1-y 2 .若点P x 1,y 1 为C :x 2+y 2=4上一动点,Q x 2,y 2 为直线l :kx -y -2k -4=0k ∈-12,2上一动点,设L (k )为P ,Q 两点的曼哈顿距离的最小值,则L (k )的可能取值有()A.1B.2C.3D.444.已知抛物线方程为x 2=4y ,直线l :x -2y -2=0,点P (x 0,y 0)为直线l 上一动点,过点P 作抛物线的两条切线,切点为A 、B ,则以下选项正确的是()A.当x 0=0时,直线AB 方程为y =1B.直线AB 过定点0,1C.AB 中点轨迹为抛物线D.△PAB 的面积的最小值为33245.过抛物线C :x 2=4y 焦点F 的直线l 交C 于P ,Q 两点,O 为坐标原点,则()A.不存在直线l ,使得OP ⊥OQB.若FP=2QF ,则直线l 的斜率为24C.过P 作C 准线的垂线,垂足为M ,若PF =3,则cos ∠FPM =13D.过P ,Q 两点分别作抛物线C 的切线,则两切线交点的纵坐标为定值46.在△ABC 中,AB =4,M 为AB 的中点,且CA -CB =CM ,则下列说法中正确的是()A.动点C 的轨迹是双曲线B.动点C 的轨迹关于点M 对称C.△ABC 是钝角三角形D.△ABC 面积的最大值为2347.已知抛物线x 2=2y ,点M (t ,-1),t ∈12,1,过M 作抛物线的两条切线MA ,MB ,其中A ,B 为切点,直线AB 与y 轴交于点P ,则下列结论正确的有()A.点P 的坐标为(0,1)B.OA ⊥OBC.△MAB 的面积的最大值为33D.|PA ||PB |的取值范围是[2,2+3]48.已知抛物线E :y 2=4x 的焦点为F ,准线l 交x 轴于点C ,直线m 过C 且交E 于不同的A ,B 两点,B 在线段AC 上,点P 为A 在l 上的射影.下列命题正确的是()A.若AB ⊥BF ,则AP =PCB.若P ,B ,F 三点共线,则AF =4C.若AB =BC ,则AF =2BFD.对于任意直线m ,都有AF +BF >2CF49.在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,过点P m ,0 m >0 作与x 轴垂直的直线,与抛物线C 交于A 、B 两点,则下列说法正确的是()A.若PA >PO ,则0<m <2B.若△ABO 为正三角形,则m =12C.若抛物线C 上存在两个不同的点E 、F (异于A 、B ),使得PE =PF =AB2,则m >4D.当AB +OPOA取得最大值时,m =150.已知椭圆C :x 216+y 29=1上有一点P ,F 1、F 2分别为左、右焦点,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则下列选项正确的是()A.若θ=60°,则S =33B.若S =9,则θ=90°C.若△PF 1F 2为钝角三角形,则S ∈0,974D.椭圆C 内接矩形的周长范围是12,2051.设A ,B 是抛物线C :y 2=4x 上两个不同的点,O 为坐标原点,若直线OA 与OB 的斜率之积为-4,则下列结论正确的有()A.AB ≥4B.OA +OB >8C.直线AB 过抛物线C 的焦点D.△OAB 面积的最小值是252.已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左焦点为F ,P 为C 右支上的动点,过P 作C 的一条渐近线的垂线,垂足为A ,O 为坐标原点,当PA +PF 最小时,PA ,OF ,PF 成等差数列,则下列说法正确的是()A.若C 的虚轴长为2,则F 到C 的一条渐近线的距离为2B.C 的离心率为53C.若C 的焦距为2,则P 到C 的两条渐近线的距离之积小于14D.若C 的焦距为10,当PA +PF 最小时,则△PAF 的周长为10+21353.双扭线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系xOy 中,把到定点F 1-a ,0 ,F 2a ,0 距离之积等于a 2a >0 的点的轨迹称为双扭线C .已知点P x 0,y 0 是双扭线C 上一点,下列说法中正确的有()A.双扭线C 关于原点O 中心对称;B.-a 2≤y 0≤a 2;C.双扭线C 上满足PF 1 =PF 2 的点P 有两个;D.PO 的最大值为2a .54.已知抛物线y 2=2px p >0 的焦点为F ,过点F 的直线l 交抛物线于A 、B 两点,以线段AB 为直径的圆交y 轴于M 、N 两点,设线段AB 的中点为P ,则()A.OA ⋅OB =-3p 24B.若AF ⋅BF =4p 2,则直线AB 的斜率为3C.若抛物线上存在一点E 2,t 到焦点F 的距离等于3,则抛物线的方程为y 2=8xD.若点F 到抛物线准线的距离为2,则sin ∠PMN 的最小值为1255.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是()A.异面直线AC 与BD 所成角为60°B.点A 到平面BCD 的距离为263C.四面体ABCD 的外接球体积为6πD.动点P 在平面BCD 上,且AP 与AC 所成角为60°,则点P 的轨迹是椭圆56.在平面直角坐标系xOy 中,动点P 与两个定点F 1-3,0 和F 23,0 连线的斜率之积等于13,记点P 的轨迹为曲线E ,直线l :y =k x -2 与E 交于A ,B 两点,则()A.E 的方程为x 23-y 2=1 B.E 的离心率为3C.E 的渐近线与圆x -2 2+y 2=1相切D.满足AB =23的直线l 有2条57.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,已知点P 为侧面BCC 1B 1上的一动点,则下列结论正确的是()A.若点P 总保持PA ⊥BD 1,则动点P 的轨迹是一条线段;B.若点P 到点A 的距离为233,则动点P 的轨迹是一段圆弧;C.若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹是一段抛物线;D.若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹是一段双曲线.58.已知抛物线C :y 2=2px p >0 的焦点F 到准线的距离为2,过点F 的直线与抛物线交于P ,Q 两点,M 为线段PQ 的中点,O 为坐标原点,则下列结论正确的是()A.C 的准线方程为y =-1B.线段PQ 的长度最小为4C.M 的坐标可能为3,2D.OP ⋅OQ=-3恒成立59.已知ln x 1-x 1-y 1+2=0,x 2+2y 2-4-2ln2=0,记M =x 1-x 2 2+y 1-y 2 2,则A.M 的最小值为25 B.当M 最小时,x 2=125C.M 的最小值为45 D.当M 最小时,x 2=6560.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线上一点,且PF 1 =2PF 2 ,若sin ∠F 1PF 2=154,则下面有关结论正确的是()A.e =6B.e =2C.b =5aD.b =3a61.已知到两定点M -2,0 ,N 2,0 距离乘积为常数16的动点P 的轨迹为C ,则()A.C 一定经过原点B.C 关于x 轴、y 轴对称C.ΔMPN 的面积的最大值为45D.C 在一个面积为64的矩形内62.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,A 为左顶点,P 为双曲线右支上一点,若PF 1 =2PF 2 且△PF 1F 2的最小内角为30°,则()A.双曲线的离心率3 B.双曲线的渐近线方程为y =±2x C.∠PAF 2=45°D.直线x +2y -2=0与双曲线有两个公共点63.过抛物线y 2=4x 的焦点F 作直线交抛物线于A ,B 两点,M 为线段AB 的中点,则()A.以线段AB 为直径的圆与直线x =-32相离B.以线段BM 为直径的圆与y 轴相切C.当AF =2FB 时,AB =92D.AB 的最小值为464.已知抛物线C :y 2=2px p >0 的焦点为F ,直线的斜率为3且经过点F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若AF =8,则以下结论正确的是A.p =4B.DF =FAC.BD =2BFD.BF =465.已知点F 是抛物线y 2=2px p >0 的焦点,AB ,CD 是经过点F 的弦且AB ⊥CD ,AB 的斜率为k ,且k >0,C ,A 两点在x 轴上方.则下列结论中一定成立的是()A.OC ⋅OD =-34p 2 B.四边形ACBD 面积最小值为16p 2C.1AB +1CD =12pD.若AF ⋅BF =4p 2,则直线CD 的斜率为-366.过点P (3,4)作圆C :x 2+y 2=4的两条切线,切点分别为A ,B ,则下列说法正确的是()A.|AB |=2215B.AB 所在直线的方程为3x +4y -4=0C.四边形PACB 的外接圆方程为x 2+y 2-3x -4y =0D.△PAB 的面积为42212567.已知点F 为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,过原点O 的直线l 交椭圆于P ,Q 两点,点M 是椭圆上异于P ,Q 的一点,直线MP ,MQ 分别为k 1,k 2,椭圆的离心率为e ,若PF =3QF ,∠PFQ =2π3,则()A.e =74B.e =34C.k 1k 2=-916D.k 1k 2=91668.已知点M 在椭圆C :x 2+y 24=1上,过点M 分别作斜率为-2,2的直线MP ,MQ 与直线y =2x ,y =-2x分别交于P ,Q 两点.若PQ ≤λ,则实数λ的取值可能为()A.12B.1C.2D.369.曲率半径是用来描述曲线上某点处曲线弯曲变化程度的量,已知对于曲线x 2a 2+y 2b2=1a >0,b >0 上点P x 0,y 0 处的曲率半径公式为R =a 2b 2x 2a 4+y 20b 432,则下列说法正确的是()A.对于半径为R 的圆,其圆上任一点的曲率半径均为RB.椭圆x 2a 2+y 2b2=1a >b >0 上一点处的曲率半径的最大值为aC.椭圆x 2a 2+y 2b2=1a >b >0 上一点处的曲率半径的最小值为b 2a D.对于椭圆x 2a2+y 2=1a >1 上点12,y 0 处的曲率半径随着a 的增大而减小70.如图,已知椭圆x 24+y 22=1的左、右顶点分别是A 1,A 2,上顶点为B 1,在椭圆上任取一点C ,连结A 1C 交直线x =2于点P ,连结A 2C 交OP 于点M (O 是坐标原点),则下列结论正确的是()A.k CA 1k CA 2为定值B.k A 1P =12k OPC.OP ⊥A 2CD.MB 1的最大值为6第II 卷(非选择题)三、填空题71.已知F 1,F 2是双曲线Γ:x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,A ,B 分别在双曲线的左右两支上,且满足AB =λF 1A (λ为常数),点C 在x 轴上,CB =3F 2A ,BF 2 ⋅BF 1 BF 1 =BF 2 ⋅BCBC ,则双曲线Γ的离心率为_______.72.已知平面向量a 、b 、c 满足a ⋅b =0,c =1,a -c =b -c =5,则12a +12b -c的取值范围为______.73.已知平面非零向量a 1 、a 2 ,m 、n 满足a 1 -n ⎳a 2 -n ,n =1,若a i -n =a i ⋅n i =1,2 ,m -a 1⋅m -a 2 =0,则m ⋅n的最小值为______.74.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为___________.75.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分別为F 1,F 2,过F 1作直线l 垂直于双曲线的一条渐近线,直线l 与双曲线的两条渐近线分别交于A ,B 两点,若AF 1 =λF 1B,且λ>2,则双曲线C 的离心率e 的取值范围为________.76.已知椭圆C :x 2a2+y 2=1a >1 的左,右焦点分别是F 1,F 2,P 是椭圆C 上第一象限内的一点,且△PF 1F 2的周长为4+2 3.过点P 作C 的切线l ,分别与x 轴和y 轴交于A ,B 两点,O 为原点,当点P 在C 上移动时,△AOB 面积的最小值为___________.77.已知抛物线y 2=4x 上一点P 1,2 ,且抛物线上两个动点A ,B 满足k PA ⋅k PB =6,若直线AB 过定点M ,则M 的坐标为_________.78.已知点A 在抛物线y 2=3x 上,过点A 作抛物线的切线与x 轴交于点B ,抛物线的焦点为F ,若∠BAF =30°,则A 的坐标为___________.79.已知抛物线C :y 2=2px (p >0)的焦点F 到其准线的距离为4,圆M :(x -2)2+y 2=1,过F 的直线l 与抛物线C 和圆M 从上到下依次交于A ,P ,Q ,B 四点,则|AP |+4|BQ |的最小值为_________.80.过抛物线C :y 2=4x 的焦点F 作直线AB ,DE 分别与抛物线C 交于A ,B 和D ,E ,若直线AB ,DE 的斜率分别为k 1,k 2,且满足k 21+k 22=4,则AB +DE 的最小值为___________.81.双曲线x 2a 2-y 2b2=1a >0,b >0 的渐近线为正方形OABC 的边OA 、OC 所在的直线,点F 2,0 为该双曲线的右焦点,若过点F 的直线与直线OA 、OC 的分别相交于M 、N 两点,则△OMN 内切圆半径的最大值为______.82.已知双曲线C :x 29-y 27=1,A 3,0 ,F 4,0 ,O 是坐标原点,过点F 的直线l 交双曲线C 于M ,N 两点,若直线l 上存在点P 满足AP +OP =4,则MN 的最小值是___________.83.已知A 、B 分别为抛物线C 1:y 2=8x 与圆C 2:x 2+y 2-6x -42y +16=0上的动点,抛物线的焦点为F ,P 、Q 为平面内两点,且当AF +AB 取得最小值时,点A 与点P 重合;当AF -AB 取得最大值时,点A 与点Q 重合,则△FPQ 的面积为______.84.已知F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 2作圆x 2+y 2=a 2的切线交双曲线左支于点M ,且∠F 1MF 2=60°,则该双曲线的渐近线方程为__________.85.已知二元函数f x ,y =x 2+y 2+x 2+y -a 2+x +a 2+y 2a >0 的最小值为2+6,则正实数a 的值为________.86.已知点M -2,-3 ,点F 2,0 为抛物线C :y 2=2px p >0 的焦点,第一象限内的点P 在抛物线C 上,则PM PF的最大值为______.87.已知:a =b =1,a ⋅b =12,c =λa -b λ∈R ,d -a =12,则d -c 最小值为________.88.圆M 的方程为x -2-5cos θ 2+y -5sin θ 2=1θ∈R ,圆C 的方程为x -2 2+y 2=4,过圆M 上任意一点P 作圆C 的两条切线PE 、PF ,切点分别为E 、F ,则PE ⋅PF 的最小值为__________.89.已知椭圆x 24+y 23=1的左、右焦点分别为F 1、F 2,过椭圆的右焦点F 2作一条直线l 交椭圆于点P 、Q .则△F 1PQ 内切圆面积的最大值是_________.90.如图所示,A 1、A 2是椭圆C :x 218+y 29=1的短轴端点,点M 在椭圆上运动,且点M 不与A 1、A 2重合,点N满足NA 1⊥MA 1、NA 2⊥MA 2,则S ΔMA 1A 2S ΔNA 1A 2=____________.91.在平面直角坐标系xOy 中,已知直线l :y =kx +6上存在点P ,过点P 作圆O :x 2+y 2=4的切线,切点分别为A x1,y1,B x2,y2,且x1x2+y1y2=-2,则实数k的取值范围为________.92.已知ΔABC中,角A,B,C所对的边分别是a,b,c,且3a2+2b2+c2=1,则ΔABC的面积的最大值是___________.93.已知P为双曲线C:x2a2-y2b2=1a>0,b>0上一点,O为坐标原点,F1,F2为曲线C左右焦点.若OP=OF2,且满足tan∠PF2F1=3,则双曲线的离心率为___.94.已知抛物线C:y2=2px(p>0),其焦点为F,准线为l,过焦点F的直线交抛物线C于点A、B(其中A在x轴上方),A,B两点在抛物线的准线上的投影分别为M,N,若|MF|=23,|NF|=2,则|AF||BF|=____________.95.已知双曲线x2a2-y2b2=1(b>a>0)的左、右焦点分别是F1、F2,P为双曲线左支上任意一点,当2PF1PF22最大值为14a时,该双曲线的离心率的取值范围是__________.96.已知函数f x =1-sin x8+4cos x,则f x 的最大值为______.97.已知F和l为抛物线C:y2=4x的焦点和准线,点P为C上一点,过P作PQ⊥l于Q,若PQOF四点共圆(O为原点),则该圆的半径为____________.98.在平面直角坐标系xOy中,已知MN在圆C:x-22+y2=4上运动,且MN=2 3.若直线l:kx-y+3 =0上的任意一点P都满足PM2+PN2≥14,则实数k的取值范围是__________.99.已知双曲线C:x2a2-y2b2=1(b>a>0)的左、右焦点为F1,F2,P2,2为双曲线C上一点,且PF1PF2=3,若线段PF1与双曲线C交于另一点A,则ΔPAF2的面积为______.100.直线l:x=my+2经过抛物线C:y2=2px(p>0)的焦点F,与抛物线相交于A,B两点,过原点的直线经过弦AB的中点D,并且与抛物线交于点E(异于原点),则OEOD的取值范围是______.。
2023-2024学年高二数学单元速记——圆锥曲线的方程(压轴题专练)(解析版)
![2023-2024学年高二数学单元速记——圆锥曲线的方程(压轴题专练)(解析版)](https://img.taocdn.com/s3/m/fff083905122aaea998fcc22bcd126fff7055ddd.png)
第三章圆锥曲线的方程(压轴题专练)一、选择题A .(1,4)-B .(1,2)【答案】A【分析】先求得p ,然后联立方程组并写出根与系数关系,求得直线MQ 、直线QN ,进而确定正确答案.【详解】直线1:22p l y x ⎛=+⎫⎪⎝⎭,即240x y p -+=,依题意,,02p F ⎛⎫ ⎪⎝⎭到直线240x y -+=,25p ==,所以抛物线方程为24y x =,直线():1l y k x =+,由()214y k x y x ⎧=+⎨=⎩消去x 并化简得2440ky y k -+=,216160,11k k ∆=->-<<,且0k ≠,设()()()112233,,,,,M x y N x y Q x y ,则124y y =.由131322311313444MQ y y y y k y y x x y y --===-+-,直线MQ 的方程为()13411y x y y +=-+,所以()1113411y x y y +=-+,即()()3111144y y y x =++-,则122111334y y y y y y +++=-,故31341y y y +=-+,所以323441y y y +=-+,所以()2323440y y y y +++=,直线QN 的方程为()22234y y x x y y -=-+,即()()223244y y y y x x -+=-,则()222222334y y y y y y x y =--+-,故()232340y y y y y x -++=,所以1,4==-x y ,也即直线QN 过定点()1,4-.故选:A.【点睛】方法点睛:求抛物线的标准方程的方法有:根据焦点或准线来求、根据抛物线的定义来求、利用待定系数法来求、通过已知条件列等量关系式,化简后得到抛物线的标准方程.求解直线和抛物线的交点,可通过联立方程组来求解.【答案】A【分析】根据椭圆、双曲线的定义可得112212PF a a PF a a ⎧=+⎪⎨=-⎪⎩,结合离心率可得11211a c e a e c⎧=⎪⎨⎪=⎩,在12PF F △中,利用余弦定理可得112e =,进而结合椭圆性质可知:当Q为椭圆短轴顶点时,12FQF ∠取到最大值,分析求解即可.【详解】由题意可知:12112222PF PF a PF PF a ⎧+=⎪⎨-=⎪⎩,解得112212PF a a PF a a ⎧=+⎪⎨=-⎪⎩,又因为1122121ce a c e a e e ⎧=⎪⎪⎪=⎨⎪⎪⋅=⎪⎩,可得11211a ce a e c⎧=⎪⎨⎪=⎩,由直线1PF 与y 轴的交点的坐标为230,2a⎛⎫⎪⎝⎭可得12cos PF F ∠=,在12PF F △中,由余弦定理可得()()()()()2221212112212112122cos 222a a c a a PF F F PF PF F PF F F a a c ++--+-∠==⋅+⋅()22212121111211a a c c c a a c e c e c c e e ++===+⎛⎫++ ⎪⎝⎭,1121e e =+,整理得42118210e e +-=,解得2114e =或2112e =-(舍去),且10e >,所以112e =,由椭圆性质可知:当Q 为椭圆短轴顶点时,12FQF ∠取到最大值,此时12111sin22F QF c e a ∠===,且()120,πFQF ∠∈,则12π0,22F QF ⎛∠⎫∈ ⎪⎝⎭,所以12π26F QF ∠=,即12π3F QF =∠.故选:A..【点睛】关键点睛:本题解决的关键在于找到12cos PF F ∠的两种表达方式,构造了关于1e 的方程,从而得解.【答案】B【分析】根据已知条件依次求得,P Q 两点的坐标,由此可求得12k k ⋅的值.【详解】设椭圆标准方程为()222210x y a b a b +=>>,双曲线的标准方程为22221x y s t-=,则22222a b s tc -=+=,由c a =,2222445,5a c c a ==,所以2222221,55b ac a a b =-==,所以椭圆方程可化为2225x y a +=,由2222225x y a x y c⎧+=⎨+=⎩,两式相减得222214,2y a c b y b =-==±,2222115,442x c b b x=-==±,则1,2A b ⎫⎪⎪⎝⎭,根据对称性可知,A C 关于原点对称,,A B 关于x 轴对称.则11,,,,,022B b C b P ⎫⎛⎫⎫--⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,直线CP的方程为12b y x b x ⎛⎫⎛⎫=-=-⎪⎪⎪⎪⎭⎭.将1,22A b ⎛⎫ ⎪ ⎪⎝⎭代入22221x y s t -=得222215144b bs t -=,由222222222151444b b s t s t a b b ⎧-=⎪⎨⎪+=-=⎩,解得223s b =或225s b =,而225a b =,s a <,所以223s b =,所以222243t b b b =-=,所以双曲线方程可化为222213x y bb-=,由2222132x y bb y x b ⎧-=⎪⎪⎨⎛⎫⎪=-⎪⎪⎪⎭⎩消去y 并化简得22762550x b +-=,设()00,Q x y ,解得001,3838xy b ==-,所以1,3838Q b ⎛⎫- ⎪ ⎪⎝⎭,所以12121122383AC AQ b bk k k k k +====⋅=.故选:B【点睛】本题中,涉及圆和双曲线、圆和椭圆、直线和双曲线等图象的“交点”,求交点的坐标,主要是通过联立方程组来进行求解,要注意运算的准确性,另外也要注意运算的速度.在双曲线和椭圆中,,,a b c 的关系是不相同的.【答案】D【分析】先求出以2F为圆心的圆的方程,求出()A ,()3,0B c ,求出直线1F A 的方程后结合距离公式可求M 的坐标,代入双曲线方程后可求离心率.【详解】设双曲线的半焦距为c ,因为以2F 为圆心的圆过1F,故该圆的半径为2c ,故其方程为:()2224x c y c -+=,令0x =,则y =,结合A 在y 轴正半轴上,故()A ,令0y =,则x c =-或3x c =,故()3,0B c .故100()FA k c -=--,故直线1:F A y =.设()()0M m m +<,因为A 在y 轴的正半轴上,1F 在x 轴的负半轴上,故0m <,而2BM c ==,故())22212439c m c -+=,整理得到:221649m c =,故23m c =-,故3M y =,所以222241931c ca b -=,故()22241931e e e -=-,解得242e =或42,又因为1e >,则21e >,则242e =,12e +=.故选:D.【点睛】思路点睛:圆锥曲线中离心率的值或范围的计算,关键在于构建关于基本量的方程或方程组(不等式或不等式组),后者可通过点在圆锥曲线上等合理构建.【答案】D【分析】对于①,利用导数的几何意求出过点()00,P x y 的切线方程,再与渐近线方程联立可求出,A B 的横坐标,然后与0x 比较可得答案,对于②,由“等线”的定义结合重心的定义分析判断,对于③④,由多边形重心的定义可知四边形1AF BF ,其重心H 必在12AF F △与12BF F △重心连线上,也必在1AF B △与2AF B 重心连线上,12PF F △重心设为G ,则l 即为直线GH ,然后由重心的性质可证得GH ∥AB ,从而可得结论.【详解】解:①:设()00,P x y ,当00y >时,设0y >,则由22221x ya b-=,得y =,所以y '=k =所以切线方程为00)y y x x -=-,因为点()00,P x y 在双曲线上,所以2200221x y a b-=0a y b =,22222200b x a y a b -=,所以20000020()()bx b x y y x x x x a a y a y b-=-=-⋅,所以2222220000a y y a y b x x b x -=-,所以222222220000b x x a y y b x a y a b -=-=,所以00221x x y ya b-=,同理可求出当00y <时的切线方程为00221x x y ya b-=,当00y =时,双曲线的切线方程为x a =±,满足00221x x y ya b-=,所以过P 点切线方程为00221x x y ya b-=,渐近线方程为by x a=±联立两直线方程得00A ax x y a b=-,00B ax x y a b=+故有22002222A B x x x x x y a b +==-,故PA PB =②:设多边形顶点坐标为(),i i x y ,其中1,2,3i n= 设“等线”方程为0y kx b --=,则(),i i x y到等线的距离为:i d =又因为等线将顶点分为上下两部分,则有d =∑上部分d=∑∑下部分dd =∑∑上部分下部分从而1ni ==整理得1111n ni i i i y k x bn n ===⋅+∑∑即等线l 必过该多边形重心.③④:考察12PF F △重心,设()00,P x y ,则重心00,33x y G ⎛⎫⎪⎝⎭.对于四边形1AF BF ,其重心H 必在12AF F △与12BF F △重心连线上,也必在1AF B △与2AF B 重心连线上,则l 即为直线GH .设12AF F △与12BF F △重心分别为,E F ,则12OE OF EA FB ==,所以EF ∥AB ,因为G 为12PF F △的重心,所以OE OGEA GP=,所以EG ∥AB ,所以,,E F G 三点共线,因为H 在EF 上,所以GH ∥AB ,过00,33x y G ⎛⎫⎪⎝⎭,因为直线AB 为00221x x y ya b -=,所以直线AB 的斜率为2020x b k a y =⋅,所以直线GH 的方程为20002033y x x b y x a y ⎛⎫-=⋅- ⎪⎝⎭,整理得0022331x x y ya b-=,所以直线l 方程0022331x x y ya b-=,由①的求解过程可知该方程为2222331x y a b-=切线方程,所以③正确,④错误,故①②③正确.故选:D【点睛】关键点点睛:此题考查双曲线的性质和导数的几何意义的应用,考查新定义,解题的关键是对“等线”定义的正确理解和重心的找法,考查计算能力,属于难题.【答案】C【分析】直线方程与抛物线方程联立,利用韦达定理可判断(1),(2),分别求出点,A B 处的切线方程,联立切线方程求点P 的坐标,即可判断(3),设200,4y M y ⎛⎫⎪⎝⎭,利用两点间距离,结合二次函数求最值,即可判断(4),【详解】对于(1),设1122(,),(,)A x y B x y ,由243y xx my ⎧=⎨=+⎩,得24120y my --=,由216480m +>,所以12124,12y y m y y +==-,所以12121212(3)(3)OA OB x x y y my my y y ⋅=+=+++21212(1)3()9m y y m y y =++++212(1)3493m m m =-++⋅+=-,所以(1)正确,对于(2),因为(9,6)M -,直线AM 与BM 倾斜角互补,所以12121212666609966AM BM y y y y k k x x my my +++++=+=+=----,所以1212212122(66)()7206()36my y m y y m y y m y y +-+-=-++,所以22244(66)720122436m m m m m -+--=--+,所以22448720m m --=,且221224360m m --+≠,所以2230m m --=,且21m ≠解得3m =,所以(2)正确,对于(3),设点A 在x 轴上方,B 在x 轴下方,设221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,x轴上方的抛物线方程为y =x轴下方的抛物线方程为y =-,此时在点A处的切线的斜率为112k y ==,在点B处的切线的斜率为222k y ==,所以在点A 处的切线方程为211124y y y x y ⎛⎫-=- ⎪⎝⎭,在点B 处的切线方程为222224y y y x y ⎛⎫-=- ⎪⎝⎭,方程化简为211122yy x y =+,222122yy x y =+,两式相除化简得1212344y y x -===-3)正确,对于(4),设200,4y M y ⎛⎫ ⎪⎝⎭,由于(3,0)Q,所以MQ =当204y =时,MQ取得最小值4)错误,故选:C【点睛】关键点点睛:此题考查直线与抛物线的位置关系,考查抛物线切线方程的求法,解题的关键是直线方程代入抛物线方程化简,利用根与系数的关系,然后逐个分析,考查计算能力,属于较难题.二、填空题【答案】24y x=【分析】设||4(0)NF t t =>,表示出|,|AB RF t ===,利用抛物线定义、点在抛物线上以及圆的弦长的几何性质列出关于,a p 的方程,即可求得p ,即得答案.【详解】由2:2(02)C y px p a =<<可知(,0)2pF ,设||4(0)NF t t =>,则|,|AB RF t ===,则||3NR t =,故222||()(||22p AB a NR -+=,即222())92pa t -+=①;又点((0)N a a >在抛物线2:2(02)C y px p a =<<上,故||42pNF a t =+=②,且122pa =,即6pa =③,②联立得22122030a ap p -+=,得23a p =或6a p =,由于02p a <<,故23a p =,结合6pa =③,解得2p =,故抛物线方程为24y x =,故答案为:24y x=【点睛】关键点睛:解答本题的关键在于要结合抛物线的定义以及圆的弦长的几何性质,找出参数,a p 间的等量关系,从而列出方程组,即可求解.为该椭圆上一点,且满足【答案】5/0.8【分析】根据椭圆定义并利用余弦定理可得22143F P b P F =,再根据正弦定理可知外接圆半径R =,由等面积法可知内切圆半径)r a c =-,再根据面积比即可计算出离心率45e =.【详解】根据题意画出图象如下图所示:利用椭圆定义可知122PF PF a +=,且122F F c =;又1260F PF ∠=︒,利用余弦定理可知:()2222212121212121212122cos 22PF PF PF PF F F PF PF F F F PF PF PF PF PF +--+-∠==221212424122a PF PF c PFPF --==,化简可得22143F P b P F =;所以12PF F △的面积为122124sin 6031122PF F b S PF PF =︒=⨯ ;设12PFF △的外接圆半径为R ,内切圆半径为r ;由正弦定理可得12122s 2sin n 603i R c F F c F PF ==∠=︒,可得3R c =;易知12PF F △的周长为121222l PFPF F F a c=++=+,利用等面积法可知()122123PF F lr a c r S ===+ ,解得)r a c ==-;又12PF F △的外接圆面积是其内切圆面积的64倍,即22π64πRr=,所以8R r =,即可得28R c a r c ==-,所以108c a =;离心率45c e a ==.故答案为:45.【点睛】方法点睛:求解椭圆焦点三角形外接圆与内切圆半径问题,通常利用正弦定理计算外接圆半径,由等面积法公式12S lr =可计算出内切圆半径,即可实现问题求解.【答案】3【分析】由直线斜率公式结合点在曲线上可得MB PB BN k k k =-=-,再由正切的和角的公式得到2213b a =,结合双曲线离心率公式即可得解.【详解】由题意可知:()(),0,,0A a B a -如图,设00(,)P x y ,可得直线的斜率分别为0000,PA PB y y k k x a x a==+-,因为点P 在双曲线上,则2200221x y a b -=,整理得200200y y b x a x a a ⋅=-+,所以22PA PBb k k a⋅=,设点11(,)M x y ,可得直线,MA MB 的斜率1111,MA MB y y k k x a x a==+-,因为点11(,)M x y 在椭圆上,则2211221x y a b +=,整理得211211y y b x a x a a⋅=--+,所以22MA MBb k k a ⋅=-,即22PA MB b k k a⋅=-,可得MB PB BN k k k =-=-,所以直线MB 与NB 关于x 轴对称,又因为椭圆也关于x 轴对称,且,M N 过焦点F ,则MN x ⊥轴,令(c,0)F ,则2b MF NF a==,因为222tan a c a ac AMF b b a ++∠==,222tan a c a acBMF b b a--∠==,则()tan tan tan tan 1tan tan AMF BMFAMB AMF BMF AMF BMF∠+∠∠=∠+∠=-∠⋅∠22222222222231a ac a aca b b a ac a ac b a b b +-+===-+---⋅,解得2213b a =,所以双曲线的离心率3e a ==.【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;.【答案】2/0.5【分析】设直线l 的方程,代入椭圆方程,由韦达定理,弦长公式及中点坐标公式,求得中点坐标Q 坐标,求得AB 垂直平分线方程,当0y =时,即可求得P 点坐标,代入即可求得||PF ,即可求得||||PF AB ,即可求得a 和c 的关系,即可求得椭圆的离心率.【详解】因为倾斜角为π4的直线过点F ,设直线l 的方程为:y x c =-,()()1122,,,A x y B x y ,线段AB 的中点()00,Q x y ,联立22221y x c x y ab =-⎧⎪⎨+=⎪⎩,化为()2222222220a b x a cx a c a b +-+-=,2222212122222 2,a c a c a b x x x x a b a b -∴+==++,2224ab AB a b ∴=+,212022. 2x x a cx a b+==+20022b cy x c a b∴=-=-+AB ∴的垂直平分线为:222222b c a c y x a b a b ⎛⎫+=-- ++⎝⎭,令0y =,解得322P c x a b =+,322,0c P a b ⎛⎫∴ ⎪+⎝⎭.2222||P b cPF c x a b ∴=-=+,||1||24c PF AB a ∴==,则12c a =,∴椭圆C 的离心率为12,故答案为:12.【点睛】关键点睛:运算能力是关键;本题考查简椭圆的简单几何性质,直线与椭圆的位置关系,直线的垂直平分线的求法,属于较难题.【答案】2⎣⎦【分析】作出辅助线,根据题意得到四边形21PF QF 为矩形,故221PF Q PF F S S = ,求出212P P c F F⋅≥,再根据122PF PF a +=,利用勾股定理得到2122PF PF b ⋅=,得到222b c ≥,再根据C 上存在关于坐标原点对称的两点,P Q ,使得12PQ F F =,得到22b c ≤,得到2c a ≥,得到离心率.【详解】连接11,QF PF ,由题意得,12,OP OQ OF OF ==,又12PQ F F =,所以四边形21PF QF 为矩形,故221PF Q PF F S S = ,所以()22121112228PF c F c P =≥⋅,故212P P c F F ⋅≥,又122PF PF a +=,由勾股定理得2221212PF PF F F +=,即()22121224PF PF PF PF c +-⋅=,2122PF PF b ⋅=,故222b c ≥,即22222c a c -≥,故2223a c ≥,2223c a ≤解得c a ≤,又C 上存在关于坐标原点对称的两点,P Q ,使得12PQ F F =,故22b c ≤,所以b c ≤,即222a c c -≤,所以222a c ≤,2212c a ≥,解得2c a ≥,综上,C 的离心率的取值范围是23⎥⎣⎦.故答案为:23⎢⎣⎦(或离心率的取值范围)的常见方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b c a =-转化为,a c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于离心率的方程(不等式),解方程(不等式)即可得离心率(离心率的取值范围).【答案】【分析】依题意可得椭圆方程表示为2222143x y c c+=,设直线l 为x my c =-()0m >,()11,A x y ,()22,B x y ,()10y <,根据面积公式及椭圆的定义得到()12334r r r +=,再由1322r r r +=,即可得到2175y y=-,联立直线与椭圆方程,消元、列出韦达定理,即可得到1y 、2y ,代入解得.【详解】因为椭圆的离心率为12c e a ===所以2a c =,224a c =,223b c =,则椭圆方程可以表示为2222143x y c c+=,设直线l 为x my c =-()0m >,()11,A x y ,()22,B x y ,()10y <,由2222143x my c x y c c=-⎧⎪⎨+=⎪⎩,消去x 整理得()22243690m y mcy c +--=,显然0∆>,所以122643mc y y m +=+,2122943c y y m-=+,则20y >,由()()2122121332211||(||||||)222ABF S F F y y c y y AB AF BF r r a =-==⋅=-++ ,由()12211111121211||(||||||)22AF F S F F y y AF AF c r a c F F r ⋅==-=+-=++⋅ ,由()12222212121211||(||||||)22BF F S F F y y BF BF F F r r c a c =⋅=+=⋅++= ,又21212ABF AF F BF F S S S =+ ,所以()()1232a c a c r r r a +++=,所以()12334r r r +=,又1322r r r +=,所以1275r r =,又11cy a r c -=+,22c a ycr =+,所以2175y y =-,所以121543mcy m -=+,222143mc y m =+,所以2222152********mc mc c m m m --⋅=+++,所以218m =,则m =或m =,所以直线l的斜率为1m=.故答案为:【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.三、解答题(1)求双曲线C 的标准方程.(2)如图所示,点P 是曲线C 上任意一动点曲线E 于点Q (第一象限),过点【答案】(1)224x y -=(2)2【分析】(1)由题意设C :22x y m -=,将()代入解方程即可得出答案.(2)设(),P m n ,(),0A m ,()0,B n ,设AQ QB λ=,表示出Q 点坐标,代入E :221x y -=方程,即可求得,22m n Q ⎛⎫⎪⎝⎭,进一步求出,K J 的坐标,而KQA BQJ BKJ S S S += ,而12BKJ S KB JB =⋅ ,代入化简结合基本不等式即可得出答案.【详解】(1)由题意设C :22x y m -=,将()代入得到4m =,∴曲线C :224x y -=.(2)设(),P m n ,(),0A m ,()0,B n ,(),Q x y ,则224m n -=(*)设AQ QB λ=,则()(),,AQ x m y QB x n y λλ=-==-- ,解得:,,1111m n m n x y Q λλλλλλ⎛⎫== ⎪++++⎝⎭,代入E :221x y -=方程,得()()2221m n λλ-=+,结合(*)式可知()()21130n λλλ⎡⎤-+++=⎣⎦由于0λ>,则()2130n λλ+++>,所以1λ=.所以Q 是A 、B 的中点,,22m n Q ⎛⎫⎪⎝⎭.因为四边形OAPB 是矩形,(),0A m ,,22m n Q ⎛⎫⎪⎝⎭,所以Q 为四边形OAPB 的中心,所以AQ BQ =,在AQK 与BQK △中,AQ BQ =,分别以,AQ BQ 为底时,高相同,所以KQA KQB S S = ,则KQA BQJ KQB BQJ BKJ S S S S S +=+=△△△△△,因为过双曲线221x y -=上一点,22m n Q ⎛⎫⎪⎝⎭的切线方程为122m n x y -=,所以直线KJ 的方程为:122m nx y -=即2mx ny -=,因为K B y y n ==,所以22,n K n m ⎛⎫+⎪⎝⎭,令0x =,所以20,J n ⎛⎫- ⎪⎝⎭,()222211221222BKJn n S KB JB n m n mn++=⋅=⋅+===,,令222t n =+>,BKJS =△,令240s t =->,2BKJS ==△.当且仅当16s s=,即4s =,28t =,22n =时,取得最小值.【点睛】关键点睛:建立BJK 的面积S 与n 的表达式至关重要,可利用KQA KQB S S = ,,K J 的坐标和三角形面积公式,以224m n -=为桥梁得出S 与n 的表达式,最后根据基本不等式可求得面积的取值范围.在双曲线【答案】(1)188x y -=(2)证明见解析【分析】(1)由已知条件,列方程组求22,a b ,可得双曲线标准方程;(2)设直线l 的方程与双曲线联立方程组,设,A B 两点坐标,表示出直线AP ,得点Q 坐标,表示出12,k k ,结合韦达定理,证明12k k -为定值.【详解】(1)由题意,双曲线2222:1x y C a b-=()3,1M -在双曲线C 上,可得22222911a b c e a c a b ⎧-=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得28a =,28b =,所以双曲线的方程为22188x y -=.(2)双曲线C 的左焦点为()4,0F -,当直线l 的斜率为0时,此时直线为0y =,与双曲线C 左支只有一个交点,舍去;当直线l 的斜率不为0时,设:4l x my =-,联立方程组2248x my x y =-⎧⎨-=⎩,消x 得()221880m y my --+=,易得0∆>,由于过点F 作直线l 交C 的左支于,A B 两点,设()11,A x y ,()22,B x y ,所以12281m y y m +=-,12281y y m =-,由直线()1:24AP y k x -=+,得()12,22Q k -+,所以2121222222222y k y k k x my ----==+-,又11111224PA y y k k x my --===+,所以()()()()12121121121212222222222y my my y k y y k k k my my my my ---------=-=--()2111112224222my y my mk y my my --+++=-,因为1112y k my -=,所以1112k my y =-,且1212y y my y +=,所以()()()1212121212122222m y y y y k k my my y y y ---===--+-,即12k k -为定值.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【答案】(1)214y +=(2)是定值,理由见解析【分析】(1)根据题意可得2PF d=,即可求解;(2)利用韦达定理结合14OM ON k k ⋅=-,可得22241m k =+,再利用弦长公式和点到直线的距离公式表示出三角形的面积,进而可求解.【详解】(1)设P 点坐标为(),,PFx y d =化解可得:2214x y +=.(2)设()()1122,,,M x y N x y ,联立直线和椭圆方程可得:2214y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 可得:()222148440k x kmx m +++-=,所以222222644(14)(44)16440k m k m k m ∆=-+-=-+>,即2241k m +>,则2121222844,1414km m x x x x k k --+=⋅=++,14OM ON k k ⋅=- ,()()121212121144kx m kx m y y x x x x +⋅+∴=-⇒=-()2212121214k x x km x x m x x +++⇒=-,把韦达定理代入可得:22222228(14)144444k m k m k m m -+++=---,整理得()22241*m k =+,满足224k m +>,又MN =,而O 点到直线MN 的距离d =,所以12OMNS d MN =△把()*代入,则1OMN S =△,可得OMN S △是定值1.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.如图,()(),00M a a >是抛物线24y x =对称轴上一点,过点M 作抛物线的弦AB ,交抛物线于A ,B .(1)若2a =,求弦AB 中点的轨迹方程;(2)过点M 作抛物线的另一条弦CD ,若AD 与y 轴交于点E ,连接ME ,BC ,求证:ME BC ∥.【答案】(1)224y x =-(2)见解析【分析】(1)由2a =,设其方程为(2)y k x =-,联立方程后,结合韦达定理及中点公式,可得弦AB 中点的轨迹方程;(2)用两点式求得AB 的方程为:()211222y t t t t x -+=,CD 的方程为:()433422y t t t t x -+=,由AB ,CD 都经过点M ,故1234t t t t a ==,进而求得ME BC k k =,根据直线平行的充要条件得到ME BC ∥.【详解】(1)设AB 方程为2x ky =+,联立22, 4x ky y x=+⎧⎨=⎩得2480y ky --=,则212124,44y y k x x k +=+=+,设AB 中点(x,y)P ,则22,22y k x k ==+,因此弦AB 中点P 的轨迹方程为224y x =-.(2)证明:设()()221122,2,,2A t t B t t ,()()223344,2,,2C t t D t t --,其中1234,,,t t t t 均为正数,用两点式求得AB 的方程为:()211222y t t t t x -+=,CD 的方程为:()433422y t t t t x -+=,因为AB ,CD 都经过点M ,故1234t t t t a ==,AD 的方程为:()411422y t t t t x -+=,AD 与y 轴交点为141420,t t E t t ⎛⎫⎪-⎝⎭,()14412ME t t k a t t =-,而()2314222323411422222BC t t t t k a a t t t t a t t t t +====----,,.ME BC k k ME BC ∴=∴ 【点睛】本题考查的知识点是直线与圆雉曲线的综合应用,抛物线的简单性质,联立方程,设而不求,韦达定理,是解答此类问题的关键.【答案】(1)142x y +=(3)存在,()0,2Q .【分析】(1)由离心率及过点)M列方程组求解,a b .(2)设直线l 为1y kx =+与椭圆方程联立,将1212AOB S x x =⋅- 表达为k 的函数,由基本不等式求最大值即可.(3)先讨论直线水平与竖直情况,求出()0,2Q ,设点B 关于y 轴的对称点B ',证得,,Q A B '三点共线得到QA PAQB PB=成立.【详解】(1)根据题意,得222222211c a a b c a b⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩,解得222422a b c ⎧=⎪=⎨⎪=⎩,椭圆C 的方程为22142x y +=.(2)依题意,设()()1122,,,A x y B x y ,直线l 的斜率显然存在,故设直线l 为1y kx =+,联立221142y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()2212420k x kx ++-=,因为直线l 恒过椭圆内定点()0,1P ,故0∆>恒成立,12122242,1212k x x x x k k +=-=-++,故12111222AOBS x x =⋅===-,令1t t≥,所以22211AOB t S t t t=�祝++1t =,即0k =时取得等号,综上可知:AOB (3)当l 平行于x 轴时,设直线与椭圆相交于,C D 两点,如果存在点Q 满足条件,则有||||1||||QC PC QD PD ==,即QC QD =,所以Q 点在y 轴上,可设Q 的坐标为()00,y ;当l 垂直于x ,M N 两点,如果存在点Q 满足条件,则有||||||||QM PM QN PN ==,解得01y =或02y =,所以若存在不同于点P 的定点Q 满足条件,则点Q 的坐标为()0,2;当l 不平行于x 轴且不垂直于x 轴时,设直线l 方程为1y kx =+,由(2)知12122242,1212k x x x x k k --+==++,又因为点B 关于y 轴的对称点B '的坐标为()22,x y -,又11111211QA y kx k k x x x --===-,22222211QB y kx k k x x x '--===-+--,则121220QA QB x x k k k x x '+-=-=,所以QA QB k k '=,则,,Q A B '三点共线,所以12QA QA x PAQBQB x PB===';综上:存在与点P 不同的定点Q ,使QA PAQB PB=恒成立,且()0,2Q ..【点睛】方法点睛:直线0Ax By C ++=与椭圆22221x y a b+=交于,M N ,当且仅当2222220a A b B C +-=时,MON S 取得最大值2ab .【答案】(1)证明见解析(2)存在,3124m =【分析】(1)将点(2,-代入抛物线方程求出p ,直线与抛物线联立方程组,由0OA OB ⋅=,利用向量数量积和韦达定理,求出12m k =-,可得直线所过定点.(2)设两条直线1l 与2l 的方程,分别与抛物线方程联立,求出弦长,由d =和||||10MN AB -=,求m 的值.【详解】(1)证明:将点(2,-代入22y px =,得244p =,即6p =.联立212,,y x y kx m ⎧=⎨=+⎩得212120ky y m -+=,由0km ≠,设()11,A x y ,()22,B x y ,则1212m y y k =,()222212121221212144y y y y m x x k=⋅==.因为0OA OB ⋅= ,所以212122120m mx x y y k k+=+=恒成立,则12m k =-,所以1l 的方程为(12)y k x =-,故直线1l 过定点(12,0).(2)联立212,2,y x y x m ⎧=⎨=+⎩得224(412)0x m x m +-+=,则122123,,4x x m m x x +=-+⎧⎪⎨=⎪⎩且22(412)1648(32)0m m m ∆=--=->,即32m <,12||AB x =-==,设2:2l y x n =+,同理可得||MN =因为直线2l 在1l 的右侧,所以n m<,则d ==,即5n m =-.所以||||10MN AB -===3124m =,因为313242<,所以满足条件的m 存在,3124m =.【点睛】方法点睛:解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【答案】(1)22184x y +=(2)证明见解析,定点坐标为()0,1【分析】(1)根据左焦点可知c 的值,根据点)在椭圆上,可以得到另一组关系式,从而求出a ,b .(2)先设直线ST 的斜截式方程,再联立直线和椭圆方程,结合韦达定理将P 点纵坐标为4的信息转化为直线方程系数的值或关系,从而找出直线所过定点.【详解】(1)因为椭圆E 的左焦点()12,0F -,可得2c =,由定义知点)到椭圆的两焦点的距离之和为2a ,2a =((=++=,故a =则2224b a c =-=,所以椭圆E 的标准方程为22184x y +=.(2)由椭圆的方程22184x y +=,可得()()0,2,0,2M N -,且直线ST 斜率存在,设()()1122,,,S x y T x y ,设直线ST 的方程为:y kx m =+,与椭圆方程22184x y +=联立得:()222214280kx kmx m +++-=,则2121222428,2121km m x x x x k k --+==++直线SM 的方程为1122y y x x -=+ ,直线TN 的方程为2222y y x x +=- ,由直线SM 和直线TN 交点的纵坐标为4得,12122622x x y y =-+即1212322x x y y =-+又因点()11,S x y 在椭圆22184x y +=上,故2211184x y +=,得()1111222y x y x -+=-,同理,点()22,T x y 在椭圆22184x y +=上,得()12212232y x y x -+=+,即()()121232220x x y y +++=即()()121232220x x kx m kx m +++++=即()()()()2212122322220k x x k m x x m ++++++=即()()()()()()22222232824428821021k m km m km m m k k +-++-++++=+化简可得288160m m +-=,即220m m +-=,解得2m =-或1m =,当2m =-时,直线ST 的方程为2y kx =-,直线ST 过点N ,与题意不符.故1m =,直线ST 的方程为1y kx =+,直线ST 恒过点()0,1【点睛】本题主要考查直线与椭圆关系中的直线恒过定点问题,遵循“求谁设谁”的思路,将目标直线设为y kx m =+的形式,将条件转化为m 的值或k 与m 的关系式,从而得出定点,侧重数学运算能力,属于偏难题.【答案】(1)抛物线的方程为24y x =,准线方程为=1x -(2)证明见解析,定点坐标为()2,0或()6,0-【分析】(1)根据已知得出直线l的方程,与抛物线联立,根据过焦点的弦长公式,列出关系式,即可得出p ;(2)设:1l x my =+,联立方程根据韦达定理得出12,y y 的关系.进而表示出,OA OB 的方程,求出M ,N 的坐标,得出圆的方程.取0m =,即可得出定点坐标.【详解】(1)由已知可得,抛物线的焦点坐标为,02p F ⎛⎫ ⎪⎝⎭,直线l 的方程为2p y x ⎫=-⎪⎝⎭.联立抛物线与直线的方程2322p y x y px ⎧⎫=-⎪⎪⎨⎝⎭⎪=⎩可得,22704p x mx -+=.设()11,A x y ,()22,B x y ,由韦达定理可得127x x p +=,则12816AB x x p p =++==,所以2p =.所以,抛物线的方程为24y x =,准线方程为=1x -.(2)设直线:1l x my =+,联立直线与抛物线的方程214x my y x=+⎧⎨=⎩可得,2440y my --=.所以,124y y m +=,124y y =-.又1114OA y k x y ==,14:OA l y x y =,所以182,M y ⎛⎫-- ⎪⎝⎭.同理可得282,N y ⎛⎫-- ⎪⎝⎭.设圆上任意一点为(),Q x y ,则由0QM QN ⋅= 可得,圆的方程为()2128820x y y y y ⎛⎫⎛⎫++++= ⎪⎪⎝⎭⎝⎭,整理可得,()()222221128864228160x y y x y my y y y y ⎛⎫+++++=++--= ⎪⎝⎭.令0m =,可得2x =或6x =-,所以,以MN 为直径的圆过定点,定点坐标为()2,0或()6,0-.【点睛】思路点睛:直线或圆过定点问题,先根据已知表示出直线或圆的方程,令变参数为0,得出方程,求解即可得出求出定点的坐标.。
压轴题09 圆锥曲线压轴小题常见题型(解析版)-2023年高考数学压轴题专项训练(江苏专用)
![压轴题09 圆锥曲线压轴小题常见题型(解析版)-2023年高考数学压轴题专项训练(江苏专用)](https://img.taocdn.com/s3/m/1e57b1541fd9ad51f01dc281e53a580216fc50c2.png)
压轴题09圆锥曲线压轴小题常见题型1、圆锥曲线的定义、方程与几何性质是每年高考必考的内容.一是求圆锥曲线的标准方程;二是求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题;三是抛物线的性质及应用问题.多以选择、填空题的形式考查,难度中等.2、通过对椭圆、双曲线、抛物线的定义、方程及几何性质的考查,着重考查了数学抽象、数学建模、逻辑推理与数学运算四大核心素养.考向一:阿波罗尼斯圆、蒙日圆与圆锥曲线考向二:离心率考向三:焦半径问题考向四:切线问题考向五:焦点三角形问题1、在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据定义判定轨迹曲线并写出方程.有时还要注意轨迹是不是完整的曲线,如果不是完整的曲线,则应对其中的变量x或y进行限制.2、应用圆锥曲线的定义时,要注意定义中的限制条件.在椭圆的定义中,要求12>;2a F FF F;在抛物线的定义中,定直线不经过定点.此外,在双曲线的定义中,要求2a<12通过到定点和到定直线的距离之比为定值可将三种曲线统一在一起,称为圆锥曲线.3、圆锥曲线定义的应用主要有:求标准方程,将定义和余弦定理等结合使用,研究焦点三角形的周长、面积,求弦长、最值和离心率等.4、用解析法研究圆锥曲线的几何性质是通过方程进行讨论的,再通过方程来研究圆锥曲线的几何性质.不仅要能由方程研究曲线的几何性质,还要能运用儿何性质解决有关问题,如利用坐标范围构造函数或不等关系等.一、单选题1.(2023·湖南·校联考二模)已知()2,0A ,点P 为直线50x y -+=上的一点,点Q 为圆221x y +=上的一点,则12PQ AQ +的最小值为()AB.22-CD【答案】D【解析】设()()110,,,M x Q x y ,令12AQ MQ =,则()22211148144233x x x xy --=⇒++=2211112x y x ⇔+=⇒=,则M 1,02⎛⎫⇒ ⎪⎝⎭12PQ AQ +=PQ MQ +.如图,当,,P Q M 三点共线时,且PM 垂直于直线50x y -+=时,PQ MQ +有最小值,为PM ,即直线50x y -+=到点M4=.故选:D2.(2023·河南商丘·商丘市实验中学校联考模拟预测)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点,M N 是C 的一条渐近线上的两点,且2MN MO =(O 为坐标原点),12MN F F =.若P 为C 的左顶点,且135MPN ∠=︒,则双曲线C 的离心率为()A 3B .2C 5D 7【答案】C【解析】设双曲线的焦距为2(0)c c >,因为2MN MO = ,所以ON MO = ,所以,M N 关于原点对称,所以四边形12MF NF 为平行四边形,又12MN F F =,所以四边形12MF NF 为矩形,因为以12F F 为直径的圆的方程为222x y c +=,不妨设,M N 所在的渐近线方程为()00,,by x M x y a=,则()00,N x y --,由222,,b y x a x yc ⎧=⎪⎨⎪+=⎩解得,x a y b =⎧⎨=⎩或,.x a y b =-⎧⎨=-⎩,不妨设()(),,,M a b N a b --,因为P 为双曲线的左顶点,所以(),0P a -,所以,PM PN b ==,又2,135MN c MPN ∠==︒,由余弦定理得222||||||2||||cos135MN MP NP MP NP ︒=+-⋅,即22224()c a a b b =+++2b a =,所以离心率c e a ==.故选:C.3.(2023·河北沧州·统考模拟预测)已知A 、B 是椭圆()222210x y a b a b +=>>与双曲线()222210,0x y a b a b -=>>的公共顶点,P 是双曲线上一点,PA ,PB 交椭圆于M ,N .若MN 过椭圆的焦点F ,且tan 3AMB ∠=-,则双曲线的离心率为()A .2BC D 【答案】D【解析】如图,设00(,)P x y ,点,,P M A 共线,点,,P B N 共线,所在直线的斜率分别为,PA PB k k,点P 在双曲线上,即2200221x y a b -=,有200200y y b x a x a a ⋅=-+,因此22PA PB b k k a⋅=,点11(,)M x y 在椭圆上,即2211221x y a b +=,有211211y y b x a x a a⋅=--+,直线,MA MB 的斜率,MA MB k k ,有22MA MBb k k a⋅=-,即22PA MBb k k a⋅=-,于是MB PB BN k k k =-=-,即直线MB 与NB 关于x 轴对称,又椭圆也关于x 轴对称,且,M N 过焦点F ,则MN x ⊥轴,令(c,0)F ,由22221x c x y a b =⎧⎪⎨+=⎪⎩得2||b y a=,显然222tan a c a ac AMF b b a ++∠==,222tan a c a acBMF b b a--∠==,22222222222tan tan 2tan 31tan tan 1a ac a acAMF BMF a b b AMB a ac a ac AMF BMF b a b b +-+∠+∠∠====-+--∠⋅∠--⋅,解得2213b a =,所以双曲线的离心率233e a ===.故选:D4.(2023·辽宁·校联考二模)已知双曲线()2222:10,0x y E a b a b -=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上一点,212PF F F ⊥,12F PF ∠的平分线与x 轴交于点Q ,1253PF Q PF Q S S =△△,则双曲线E 的离心率为()AB .2CD【答案】B【解析】∵212PF F F ⊥,则122122152132△△PF Q PF QPF F Q S S PF F Q ⋅==⋅,可得1253F Q F Q =,分别在12,PQF PQF 中,由正弦定理可得:12121122sin sin ,sin sin PF PF PQF PQF FQ QPF F Q QPF ∠∠==∠∠∵PQ 平分12F PF ∠,可得12QPF QPF ∠=∠,即12sin sin QPF QPF ∠=∠,且()122sin sin πsin PQF PQF PQF ∠=-∠=∠,故1212sin sin sin sin PQF PQF QPF QPF ∠∠=∠∠,则1212PF PF F Q F Q=,所以112253PF F Q PF F Q==,又∵22b PF a =,则21222b PF PF a a a =+=+,所以22253b aa b a+=,整理得223b a =,故2223c a a -=,得224c a =,即2c a =,所以2ce a==.故选:B.5.(2023·江西宜春·统考一模)已知双曲线221927x y -=的左、右焦点分别为12,F F ,过右焦点2F 的直线l 与双曲线的右支交于,A B 两点,若1212,AF F BF F 的内心分别为,I K ,则12IF F △与12KF F 面积之和的取值范围是()A .36,3⎡⎣B .36,483⎡⎣C .[)18π,30πD .[)18π,36π【答案】A 【解析】由双曲线方程得:3a =,33b =226c a b +=,设12AF F △内切圆与三边相切于点,,M N E ,AM AN = ,11F M F E =,22F N F E =,12121226AF AF F M F N F E F E a ∴-=-=-==,又12212F E F E c +==,19F E ∴=,23F E =,设(),0E t ,则6963t t +=⎧⎨-=⎩,解得:3t =,即()3,0E ;同理可知:12KF F 内切圆与x 轴相切于点()3,0E ;22,IF KF 分别为212,AF F BF F ∠∠的角平分线,2121π2IF F KF F ∴∠+∠=,又12IK F F ⊥,2IF E ∴ ∽2F KE ,则22IE EF EF KE=,设1212,AF F KF F 内切圆半径分别为12,r r ,2633EF =-= ,229IE KE EF ∴⋅==,即129r r =,()12121212111962IF F KF F S S F F r r r r ⎛⎫∴+=⋅+=+ ⎪⎝⎭,双曲线的渐近线斜率k =,∴直线l 的倾斜角π2π,33θ⎛⎫∈⎪⎝⎭,()2211π22IF E AF E θ∴∠=∠=-,则2ππ,63IF E ⎛⎫∠∈ ⎪⎝⎭,122tan 3IE r IF E F E∴∠==∈⎝,解得:1r ∈,又119r r +在)上单调递减,在(上单调递增,当1r =119r r +=1r =时,119r r +=;当13r =时,1196r r +=;1196,r r ⎡∴+∈⎣,1212119636,IF F KF F S S r r ⎛⎫⎡∴+=+∈ ⎪⎣⎝⎭.故选:A.6.(2023·江西吉安·统考一模)椭圆()2222:10x y E a b a b +=>>的内接四边形ABCD 的对角线,AC BD 交于点()1,1P ,满足2AP PC = ,2BP PD = ,若直线AB 的斜率为14-,则椭圆的离心率等于()A .14BC .12D .13【答案】B【解析】设点()()()1122,,,,,A x y B x y C x y ,()1,1P ,且2AP PC =,可得()()111,121,1x y x y --=--,即()()11121121x x y y ⎧-=-⎪⎨-=-⎪⎩,解得1133,22x y C --⎛⎫⎪⎝⎭,由,A C 两点在椭圆E 上,有()()()()22112222112211331244x y a b x y a b ⎧+=⎪⎪⎨--⎪+=⎪⎩,()()124-⨯得:()()11223233233x y ab--+=-,即2222221122330b x a y a b a b ++--=,同理可得2222222222330b x a y a b a b ++--=,因此,直线AB 的方程为22222222330b x a y a b a b ++--=,从而直线AB 的斜率为2214b a -=-,由222131144b e a =-=-=,可得e =故选:B7.(2023·广东汕头·金山中学校考模拟预测)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过点F 且斜率为()0k k ≠的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若AB ≥,则双曲线的离心率取值范围是()A.⎛ ⎝⎦B.(C.)+∞D.⎫+∞⎪⎪⎣⎭【答案】A【解析】设双曲线的右焦点为()()()1122,0,,,,F c A x y B x y ,则直线():l y k x c =-,联立方程()22221x y a b y k x c ⎧-=⎪⎨⎪=-⎩,消去y 得:()()222222222220b a k x a k cx a k c b -+-+=,则可得()222222222121222222220,0,,a k c b a k cb a k x x x x b a k b a k+-≠∆>+=-=---,则()2222221ab k AB b k a +==-,设线段AB 的中点()00,M x y ,则()2222212000222222222,2x x a k c a k c b kcx y k x c k c b a k b a k b a k ⎛⎫+==-=-=--=- ⎪---⎝⎭,即222222222,a k c b kc M b a k b a k ⎛⎫-- ⎪--⎝⎭,且0k ≠,线段AB 的中垂线的斜率为1k-,则线段AB 的中垂线所在直线方程为2222222221b kc a k c y x b a k k b a k ⎛⎫+=-+ ⎪--⎝⎭,令0y =,则2222222221b kc a k c x b a k k b a k ⎛⎫=-+ ⎪--⎝⎭,解得23222k c x b a k =--,即23222,0k c D b a k ⎛⎫- ⎪-⎝⎭,则()22232222221b c k k c DF c b a k b a k +=--=--,由题意可得:AB ≥,即()()2222222222121ab k b a k c k b a k +≥-+-,整理得2a ,则c e a=注意到双曲线的离心率1e >,∴双曲线的离心率取值范围是⎛ ⎝⎦.故选:A.8.(2023·河南·校联考模拟预测)已知实数a ,b 满足22122a b a b ++=+,则()2341a b +-的最小值是()A .1B .2C .4D .16【答案】A 【解析】依题意可知曲线(),0f a b =表示一个以()1,1为圆心,1为半径的圆,求()2341a b +-的最小值相当于先求341a b d +-==的最小值,即求圆()()22111a b -+-=上一点到直线3410x y +-=的距离d 的最小值,所以min 314111155d ⨯+⨯-=-=,即()2341a b +-的最小值为1.故选:A .9.(2023·全国·模拟预测)已知O 为坐标原点,椭圆22:142x y C +=上两点A ,B 满足12OA OB k k ⋅=-.若椭圆C 上一点M 满足OM OA OB λμ=+ ,则λμ+的最大值为()A .1BCD .2【答案】B【解析】设()()001122(,),,,,M x y A x y B x y ,则220022112222142142142x y x y x y ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,由OM OA OB λμ=+ ,得01212x x x y y y λμλμ=+⎧⎨=+⎩,222222222200121211221212()()()()424242422x y x x y y x y x y x x y y λμλμλμλμλμ+++=++++++221212()2x xy y λμλμ=+++,由12OA OBk k ⋅=-,得121212y y x x =-,即121202x x y y +=,又2200142x y +=,因此221λμ+=,而2222()()2()2λμλμλμ++-=+=,于是||λμλμ+≤+≤λμ==“=”,所以λμ+.故选:B10.(2023·山东潍坊·统考模拟预测)已知双曲线()22122:10,0x y C a b a b-=>>的左,右焦点分别为1F ,2F ,点2F 与抛物线()22:20C y px p =>的焦点重合,点P 为1C 与2C 的一个交点,若△12PF F 的内切圆圆心的横坐标为4,2C 的准线与1C 交于A ,B 两点,且92AB =,则1C 的离心率为()A .94B .54C .95D .74【答案】B【解析】由题设12(,0),(,0)F c F c -,又点2F 与抛物线的焦点重合,即02pc =>,由()22222221c y a ba b c ⎧-⎪-=⎨⎪+=⎩,则2b y a =±,故2292b AB a ==,即249b a =,如下图示,内切圆与△12PF F 各边的切点为,,D E K,所以1122,,PD PE DF KF EF KF ===,又12||||2PF PF a -=,则121212()()2PD DF PE EF DF EF KF KF a+-+=-=-=,所以K 为双曲线右顶点,又△12PF F 的内切圆圆心的横坐标为4,即4a =,故29b =,则5c =,所以离心率为54c e a ==.故选:B11.(2023·河南·开封高中校考模拟预测)已知直线l 与椭圆221:12x C y +=相切于点P ,与圆222:4C x y +=交于A ,B 两点,圆2C 在点A ,B 处的切线交于点Q ,O 为坐标原点,则OPQ △的面积的最大值为()A .22B .1C D .2【答案】A【解析】设()00,P x y ,(,)Q m n ,由AQ AO ⊥,BQ BO ⊥,可得四点Q ,A ,O ,B 共圆,可得以OQ 为直径的圆,方程为2222((224m n m n x y +-+-=,联立圆222:4C x y +=,相减可得AB 的方程为40mx ny +-=,又AB 与椭圆相切,若AB 不与x 轴垂直时,当0y >时,2212x y +=可化为y =,设y '=P 的切线方程为00000)()2x y y x x x x y -=--=-,即220000122x x x y y y +=+=,同理可得0y >时,在P 的切线方程为0012x x y y +=,若AB x ⊥轴时,在点()P 处的切线方程为x =0012x xy y +=故过P 的切线方程为0012x xy y +=,即为002440x x y y +-=,由两直线重合的条件可得02m x =,04n y =,由于P 在椭圆上,可设0x α,0sin y α=,02απ≤<,即有m α=,4sin n α=,可得22004cos 4sin 4OP OQ mx ny αα⋅=+=+=uu u r uuu r,且||OP ||OQ =即有1sin ,2OPQ S OP OQ OP OQ =△==22α==≤,当sin 21α=±即π4α=或3π4或5π4或7π4时,OPQ S .故选:A .12.(2023·全国·模拟预测)中国结是一种盛传于民间的手工编织工艺品,它身上所显示的情致与智慧正是中华民族古老文明中的一个侧面.已知某个中国结的主体部分可近似地视为一个大正方形(内部是16个全等的边长为1的小正方形)和凸出的16个半圆所组成,如图,点A 是大正方形的一条边的四等分点,点C 是大正方形的一个顶点,点B 是凸出的16个半圆上的任意一点,则AC AB ⋅的最大值为()A .333172+B .332172+C .332D .9172【答案】C【解析】AC AB ⋅ 等于AB 在AC 上的投影向量与AC 的数量积,因此当AB在AC 上的投影向量与AC同向,且投影向量的模最大时,AC AB ⋅取到最大值,此时点B 在以点C 为半圆弧端点且在AC 上方的半圆上,以大正方形的相邻两边分别为x ,y 轴建立平面直角坐标系xOy ,如图,(0,1),(4,0)A C,则直线AC 的方程为14x y +=,以点C 为半圆弧端点且在AC 上方的半圆圆心为1(4,)2M ,半圆M 的方程为22119(4)()(4)242x y x -+-=≤≤,显然半圆M 在点B 处切线l 垂直于直线AC 时,AC AB ⋅取得最大值,设切线l 的方程为40x y b -+=1|16|122b -+=,而点M 在切线l的左上方,解得b =,即切线l:40x y -=,由4014x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩,因此切线l 与直线AC 的交点2(1733)117(,)1734D +-,此时33171734AD =,又AC =,所以AC AB ⋅的最大值为3317173317342=.故选:C13.(2023·陕西咸阳·校考模拟预测)设双曲线()2222:10,0x y E a b a b -=>>的右焦点为F ,()0,3M b ,若直线l 与E 的右支交于A ,B 两点,且F 为MAB △的重心,则直线l 斜率的取值范围为()A.)3∞⎛⎫⋃+ ⎪ ⎪⎝⎭B.)⋃+∞⎝C.(,∞⎛-⋃- ⎝⎭D.(,∞⎛-⋃- ⎝⎭【答案】C【解析】设D 为AB 的中点,根据重心性质可得2MF FD =,因为()(),0,0,3F c M b ,则33,22c b D ⎛⎫-⎪⎝⎭,因为直线l 与E 的右支交于,A B 两点,所以点D 在双曲线右支内部,故有222299441c b a b ->,解得c a >,当直线l 斜率不存在时,AB 的中点D 在x 轴上,故,,M F D 三点不共线,不符合题意舍,设直线l 斜率为AB k ,设()()1122,,,A x y B x y ,所以123x x c +=,123y y b +=-,因为,A B 在双曲线上,所以22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减可得:2222121222x x y a b y =--,即()()()()1212121222x x x x y y y y a b -+-+=,即有()()12122233c x x b y y a b --=-成立,即有2AB bck a =-,因为,,,M F A B 不共线,即23AB MF bc b k k a c=-≠=-,即223c a ≠,即e ≠,所以E 的离心率的取值范围为)∞⎫⋃+⎪⎪⎝⎭,因为2ABbc k a =-===-因为)3e ∈+∞⎝,即()213,33,9e ⎛⎫∈+∞ ⎪⎝⎭,所以()221152,66,2481e ⎛⎫⎛⎫--∈+∞ ⎪ ⎪⎝⎭⎝⎭ ,所以(,ABk ⎛⎫=∈-∞ ⎪ ⎪⎝⎭.故选:C14.(2023·重庆·统考模拟预测)如图,椭圆()2222:10x y C a b a b+=>>的左焦点为1F ,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ y ⊥轴,四边形1F APQ 是等腰梯形,直线1F P 与y 轴交于点N ⎛⎫⎪ ⎪⎝⎭,则椭圆的离心率为().A .14B 3C 2D .12【答案】D【解析】由题意,做PM x ⊥轴于点M ,因为四边形1F APQ 是等腰梯形,则1FO AM c ==,OM a c =-则点P 的横坐标为P x a c =-,代入椭圆方程()2222:10x yC a b a b+=>>,可得22p b y ac c a =-,即22bPM ac c a-因为34N ⎛⎫ ⎪ ⎪⎝⎭,则3ON =,由11F NO F PM ,则121342F O ON cb F M PM a ac c a=⇒=-,化简可得,434332160a ac c -+=,同时除4a 可得,43163230e e -+=即()()3221812630e e e e ----=,对于()3281263f e e e e =---当1e =时,()1130f =-<,当2e =时,()210f =>,在()1,2e ∈时,方程()()3221812630e e e e ----=有根,且()0,1e ∈,故应舍,所以12e =.故选:D二、多选题15.(2023·湖南·校联考二模)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,过2F A 、B 两点(A 在第一象限),1AB BF =,P 为线段AB 的中点,O 为坐标原点,则下列说法正确的是()A .122AF AF =B .双曲线C 的离心率为2C .12AF F △D .直线OP 的斜率为7【答案】AD【解析】如下图所示:对于A 选项,因为1AB BF =,所以,22122AF AB BF BF BF a =-=-=,由双曲线的定义可得12122AF AF AF a a -=-=,所以,1242AF a AF ==,A 对;对于B 选项,设直线AB 设直线AB 的倾斜角为α,则α为锐角且tan α=由22sin tan cos sin cos 1cos 0αααααα⎧==⎪⎪+=⎨⎪>⎪⎩可得cos α=()21cos cos πcos 4AF F αα∠=-=-=-,在12AF F △中,由余弦定理得2222222121212124416cos 284AF F F AF a c a AF F AF F F ac +-+-∠===-⋅,即22260c a -=,等式22260c a -=两边同时除以2a可得2260e +-=,因为1e >,解得e B 错;对于C选项,因为21cos AF F ∠=21AF F ∠为钝角,所以,21sin 4AF F ∠=,1222122111sin 2222244AF F S AF F F AF F a c a =⋅∠=⨯⨯⨯=⨯=△,C 错;对于D 选项,设()11,A x y ,()22,B x y ,则1212,22x x y y P ++⎛⎫⎝⎭,可得121212120202OPy y y y k x x x x +-+==++-,因为c =,则b a ,由22112222222211x y a b x y a b⎧-=⎪⎪⎨⎪-=⎪⎩得22221212220x x y y a b ---=,所以,2221212122221212121AB OP OP y y y y y yb k k x x x x x x a --+=⋅====--+,则OP k =,则直线OP,D 正确.故选:AD .16.(2023·浙江宁波·统考二模)三支不同的曲线()|1|0,1,2,3i i y a x a i =⋅->=交抛物线24y x =于点,(1,2,3)i i A B i =,F 为抛物线的焦点,记i i A FB △的面积为i S ,下列说法正确的是()A .11(1,2,3)i i i FA FB +=为定值B .112233////A B A B A B C .若1232S S S +=,则1232a a a +=D .若2123S S S =,则2123a a a =【答案】AD【解析】如图,设直线()1i y a x =-与抛物线24y x =的交于点,i i C B ,则i A 与i C 关于x 轴对称,设()()1122,,,i i A x y B x y -,则()11,i C x y ,联立()214i y a x y x ⎧=-⎨=⎩,消x 得2440i y y a --=,则12124,4iy y y y a +==-,又()1i y a x =-,则()()()()212121212411,114i i i iy y a x a x y y a x x a +=-+-==--=-,则21212224,1i i a x x x x a ++==,对于A ,()1,0F ,2212212121221111124221241111i i ii i i FA FB x x a a x x a x x x x a ++++++++++=+===+++,故A 正确;对于B ,212122212121444i i A B y y y y k y y x x y y ++===---因为i a 不是定值,所以i iA B k 不是定值,故B 错误;对于C ,设直线()1i y a x =-的倾斜角为i θ,则tan i i a θ=,则22222sin cos 2tan 2sin 2cos sin 1tan 1i i i ii i i i i a a θθθθθθθ===+++,所以()()122211sin 211221i i i i i i a S A F B F x x a θ==++⋅+()2121222222414111211i i i i i i ia a a x x x x a a a a ⎛⎫+=+++⋅=++= ⎪++⎝⎭,又因1232S S S +=,所以123448a a a +=,所以()1232a a a +=,故C 错误;对于D ,因为2123S S S =,所以21234416a a a ⋅=,所以2123a a a =,故D 正确.故选:AD.17.(2023·全国·校联考三模)已知直线:l y kx m =+与椭圆22:134x y C +=交于,A B 两点,点F 为椭圆C 的下焦点,则下列结论正确的是()A .当1m =时,k ∃∈R ,使得3FA FB +=B .当1m =时,k ∀∈R ,2FA FB +>C .当1k=时,m ∃∈R ,使得4FA FB +=D .当1k =时,m ∀∈R ,65FA FB +>【答案】BC【解析】在椭圆C 中,2a =,b =1c =,由题意可得()0,1F -,上焦点记为()01F ,',对于A 选项,设点()11,A x y ,()22,B x y ,联立2214312y kx x y =+⎧⎨+=⎩,消去y 得()2234690k x kx ++-=,()()22236363414410k k k ∆=++=+>,由韦达定理可得122634kx x k +=-+,122934x x k =-+,()2212134k AB k +==+[)2443,434k =-∈+,所以,(]484,5FA FB a AB AB +=-=-∈,选项A 错;对于B 选项,设线段AB 的中点为(),M x y ,由题意可得22112222134134x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差可得22221212034x x y y --+=,因为直线AB 的斜率存在,则12x x ≠,所以,121212122423y y y y y k x x x x x -+⋅=⋅=--+,整理可得43ky x =-,又因为1y kx =+,消去k 可得224330x y y +-=,其中0y >,所以,()()()()11221212,1,1,22,22FA FB x y x y x x y y x y +=+++=+++=+,所以,FA FB +=2=>,选项B 对;对于C 选项,当1k =时,直线l 的方程为y x m =+,即x y m =-,联立224312x y mx y =-⎧⎨+=⎩可得22784120y my m -+-=,()()2226428412162130m m m ∆=--=->,解得m <<由韦达定理可得1287m y y +=,2124127m y y -=,112222y y FA =+=+ ,同理222y FB =+,所以,124444,427y y m FA FB ⎛⎫++=+=+∈ ⎪ ⎪⎝⎭,因为544277⎛∈-+ ⎪ ⎪⎝⎭,所以,当1k =时,m ∃∈R ,使得52FA FB += ,选项C 对;对于D 选项,设线段AB 的中点为(),M x y ,由B 选项可知,121212122423y y y y y x x x x x -+⋅==--+,即43y x =-,即430x y +=,由22434312y x x y ⎧=-⎪⎨⎪+=⎩可得x =M的横坐标的取值范围是77⎛⎫- ⎪ ⎪⎝⎭,,而点F 到直线430x y +=的距离为35d =,由430314x y y x +=⎧⎪⎨=-⎪⎩可得1225x ⎛=∈- ⎝⎭,当且仅当点1216,2525M ⎛⎫- ⎪⎝⎭时,FA FB + 取最小值65,选项D 错.故选:BC.18.(2023·云南·统考二模)已知抛物线C :()220x py p =>的焦点为F ,过F 作直线l与抛物线C 交于A 、B 两点,分别以A 、B 为切点作抛物线C 的切线,两切线交于点T ,设线段AB 的中点为M .若点T 的坐标为12,2⎛⎫- ⎪⎝⎭,则()A .点M 的横坐标为2B .点M 的纵坐标为3C .直线l 的斜率等于2D .5TM =【答案】ACD【解析】抛物线C :()220x py p =>,直线AB :y kx b =+,2p b ⎛⎫= ⎪⎝⎭,设()()1122:,,:,A x y B x y 显然当12x x =时,根据对称性易得T 点位于x 轴上,不合题意,故12x x ≠,且均大于0,22p x xy y p '=⇒=,1AT k p x =,11:()x AT y y x x P-=-,整理:211111()2p y y x x x x x py -=--=,得:()11:AT p y y x x +=⋅,①同理()22:BT p y y x x +=⋅,②①-②:1212()()p y y x x x -=-,1212,T y y x ppk x x -==-1122:y y x y y x +=+①②()()()1221211221121212,kx b x kx b x b x x y x y x y b x x x x x x +-+--⇒====----又因为直线y kx b =+,2pb =,由此知:1122p =故22x y =;因为22x y =,所以y x'=设交点1122(,),(,)A x y B x y ,过点A 的切线斜率为11k x =,所以切线方程为111()y y x x x -=-,整理得1112y y x x y -=-,即11y x x y =-,同理,过点B 的切线的方程为22y x x y =-,又点T 在直线上,代入得AB 直线方程:12,2y x =+故选项C 正确;由21222y x x y⎧=+⎪⎨⎪=⎩消去y 整理得2410x x --=,因为直线与抛物线相交,设()()1122,,,A x y B x y ,则12124,1,x x x x +==-,故点M 的横坐标()1212,2x x x =+=故A 正确,因为点M 的横坐标()1212,2x x x =+=所以1922,22y =⨯+=5TM ==,故选项B 错误,D 正确;故选:ACD19.(2023·浙江杭州·统考一模)设F 为抛物线C :22(0)y px p =>的焦点,过点F 的直线l 与抛物线C 交于()()1122,,A x y B x y 两点,过B 作与x 轴平行的直线,和过点F 且与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,则()A .1212x x y y +为定值B .当直线l 的斜率为1时,OAB (其中O 为坐标原点)C .若Q 为C 的准线上任意一点,则直线QA ,QF ,QB 的斜率成等差数列D .点M 到直线FN 的距离为2p 【答案】ACD【解析】A.,02p F ⎛⎫ ⎪⎝⎭,设直线l 的方程为2p ty x =-,联立222y px p ty x ⎧=⎪⎨=-⎪⎩,化为2220y pty p --=,212y y p ∴=-,122y y pt +=,22412124()p x x y y p == ,2124p x x ∴=,2121234x x y y p ∴+=-为定值,因此A 正确.B.当直线l 的斜率为1时,直线l 的方程为2p y x =-,代入椭圆方程可得:22304p x px -+=,123x x p ∴+=,124AB x x p p ∴=++=,点O 到直线l的距离24pd =,OAB ∴的面积为214242p p ⨯=,因此B 不正确.C.设,2p Q m ⎛⎫- ⎪⎝⎭,则22QF m mk p p p ==---,112211222QA y m py pm k p y p x --==+⎛⎫-- ⎪⎝⎭,222222QB py pm k y p -=+,12222212222222QF QA QB py pm py pm m k k k p y p y p --∴--=--++,通分后分子()()()()()()222222221212212m y p y p p py pm y p p py pm y p ⎡⎤=-+++-++-+⎣⎦,()()()()2224222222222212121212122212m y y mp y y mp p y y y p my mp p y y y p my mp ⎡⎤=-+++++--++--⎢⎥⎣⎦()()2224121222[m y y mp y y mp =-+++()()()242224121212122]p y y y y p y y mp y y mp ++-+-++,()()()1224412122122m y y p y y y y p y y mp ⎡⎤++⎢⎥+-⎣-+⎦=,()()()()2222442202pt pt m p p p p mp =+⎡⎤---+⎢-=⎥⎣⎦即2QF QA QB k k k --0=,则直线QA ,QF ,QB 的斜率成等差数列,因此C 正确.D.如图所示,过点M 作MH FN ⊥,垂足为H ,12AM y MNy =-,122AN y y MN y -∴=-,又AN AF MN MH =,122AF y y MH y -∴=-,22121221212121222222y p py p y p y y x p p p MH y y y y y y ⎛⎫-⎛⎫+++⎪ ⎪⎝⎭⎝⎭∴====---,因此D 正确.故选:ACD .20.(2023·安徽滁州·统考二模)在平面直角坐标系xOy 中,△OAB 为等腰三角形,顶角OAB θ∠=,点()3,0D 为AB 的中点,记△OAB 的面积()S f θ=,则()A .()18sin 54cos f θθθ=-B .S 的最大值为6C .AB 的最大值为6D .点B 的轨迹方程是()22400x y x y +-=≠【答案】ABD【解析】由OAB θ∠=,OA AB =,()3,0D 为AB 的中点,若(,)A x y 且0y ≠,则(6,)B x y --,故222222(62)(2)4(3)4x y x y x y +=-+-=-+,整理得:22(4)4x y -+=,则A 轨迹是圆心为(4,0),半径为2的圆(去掉与x 轴交点),如下图,由圆的对称性,不妨令A 在轨迹圆的上半部分,即02A y <≤,令22OA AB AD a ===,则222||||2cos OD OA AD OA AD θ=+-,所以2254cos 9a a θ-=,则2954cos a θ=-,所以2118sin sin 2sin 254cos OAB OAD OBD S S S OA AB a θθθθ=+===- ,A 正确;由113(0,6]22OAB OAD OBD A B A S S S y OD y OD y =+=⋅+⋅=∈ ,则S 的最大值为6,B 正确;由下图知:(2,6)OA AB =∈,所以AB 无最大值,C 错误;令(,)B m n ,则60A A x my n =-⎧⎨=-≠⎩代入A 轨迹得22(2)4m n -+=,即2240m m n -+=,所以B 轨迹为2240x x y -+=且0y ≠,D 正确;故选:ABD21.(2023·广东深圳·深圳中学校联考模拟预测)已知()11,P x y ,()22,Q x y 是椭圆229144x y +=上两个不同点,且满足121292x x y y +=-,则下列说法正确的是()A .1122233233x y x y +-++-的最大值为65+B .1122233233x y x y +-++-的最小值为35-C .11223535x y x y -++-+的最大值为21025+D .11223535x y x y -++-+的最小值为1022-【答案】AD【解析】由229144x y +=,可得2294x y +=,又()11,P x y ,()22,Q x y 是椭圆2294x y +=上两个不同点,可得2222112294,94x y x y +=+=,设,3x m y n ==,则224m n +=,设1122(,),(,)C m n D m n ,O 为坐标原点,可得11(,)OC m n =,22(,)OD m n = ,可得222211224,4m n m n +=+=,且12122m m n n +=-,所以2OC OD ⋅=-,1cos ,2OC OD OC OD OC OD⋅==-⋅,又[],0,πOC OD ∈ ,可得C D 、两点均在圆224m n +=的圆上,且2π3COD ∠=,设CD 的中点为E ,则π2cos 13OE ==,点C D 、两点到直线230x y +-=的距离12d d 、之和,设E 到直线230x y +-=的距离3d ,由题可知圆心到直线230x y +-=的距离为=,则12322(2(12d d d EO =≤==+1232)1)2d d d EO =≥==+可得12d d +的最大值为2+12d d +2;可得112212233233)x y x y d d +-++-+,可得1122233233x y x y +-++-的最大值为(26=,最小值为6-,故A 正确,B 错误;C D 、两点到直线50x y -+=的距离45d d 、之和,设E 到直线50x y -+=的距离6d ,由题可知圆心到直线50x y -+==则45621)2d d d =≤=+,45621)2d d d =≥-=-+,可得1122453535)x y x y d d -++-+=+,可得1122233233x y x y +-++-的最大值为10+10-C 错误,D 正确.故选:AD.三、填空题22.(2023·浙江·统考二模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F .若1F 关于直线2y x =的对称点P 恰好在C 上,且直线1PF 与C 的另一个交点为Q ,则12cos FQF ∠=__________.【答案】1213【解析】设1(,0)F c -关于直线2y x =的对称点11(,)P x y ,由111121222y x c y x c ⎧⋅=-⎪+⎪⎨-⎪=⋅⎪⎩,得34(,)55c c P -,可知1PF =,2PF =,又知122F F c =,所以2221212PF PF F F +=,则12F PF ∠为直角,由题意,点P 恰好在C 上,根据椭圆定义122PF PF a +=,得a =,122QF QF a +=,设1QF m =,则225QF a m c m =-=-,在直角三角形2QPF △中,222())()m m +=-,解得25m c =,从而225QF =,25QP =,所以22112cos 13F QP QF F Q ∠==.故答案为:121323.(2023·山东枣庄·统考二模)已知点()1,2A 在抛物线22y px =上,过点A 作圆()2222x y -+=的两条切线分别交抛物线于B ,C 两点,则直线BC 的方程为____________.【答案】330x y ++=【解析】因为点()1,2A 在抛物线22y px =上,则2221p =⨯,解得2p =,即抛物线方程为24y x =,显然过点A 作圆()2222x y -+=的两条切线斜率存在,设此切线方程为2(1)y k x -=-,即20kx y k --+=,,解得1222k k ==-221212(,),()44y y B y C y ,不妨令直线,AB AC 的斜率分别为12,k k,于是1211242214y y y -==++-,12y =,同理22y =,直线BC 的斜率122212124414432244y y k y y y y -====-+---,而点,B ,直线BC的方程为1(3y x +=-,即330x y ++=.故答案为:330x y ++=24.(2023·陕西商洛·统考二模)已知椭圆22:143x y C +=,()12,0A -,()11,0F -,斜率为(0)k k ≠的直线与C交于P ,Q 两点,若直线1A P 与1AQ 的斜率之积为14-,且1PFQ ∠为钝角,则k 的取值范围为_______.【答案】3737,00,77⎛⎫⎛⎫-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【解析】设:PQ l y kx m =+,()11,P x y ,()22,Q x y ,联立方程组22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()2223484120k x kmx m +++-=,由0∆>,即22430k m -+>,所以122834km x x k -+=+,212241234m x x k -=+,122634m y y k +=+,2212231234m k y y k -=+,所以()()1122122212312122416164A P A Qy y m k k k x x m km k -⋅===-++-+,解得2m k =(舍去)或m k =-.由1PFQ ∠为钝角,得110F РFQ ⋅<,即()()11221212121,1,10x y x y x x x x y y +⋅+=++++<,所以2222222241289791034343434k k k k k k k k---+++=<++++,解得k <因为0k ≠,所以0,77k ⎛⎫⎛∈-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.故答案为:,00,77⎛⎫⎛-⋃ ⎪ ⎪ ⎝⎭⎝⎭.25.(2023·辽宁葫芦岛·统考一模)已知双曲线2222:1(0,0)x y M a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线右支上的一点,Q 为12F F P 的内心,且12234QF QF PQ +=,则M 的离心率为______.【答案】4【解析】如图所示,在焦点三角形中,处长PQ 交12F F 于点A ,因为Q 为12F F P 的内心,所以有111122=,=PF PQ PF AF AF QA PF AF ,()()1111111111PF PF PQ QA PQ QF F A AF PQ PF QF F AAF AF =⋅⇒=⋅+⇒⋅=⋅+ 11111111111212AF AF PQ PF QF PF F A AF PQ PF QF PF F F F F ⎛⎫⇒⋅=⋅+⋅⇒⋅=⋅+⋅⋅ ⎪ ⎪⎝⎭ ()111111212AF AF PQ PF QF PF FQ QF F F ⇒⋅=⋅+⋅⋅+()11211211112AF F F PQ PF F F QF PF AF F Q QF ⇒⋅⋅=⋅⋅+⋅⋅+1121121111112AF F F PQ PF F F QF PF AF F Q PF AF QF ⇒⋅⋅=⋅⋅+⋅⋅+⋅⋅112121112AF F F PQ PF AF QF PF AF QF ⇒⋅⋅=⋅⋅+⋅⋅12121121PF AF F F PQ QF PF QF AF ⋅⇒⋅=⋅+⋅12121121PF PF F F PQ QF PF QF PF ⋅⇒⋅=⋅+⋅122112F F PQ PF QF PF QF ⇒⋅=⋅+⋅,因为12234QF QF PQ += ,所以有12124,3,2F F k PF k PF k ===,因此M 的离心率为1212242F F c ca a PF PF ===-,故答案为:426.(2023·浙江嘉兴·统考二模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为e ,点P 在椭圆上,连接1PF 并延长交C 于点Q ,连接2QF ,若存在点P使2PQ QF =成立,则2e 的取值范围为___________.【答案】)8211,1⎡-⎣【解析】设11,QF m PF n ==,则22QF a m =-.显然当P 靠近右顶点时,2PQ QF >,所以存在点P 使2PQ QF =等价于()22min0,22PQ QF PQ QF m n a -≤-=+-,在12PF F △中由余弦定理得22221121122cos PF PF F F PF F F θ=+-⋅⋅,即()2222422cos a n n c n c θ-=+-⋅⋅,解得2cos b n a c θ=-,同理可得2cos b m a c θ=+,所以2112a m n b +=,所以()(222322112223222b b b n m m n m n a m n a m n a +⎛⎫⎛⎫+=++=++≥ ⎪ ⎪⎝⎭⎝⎭,所以22min(21)(22)22b m n a a a+-=-,当且仅当2n m =时等号成立.由221)202b a a-≤得2212b a ≤-,所以2111e -≤<.故答案为:)11,1⎡⎣27.(2023·全国·东北师大附中校联考模拟预测)已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,过点F 且斜率为2的直线与双曲线C 的两条渐近线分别交于M 、N 两点,若P 是线段MN的中点,且5PF c =,则双曲线的离心率为___________.【答案】()()()222111.8?1211.7?1211.9?1220⎡⎤⨯+++⎣⎦【解析】设直线MN 为()2y x c =-,双曲线的渐近线方程为by x a=±,联立()2b y x a y x c ⎧=⎪⎨⎪=-⎩可得,22ac x a b =-,22bc y a b =-,不妨令22,22c M acb a b a b ⎛⎫ ⎝-⎭-,同理可得22,22b N ac c a b a b ⎛⎫⎪⎝-+⎭+,设()00,P x y ,则20222242224ac ac a c a b a b x a b +-+==-,2222222224bc bcb c a b a b y a b --+==-,故22222242,44a c b cP a b a b⎛⎫ ⎪--⎝⎭,故PF ==,解得4224320b a b a +-=,方程两边同时除以4a 得,42320b b a a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令22b t a =,可得2320t t +-=,解得23t =或-1(舍去),故c e a =.28.(2023·陕西汉中·统考二模)已知()30A -,,()3,0B ,P 为平面内一动点(不与,A B 重合),且满足2PA PB=,则PA PB ⋅的最小值为______.【答案】8-【解析】设(),P x y ,∵2PA PB=2=,整理得221090x y x +-+=,即()22516x y -+=,可得[]22109,1,9x y x x +=-∈,又∵()()3,,3,PA x y PB x y =---=--uu r uu r,则()()()()22233910991018PA PB x x y x y x x ⋅=---+-=+-=--=-uu r uu r ,∵[]1,9x ∈,可得当1x =时,PA PB ⋅取到最小值101188⨯-=-.故答案为:8-.29.(2023·辽宁丹东·统考一模)经过坐标原点O 的直线与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,过A 垂直于AB 的直线与C 交于点D ,直线DB 与y 轴相交于点E ,若22OB OE OE ⋅=,则C 的离心率为_______.【解析】设直线BD 的方程为()11(0),,y kx m k B x y =+≠,()22,D x y ,则()()11,,0,A x y E m --,由22221y kx m x y ab =+⎧⎪⎨+=⎪⎩,得()22222222220b a k x kma x a m a b +++-=,显然存在,k m ,使得0∆>,故由韦达定理得222121222222222,2kma k ma x x y y m b a k b a k +=-+=-+++,因为22OB OE OE ⋅= ,则212y m m =,即12y m =,则2211222212,,2,2,AB y m m k ma x B m k k y k k x b a k ⎛⎫====- ⎪+⎝⎭,因为AB AD ⊥,所以121212ADy y k x x k +==-+,即22222222221222k ma kma m b a k k b a k ⎛⎫-+=-- ⎪++⎝⎭,即222222222k a b k a a -++=,化简得222a b =,所以2c e a ===,故答案为:2.30.(2023·山西·校联考模拟预测)抛物线的光学性质是:位于抛物线焦点处的点光源发出的每一束光经抛物线反射后的反射线都与抛物线的对称轴平行或重合.设抛物线C :24y x =的焦点为F ,过点()7,0的直线交C 于A ,B 两点,且AF BF ⊥,若C 在A ,B 处的切线交于点P ,Q 为PAB 的外心,则QAB 的面积为______.【答案】108【解析】如图,易知C 的焦点为()1,0F ,显然当AB ⊥x 轴时,AF 不垂直于BF ,设过点()7,0的直线l 的斜率为k (0k >).则l :()7y k x =-,将()7y k x =-代入24y x =,得()2274k x x -=,即22222(72)490k x k x k -++=.设()11,A x y ,()22,B x y ,则()2122272k x x k++=,1249x x=,又()111,FA x y =- ,()221,FB x y =-,所以()()1212110FA FB x x y y ⋅=--+= ,所以()()()()121211770x x k x k x --+-⨯-=,即()()()22212121171490kx x k x x k+-++++=,所以()()()22222272149171490k k k kk ++⨯-+⨯++=,即2840k -=,解得212k =,所以()222222121212227211()41()449k AB k x kx x x x kk+=+-=++-=+-⨯242161121123k k k=++=,设PA ,PB 与x 轴正方向的夹角分别为,αβ,由抛物线的光学性质可知APB αβ∠=+,π222AFB αβ∠=+=,故π4APB αβ∠=+=,且由圆的性质可知π22AQB APB ∠=∠=,所以QAB 是等腰直角三角形,其中22AQ BQ ==,故221|108224QAB AQ S AQ BQ AB∆=⋅===.故答案为:108.。
高考中圆锥曲线的常见压轴题有哪些,应该怎么做?
![高考中圆锥曲线的常见压轴题有哪些,应该怎么做?](https://img.taocdn.com/s3/m/6f8743b5b8d528ea81c758f5f61fb7360b4c2baf.png)
高考中圆锥曲线的常见压轴题有哪些,应该怎么做?谢邀。
那我就来说说过来人的经验体会。
高中的圆锥曲线的大题一般都是高考倒数第二或第一题,分值就是10多分,不能轻视。
我个人感觉圆锥曲线的压轴题是比数列函数的压轴题好做一点的,因为圆锥曲线的大题一般都是有套路的。
圆锥曲线的大题,核心就是“算”,算方程,算变量,算不变量。
所以说,要想做好圆锥曲线的题,首先就要过计算这一关,尤其是代数计算,圆锥曲线中的量一般都要用参数来表示。
圆锥曲线大题一般都是两问或三问。
第一问基本上都是求标准方程。
千万要注意的是,这一问绝对不能错,否则整个题就全错了。
这一方面常见的错误有:搞反了X轴和Y轴,长轴和半长轴没看清等。
所以定义一定要记清楚!我想很少有人没犯过这样的错误。
大题最后一问特别喜欢考不变量和求量的范围,就是某两个长度相乘是不是不变的,某点是不是不动点等。
对于基础不好的同学来说,这种问题可能就是灾难,完全不知道怎么下手。
解题关键步骤就是设置参数和坐标的选取。
参数的选取直接关系到计算的繁简和结论的得出,即使是a=bt和at=b这样看起来没什么区别的设法也会导致计算过程的不同。
到底怎么设这还得靠自己去积累总结了,具体情况具体分析,难以找到固定的设法。
与其死记硬背规律,不如多做题来总结经验。
设参以后计算一定要耐心,这些计算可能很繁琐,一不小心算错就前功尽弃了。
表示出来后,基本上就是个函数题了,分应该也得了大半了,后面也就不难了。
像圆锥曲线这类题,大规律是有的,就是之前说的这些,但其中的小规律,按我个人观点,与其挖空心思去死记硬背记不如通过多做题来找“感觉”。
圆锥曲线压轴题及详解
![圆锥曲线压轴题及详解](https://img.taocdn.com/s3/m/98bdfc7458fb770bf68a5546.png)
1.如图,已知椭圆内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若.(1)证明:;(2)若M点恰好为椭圆中心O(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.求弦AB长的最小值.2.设椭圆的两个焦点为点为其短轴的一个端点,满足(Ⅰ)求椭圆的方程;(Ⅱ)过点做两条互相垂直的直线设与椭圆交于点与椭圆交于点求的最小值.3.在直角坐标系中,点到点,的距离之和是,点的轨迹与轴的负半轴交于点,不过点的直线与轨迹交于不同的两点和.⑴求轨迹的方程; ⑵当时,证明直线过定点.4.已知动直线与椭圆交于、两不同点,且△的面积=,其中为坐标原点.(1)证明和均为定值;(2)设线段的中点为,求的最大值;(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.5.椭圆x2+=1短轴的左右两个端点分别为A,B,直线l:y=kx+1与x 轴、y轴分别交于两点E,F,交椭圆于两点C,D.(Ⅰ)若=,求直线l的方程;(Ⅱ)设直线AD,CB的斜率分别为k1,k2,若k1:k2=2:1,求k的值.6.过直线上的点作椭圆的切线、,切点分别为、,联结(1)当点在直线上运动时,证明:直线恒过定点;(2)当∥时,定点平分线段7.设为椭圆上的一个动点,过点作椭圆的切线与⊙:相交于两点,⊙在两点处的切线相交于点.(1)求点的轨迹方程;(2)若是第一象限的点,求△的面积的最大值.8.设F是椭圆的左焦点,直线l为其左准线,直线l与x轴交于P,M、N为椭圆C的左右顶点。
已知|MN|=8,且|PM |=2|MF|. (1)若过点P的直线与椭圆C相交于不同的两点A,B, 求证:∠AFM=∠BFN; (2)求△ABF的面积的最大值.9.已知A,B是椭圆C:+=1(a>b>0)的左,右顶点,B(2,0),过椭圆C的右焦点F的直线交于其于点M,N,交直线x=4于点P,且直线PA,PF,PB的斜率成等差数列.(Ⅰ)求椭圆C的方程;(Ⅱ)若记△AMB,△ANB的面积分别为S 1,S 2求的取值范围.10.已知椭圆:的右焦点为,且椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于两点,与直线交于点,若直线的斜率成等差数列,求的值.11.已知A、B分别为曲线与x轴的左、右两个交点,直线l过点B且与x轴垂直,P为l上异于点B的点,连结AP与曲线C交于点M.(1)若曲线C为圆,且,求弦AM的长;(2)设N是以BP为直径的圆与线段BM的交点,若O、N、P三点共线,求曲线C的方程.12.如图,已知椭圆的上顶点为,离心率为,若不过点的动直线与椭圆相交于、两点,且.(1)求椭圆的方程;(2)求证:直线过定点,并求出该定点的坐标.13.已知抛物线圆的圆心为点。
圆锥曲线压轴难题及解答
![圆锥曲线压轴难题及解答](https://img.taocdn.com/s3/m/573e95dfa8956bec0875e360.png)
圆锥曲线提高题1.设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
解析:利用抛物线的定义结合题设条件可得出p 的值为2,B 点坐标为(142,)所以点B 到抛物线准线的距离为324,本题主要考察抛物线的定义及几何性质,属容易题2.已知以F 为焦点的抛物线24y x =上的两点A 、B 满足3AF FB =,则弦AB 的中点到准线的距离为___________.解析:设BF=m,由抛物线的定义知m BB m AA ==11,3ABC ∆∴中,AC=2m,AB=4m,3=AB k直线AB 方程为)1(3-=x y与抛物线方程联立消y 得031032=+-x x 所以AB 中点到准线距离为381351221=+=++x x 3 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点.(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F ,12BF F 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.解析:本题主要考察椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考察解析几何的基本思想方法和综合解题能力。
(Ⅰ)解:因为直线:l 202m x my --=经过22(1,0)F m -,2212m m -=,得22m =,又因为1m >,所以2m =故直线l 的方程为2202x -=。
(Ⅱ)解:设1122(,),(,)A x y B x y 。
由222221m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩,消去x 得222104m y my ++-=则由2228(1)804m m m ∆=--=-+>,知28m <,且有212121,282m m y y y y +=-=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知数列{a n }的前n 项和为S n ,且满足a 1=2,na n+1=S n +n (n+1). (Ⅰ)求数列{a n }的通项公式a n ; (Ⅱ)设T n 为数列{
}的前n 项和,求T n ;
(Ⅲ)设b n =,证明:b 1+b 2+b 3+…+b n <.
2. 已知数列{a n },a 1=1,前n 项和S n 满足nS n+1﹣(n+3)S n =0, (Ⅰ)求{a n }的通项公式; (Ⅱ)若b n =4()2,求数列{(﹣1)n
b n }的前n 项和T n ;
(Ⅲ)设C n =2n
(
﹣λ),若数列{C n }是单调递减数列,求实数λ的取值范围.
3. 已知S n 为数列{a n }的前n 项和,S n =na n ﹣3n (n ﹣1)(n ∈N *
),且a 2=11. (1)求a 1的值;
(2)求数列{a n }的前n 项和S n ; (3)设数列{b n }满足b n =
,求证:b 1+b 2+…+b n <
.
4. 已知数列{a n }的前n 项和为S n ,S n =
.
(Ⅰ)求证{a n +1}是等比数列,并求数列{a n }的通项公式; (Ⅱ)证明:
+…
>﹣.
5. 已知数列{a n },a 1=,a 2=,若数列{a n+1﹣2a n },{2a n+1﹣a n }都是等比数列,公比分别
是q 1,q 2(q 1≠q 2).
(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设S n 是数列{}的前n 项和,求证:S n <.
6. 已知数列{}n a 中,111,2,n n n a a a +=+=且
(1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为2,n n S S 求。
7. 在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设1tan tan ,n n n b a a +=求数列{}n b 的前n 项和n S . 8. 已知数列{},{}n n a b 满足下列条件:111,22 1.n n a a a n +=-=+
1.n n n b a a +=-(Ⅰ)求{}n b 的通项公式;
(Ⅱ)设1{
}n b 的前n 项和为n S ,求证:对任意正整数n ,均有19.420
n S ≤< 9. 已知动直线与椭圆C: 交于P 、Q 两不同点,且△OPQ 的面积=,其中O 为坐标原点.(Ⅰ)证明和均为定值;
(Ⅱ)设线段PQ 的中点为M ,求的最大值;
(Ⅲ)椭圆C 上是否存在点D,E,G ,使得
?若存在,判断△DEG
的形状;若不存在,请说明理由.
10. 已知抛物线)>0(2:2
p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交于另一点B ,交x 轴的正半轴于点D ,且有|FA FD =,当点A 的横坐标为3时,ADF 为正三角形。
(I )求C 的方程;(II )若直线l l //1,且1l 和C 有且只有一个公共点E ,
(i )证明直线AE 过定点,并求出定点坐标;
(ii )ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由。
11. 平面直角坐标系xOy 中,已知椭圆C :
x 2
a 2
+y 2
b 2=1(a >b >0)的离心率为√3
2,左、右焦点分别是F 1、F 2.以F 1为圆心以3为半径的圆与以F 2为圆心1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;
(Ⅱ)设椭圆E:x 2
4a 2+y 2
4b 2=1,P 为椭圆C 上任意一点,过点P 的直线
y =kx +m 交椭圆E 于A,B 两点,射线PO 交椭圆 E 于点 Q .
( i )求|OQ||OP|的值;
(ii )求△ABQ 面积的最大值.
l 22
1
32x y +=()11,x y ()22,x y OPQ S
∆22212x x +22
12y y +||||OM PQ
⋅2ODE ODG OEG S S S ∆∆∆===
9. (I )解:(1)当直线的斜率不存在时,P ,Q 两点关于x 轴对称,
所以
因为
在椭圆上,
因此
①
又因为
所以
②
由①、②得
此时
(2)当直线的斜率存在时,设直线的方程为
由题意知m ,将其代入,得 ,
其中
即
…………(*)
又
所以
因为点O 到直线的距离为
所以
l 2121,.x x y y ==-11(,)
P x y 22
11132x y +
=OPQ S ∆
=
11||||x y ⋅
=
11||| 1.x y =
=2222
12123,2,
x x y y +=+=l l ,y kx m =+0≠22
1
32x y +=222(23)63(2)0k x kmx m +++-=2222
3612(23)(2)0,k m k m ∆=-+->22
32k m +>2121222
63(2)
,,2323km m x x x x k k -+=-=+
+2
||23PQ k ==+
l d =
1
||2OPQ S PQ d ∆=
⋅
又
整理得
且符合(*)式,
此时
综上所述,
结论成立。
(II )解法一:
(1)当直线的斜率存在时,
由(I )知
因此
(2)当直线的斜率存在时,由(I )知
所以
=
223m k =
+OPQ S ∆=
22322,k m +=22
22
21
2
121222
63(2)
()2()23,2323km m x x x x x x k k -+=+-=--⨯=++222222
121212222(3)(3)4() 2.
333y y x x x x +=-+-=-+=2222
12123;2,
x x y y +=+=
l 11|||||2||2,OM x PQ y ==
=
=||||22OM PQ ⋅=
=l 123,22x x k
m +=2221212222
2212122222
22
2222222
332(),2222916211||()()(3),2244224(32)2(21)1||(1)2(2),(23)y y x x k k m k m m m m m
x x y y k m OM m m m m
k m m PQ k k m m ++-+1
=+=-+==++-=+=+==-+-+=+==++2222111||||(3)2(2)2OM PQ m m ⋅=
⨯-⨯⨯+
所以
,当且仅当时,等号成立.
综合(1)(2)得|OM|·|PQ|的最大值为
解法二: 因为
所以
即
当且仅当时等号成立。
因此 |OM|·|PQ|的最大值为
(III )椭圆C 上不存在三点D ,E ,G ,使得
证明:假设存在,
由(I )得
因此D ,E ,G 只能在
这四点中选取三个不同点,
而这三点的两两连线中必有一条过原点,
2222
211(3)(2)113225(
).24m m m m =-
+-++≤=5||||2OM PQ ⋅
≤
2211
32,m m m -=+=即5
.2222222
121221214||||()()()()OM PQ x x y y x x y y +=++++-+-2222
12122[()()]
10.
x x y y =+++=224||||10
2|||| 5.
25OM PQ OM PQ +⋅≤==5
||||,
2OM PQ ⋅
≤2||||OM PQ ==5
.
22ODE ODG OEG S S S ∆∆∆==
=
1122(,),(,),(,)ODE ODG OEG D u v E x y G x y S S S ∆∆∆===
满足222222222222
12121212222222121212123,3,3;2,2,2,
3; 1.
2,,,,,1,
2
u x u x x x v y v y y y u x x v y y u x x v y y +=+=+=+=+=+=======±±解得因此只能从只能从
中选取(1)±
与
矛盾,
所以椭圆C 上不存在满足条件的三点D ,E ,G.
ODE ODG OEG S S S ∆∆∆===。