人教版_2021年襄阳市中考数学试卷
2021年全国中考数学真题分类汇编--四边形:多边形与平行四边形(答案版 )
2021全国中考真题分类汇编(四边形)----多边形与平行四边形一、选择题1. (2021•湖南省常德市)一个多边形的内角和是1800°,则这个多边形是( )边形.A. 9B. 10C. 11D. 12 【答案】D【解析】【分析】根据n 边形的内角和是(n ﹣2)×180 ,根据多边形的内角和为1800 ,就得到一个关于n 的方程,从而求出边数.【详解】根据题意得:(n ﹣2)×180=1800,解得:n =12.故选:D .2. (2021•株洲市)如图所示,在正六边形内,以为边作正五边形,则( )A.B. C. D.【答案】B 3. (2021•江苏省连云港)正五边形的内角和是( )A.B. C. D.【答案】D【解析】【分析】n 边形的内角和是 ,把多边形的边数代入公式,就得到多边形的内角︒︒︒︒ABCDEF AB ABGHI FAI ∠=10︒12︒14︒15︒360︒540︒720︒900︒()2180n -⋅︒和.详解】(7﹣2)×180°=900°.故选D .4. (2021•江苏省南京市)下列长度的三条线段与长度为5的线段能组成四边形的是( )A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,2 【答案】D【解析】【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A 、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误; B 、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误; C 、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误; D 、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确; 故选:D .5. (2021•江苏省扬州) 如图,点A 、B 、C 、D 、E 在同一平面内,连接、、、、,若,则( )A.B. C. D.【答案】D【解析】 【分析】连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∵∠BCD =100°,∴∠CBD +∠CDB =180°-100°=80°,∴∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,【AB BC CD DE EA 100BCD ∠=︒A B D E ∠+∠+∠+∠=220︒240︒260︒280︒故选D .6. (2021•四川省眉山市)正八边形中,每个内角与每个外角的度数之比为( )A .1:3B .1:2C .2:1D .3:1【分析】此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.【解答】解:这个八边形的内角和为:(8﹣2)×180°=1080°;这个八边形的每个内角的度数为:1080°÷8=135°;这个八边形的每个外角的度数为:360°÷8=45°;∴这个八边形每个内角与每个外角的度数之比为:135:45=3:1.故选:D .7. (2021•四川省自贡市) 如图,AC 是正五边形ABCDE 的对角线,的度数是( )A. 72°B. 36°C. 74°D. 88°【答案】A【解析】 【分析】根据正五边形的性质可得,,根据等腰三角形的性质可得,利用角的和差即可求解.ACD∠108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒【详解】解:∵ABCDE 是正五边形,∴,,∴,∴,故选:A .8. (2021•北京市)下列多边形中,内角和最大的是( )DA.B .C .D . 9. (2021•福建省)如图,点F 在正ABCDE 五边形的内部,△ABF 为等边三角形,则∠AFC 等于( )CA .108°B .120°C .126°D .132° 10. (2021•云南省)一个10边形的内角和等于( )CA .1800°B .1660°C .1440°D .1200° 11. (2021•山东省济宁市)如图,正五边形ABCDE 中,∠CAD 的度数为( )A .72°B .45°C .36°D .35°【分析】首先可根据五边形内角和公式求出每个内角的度数,然后求出∠CAB 和∠DAE ,108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒1083672ACD ∠=︒-︒=︒即可求出∠CAD.【解答】解:根据正多边形内角和公式可得,正五边形ABCDE的内角和=180°×(5﹣2)=540°,则∠BAE=∠B=∠E==108°,根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°,故选:C.12.(2021•贵州省铜仁市)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A. 等边三角形B. 正方形C. 正五边形D. 正六边形【答案】C13.(2021•襄阳市)正多边形的一个外角等于60°,这个多边形的边数是()A. 3B. 6C. 9D. 12【答案】B14.(2021•绥化市)已知一个多边形内角和是外角和的4倍,则这个多边形是()A. 八边形B. 九边形C. 十边形D. 十二边形【答案】C【解析】【分析】设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.【详解】设这个多边形的边数为n,则(n-2)×180°=4×360°,解得:n=10,故选C.15. (2021•河北省)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO =2,则S正六边边ABCDEF的值是( )A.20B.30C.40D.随点O位置而变化【分析】正六边形ABCDEF的面积=S矩形AFDC+S△EFD+S△ABC,由正六边形每个边相等,每个角相等可得FD=AF,过E作FD垂线,垂足为M,利用解直角三角形可得△FED 的高,即可求出正六边形的面积.【解答】解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠FAC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=FO×AF,S△CDO=OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=FO×AF+OD×CD=(FO +OD )×AF=FD ×AF=10,∴FD ×AF =20,DM =cos30°DE =x ,DF =2DM =x , EM =sin30°DE =,∴S 正六边形ABCDEF =S 矩形AFDC +S △EFD +S △ABC=AF ×FD +2S △EFD=x •x +2×x •x=x 2+x 2 =20+10=30,故选:B .16.(2021•株洲市) 如图所示,四边形是平行四边形,点在线段的延长线上,若,则( )A. B. C. D.ABCD E BC 132DCE ∠=︒A ∠=38︒48︒58︒66︒【答案】B17.(2021•山东省泰安市)如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:①AM=CN;②若MD=AM,∠A=90°,则BM=CM;③若MD=2AM,则S△MNC=S△BNE;④若AB=MN,则△MFN与△DFC全等.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质,证明△MDB≌△NBD,从而判断①正确;若MD=AM,∠A=90°,则平行四边形ABCD为矩形,通过证明△BAM≌△CDM可以判断②;过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,通过三角形面积公式可以判断③;若AB=MN则四边形MNCD是等腰梯形,通过证明△MNC≌△DCN和△MFN≌△DFC即可判断④.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵E是BD的中点,∴BE=DE,在△MDB和△NBD中,,∴△MDB≌△NBD(ASA),∴DM=BN,∴AM=CN,故①正确;②若MD=AM,∠A=90°,则平行四边形ABCD为矩形,∴∠D=∠A=90°,在△BAM和△CDM中,,∴△BAM≌△CDM(SAS),∴BM=CM,故②正确;③过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,由①可知四边形MBCD是平行四边形,E为BD中点,∴MG=2EH,又∵MD=2AM,BN=MD,AM=NC,∴S△ANC=NC•MG=•BN•2EH=BN•EH=S△BNE,故③正确;④∵AB=MN,AB=DC,∴MN=DC,∴四边形MNCD是等腰梯形,∴∠MNC=∠DCN,在△MNC和△DCN中,,∴△MNC≌△DCN(SAS),∴∠NMC=∠CDN,在△MFN和△DFC中,,∴△MFN≌△DFC(AAS),故④正确.∴正确的个数是4个,故选:D.18.(2021•陕西省)在菱形ABCD中,∠ABC=60°,连接AC、BD,则( )A.B.C.D.【分析】由菱形的性质可得AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,∠ABD=,∵tan∠ABD=,∴,故选:D.19.(2021•河北省)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是【分析】方案甲,连接AC,由平行四边形的性质得OB=OD,OA=OC,则NO=OM,得四边形ANCM为平行四边形,方案甲正确;方案乙:证△ABN≌△CDM(AAS),得AN=CM,再由AN∥CM,得四边形ANCM为平行四边形,方案乙正确;方案丙:证△ABN≌△CDM(ASA),得AN=CM,∠ANB=∠CMD,则∠ANM=∠CMN,证出AN∥CM,得四边形ANCM为平行四边形,方案丙正确.【解答】解:方案甲中,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴OB=OD,OA=OC,∵BN=NO,OM=MD,∴NO=OM,∴四边形ANCM为平行四边形,方案甲正确;方案乙中:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN⊥B,CM⊥BD,∴AN∥CM,∠ANB=∠CMD,在△ABN和△CDM中,,∴△ABN≌△CDM(AAS),∴AN=CM,又∵AN∥CM,∴四边形ANCM为平行四边形,方案乙正确;方案丙中:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN平分∠BAD,CM平分∠BCD,∴∠BAN=∠DCM,在△ABN和△CDM中,,∴△ABN≌△CDM(ASA),∴AN=CM,∠ANB=∠CMD,∴∠ANM=∠CMN,∴AN∥CM,∴四边形ANCM为平行四边形,方案丙正确;故选:A.20.(2021•泸州市)如图,在平行四边形ABCD中,AE平分∠BAD且交BC于点E,∠D=58°,则∠AEC的大小是()A. 61°B. 109°C. 119°D. 122°【答案】C【解析】 【分析】根据四边形ABCD 是平行四边形,得到对边平行,再利用平行的性质求出,根据角平分线的性质得:AE 平分∠BAD 求,再根据平行线的性质得,即可得到答案.【详解】解:∵四边形ABCD 是平行四边形∴,∴∵AE 平分∠BAD∴ ∵∴故选C .21. (2021•四川省南充市)如图,点O 是▱ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F ,下列结论成立的是( )A .OE =OFB .AE =BFC .∠DOC =∠OCD D .∠CFE =∠DEF【分析】证△AOE ≌△COF (ASA ),得OE =OF ,AE =CF ,∠CFE =∠AEF ,进而得出结论.【解答】解:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,BO =DO ,AD ∥BC ,180122BAD D ∠=︒-∠=︒DAE ∠AEC ∠//AB CD //AD BC 180********BAD D ∠=︒-∠=︒-︒=︒111226122DAE BAD ∠=∠=⨯︒=︒//AD BC 180********AEC DAE ∠=︒-∠=︒-︒=︒∴∠EAO =∠FCO ,在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA ),∴OE =OF ,AE =CF ,∠CFE =∠AEF ,又∵∠DOC =∠BOA ,∴选项A 正确,选项B 、C 、D 不正确,故选:A .22. (2021•天津市)如图,的顶点A ,B ,C 的坐标分别是,则顶点D 的坐标是( )A.B. C. D.【答案】C【解析】 【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:∵四边形ABCD 平行四边形,点B 的坐标为(-2,-2),点C 的坐标为(2,-2),∴点B 到点C 为水平向右移动4个单位长度,∴A 到D 也应向右移动4个单位长度,∵点A 的坐标为(0,1),则点D 的坐标为(4,1),故选:C .23. (2021•湖北省恩施州)如图,在▱ABCD 中,AB =13,AD =5,AC ⊥BC ,则▱ABCD ABCD Y ()()()2,0,1,2,2,2---()4,1-()4,2-()4,1()2,1是的面积为( )A.30B.60C.65D.【分析】根据平行四边形的性质以及勾股定理求出四边形ABCD的底边BC和其对角线AC的值,然后根据平行四边形的面积计算公式求解.【解答】解:∵四边形ABCD为平行四边形,∴BC=AD=5.∵AC⊥BC,∴△ACB是直角三角形.∴AC===12.∴S▱ABCD=BC•AC=5×12=60.故选:B.24.(2021•湖北省荆门市)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.65°C.75°D.85°【分析】根据等腰直角三角形的性质求出∠FHE=45°,求出∠NHB=∠FHE=45°,根据三角形内角和定理求出∠HNB=105°,根据平行四边形的性质得出CD∥AB,根据平行线的性质得出∠2+∠HNB=180°,带哦求出答案即可.【解答】解:延长EH交AB于N,∵△EFH 是等腰直角三角形,∴∠FHE =45°,∴∠NHB =∠FHE =45°,∵∠1=30°,∴∠HNB =180°﹣∠1﹣∠NHB =105°,∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠2+∠HNB =180°,∴∠2=75°,故选:C .25.(2021•山东省威海市) 如图,在平行四边形ABCD 中,AD-3,CD=2.连接AC ,过点B 作BE ∥AC ,交DC 的延长线于点E ,连接AE ,交BC 于点F .若∠AFC=2∠D ,则四边形ABEC 的面积为( )B.C. 6D.【答案】B【解析】 【分析】先证明四边形ABEC 为矩形,再求出AC ,即可求出四边形ABEC 的面积.【详解】解:∵四边形ABCD 平行四边形,∴AB ∥CD ,AB =CD =2,BC =AD =3,∠D =∠ABC ,∵,是//BE AC∴四边形ABEC 为平行四边形,∵,∴,∵∠AFC =∠ABF +∠BAF ,∴∠ABF =∠BAF ,∴AF =BF ,∴2AF =2BF ,即BC =AE ,∴平行四边形ABEC 是矩形,∴∠BAC =90°,∴,∴矩形ABEC 的面积为故选:B26.(2021•浙江省衢州卷)如图,在中,,,,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A. 6B. 9C. 12D. 15【答案】B27.(2021•贵州省贵阳市)如图,在▱ABCD 中,∠ABC 的平分线交AD 于点E ,∠BCD 的平分线交AD 于点F ,若AB =3,AD =4,则EF 的长是( )2AFC D ∠=∠2AFC ABC ∠=∠AC ===AB AC =g ABC V 4AB =5AC =6BC =A .1B .2C .2.5D .3【分析】根据平行四边形的性质证明DF =CD ,AE =AB ,进而可得AF 和ED 的长,然后可得答案.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB =CD =3,AD =BC =5,∴∠DFC =∠FCB ,又∵CF 平分∠BCD ,∴∠DCF =∠FCB ,∴∠DFC =∠DCF ,∴DF =DC =3,同理可证:AE =AB =3,∵AD =4,∴AF =5﹣4=1,DE =4﹣3=1,∴EF =4﹣1﹣1=2.故选:B .28.(2021•湖南省娄底市)如图,点在矩形的对角线所在的直线上,,则四边形是( )A. 平行四边形B. 矩形C. 菱形D. 正方形 【答案】A【解析】【分析】利用三角形全等的性质得,对应边相等及对应角相等,得出一组对边平行且相等,即可判断出形状. ,E F ABCD BD BE DFAECF【详解】解:由题意:,,又,,,,四边形为平行四边形,故选:A .二.填空题1. (2021•湖北省黄冈市)正五边形的一个内角是 108 度.【分析】因为n 边形的内角和是(n ﹣2)•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.【解答】解:(5﹣2)•180=540°,540÷4=108°.2. (2021•陕西省)正九边形一个内角的度数为 140° .【分析】先根据多边形内角和定理:180°•(n ﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.3. (2021•上海市)六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.//,AD BC ADB CBD ∴∠=∠ FDA EBC ∴∠=∠,AD BC BE DF == ()ADF CBE SAS ∴V V ≌AF EC ∴=,//AFD CEB AF EC ∴∠=∠∴∴AECF 30°【解析】【分析】由六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,可以得到中间正六边形的边长为1,做辅助线以后,得到△ABC 、△CDE、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形,再根据等腰三角形与等边三角形的性质求出边长,求出面积之和即可.【详解】解:如图所示,连接AC 、AE 、CE ,作BG ⊥AC 、DI ⊥CE、FH ⊥AE ,AI ⊥CE ,在正六边形ABCDEF 中,∵直角三角板的最短边为1,∴正六边形ABCDEF 为1,∴△ABC 、△CDE 、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形, ∵∠ABC =∠CDE =∠EFA =120︒,AB =BC = CD =DE = EF =FA =1,∴∠BAG =∠BCG =∠DCE =∠DEC =∠FAE =∠FEA =30︒,∴BG =DI = FH =, ∴由勾股定理得:AG =CG = CI = EI = EH = AH ∴AC =AE =,∴由勾股定理得:AI=, ∴S = 30°1232111332222⨯+=4. (2021•新疆) 四边形的外角和等于_______.【答案】360°.5. (2021•浙江省湖州市)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A ,B ,C,D ,E 是正五边形的五个顶点),则图中∠A 的度数是 度.【答案】36【解析】首先根据正五边形的内角和计算公式,求出每个内角的度数为108°,即∠ABC =∠BAE =108°,那么等腰△ABC 的底角∠BAC =36°,同理可求得∠DAE =36°,故∠CAD =∠BAE ﹣∠BAC ﹣∠EAD =108°﹣36°﹣36°=36°.其实正五角星的五个角是36°,可以作为一个常识直接记住.6. (2021•江苏省盐城市)若一个多边形的每个外角均为40°,则这个多边形的边数为 9 .【分析】一个多边形的外角和为360°,而每个外角为40°,进而求出外角的个数,即为多边形的边数.【解答】解:360°÷40°=9,故答案为:9.7. (2021•广西玉林市)如图、在正六边形中,连接线,,,,,与交于点,与交于点为,与交于点,分别延长,于点,设.有以下结论:①;②;③重心、内心及外心均是点;④四边形绕点逆时针旋转与四边形重合.则所有正确结论的序号是______.ABCDEF AD AE AC DF DB AC BD M AE DF N MN AD O AB DC G 3AB =MN AD ⊥MN =DAG △的M FACD O 30°ABDE【答案】①②③8. (2021•浙江省衢州卷)如图,在正五边形ABCDE 中,连结AC ,BD 交于点F ,则的度数为________.【答案】9. (2021•江苏省扬州)如图,在中,点E 在上,且平分,若,,则的面积为________.【答案】50【解析】【分析】过点E 作EF ⊥BC ,垂足为F ,利用直角三角形的性质求出EF ,再根据平行线的性质和角平分线的定义得到∠BCE =∠BEC ,可得BE =BC =10,最后利用平行四边形的面积公式计算即可.【详解】解:过点E 作EF ⊥BC ,垂足为F ,∵∠EBC =30°,BE =10,AFB∠72︒ABCD Y AD EC BED ∠30EBC ∠=︒10BE =ABCDY∴EF =BE =5, ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DEC =∠BCE ,又EC 平分∠BED ,即∠BEC =∠DEC ,∴∠BCE =∠BEC ,∴BE =BC =10,∴四边形ABCD 的面积===50,故答案为:50.10.(2021•山东省临沂市)在平面直角坐标系中,平行四边形ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是 (4,﹣1) .【分析】由题意A ,C 关于原点对称,求出点C 的坐标,再利用平移的性质求出点C 1的坐标可得结论.【解答】解:∵平行四边形ABCD 的对称中心是坐标原点,∴点A ,点C 关于原点对称,∵A (﹣1,1),∴C (1,﹣1),∴将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是(4,﹣1),故答案为:(4,﹣1).11.(2021•山东省菏泽市)如图,在Rt △ABC 中,∠C =30°,D 、E 分别为AC 、BC 的中点,DE =2,过点B 作BF ∥AC ,交DE 的延长线于点F ,则四边形ABFD 的面积为 8 .12BC EF ⨯105⨯【分析】由三角形的中位线定理证得DE∥AB,AB=2DE=4,进而证得四边形ABFD是平行四边形,在Rt△ABC中,根据勾股定理求出BC=4,得到BE=2,根据平行四边形的面积公式即可求出四边形ABFD的面积.【解答】解:∵D、E分别为AC、BC的中点,∵DE是△ABC的中位线,∴DE∥AB,DE=AB,∴AB=2DE,DF∥AB,又∵BF∥AC,∴BF∥AD,∴四边形ABFD是平行四边形,∵AB⊥BE,∴S平行四边形ABFD=AB•BE,∵DE=2,∴AB=2×2=4,在Rt△ABC中,∵∠C=30°,∴AC=2AB=2×4=8,∴BC===4,∴BE=BC=2,∴S平行四边形ABFD=4×2=8,故答案为8.12. 6.(2021•浙江省丽水市)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是__________.【答案】6或7【解析】【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.13.(2021•青海省)如图,在▱ABCD中,对角线BD=8cm,AE⊥BD,垂足为E,且AE=3cm,BC=4cm,则AD与BC之间的距离为 6cm .【分析】设AB与CD之间的距离为h,由条件可知▱ABCD的面积是△ABD的面积的2倍,可求得▱ABCD的面积,再S四边形ABCD=BC•h,可求得h的长.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,在△ABD和△BCD中∴△ABD≌△BCD(SSS),∵AE⊥BD,AE=3cm,BD=8cm,∴S△ABD=BD•AE=×8×3=12(cm2),∴S四边形ABCD=2S△ABD=24cm2,设AD与BC之间的距离为h,∵BC=4cm,∴S四边形ABCD=AD•h=4h,∴4h=24,解得h=6cm,故答案为:6cm.14.(2021•浙江省嘉兴市)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为 .【分析】在Rt△ABC和Rt△OAB中,分别利用勾股定理可求出BC和OB的长,又AH⊥OB ,可利用等面积法求出AH 的长.【解答】解:如图,∵AB ⊥AC ,AB =2,BC =2, ∴AC ==2,在▱ABCD 中,OA =OC ,OB =OD ,∴OA =OC =,在Rt △OAB 中,OB ==,又AH ⊥BD ,∴OB •AH =OA •AB ,即=, 解得AH =. 故答案为:. 15.(2021•黑龙江省龙东地区)如图,在平行四边形中,对角线、相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形是矩形..【答案】【解析】【分析】根据矩形的判定方法即可得出答案.【详解】解:∵四边形ABCD 为平行四边形,∴当时,四边形ABCD 为矩形.故答案为:.三、解答题1.(2021•湖北省武汉市)如图,AB ∥CD ,∠B =∠D ,BC 的延长线分别交于点E ,F,求ABCD AC BDABCD 90ABC ∠=︒90ABC ∠=︒90ABC ∠=︒证:∠DEF=∠F.【分析】由平行线的性质得到∠DCF=∠B,进而推出∠DCF=∠D,根据平行线的判定得到AD∥BC,根据平行线的性质即可得到结论.【解答】证明:∵AB∥CD,∴∠DCF=∠B,∵∠B=∠D,∴∠DCF=∠D,∴AD∥BC,∴∠DEF=∠F.2.(2021•怀化市)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.【分析】(1)根据平行四边形的性质,可以得到DA=BC,DA∥BC,然后即可得到∠EAD =∠FCB,再根据SAS即可证明△ADE≌△CBF;(2)根据(1)中的结论和全等三角形的性质,可以得到∠E=∠F,从而可以得到ED∥BF.【解答】证明:(1)∵四边形ABCD为平行四边形,∴DA=BC,DA∥BC,∴∠DAC=∠BCA,∵∠DAC+∠EAD=180°,∠BCA+∠FCB=180°,∴∠EAD=∠FCB,在△ADE和△CBF中,,∴△ADE ≌△CBF (SAS );(2)由(1)知,△ADE ≌△CBF ,∴∠E =∠F ,∴ED ∥BF .3. 如(2021•岳阳市)图,在四边形中,,,垂足分别为点,.(1)请你只添加一个条件(不另加辅助线),使得四边形为平行四边形,你添加的条件是________;(2)添加了条件后,证明四边形为平行四边形.【答案】(1)(答案不唯一,符合题意即可);(2)见解析4. (2021•宿迁市)在①AE=CF ;②OE=OF ;③BE ∥DF 这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD 是平行四边形,对角线AC 、BD 相交于点O ,点E 、F 在AC 上,(填写序号).求证:BE=DF .注:如果选择多个条件分别解答,按第一个解答计分.【答案】见解析【解析】ABCD AE BD ⊥CF BD ⊥EF AECF AECF //AFCE【分析】若选②,即OE=OF;根据平行四边形的性质可得BO=DO,然后即可根据SAS证明△BOE≌△DOF,进而可得结论;若选①,即AE=CF;根据平行四边形的性质得出OE=OF 后,同上面的思路解答即可;若选③,即BE∥DF,则∠BEO=∠DFO,再根据平行四边形的性质可证△BOE≌△DOF,于是可得结论.【详解】解:若选②,即OE=OF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵OE=OF,∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选①,即AE=CF;证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴OE=OF,又∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选③,即BE∥DF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵BE∥DF;∴∠BEO=∠DFO,又∠BOE=∠DOF,∴△BOE≌△DOF(AAS),∴BE =DF ;5. (2021•山东省聊城市) 如图,在四边形ABCD 中,AC 与BD 相交于点O ,且AO =CO ,点E 在BD 上,满足∠EAO =∠DCO .(1)求证:四边形AECD 是平行四边形;(2)若AB =BC ,CD =5,AC =8,求四边形AECD 的面积.【答案】(1)见解析;(2)24【解析】【分析】(1)根据题意可证明,得到OD =OE ,从而根据“对角线互相平分的四边形为平行四边形”证明即可;(2)根据AB =BC ,AO =CO ,可证明BD 为AC 的中垂线,从而推出四边形AECD 为菱形,然后根据条件求出DE 的长度,即可利用菱形的面积公式求解即可.【详解】(1)证明:在△AOE 和△COD 中,∴.∴OD =OE .又∵AO =CO ,∴四边形AECD 是平行四边形.(2)∵AB =BC ,AO =CO ,∴BO 为AC 的垂直平分线,.∴平行四边形 AECD 是菱形.∵AC =8,.AOE COD V V ≌EAO DCO AO COAOE COD ∠=∠⎧⎪=⎨⎪∠=∠⎩()AOE COD ASA V V ≌BO AC ⊥142CO AC ∴==在 Rt △COD 中,CD =5,,∴,, ∴四边形 AECD 的面积为24.6. (2021•湖南省永州市)如图,已知点A ,D ,C ,B 在同一条直线上,AD =BC ,AE =BF ,AE ∥BF .(1)求证:△AEC ≌△BFD .(2)判断四边形DECF 的形状,并证明.7.(2021•四川省广元市)如图,在平行四边形ABCD 中,E 为DC 边的中点,连接AE ,若AE 的延长线和BC 的延长线相交于点F .(1)求证:BC=CF ;(2)连接AC 和相交于点为G ,若△GEC 的面积为2,求平行四边形ABCD 的面积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)根据E 是边DC 的中点,可以得到,再根据四边形ABCD 是平行四边形,可以得到,再根据,即可得到,则答案可证;3OD ∴===26DE OD ==11682422AECD S DE AC ∴=⋅=⨯⨯=菱形BE DE CE =ADE ECF ∠∠=AED CEF ∠=∠ADE ECF V V ≌(2)先证明,根据相似三角形的性质得出,,进而得出,由得,则答案可解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴,,∴,∵点E 为DC 的中点,∴,在和中∴,∴,∴;(2)∵四边形ABCD 是平行四边形,点E 为DC 的中点,∴,,∴,,∴,∵的面积为2, ∴,即, ∵ ∴, ∴, ∴,∴.CEG ABG V :V 8ABG S =V 12AG AB GC CE ==4BGC S =V ABC ABG BCG S S S =+V V V 12ABC S =△//B AD C AD BC =ADE ECF ∠∠=DE CE =ADE V ECF △ADE ECF DE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ADE ECF ASA V V ≌AD CF =BC CF =//AB DC 2AB EC =GEC ABG ∠=∠GCE GAB ∠=∠CEG ABG V :V GEC V 221124ABG CEG S AB S CE ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭V V 4428ABG CEG S S ==⨯=V V CEG ABG V :V 12AG AB GC CE ==118422BGC ABG S S ==⨯=V V 8412ABC ABG BCG S S S =+=+=V V V 221224ABCD ABC S S ==⨯=Y V8. (2021•新疆)如图,在矩形ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且.求证:(1);(2)四边形AEFD 是平行四边形.【答案】(1)证明过程见解析;(2)证明过程见解析.9.(2021•浙江省绍兴市)问题:如图,在▱ABCD 中,AB =8,∠DAB ,∠ABC 的平分线AE ,F ,求EF 的长.答案:EF =2.探究:(1)把“问题”中的条件“AB =8”去掉,其余条件不变.①当点E 与点F 重合时,求AB 的长;②当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“AB =8,AD =5”去掉,其余条件不变,D ,E ,F 相邻两点间的距离相等时,求的值.【分析】(1)①证∠DEA =∠DAE ,得DE =AD =5,同理BC =CF =5,即可求解; ②由题意得DE =DC =5,再由CF =BC =5,即可求解;(2)分三种情况,由(1)的结果结合点C ,D ,E ,F 相邻两点间的距离相等,分别求解即可.【解答】解:(1)①如图1所示:BE CF ABE DCF △≌△∵四边形ABCD是平行四边形,∴CD=AB=8,BC=AD=5,∴∠DEA=∠BAE,∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠DEA=∠DAE,∴DE=AD=5,同理:BC=CF=5,∵点E与点F重合,∴AB=CD=DE+CF=10;②如图3所示:∵点E与点C重合,∴DE=DC=5,∵CF=BC=5,∴点F与点D重合,∴EF=DC=5;(2)分三种情况:①如图3所示:同(1)得:AD=DE,∵点C,D,E,F相邻两点间的距离相等,∴AD=DE=EF=CF,∴=;②如图4所示:同(1)得:AD=DE=CF,∵DF=FE=CE,∴=;③如图5所示:同(1)得:AD=DE=CF,∵DF=DC=CE,∴=2;综上所述,的值为或.。
2021年数学中考试卷与答案
高中段招生统一考试 数学试卷卷 I一. 选择题(本题有10小题;每小题3分;共30分)1. 2的倒数是( ) A. 21 B.-21C. -2D. 0.22. 正方形是轴对称图形;它的对称轴共有( )A. 2条B. 3条C. 4条D. 6条3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x 轴上D. y 轴上4. 圆柱的底面半径为5cm;高为12cm;则该圆柱的侧面积等于( )A. 60cm 2B. 60πcm 2C. 120cm 2D. 120πcm 25. 如图;在Rt △ABC 中;∠C=90°;CD ⊥AB;垂足为D;AD=8;DB=2;则CD 的长为( )A. 4B. 16C. 25D. 456. 已知⊙O 1与⊙O 2的半径分别为5cm 和3cm;圆心距O 1O 2=7cm;则⊙O 1与⊙O 2的位置关系为( )A. 外离B. 外切C. 内切D. 相交7. 已知一元二次方程x 2+3x-4=0的两个根为x 1;x 2;则x 1·x 2的值是( )A. 4B. -4C. 3D. –38. 方程组⎩⎨⎧=++=-03212y x y x 的解是( )⎩⎨⎧-==⎩⎨⎧==⎩⎨⎧-=-=⎩⎨⎧=-=12012121y x D y x C y x B y x A9. 已知抛物线和直线l 在同一直角坐标系中的图象如图所示;抛物线的对称轴为直线x=-1;P 1(x 1;y 1);P 2(x 2;y 2)是抛物线上的点;P 3(x 3;y 3)是直线l 上的点;且-1<x 1<x 2;x 3<-1;则y 1;y 2;y 3的大小关系为( )A. y 1<y 2<y 3B. y 3<y 1<y 2C. y 3<y 2<y 1D. y 2<y 1<y 310. 小强拿了一张正方形的纸如图(1);沿虚线对折一次得图(2);再对折一次得图(3);然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角;再打开后的形状应是( )卷 II二. 填空题(本题有10小题;每小题3分;共30分)11. -1的相反数是 。
2022年湖北省襄阳市中考数学试卷
2022年湖北省襄阳市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答.1.若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()A.B.C.D.3.2021年,襄阳市经济持续稳定恢复,综合实力显著增强,人均地区生产总值再上新台阶,突破100000元大关.将100000用科学记数法表示为()A.1×104B.1×105C.10×104D.0.1×1064.已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°第4题第7题第10题5.襄阳市正在创建全国文明城市,某社区从今年6月1日起实施垃扱分类回收.下列图形分别是可回收物、厨余垃圾、有害垃圾及其它垃圾的标志,其中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.下列说法正确的是()A.自然现象中,“太阳东方升起”是必然事件B.成语“水中捞月”所描述的事件,是随机事件C.“襄阳明天降雨的概率为0.6”,表示襄阳明天一定降雨D.若抽奖活动的中奖概率为,则抽奖50次必中奖1次7.如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形8.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列出正确的方程为()A.=2×B.=2×C.=2×D.=2×9.若点A(﹣2,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定10.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c和反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上。
专题7一元二次方程及应用-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)
2021年中考数学真题分项汇编【全国通用】(第02期)专题7一元二次方程及应用姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·海南中考真题)用配方法解方程2650x x -+=,配方后所得的方程是( )A .2(3)4x +=-B .2(3)4x -=-C .2(3)4x +=D .2(3)4x -=【答案】D【分析】直接利用配方法进行配方即可.【详解】解:2650x x -+= 22223353x x -⨯+=-+()234x -=故选:D .【点睛】本题考查了配方法,解决本题的关键是牢记配方法的步骤,本题较基础,考查了学生对基础知识的掌握与基本功等.2.(2021·河南中考真题)若方程2x 2x m 0-+=没有实数根,则m 的值可以是( )A .1-B .0C .1 D【答案】D【分析】直接利用根的判别式进行判断,求出m 的取值范围即可.【详解】解:由题可知:“△<0”,∴()2240m --<,∴1m >,故选:D .【点睛】本题考查了一元二次方程根的判别式,解决本题的关键是掌握当“△<0”时,该方程无实数根,本题较基础,考查了学生对基础知识的理解与掌握.3.(2021·广西玉林市·中考真题)已知关于x 的一元二次方程:2x 2x m 0-+=有两个不相等的实数根1x ,2x ,则( )A .120x x +<B .120x x <C .121x x >-D .121x x < 【答案】D【分析】根据题意及一元二次方程根的判别式可得440m ->,然后再根据一元二次方程根与系数的关系可进行求解.【详解】解:∵关于x 的一元二次方程:2x 2x m 0-+=有两个不相等的实数根1x ,2x ,∴440m ->,解得:1m <, ∴由韦达定理可得:121220,1b c x x x x m a a+=-=>==<, ∴只有D 选项正确;故选D .【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.4.(2021·山东聊城市·中考真题)关于x 的方程x 2+4kx +2k 2=4的一个解是﹣2,则k 值为( ) A .2或4B .0或4C .﹣2或0D .﹣2或2 【答案】B【分析】把x =-2代入方程即可求得k 的值;【详解】解:将x =-2代入原方程得到:22-8+4=4k k ,解关于k 的一元二次方程得:k =0或4,故选:B .【点睛】此题主要考查了解一元二次方程相关知识点,代入解求值是关键.5.(2021·湖南怀化市·中考真题)对于一元二次方程22340x x -+=,则它根的情况为( ) A .没有实数根B .两根之和是3C .两根之积是2-D .有两个不相等的实数根 【答案】A【分析】先找出2,3,4a b c ==-=,再利用根的判别式判断根的情况即可.【详解】解:22340x x -+=∵2,3,4a b c ==-=∴2=4932230b ac ∆-=-=-<∴这个一元二次方程没有实数根,故A 正确、D 错误. ∵122c x x a==,故C 错误. 123+-2b x x a ==,故B 错误. 故选:A .【点睛】本题考查一元二次方程根的情况、根的判别式、根与系数的关系、熟练掌握∆<0,一元二次方程没有实数根是关键.6.(2021·湖北荆州市·中考真题)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根,则k 的取值范围是( )A .54k <且0k ≠B .54k ≤C .54k ≤且0k ≠D .54k ≥ 【答案】C【分析】按新定义规定的运算法则,将其化为关于x 的一元二次方程,从二次项系数和判别式两个方面入手,即可解决.【详解】解:∵[x 2+1,x ]※[5−2k ,k ]=0,∴()()21520k x k x ++-=. 整理得,()2520kx k x k +-+=. ∵方程有两个实数根,∴判别式0≥且0k ≠.由0≥得,()225240k k --≥, 解得,54k ≤. ∴k 的取值范围是54k ≤且0k ≠. 故选:C【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点,正确理解新定义的运算法则是解题的基础,熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制,要引起高度重视.7.(2021·山东济宁市·中考真题)已知m ,n 是一元二次方程220210x x +-=的两个实数根,则代数式22m m n ++的值等于( )A .2019B .2020C .2021D .2022 【答案】B【分析】根据一元二次方程根的定义得到22021m m +=,则22=2021+m m n m n +++,再利用根与系数的关系得到1m n +=-,然后利用整体代入的方法计算.【详解】解:∵m 是一元二次方程220210x x +-=的实数根,∴220210m m +-=,∴22021m m +=,∴2222021m m n m m m n m n ++=+++=++,∵m 、n 是一元二次方程220210x x +-=的两个实数根,∴1m n +=-,∴22202112020m m n ++=-=,故选:B .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程20(a 0)++=≠ax bx c 的两根时,12b x x a+=-,12c x x a=.也考查了一元二次方程的解. 8.(2021·黑龙江鹤岗市·中考真题)有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是( )A .14B .11C .10D .9【答案】B【分析】设每轮传染中平均一个人传染了x 个人,由题意可得()11144x x x +++=,然后求解即可.【详解】解:设每轮传染中平均一个人传染了x 个人,由题意可得: ()11144x x x +++=,解得:1211,13x x ==-(舍去),故选B .【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.9.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( )A .()50712833.6x +=B .()50721833.6x ⨯+=C .()25071833.6x +=D .()()250750715071833.6x x ++++=【答案】C【分析】根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程.【详解】设从2018年到2020年快递业务量的年平均增长率为x ,2018年我国快递业务量为:507亿件,2019年我国快递业务量为:507507x +=507(1)x +亿件,2020年我国快递业务量为:507(1)x ++2507(1)=507(1)x x x ++,根据题意,得:()25071833.6x +=故选C .【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程.10.(2021·内蒙古通辽市·中考真题)关于x 的一元二次方程()2310x k x k ---+=的根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】A【分析】先计算判别式,再根据一元二次方程根与判别式的关系即可得答案.【详解】△=[-(k -3)]2-4(-k +1)=k 2-6k +9+4k -4=(k -1)2+4,∵(k -1)2≥0,∴(k -1)2+4≥4,∴方程有两个不相等的实数根,故选:A .【点睛】本题考查的是根的判别式,对于一元二次方程ax 2+bx +c =0(a ≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.11.(2021·湖南张家界市·中考真题)对于实数,a b 定义运算“☆”如下:2a b ab ab =-☆,例如23336222⨯-⨯==☆,则方程12x =☆的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【答案】D【分析】本题根据题目所给新定义将方程12x =☆变形为一元二次方程的一般形式,即20ax bx c ++=的形式,再根据根的判别式24b ac ∆=-的值来判断根的情况即可.【详解】解:根据题意由方程12x =☆得: 22x x -=整理得:220x x --=根据根的判别式2141(2)90∆=-⨯⨯-=>可知该方程有两个不相等实数根.故选D .【点睛】本题主要考查了根的判别式,根据题目所给的定义对方程进行变形后依据∆的值来判断根的情况,注意0∆>时有两个不相等的实数根;0∆=时有一个实数根或两个相等的实数根;∆<0时没有实数根. 12.(2021·福建中考真题)某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x ,那么,符合题意的方程是( )A .()0.6310.68x +=B .()20.6310.68x += C .()0.63120.68x +=D .()20.63120.68x += 【答案】B【分析】设年平均增长率为x ,根据2020年底森林覆盖率=2018年底森林覆盖率乘()21x +,据此即可列方程求解.【详解】解:设年平均增长率为x ,由题意得:()20.6310.68x +=,故选:B .【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可. 13.(2021·吉林长春市·中考真题)关于x 的一元二次方程260x x m -+=有两个不相等的实数根,则m 的值可能是( )A .8B .9C .10D .11 【答案】A【分析】先根据判别式>0,求出m 的范围,进而即可得到答案.【详解】解:∵关于x 的一元二次方程260x x m -+=有两个不相等的实数根,∴()26410m ∆=--⨯⨯>,解得:m <9,m 的值可能是:8.故选:A.【点睛】本题主要考查一元二次方程根的判别式与根的情况的关系,掌握一元二次方程有两个不等的实数解,则240b ac ∆=->,是解题的关键.14.(2021·四川宜宾市·中考真题)若m 、n 是一元二次方程x 2+3x ﹣9=0的两个根,则24m m n ++的值是( )A .4B .5C .6D .12【答案】C【分析】由于m 、n 是一元二次方程x 2+3x −9=0的两个根,根据根与系数的关系可得m +n =−3,mn =−9,而m 是方程的一个根,可得m 2+3m −9=0,即m 2+3m =9,那么m 2+4m +n =m 2+3m +m +n ,再把m 2+3m 、m +n 的值整体代入计算即可.【详解】解:∵m 、n 是一元二次方程x 2+3x −9=0的两个根,∴m +n =−3,mn =−9,∵m 是x 2+3x −9=0的一个根,∴m 2+3m −9=0,∴m 2+3m =9,∴m 2+4m +n =m 2+3m +m +n =9+(m +n )=9−3=6.故选:C .【点睛】本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程ax 2+bx +c =0(a ≠0)两根x 1、x 2之间的关系:x 1+x 2=−b a -,x 1•x 2=c a. 15.(2021·湖北襄阳市·中考真题)随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( )A .()2500014050x +=B .()2405015000x += C .()2500014050x -=D .()2405015000x -= 【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x ,根据题意得: ()25000-x =40501故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.16.(2021·山东菏泽市·中考真题)关于x 的方程()()2212110k x k x -+++=有实数根,则k 的取值范围是( )A .14k >且1k ≠B .14k ≥且1k ≠C .14k >D .14k ≥【答案】D【分析】根据方程有实数根,利用根的判别式来求k 的取值范围即可.【详解】解:当方程为一元二次方程时,∵关于x 的方程()()2212110k x k x -+++=有实数根,∴()()22121410k k ∆=+-⨯⨯≥-,且 1k ≠, 解得,14k ≥且1k ≠, 当方程为一元一次方程时,k =1,方程有实根 综上,14k ≥故选:D .【点睛】本题考查了一元二次方程方程的根的判别式,注意一元二次方程方程中0a ≠,熟悉一元二次方程方程的根的判别式的相关性质是解题的关键.二、填空题17.(2021·江苏南京市·中考真题)设12,x x 是关于x 的方程230x x k -+=的两个根,且122x x =,则k =_______.【答案】2【分析】先利用根与系数的关系中两根之和等于3,求出该方程的两个根,再利用两根之积得到k 的值即可.【详解】 解:由根与系数的关系可得:123x x +=,12·x x k =, ∵122x x =,∴233x =,∴21x =,∴12x =,∴122k =⨯=; 故答案为:2. 【点睛】本题考查了一元二次方程根与系数之间的关系,解决本题的关键是牢记公式,即对于一元二次方程()200ax bx c a ++=≠,其两根之和为 b a -,两根之积为ca.18.(2021·湖北十堰市·中考真题)对于任意实数a 、b ,定义一种运算:22a b a b ab ⊗=+-,若()13x x ⊗-=,则x 的值为________.【答案】1-或2 【分析】根据新定义的运算得到()()()221113x x x x x x ⊗-=+---=,整理并求解一元二次方程即可. 【详解】解:根据新定义内容可得:()()()221113x x x x x x ⊗-=+---=, 整理可得220x x --=, 解得11x =-,22x =,故答案为:1-或2. 【点睛】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键.19.(2021·青海中考真题)已知m 是一元二次方程260x x +-=的一个根,则代数式2m m +的值等于______. 【答案】6 【分析】利用一元二次方程的解的定义得到m 2+m =6即可. 【详解】解:∵m 为一元二次方程260x x +-=的一个根. ∴m 2+m -6=0, ∴m 2+m =6, 故答案为6.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 20.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 【答案】23- 【分析】根据非负性求得a 、b 的值,再根据一元二次方程根与系数关系求得1x +2x 、1x 2x ,代入12121211=x x x x x x ++求解即可. 【详解】解:∵实数a 、b30b +=, ∴a ﹣2=0,b +3=0, 解得:a =2,b =﹣3, ∴2230x x --=,∵一元二次方程2230x x --=的两个实数根分别为1x 、2x , ∴1x +2x =2,1x 2x =﹣3,∴12121211=x x x x x x ++=23-,故答案为:23-. 【点睛】本题考查代数式求值、二次根式被开方数的非负性、绝对值的非负性、一元二次方程根与系数,熟练掌握非负性和一元二次方程根与系数关系是解答的关键.21.(2021·黑龙江绥化市·中考真题)已知,m n 是一元二次方程2320x x --=的两个根,则11m n+=__________. 【答案】32-运用一元二次方程根与系数的关系求解即可. 【详解】解: ∵,m n 是一元二次方程2320x x --=的两个根, 根据根与系数的关系得:3b m n a +=-=,2cmn a==-, ∴211=3m n m n mn +-+=, 故答案为:32-.【点睛】本题主要考查一元二次方程根与系数的关系,熟知1212a x cx a x x b +=-=,是解题关键.22.(2021·湖南娄底市·中考真题)已知2310t t -+=,则1t t+=________.【答案】3. 【分析】先将要求解的式子进行改写整理再利用已知方程进行求解即可. 【详解】解:22111t t t t t t t++=+=,又∵2310t t -+=, ∴213t t +=,则2113=3t tt t t t++==,故答案为:3. 【点睛】本题是一元二次方程求对应解的题目,解题的关键是将求解式子进行变形再利用已知方程进行简便运算. 23.(2021·湖北中考真题)关于x 的方程2220x mx m m -+-=有两个实数根,αβ.且111αβ+=.则m =_______. 【答案】3先根据一元二次方程的根与系数的关系可得22,m m m αβαβ+==-,再根据111αβ+=可得一个关于m的方程,解方程即可得m 的值. 【详解】解:由题意得:22,m m m αβαβ+==-,111αβαβαβ++==, 221mm m∴=-,化成整式方程为230m m -=, 解得0m =或3m =,经检验,0m =是所列分式方程的增根,3m =是所列分式方程的根, 故答案为:3. 【点睛】本题考查了一元二次方程的根与系数的关系、解分式方程,熟练掌握一元二次方程的根与系数的关系是解题关键.24.(2021·江苏盐城市·中考真题)劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x ,则可列方程为________.【答案】2300(1)363x += 【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程. 【详解】解:设平均每年增产的百分率为x ; 第一年粮食的产量为:300(1+x );第二年粮食的产量为:300(1+x )(1+x )=300(1+x )2; 依题意,可列方程:300(1+x )2=363;故答案为:300(1+x )2=363. 【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .25.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x ,则可列方程__________.【答案】()26521960x += 【分析】根据题意,第一季度地区生产总值(1⨯+平均增长率2)=第三季度地区生产总值,按照数量关系列方程即可得解. 【详解】解:根据题意,第一季度地区生产总值(1⨯+平均增长率2)=第三季度地区生产总值列方程得:()26521960x +=, 故答案为:()26521960x +=. 【点睛】本题主要考查了增长率的实际问题,熟练掌握相关基本等量关系是解决本题的关键.26.(2021·山东枣庄市·中考真题)若等腰三角形的一边长是4,另两边的长是关于x 的方程260x x n -+=的两个根,则n 的值为______. 【答案】8或9 【分析】分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得. 【详解】解:由题意,分以下两种情况:(1)当4为等腰三角形的腰长时,则4是关于x 的方程260x x n -+=的一个根, 因此有24640-⨯+=n ,解得8n =,则方程为2680x x -+=,解得另一个根为2x =,此时等腰三角形的三边长分别为2,4,4,满足三角形的三边关系定理;(2)当4为等腰三角形的底边长时,则关于x 的方程260x x n -+=有两个相等的实数根, 因此,根的判别式3640n ∆=-=, 解得9n =,则方程为2690x x -+=,解得方程的根为123x x ==,此时等腰三角形的三边长分别为3,3,4,满足三角形的三边关系定理; 综上,n 的值为8或9, 故答案为:8或9. 【点睛】本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理.27.(2021·辽宁本溪市·中考真题)若关于x 的一元二次方程2320x x k --=有两个相等的实数根,则k 的值为________. 【答案】13-. 【分析】根据关于x 的一元二次方程2320x x k --=有两个相等的实数根,得出关于k 的方程,求解即可. 【详解】∵关于x 的一元二次方程2320x x k --=有两个相等的实数根, ∴△=()()2243k --⨯⨯-=4+12k =0, 解得k =13-. 故答案为:13-. 【点睛】本题考查了运用一元二次方程根的判别式,当△>0时,一元二次方程有两个不相等的实数根;当△=0时,一元二次方程有两个相等的实数根;当△< 0时,一元二次方程没有实数根.28.(2021·辽宁营口市·中考真题)已知关于x 的一元二次方程2210x x m +-+=有两个实数根,则实数m 的取值范围是_________. 【答案】2m ≤ 【分析】利用一元二次方程根的判别式即可求解. 【详解】解:∵一元二次方程2210x x m +-+=有两个实数根, ∴()4410m ∆=--+≥,解得2m ≤, 故答案为:2m ≤. 【点睛】本题考查一元二次方程根的情况,掌握一元二次方程根的判别式是解题的关键.29.(2021·江苏宿迁市·中考真题)若关于x 的一元二次方程x 2 +ax -6=0的一个根是3,则a = 【答案】-1 【分析】把x =3代入一元二次方程即可求出a . 【详解】解:∵关于x 的一元二次方程x 2 +ax -6=0的一个根是3, ∴9+3a -6=0, 解得a =-1. 故答案为:-1 【点睛】本题考查了一元二次方程的根的意义,一元二次方程方程的解又叫一元二次方程的根,熟知一元二次方程根的意义是解题的关键.三、解答题30.(2021·湖北荆州市·中考真题)已知:a 是不等式()()528617a a -+<-+的最小整数解,请用配方法解关于x 的方程2210x ax a +++=.【答案】1x =2x =【分析】先解不等式,结合已知得出a 的值,然后利用配方法解方程即可 【详解】解:∵()()528617a a -+<-+; ∴5108667a a -+<-+; ∴3a -<; ∴-3a >;∵a 是不等式()()528617a a -+<-+的最小整数解, ∴=-2a ;∴关于x 的方程2-4-10x x =; ∴2-4+45x x =; ∴()2-25x =;∴-2=x∴1x =2x = 【点睛】本题考查了解不等式以及解一元二次方程,熟练掌握相关的运算方法是解题的关键.31.(2021·湖南永州市·中考真题)若12,x x 是关于x 的一元二次方程20ax bx c ++=的两个根,则1212,b cx x x x a a+=-⋅=.现已知一元二次方程220px x q ++=的两根分别为m ,n .(1)若2,4m n ==-,求,p q 的值;(2)若3,1p q ==-,求m mn n ++的值. 【答案】(1)1,8p q ==-;(2)-1. 【分析】根据一元二次方程根与系数的关系得到2,qmn p m n p+=-=. (1)把2,4m n ==-,代入2,qmn p m n p+=-=,即可求出,p q 的值;(2)把3,1p q ==-,代入2,q mn p m n p +=-=,得到,2133m n mn +=-=-.利用整体代入即可求解. 【详解】解:∵已知一元二次方程220px x q ++=的两根分别为m ,n , ∴2,qmn p m n p+=-=. (1)当2,4m n ==-时,2,28qp p-=-=-, 解得1,8p q ==-,经检验,1,8p q ==-是方程的根, ∴1,8p q ==-; (2)当3,1p q ==-时,,2133m n mn +=-=-.∴21133m mn n m n mn ++=++=--=-. 【点睛】本题考查了一元二次方程根与系数的关系,根据题意得到2,qmn p m n p+=-=是解题关键. 32.(2021·北京)已知关于x 的一元二次方程22430x mx m -+=. (1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值. 【答案】(1)见详解;(2)1m = 【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m -+=的两实数根为12,x x ,然后根据一元二次方程根与系数的关系可得212124,3x x m x x m +=⋅=,进而可得()2124x x -=,最后利用完全平方公式代入求解即可.【详解】(1)证明:由题意得:21,4,3a b m c m ==-=,∴22224164134b ac m m m ∆=-=-⨯⨯=, ∵20m ≥, ∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m -+=的两实数根为12,x x ,则有:212124,3x x m x x m +=⋅=, ∵122x x -=,∴()()2222121212416124x x x x x x m m -=+-=-=, 解得:1m =±, ∵0m >, ∴1m =. 【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.33.(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人. (1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少? 【答案】(1)10%;(2)13.31万 【分析】(1)设这两个月参观人数的月平均增长率为x ,根据题意列出等式解出x 即可; (2)直接利用(1)中求出的月平均增长率计算即可. 【详解】(1)解:设这两个月参观人数的月平均增长率为x , 由题意得:210(1)12.1x +=, 解得:110%x =,22110x =-(不合题意,舍去),答:这两个月参观人数的月平均增长率为10%.(2)12.1(110%)13.31⨯+=(万人),答:六月份的参观人数为13.31万人.【点睛】本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.34.(2021·山东东营市·中考真题)“杂交水稻之父”——袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水箱亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.【答案】(1)20%;(2)能【分析】(1)设亩产量的平均增长率为x ,依题意列出关于x 的一元二次方程,求解即可;(2)根据(1)求出的平均增长率计算第四阶段亩产量即可.【详解】解:(1)设亩产量的平均增长率为x ,根据题意得:()270011008x +=,解得:10.220%x ==,2 2.2x =-(舍去),答:亩产量的平均增长率为20%.(2)第四阶段的亩产量为()1008120%1209.6⨯+=(公斤),∵1209.61200>,∴他们的目标可以实现.【点睛】本题主要考查由实际问题抽象出一元二次方程,掌握2次变化的关系式是解决本题的关键.35.(2021·山西中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).【答案】5【分析】根据日历上数字规律得出,圈出的四个数最大数与最小数的差值为8,设最小数为x ,则最大数为+8x ,结合已知,利用最大数与最小数的乘积为65列出方程求解即可.【详解】解:设这个最小数为x .根据题意,得()865x x +=.解得15=x ,213x =-(不符合题意,舍去).答:这个最小数为5.【点睛】此题主要考察了由实际问题抽象出一元二次方程,掌握日历的特征,根据已知得出的最大数与最小数的差值是解题的关键.36.(2021·黑龙江齐齐哈尔市·中考真题)解方程:(7)8(7)x x x -=-.【答案】17x =,28x =-【分析】先移项再利用因式分解法解方程即可.【详解】解:∵(7)8(7)x x x -=-,∴(7)8(7)0x x x -+-=,∴(7)(8)0x x -+=,∴17x =,28x =-.【点睛】本题考查了解一元二次方程-因式分解法,解题的关键是找准公因式.37.(2021·湖北黄石市·中考真题)已知关于x 的一元二次方程2220x mx m m +++=有实数根. (1)求m 的取值范围;(2)若该方程的两个实数根分别为1x 、2x ,且221212x x +=,求m 的值.【答案】(1)0m ≤;(2)2m =-【分析】(1)根据方程有实数根的条件,即0∆≥求解即可;(2)由韦达定理把12x x +和12x x 分别用含m 的式子表示出来,然后根据完全平方公式将221212x x +=变形为()21212212x x x x +-=,再代入计算即可解出答案.【详解】(1)由题意可得:()()22240m m m ∆=-+≥ 解得:0m ≤即实数m 的取值范围是0m ≤.(2)由221212x x +=可得:()21212212x x x x +-=∵122x x m +=-;212x x m m =+ ∴()()222212m m m --+= 解得:3m =或2m =-∵0m ≤∴2m =-即m 的值为-2.【点睛】本题主要考查的是根的判别式、根与系数的关系,要牢记:(1)当0∆≥时,方程有实数根;(2)掌握根与系数的关系,即韦达定理;(3)熟记完全平方公式等是解题的关键.38.(2021·辽宁本溪市·中考真题)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【分析】(1)根据题意中销售量y (个)与售价x (元)之间的关系即可得到结论;(2)根据题意列出方程(-2x +220)(x -40)=2400,解方程即可求解;(3)设每星期利润为w 元,构建二次函数模型,利用二次函数性质即可解决问题.【详解】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【点睛】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题.。
湖北省襄阳市2021年中考数学试卷(含解析)
2021年湖北省襄阳市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答.1.(3分)﹣2的绝对值是()A.﹣2B.2C.﹣D.2.(3分)如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A.132°B.128°C.122°D.112°3.(3分)下列运算一定正确的是()A.a+a=a2B.a2•a3=a6C.(a3)4=a12D.(ab)2=ab24.(3分)下列说法正确的是()A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差小的更稳定5.(3分)如图所示的三视图表示的几何体是()A.B.C.D.6.(3分)不等式组中两个不等式的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C8.(3分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是()A.B.C.D.9.(3分)已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是()A.OA=OC,OB=ODB.当AB=CD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD且AC⊥BD时,四边形ABCD是正方形10.(3分)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有()A.4个B.3个C.2个D.1个二、填空题:本大题共6个小题,每小题3分,共18分.把答案填在答题卡的相应位置上.11.(3分)函数y=中自变量x的取值范围是.12.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=°.13.(3分)《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为,从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为.14.(3分)汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数关系式是s=15t﹣6t2.则汽车从刹车到停止所用时间为秒.15.(3分)在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于°.16.(3分)如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=,则矩形ABCD的面积为.三、解答题:本大题共9个小题,共72分.解答应写出文字说明,证明过程或演算步骤,井且写在答题卡上每题对应的答题区域内.17.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.18.(6分)襄阳东站的建成运营标志着我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿AC方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工.要使A、C、E三点在一条直线上,工程队从AC上的一点B取∠ABD=140°,BD=560米,∠D=50°.那么点E与点D间的距离是多少米?(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)19.(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的,这样120吨水可多用3天,求现在每天用水量是多少吨?20.(6分)3月14日是国际数学日,“数学是打开科学大门的钥匙.”为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是分,抽取的50名学生竞赛成绩的中位数是分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的约为人.21.(7分)如图,反比例函数y1=(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).(1)m=,n=;(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;(3)若点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为.22.(8分)如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C作CD⊥AE交AE 的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=,求图中阴影部分的面积.23.(10分)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x 之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.24.(11分)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.(1)特例发现:如图1,当AD=AF时,①求证:BD=CF;②推断:∠ACE=°;(2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当=时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=,求DF的长.25.(12分)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.2021年湖北省襄阳市中考数学试卷试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答.1.解:|﹣2|=2.故选:B.2.解:∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF交CD于点G,∴∠BEG=∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.故选:C.3.解:A.a+a=2a,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a3)4=a12,故本选项符合题意;D.(ab)2=a2b2,故本选项不合题意.故选:C.4.解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,从未出现故障”是随机事件,故本选项错误;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项正确;故选:D.5.解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选:A.6.解:由不等式组得﹣2≤x<1,该不等式组的解集在数轴表示如下:故选:A.7.解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AEB+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.8.解:根据题意可得:,故选:C.9.解:A、根据平行四边形的性质得到OA=OC,OB=OD,该结论正确;B、当AB=CD时,四边形ABCD还是平行四边形,该选项错误;C、根据有一个角是直角的平行四边形是矩形可以判断该选项正确;D、当AC=BD且AC⊥BD时,根据对角线相等可判断四边形ABCD是矩形,根据对角线互相垂直可判断四边形ABCD是菱形,故四边形ABCD是正方形,该结论正确;故选:B.10.解:①∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;②∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∵抛物线经过点(﹣1,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,结论②正确;③∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;④∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x<1时,y随x的增大而减小,结论④错误;故选:B.二、填空题:本大题共6个小题,每小题3分,共18分.把答案填在答题卡的相应位置上.11.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.12.解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.13.解:从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,∴这一卦中恰有2根和1根的概率为=;故答案为:.14.解:∵s=15t﹣6t2=﹣6(t﹣1.25)2+9.375,∴汽车从刹车到停下来所用时间是1.25秒.故答案为:1.25.15.解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.故答案为:60°或120°.16.解:∵将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,∴AF⊥DE,AE=EF,∵矩形ABCD中,∠ABF=90°,∴B,E,N,F四点共圆,∴∠BNF=∠BEF,∴tan∠BEF=,设BF=x,BE=2x,∴EF==3x,∴AE=3x,∴AB=5x,∴AB=BF.∴S矩形ABCD=AB•AD=BF•AD=×15=15.故答案为:15.三、解答题:本大题共9个小题,共72分.解答应写出文字说明,证明过程或演算步骤,井且写在答题卡上每题对应的答题区域内.17.解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2=6xy,当x=,y=﹣1时,原式=6××(﹣1)=6﹣6.18.解:∵A、C、E三点在一条直线上,∠ABD=140°,∠D=50°,∴∠E=140°﹣50°=90°,在Rt△BDE中,DE=BD•cos∠D,=560×cos50°,≈560×0.64,=38.4(米).答:点E与点D间的距离是38.4米.19.解:设原来每天用水量是x吨,则现在每天用水量是x吨,依题意,得:﹣=3,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴x=8.答:现在每天用水量是8吨.20.解:(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如图所示:(2)第3组数据出现次数最多的是76,共出现3次,因此众数是76,抽取的50人的成绩从小到大排列处在第25、26位的两个数的平均数为=78,因此中位数是78,故答案为:76,78;(3)1500×=720(人),故答案为:720.21.解:(1)∵把A(1,4)代入y1=(x>0)得:m=1×4=4,∴y=,∵把B(n,2)代入y=得:2=,解得n=2;故答案为4,2;(2)把A(1,4)、B(2,2)代入y2=kx+b得:,解得:k=﹣2,b=6,即一次函数的解析式是y=﹣2x+6.由图象可知:y1<y2时x的取值范围是1<x<2;(3)∵点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,∴S△POM=|m|==2,故答案为2.22.(1)证明:连接OC,∵=,∴∠CAD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠CAD=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE,连接BE交OC于F,∵=,∴OC⊥BE,BF=EF,∵AB是⊙O的直径,∴∠AEB=90°,∴∠FED=∠D=∠EFC=90°,∴四边形DEFC是矩形,∴EF=CD=,∴BE=2,∴AE===2,∴AE=AB,∴∠ABE=30°,∴∠AOE=60°,∴∠BOE=120°,∵=,∴∠COE=∠BOC=60°,连接CE,∵OE=OC,∴△COE是等边三角形,∴∠ECO=∠BOC=60°,∴CE∥AB,∴S△ACE=S△COE,∵∠OCD=90°,∠OCE=60°,∴∠DCE=30°,∴DE=CD=1,∴AD=3,∴图中阴影部分的面积=S△ACD﹣S扇形COE=3﹣=﹣.23.解:(1)当0≤x≤50是,设y=kx,根据题意得50k=1500,解得k=30;∴y=30x;当x>50时,设y=k1x+b,根据题意得,,解得,∴y=24x+3000.∴y=,(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,∴40≤a≤60,当40≤a≤50时,w1=30a+25(100﹣a)=5a+2500.当a=40 时.w min=2700 元,当50<a≤60时,w2=24a+300+25(100﹣a)=﹣a+2800.当a=60时,w min=2740 元,∵2740>2700,∴当a=40时,总费用最少,最少总费用为2700 元.此时乙种水果100﹣40=60(千克).答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少.(3)由题意得:(40﹣30)×a+(36﹣25)×≥1650,解得x≥,∵a为正整数,∴a≥156,∴a的最小值为156.24.(1)①证明:如图1中,∵AB=AC,∴∠B=∠ACF,∵AD=AF,∴∠ADF=∠AFD,∴∠ADB=∠AFC,∴△ABD≌△ACF(AAS),∴BD=CF.②结论:∠ACE=90°.理由:如图1中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.故答案为90.(2)结论:∠ACE=90°.理由:如图2中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.(3)如图3中,连接EK.∵∠BAC+∠ACE=180°,∴AB∥CE,∴==,设EC=a,则AB=AC=3a,AK=3a﹣,∵DA=DE,DK⊥AE,∴AP=PE,∴AK=KE=3a﹣,∵EK2=CK2+EC2,∴(3a﹣)2=()2+a2,解得a=4或0(舍弃),∴EC=5,AB=AC=15,∴AE===5,∴DP=P A=PE=AE=,EF=AE=,∴PF=PE=,∵∠DPF=90°,∴DF===25.解:(1)令x=0,得y=﹣x+2=2,∴A(0,2),令y=0,得y=﹣x+2=0,解得,x=4,∴C(4,0),把A、C两点代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为,令y=0,得=0,解得,x=4,或x=﹣2,∴B(﹣2,0);(2)过M点作MN⊥x轴,与AC交于点N,如图1,设M(a,),则N(a,),∴=,∵,∴S四边形ABCM=S△ACM+S△ABC=,∴当a=2时,四边形ABCM面积最大,其最大值为8,此时M的坐标为(2,2);(3)∵将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,如图2,∴PO′=PO=m,O′A′=OA=2,∴O′(m,m),A′(m+2,m),当A′(m+2,m)在抛物线上时,有,解得,m=﹣3,当点O′(m,m)在抛物线上时,有,解得,m=﹣4或2,∴当﹣4≤m≤﹣3﹣或﹣3+≤m≤2时,线段O′A′与抛物线只有一个公共点.。
2020年湖北省襄阳市中考数学试卷-含详细解析
2020年湖北省襄阳市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−2的绝对值是()A. −2B. 2C. −12D. 122.如图,AB//CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A. 132°B. 128°C. 122°D. 112°3.下列运算一定正确的是()A. a+a=a2B. a2⋅a3=a6C. (a3)4=a12D. (ab)2=ab24.下列说法正确的是()A. “买中奖率为110的奖券10张,中奖”是必然事件B. “汽车累积行驶10000km,从未出现故障”是不可能事件C. 襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D. 若两组数据的平均数相同,则方差小的更稳定5.如图所示的三视图表示的几何体是()A.B.C.D.6.不等式组{x−4≤2(x−1),12(x+3)>x+1中两个不等式的解集在数轴上表示正确的是()A. B. C. D.7.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A. DB=DEB. AB=AEC. ∠EDC=∠BACD. ∠DAC =∠C8. 我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x 匹,大马有y 匹,则下列方程组中正确的是( )A. {x +y =100y =3xB. {x +y =100x =3yC. {x +y =10013x +3y =100D. {x +y =10013y +3x =1009. 已知四边形ABCD 是平行四边形,AC ,BD 相交于点O ,下列结论错误的是( )A. OA =OC ,OB =ODB. 当AB =CD 时,四边形ABCD 是菱形C. 当∠ABC =90°时,四边形ABCD 是矩形D. 当AC =BD 且AC ⊥BD 时,四边形ABCD 是正方形10. 二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①ac <0;②3a +c =0;③4ac −b 2<0;④当x >−1时,y 随x 的增大而减小.其中正确的有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题,共18.0分)11. 函数y =√4x −2中,自变量x 的取值范围是______.12. 如图,在△ABC 中,AB =AD =DC ,∠BAD =20°,则∠C =______.13. 《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为,从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为______.14. 汽车刹车后行驶的距离s 与行驶时间t(秒)的函数关系是s =15t −6t 2,汽车从刹车到停下来所用时间是______秒.15. 在⊙O 中,若弦BC 垂直平分半径OA ,则弦BC 所对的圆周角等于______°.16. 如图,矩形ABCD 中,E 为边AB 上一点,将△ADE 沿DE 折叠,使点A 的对应点F 恰好落在边BC 上,连接AF 交DE 于点N,连接BN.若BF⋅AD=15,tan∠BNF=√5,则矩形ABCD的面积为______.2三、解答题(本大题共9小题,共72.0分)17.先化简,再求值:(2x+3y)2−(2x+y)(2x−y)−2y(3x+5y),其中x=√2,y=√6−1.218.襄阳东站的建成运营标志着我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿AC方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工.要使A、C、E三点在一条直线上,工程队从AC上的一点B取∠ABD=140°,BD=560米,∠D=50°.那么点E与点D间的距离是多少米?(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)19.在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方,这样120吨水可多用3天,式.改进后,现在每天用水量是原来每天用水量的45求现在每天用水量是多少吨?20.3月14日是国际数学日,“数学是打开科学大门的钥匙.”为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为747173747976777676737275根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是______分,抽取的50名学生竞赛成绩的中位数是______分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的约为______人.(x>0)和一次函数y2=kx+b的图21.如图,反比例函数y1=mx象都经过点A(1,4)和点B(n,2).(1)m=______,n=______;(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;(x>0)的图象上一点,过点P(3)若点P是反比例函数y1=mx作PM⊥x轴,垂足为M,则△POM的面积为______.22.如图,AB是⊙O的直径,E,C是⊙O上两点,且EC⏜=BC⏜,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=√3,求图中阴影部分的面积.23.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.24.在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.(1)特例发现:如图1,当AD=AF时,①求证:BD=CF;②推断:∠ACE=______°;(2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当EFAF =13时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=163,求DF的长.25.如图,直线y=−12x+2交y轴于点A,交x轴于点C,抛物线y=−14x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.答案和解析1.【答案】B【解析】【分析】本题考查了绝对值的定义,关键是利用了绝对值的性质.根据绝对值的定义,可直接得出−2的绝对值.【解答】解:|−2|=2.故选:B.2.【答案】C【解析】解:∵AB//CD,∠EFG=64°,∴∠BEF=180°−∠EFG=116°,∵EG平分∠BEF交CD于点G,∴∠BEG=1∠BEF=58°,2∵AB//CD,∴∠EGD=180°−∠BEG=122°.故选:C.根据平行线的性质得到∠BEF=180°−∠EFG=116°,根据角平分线的定义得到∠BEF=58°,由平行线的性质即可得到结论.∠BEG=12此题考查了平行线的性质与角平分线的定义.解题的关键是掌握两直线平行,同旁内角互补与两直线平行,内错角相等的知识点.3.【答案】C【解析】解:A.a+a=2a,故本选项不合题意;B.a2⋅a3=a5,故本选项不合题意;C.(a3)4=a12,故本选项符合题意;D.(ab)2=a2b2,故本选项不合题意.故选:C.分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.4.【答案】D【解析】解:A、“买中奖率为1的奖券10张,中奖”是随机事件,故本选项错误;10B、汽车累积行驶10000km,从未出现故障”是随机事件,故本选项错误;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项正确;故选:D.根据随机时间的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.5.【答案】A【解析】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选:A .由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体. 6.【答案】A【解析】解:由不等式组{x −4≤2(x −1),12(x +3)>x +1得−2≤x <1, 该不等式组的解集在数轴表示如下:故选:A .根据不等式组{x −4≤2(x −1),12(x +3)>x +1可以得到该不等式组的解集,从而可以在数轴上表示出来,本题得以解决.本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.7.【答案】D【解析】解:由作图可知,∠DAE =∠DAB ,∠DEA =∠B =90°,∵AD =AD ,∴△ADE≌△ADB(AAS),∴DB =DE ,AB =AE ,∵∠AEB +∠B =180°∴∠BAC +∠BDE =180°,∵∠EDC +∠BDE =180°,∴∠EDC =∠BAC ,故A ,B ,C 正确,故选:D .证明△ADE≌△ADB 即可判断A ,B 正确,再根据同角的补角相等,证明∠EDC =∠BAC 即可.本题考查作图−基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】C【解析】解:根据题意可得:{x +y =100x 3+3y =100, 故选:C .根据“3匹小马能拉1片瓦,1匹大马能拉3片瓦”,即可得出关于x ,y 的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.【答案】B【解析】解:A、根据平行四边形的性质得到OA=OC,OB=OD,该结论正确;B、当AB=CD时,四边形ABCD还是平行四边形,该选项错误;C、根据有一个角是直角的平行四边形是矩形可以判断该选项正确;D、当AC=BD且AC⊥BD时,根据对角线相等可判断四边形ABCD是矩形,根据对角线互相垂直可判断四边形ABCD是菱形,故四边形ABCD是正方形,该结论正确;故选:B.根据正方形的判定,矩形的判定、菱形的判定方法分别判断后即可确定正确的选项.本题考查了正方形的判定,矩形的判定、平行四边形的性质及菱形的判定方法,牢记判定方法是解答本题的关键.10.【答案】B【解析】解:①∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;②∵抛物线对称轴为直线x=1,=1,∴−b2a∴b=−2a,∵抛物线经过点(−1,0),∴a−b+c=0,∴a+2a+c=0,即3a+c=0,结论②正确;③∵抛物线与x轴由两个交点,∴b2−4ac>0,即4ac−b2<0,结论③正确;④∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x<1时,y随x的增大而减小,结论④错误;故选:B.二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.11.【答案】x≥12【解析】【分析】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.根据二次根式的有意义的条件:被开方数大于等于0,就可以求解.【解答】解:依题意,得4x−2≥0,,解得:x≥12故答案为x≥1.212.【答案】40°【解析】解:∵AB=AD,∠BAD=20°,∴∠B=180°−∠BAD2=180°−20°2=80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C=180°−∠ADC2=180°−100°2=40°.先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.13.【答案】38【解析】解:从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,∴这一卦中恰有2根和1根的概率为mn =38;故答案为:38.从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,由概率公式即可得出答案.本题考查了概率公式、古典概率;熟练掌握概率公式是解题的关键.14.【答案】1.25【解析】解:∵s=15t−6t2=−6(t−1.25)2+9.375,∴汽车从刹车到停下来所用时间是1.25秒.故答案为:1.25.利用配方法求二次函数最值的方法解答即可.考查了一元二次方程的应用,此题主要利用配方法求最值的问题,根据已知得出顶点式是解题关键.15.【答案】60°或120【解析】解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.故答案为:60°或120°.根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC 所对的圆周角度数.本题考查了圆周角定理、垂径定理、线段垂直平分线的性质,解决本题的关键是掌握圆周角定理.16.【答案】15√5【解析】解:∵将△ADE 沿DE 折叠,使点A 的对应点F 恰好落在边BC 上, ∴AF ⊥DE ,AE =EF ,∵矩形ABCD 中,∠ABF =90°,∴B ,E ,N ,F 四点共圆,∴∠BNF =∠BEF ,∴tan∠BEF =√52, 设BF =√5x ,BE =2x ,∴EF =√BF 2+BE 2=3x ,∴AE =3x ,∴AB =5x ,∴AB =√5BF .∴S 矩形ABCD =AB ⋅AD =√5BF ⋅AD =√5×15=15√5.故答案为:15√5.由折叠的性质得出∠BNF =∠BEF ,由条件得出tan∠BEF =√52,设BF =√5x ,BE =2x ,由勾股定理得出EF =3x ,得出AB =√5BF ,则可得出答案.本题考查了折叠的性质,矩形的性质,锐角三角函数,勾股定理等知识,熟练掌握折叠的性质是解题的关键.17.【答案】解:原式=4x 2+12xy +9y 2−4x 2+y 2−6xy −10y 2=6xy ,当x =√2,y =√62−1时,原式=6×√2×(√62−1)=6√3−6√2.【解析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键. 18.【答案】解:∵A 、C 、E 三点在一条直线上,∠ABD =140°,∠D =50°, ∴∠E =140°−50°=90°,在Rt △BDE 中,DE =BD ⋅cos∠D ,=560×cos50°,≈560×0.64,=38.4(米).答:点E 与点D 间的距离是38.4米.【解析】求出∠E 的度数,再在Rt △BDE 中,依据三角函数进行计算即可.考查直角三角形的边角关系,构造直角三角形是解决问题的关键.19.【答案】解:设原来每天用水量是x 吨,则现在每天用水量是45x 吨,依题意,得:12045x −120x =3,解得:x =10,经检验,x =10是原方程的解,且符合题意, ∴45x =8. 答:现在每天用水量是8吨.【解析】设原来每天用水量是x 吨,则现在每天用水量是45x 吨,根据现在120吨水比以前可多用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 20.【答案】76 78 720【解析】解:(1)50−4−12−20−4=10(人),补全频数分布直方图如图所示:(2)第3组数据出现次数最多的是76,共出现3次,因此众数是76, 抽取的50人的成绩从小到大排列处在第25、26位的两个数的平均数为77+792=78,因此中位数是78,故答案为:76,78;(3)1500×20+450=720(人),故答案为:720.(1)计算出第2组60~70组的人数,即可补全频数分布直方图;(2)根据中位数、众数的意义,分别求出第3组的众数,样本中位数;(3)样本估计总体,样本中80分以上的占20+450,因此估计总体1500人的20+450是80分以上的人数.考查频数分布直方图的意义和制作方法,理解中位数、众数的意义和计算方法是正确解答的前提.21.【答案】4 2 2【解析】解:(1)∵把A(1,4)代入y 1=m x (x >0)得:m =1×4=4,∴y =4x ,∵把B(n,2)代入y =4x 得:2=4n ,解得n =2;故答案为4,2;(2)把A(1,4)、B(2,2)代入y2=kx+b得:{k+b=42k+b=2,解得:k=−2,b=6,即一次函数的解析式是y=−2x+6.由图象可知:y1<y2时x的取值范围是1<x<2;(3)∵点P是反比例函数y1=mx(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,∴S△POM=12|m|=12×4=2,故答案为2.(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标;(2)分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;根据图象求得y1<y2时x的取值范围;(3)根据反比例函数系数k的几何意义即可求得.本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.22.【答案】(1)证明:连接OC,∵EC⏜=BC⏜,∴∠CAD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠CAD=∠ACO,∴AD//OC,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE,连接BE交OC于F,∵EC⏜=BC⏜,∴OC⊥BE,BF=EF,∵AB是⊙O的直径,∴∠AEB=90°,∴∠FED=∠D=∠EFC=90°,∴四边形DEFC是矩形,∴EF=CD=√3,∴BE=2√3,∴AE=√AB2−BE2=√42−(2√3)2=2,∴AE=12AB,∴∠ABE=30°,∴∠AOE=60°,∴∠BOE=120°,∵EC⏜=BC⏜,∴∠COE=∠BOC=60°,连接CE,∵OE=OC,∴△COE 是等边三角形,∴∠ECO =∠BOC =60°,∴CE//AB ,∴S △ACE =S △COE ,∵∠OCD =90°,∠OCE =60°,∴∠DCE =30°,∴DE =√33CD =1,∴AD =3,∴图中阴影部分的面积=S △ACD −S 扇形COE =12×√3×3−60⋅π×22360=3√32−2π3.【解析】(1)连接OC ,根据EC⏜=BC ⏜,求得∠CAD =∠BAC ,根据等腰三角形的性质得到∠BAC =∠ACO ,推出AD//OC ,根据平行线的性质得到OC ⊥CD ,于是得到CD 是⊙O 的切线;(2)连接OE ,连接BE 交OC 于F ,根据垂径定理得到OC ⊥BE ,BF =EF ,由圆周角定理得到∠AEB =90°,根据矩形的性质得到EF =CD =√3,根据勾股定理得到AE =√AB 2−BE 2=√42−(2√3)2=2,求得∠AOE =60°,连接CE ,推出CE//AB ,根据三角形和扇形的面积公式即可得到结论.本题考查了直线与圆的位置关系,勾股定理,垂径定理,扇形的面积的计算,正确的作出辅助线是解题的关键.23.【答案】解:(1)当0≤x ≤50是,设y =kx ,根据题意得50k =1500, 解得k =30;∴y =30x ;当x >50时,设y =k 1x +b ,根据题意得,{50k +b =150070k +b =1980,解得{k =24b =300, ∴y =24x +3000.∴y ={30x(0≤x ≤50)24x +300(x >50),(2)设购进甲种水果为a 千克,则购进乙种水果(100−a)千克,∴40≤a ≤60,当40≤a ≤50时,w 1=30a +25(100−a)=5a +2500.当a =40 时.w min =2700元,当50<a ≤60时,w 2=24a +300+25(100−a)=−a +2800.当a =60时,w min =2740元,∵2740>2700,∴当a =40时,总费用最少,最少总费用为2700元.此时乙种水果100−40=60(千克).答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少.(3)由题意得:(40−30)×25a +(36−25)×35a ≥1650,解得x≥1555,53∵a为正整数,∴a≥156,∴a的最小值为156.【解析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设购进甲种水果为a千克,则购进乙种水果(100−a)千克,根据实际意义可以确定a的范围,结合付款总金额(元)与种水果的购进量之间的函数关系可以分类讨论最少费用为多少.(3)根据(2)的结论列不等式解答即可.本题主要考查了一次函数的图象以及一元一次不等式组的应用.借助函数图象表达题目中的信息,读懂图象是关键.24.【答案】90【解析】(1)①证明:如图1中,∵AB=AC,∴∠B=∠ACF,∵AD=AF,∴∠ADF=∠AFD,∴∠ADB=∠AFC,∴△ABD≌△ACF(AAS),∴BD=CF.②结论:∠ACE=90°.理由:如图1中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.故答案为90.(2)结论:∠ACE=90°.理由:如图2中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,∴∠ACD=∠AED=45°,∴A,D,E,C四点共圆,∴∠ADE+∠ACE=180°,∴∠ACE=90°.(3)如图3中,连接EK.∵∠BAC+∠ACE=180°,∴AB//CE,∴ECAB =EFAF=13,设EC=a,则AB=AC=3a,AK=3a−163,∵DA=DE,DK⊥AE,∴AP=PE,∴AK=KE=3a−163,∵EK2=CK2+EC2,∴(3a−163)2=(163)2+a2,解得a=4或0(舍弃),∴EC=5,AB=AC=15,∴AE=√AC2+EC2=√152+52=5√10,∴DP=PA=PE=12AE=5√102,EF=14AE=5√104,∴PF=PE=5√104,∵∠DPF=90°,∴DF=√DP2+PF2=√(5√102)2+(5√104)2=25√24(1)①证明△ABD≌△ACF(AAS)可得结论.②利用四点共圆的性质解决问题即可.(2)结论不变.利用四点共圆证明即可.(3)如图3中,连接EK.首先证明AB=AC=3EC,设EC=a,则AB=AC=3a,在Rt△KCE中,利用勾股定理求出a,再求出DP,PF即可解决问题.本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,四点共圆,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.【答案】解:(1)令x =0,得y =−12x +2=2, ∴A(0,2), 令y =0,得y =−12x +2=0,解得,x =4,∴C(4,0),把A 、C 两点代入y =−14x 2+bx +c 得,{c =2−4+4b +c =0,解得{b =12c =2, ∴抛物线的解析式为y =−14x 2+12x +2,令y =0,得y =−14x 2+12x +2=0,解得,x =4,或x =−2,∴B(−2,0);(2)过M 点作MN ⊥x 轴,与AC 交于点N ,如图1,设M(a,−14a 2+12a +2),则N(a,−12a +2),∴S △ACM =12MN ⋅OC =12(−14a 2+a)×4=−12a 2+2a ,∵S △ABC =12BC ⋅OA =12×(4+2)×2=6, ∴S 四边形ABCM =S △ACM +S △ABC =−12a 2+2a +6=−12(a −2)2+8, ∴当a =2时,四边形ABCM 面积最大,其最大值为8,此时M 的坐标为(2,2);(3)∵将线段OA 绕x 轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,如图2,∴PO′=PO=m,O′A′=OA=2,∴O′(m,m),A′(m+2,m),当A′(m+2,m)在抛物线上时,有−14(m+2)2+12(m+2)+2=m,解得,m=−3±√17,当点O′(m,m)在抛物线上时,有−14m2+12m+2=m,解得,m=−4或2,∴当−4≤m≤−3−√17或−3+√17≤m≤2时,线段O′A′与抛物线只有一个公共点.【解析】(1)令x=0,由y=−12x+2,得A点坐标,令y=0,由y=−12x+2,得C点坐标,将A、C的坐标代入抛物线的解析式便可求得抛物线的解析式,进而由二次函数解析式令y=0,便可求得B点坐标;(2)过M点作MN⊥x轴,与AC交于点N,设M(a,−14a2+12a+2),则N(a,−12a+2),由三角形的面积公式表示出四边形的面积关于a的函数关系式,再根据二次函数的性质求得最大值,并求得a的值,便可得M点的坐标;(3)根据旋转性质,求得O′点和A′点的坐标,令O′点和A′点在抛物线上时,求出m的最大和最小值便可.本题是一个二次函数的综合题,主要考查了二次函数的图象与性质,旋转的性质,待定系数法,求函数图象与坐标轴的交点,求函数的最大值,三角形的面积公式,第(2)题关键再求函数的解析式,第(3)关键是确定O′,A′点的坐标与位置.。
2021年全国中考数学真题分类汇编--圆:与圆有关的计算(试卷版)
2021全国中考真题分类汇编(圆)----与圆有关的计算一、选择题1. (2021•山西)如图,正六边形 ABCDEF 的边长为 2,以 A 为圆心,AC 的长为半径画弧,得,连接 AC 、AE ,则图中阴影部分的面积为( ) A. B. C.D.2. (2021•河北省)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作:①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅱ:⊙O 上只有唯一的点P ,使得S 扇形FOM =S 扇形AOB .对于结论Ⅰ和Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C .Ⅰ不对Ⅱ对D .Ⅰ对Ⅱ不对3. (2021•四川省成都市)如图,正六边形ABCDEF 的边长为6,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为( )¶BC2π4πA .4πB .6πC .8πD .12π4.(2021•湖北省荆州市)如图,在菱形ABCD 中,∠D =60°,AB =2,以B 为圆心、BC 长为半径画,点P 为菱形内一点,连接PA ,PB ,PC .当△BPC 为等腰直角三角形时,图中阴影部分的面积为( )A .B .C .2πD .5.(2021•四川省广元市)如图,在边长为2的正方形中,是以为直径的半圆的切线,则图中阴影部分的面积为( )A. B. C. 1 D. 6.(2021•四川省广元市)如图,从一块直径是2的圆形铁片上剪出一个圆心角为的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )ABCD AE BC 32π+2π-52π-90︒A.C. D. 17. (2021•浙江省衢州卷) 已知扇形的半径为6,圆心角为.则它的面积是( )A.B.C. D.8.(2021•遂宁市) 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O 的半径为CDF =15°,则阴影部分的面积为( )A.B. C.D.9. (2021•四川省自贡市)如图,直线与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线于点Q ,绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部份)面积的最大值是( )4π12150︒32π3π5π15π16π-16π-20π-20π-22y x =-+3y x =-+OPQ △A. B. C. D. 10.(2021•青海省)如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A 在草地上的最大活动区域面积是( )A .πm 2 B .πm 2 C.πm 2 D .πm 211. (2021•浙江省湖州市)如图,已知在矩形ABCD 中,AB =1,BC ,点P 是AD 边上的一个动点,连结BP ,点C 关于直线BP的对称点为C 1,当点P 运动时,点C 1也随之运动.若点P 从点A 运动到点D ,则线段CC 1扫过的区域的面积是( )A .B .CD . 12. (2021•湖南省张家界市)如图,正方形内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,设正方形的面积为,黑色部分面积为,则:的比值为( )13. (2021•云南省)如图,等边△ABC 的三个顶点都在⊙O 上,AD 是⊙O 的直径.若0A =3,则劣弧BD 的长是( )23π12π1116π2132πππ2πABCD ABCD S 1S 1S S .A 8π.B 4π.C 41.D 21A .B .πC .D .2π14.(2021•广西贺州市)如图,在边长为2的等边中,是边上的中点,以点为圆心,为半径作圆与,分别交于,两点,则图中阴影部分的面积为( )A. B. C. D. 15. (2021•湖北省江汉油田)用半径为,圆心角为的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为( )A. B.C. D.16.(2021•呼和浩特市)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d ,根据我国魏晋时期数学家刘的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计的值,下面d及的值都正确的是( )A .B .,C .,D .ABC V D BC A AD AB AC E F π6π3π22π330cm 120︒5cm 10cm 15cm 20cm πd =8sin 22.5π≈︒d =4sin 22.5π≈︒d =8sin 22.5π≈︒d =4sin 22.5π≈︒17. (2021•内蒙古包头市)如图,在中,,,以点A 为圆心,AC 的长为半径画弧,交AB 于点D ,交AC 于点C ,以点B 为圆心,AC 的长为半径画弧,交AB 于点E,交BC 于点F ,则图中阴影部分的面积为( )A.B. C. D.二.填空题1. .(2021•湖南省衡阳市)底面半径为3,母线长为4的圆锥的侧面积为 .(结果保留π)2. (2021•怀化市)如图,在⊙O 中,OA =3,∠C =45°,则图中阴影部分的面积是 .(结果保留π)3. (2021•宿迁市)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.4. (2021•山东省聊城市)用一块弧长16πcm 的扇形铁片,做一个高为6cm 的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm 25. (2021•山东省泰安市)若△ABC 为直角三角形,AC =BC =4,以BC 为直径画半圆如图所示,则阴影部分的面积为 .Rt ABC V 90ACB ∠=︒AB =2BC =8π-4π-24π-14π-6. (2021•湖北省宜昌市)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为 平方厘米.(圆周率用π表示)7. (2021•广东省)如题图,等腰直角三角形中,,.分别以点B 、点C 为圆心,线段长的一半为半径作圆弧,交、、于点D 、E 、F ,则图中阴影部分的面积为_________.8. (2021•湖北省恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径 寸.9. (2021•浙江省宁波市) 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,分别与相切于点C ,D ,延长交于点P .若,的半径为,则图中的长为________.(结果保留)13ABC 90A ∠=︒4BC =BC AB BCAC ,AC BD O e ,AC BD 120P ∠=︒O e 6cm »CDcmπ10. (2021•浙江省台州)如图,将线段AB 绕点A 顺时针旋转30°,得到线段AC .若AB=12,则点B 经过的路径长度为_____.(结果保留π)11. 2021•浙江省温州市)若扇形的圆心角为30°,半径为17,则扇形的弧长为 .12. (2021•湖北省荆门市)如图,正方形ABCD 的边长为2,分别以B ,C 为圆心,以正方形的边长为半径的圆相交于点P ,那么图中阴影部分的面积为 .13. (2021•江苏省盐城市)设圆锥的底面半径为2,母线长为3,该圆锥的侧面积为 .14. (2021•重庆市A )如图,矩形ABCD 的对角线AC ,BD 交于点O ,分别以点A ,C 为圆心,AO 长为半径画弧,分别交AB ,CD 于点E ,F .若BD =4,∠CAB =36°,则图中阴影部分的面积为___________.(结果保留π).15. (2021•重庆市B )如图,在菱形ABCD 中,对角线AC =12,BD =16,分别以点A ,B ,C ,D 为圆心,AB 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为 .(结果保留π)»BC16.(2021•湖北省十堰市)如图,在边长为4的正方形中,以为直径的半圆交对角线于点E ,以C 为圆心、长为半径画弧交于点F ,则图中阴影部分的面积是_________.17. (2021•湖南省永州市)某同学在数学实践活动中,制作了一个侧面积为60π,底面半径为6的圆锥模型(如图所示),则此圆锥的母线长为 .18.(2021•黑龙江省大庆市)一个圆柱形橡皮泥,底面积是12cm 2.高是5cm .如果这个橡皮泥的一半,把它捏成高为5cm 的圆锥,则这个圆锥的底面积是 cm 2;19.(2021•黑龙江省大庆市) 如图,作⊙O 的任意一条直经FC ,分别以F 、C 为圆心,以FO 的长为半径作弧,与⊙O 相交于点E 、A 和D 、B ,顺次连接AB 、BC 、CD 、DE 、EF 、FA ,得到六边形ABCDEF ,则⊙O 的面积与阴影区域的面积的比值为 ;ABCD AB AC BCAC20. (2021•吉林省长春市)如图是圆弧形状的铁轨示意图,半径OA 的长度为200米,圆心角,则这段铁轨的长度 米,(铁轨的宽度忽略不计,结果保留π)21. (2021•绥化市)一条弧所对的圆心角为135°弧长等于半径为5cm 的圆的周长的3倍,则这条弧的半径为__________cm .22. (2021•江苏省无锡市)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为 .23. (2021•山东省济宁市)如图,△ABC 中,∠ABC =90°,AB =2,AC =4,点O 为BC 的中点,以O 为圆心,以OB 为半径作半圆,交AC 于点D ,则图中阴影部分的面积是 .24.(2021•呼和浩特市)已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为__________.(用含π的代数式表示),圆心角为__________度.25. (2021•齐齐哈尔市)一个圆锥的底面圆半径为6cm ,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为_____cm .26. (2021•内蒙古通辽市)如图,AB 是⊙O 的弦,AB =2,点C 是⊙O 上的一个动点,且∠ACB =60°,若点M ,N 分别是AB ,BC 的中点,则图中阴影部分面积的最大值是 .F C90AOB ∠=︒27. (2021•黑龙江省龙东地区)若一个圆锥的底面半径为1cm ,它的侧面展开图的圆心角为,则这个圆锥的母线长为____ cm .28. (2021•绥化市)边长为的正六边形,它的外接圆与内切圆半径的比值是_______.三、解答题1. (2021•湖北省黄冈市)如图,在Rt △ABC 中,∠ACB =90°,AC 分别相切于点E ,F ,BO 平分∠ABC(1)求证:AB 是⊙O 的切线;(2)若BE =AC =3,⊙O 的半径是1,求图中阴影部分的面积.2. (2021•湖南省邵阳市)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED 与母线AD 长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB =AC ,AD ⊥BC .将扇形AEF 围成圆锥时,AE ,AF 恰好重合.(1)求这种加工材料的顶角∠BAC 的大小.904cm(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)3.(2021•江西省)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.4.(2021•湖北省随州市)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;(2)①如图1,是边长为的正内任意一点,点为的中心,设点到各边距离分别为,,,连接,,,由等面积法,易知,可得_____;(结果用含的式子表示) ②如图2,是边长为的正五边形内任意一点,设点到五边形各边距离分别为,,,,,参照①的探索过程,试用含的式子表示的值.(参考数据:,)(3)①如图3,已知的半径为2,点为外一点,,切于点,弦,连接,则图中阴影部分的面积为______;(结果保留)②如图4,现有六边形花坛,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形,其中点在的延长线上,且要保证改造前后花坛的面积不变,试确定点的位置,并说明理由.5. (2021•襄阳市) 如图,直线经过上的点,直线与交于点和点P a ABC V O ABC V P ABC V 1h 2h 3h AP BP CP ()123123ABC OAB h h h S a S ++==△△123h h h ++=a P a ABCDE P ABCDE 1h 2h 3h 4h 5h a 12345h h h h h ++++8tan 3611≈°11tan 548≈°O e A O e 4OA =AB O e B //BC OA AC πABCDEF ABCDG G AF G AB O e C BO O e F,与交于点,与交于点,,.(1)求证:是的切线;(2)若,,求图中阴影部分面积.6. (2021•贵州省贵阳市)如图,在⊙O 中,AC 为⊙O 的直径,AB 为⊙O 的弦,点E 是的中点,过点E 作AB 的垂线,交AB 于点M ,交⊙O 于点N ,分别连接EB ,CN .(1)EM 与BE 的数量关系是 BE=EM ; (2)求证:=; (3)若AM =,MB =1,求阴影部分图形的面积.7. (2021•湖北省黄石市)如图,、是的切线,、是切点,是的直径,连接,交于点,交于点.(1)求证:;D OA O eE DC G OA OB =CA CB =AB O e //FC OA 6CD =PA PB O e A B AC O e OP O e D AB E //BC OP(2)若恰好是的中点,且四边形的面积是,求阴影部分的面积; (3)若,且的长.8. (2021•四川省达州市)如图,AB 是⊙O 的直径,C 为⊙O 上一点(C 不与点A ,B 重合),BC ,过点C 作CD ⊥AB ,点D 落在点E 处得△ACE ,AE 交⊙O 于点F .(1)求证:CE 是⊙O 的切线;(2)若∠BAC =15°,OA =2,求阴影部分面积.9.(2021•湖南省张家界市)如图,在中,=90°,=30°,以点为圆心,为半径的圆交的延长线于点,过点作的平行线,交⊙于点,连接.(1)求证:为⊙的切线;E OD OAPB 1sin 3BAC ∠=AD =PA AOB Rt ∆ABO ∠OAB ∠O OB BO C C OA O D AD AD O(2)若=2,求弧的长.10. (2021•江苏省扬州)如图,四边形中,,,,连接,以点B 为圆心,长为半径作,交于点E .(1)试判断与的位置关系,并说明理由;(2)若,,求图中阴影部分的面积.11. (2021•河北省)如图,⊙O 的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n (n 为1~12的整数),过点A 7作⊙O 的切线交A 1A 11延长线于点P .(1)通过计算比较直径和劣弧长度哪个更长;(2)连接A 7A 11,则A 7A 11和PA 1有什么特殊位置关系?请简要说明理由;(3)求切线长PA 7的值.OB CD ABCD //AD BC 90BAD ∠=︒CB CD =BD BA B eBD CD Be AB =60BCD ∠=︒C。
2023年襄阳市中考数学试卷
2023年湖北省襄阳市中考数学模拟试卷(4月份)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图是我国几家共享单车的标志,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.2.下列计算正确的是()A. B.C. D.3.如图,菱形的对角线,交于点,是边的中点,点在边上,且将点平移到点,则平移的距离等于()A.B.C.D.4.抛物线的对称轴是()A.直线B.直线C.直线D.直线5.下列式子中,属于最简二次根式的是()A. B. C. D.6.某校对八年级个班学生平均一周的课外阅读时间进行了统计,分别为单位::,,,,,,,这组数据的中位数和众数是()A.,B.,C.,D.,7.如图,在矩形中,点是边的中点,,垂足为,则的值是()A.B.C.D.8.如图,在平面直角坐标系中,过格点,,作一圆弧,则该弧的圆心的坐标为()A. B. C. D.9.在中,各边的长度都缩小倍,那么锐角的余切值()A.扩大倍B.保持不变C.缩小倍D.缩小倍10.如图,在中,,,边上的中线,则的面积为()A.B.C.D.第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)11.按照如图所示的计算程序,若输入结果是,则输出的结果是______.12.如图是一种手机平板支架,图是其侧面结构示意图.托板固定在支撑板顶端的点处,托板可绕点转动,支撑板可绕点转动.如图,若量得支撑板长,,则点到底座的距离为______结果保留根号13.如图,,,以,为边作平行四边形,反比例函数经过点,则为______.14.如图,,分别是的,边的垂直平分线,连接,,已知,,,则______,的周长是______.15.在平面直角坐标系中,已知,关于轴对称,其中,,则式子的值为______.16.使分式有意义的的取值范围是.三、计算题(本大题共1小题,共6.0分)17.先化简,再求值:,其中是不等式组的整数解.四、解答题(本大题共8小题,共64.0分。
人教版_2021年襄阳市中考数学试题解析版
2021年湖北省襄阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A.50° B.40° C.30° D.20°3.﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣4.一个几何体的三视图如图所示,则这个几何体是()A.球体B.圆锥C.棱柱D.圆柱5.不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个6.一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是() A.3,3,0.4 B.2,3,2 C.3,2,0.4 D.3,3,27.如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH8.如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合9.如图,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.10.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.把答案填在答题卡的相应位置上.11.分解因式:2a2﹣2=.12.关于x的一元二次方程x2﹣2x+m﹣1=0有两个相等的实数根,则m的值为.13.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.14.王经理到襄阳出差带回襄阳特产﹣﹣孔明菜若干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜袋.15.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为.16.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为.三、解答题:本大题共9小题,共72分,解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.17.先化简,再求值:(2x+1)(2x﹣1)﹣(x+1)(3x﹣2),其中x=.18.襄阳市文化底蕴深厚,旅游资源丰富,古隆中、习家池、鹿门寺三个景区是人们节假日玩的热点景区,张老师对八(1)班学生“五•一”小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别:A、游三个景区;B、游两个景区;C、游一个景区;D、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:(1)八(1)班共有学生人,在扇形统计图中,表示“B类别”的扇形的圆心角的度数为;(2)请将条形统计图补充完整;(3)若张华、李刚两名同学,各自从三个景区中随机选一个作为5月1日游玩的景区,则他们同时选中古隆中的概率为.19.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.20.如图,直线y=ax+b与反比例函数y=(x>0)的图象交于A(1,4),B(4,n)两点,与x 轴、y轴分别交于C、D两点.(1)m=,n=;若M(x1,y1),N(x2,y2)是反比例函数图象上两点,且0<x1<x2,则y1y2(填“<”或“=”或“>”);(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标.21.“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?22.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.23.襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.24.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.25.如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?2021年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A.50° B.40° C.30° D.20°【考点】平行线的性质;角平分线的定义;三角形的外角性质.【分析】由AD∥BC,∠B=30°利用平行线的性质即可得出∠EAD的度数,再根据角平分线的定义即可求出∠EAC的度数,最后由三角形的外角的性质即可得出∠EAC=∠B+∠C,代入数据即可得出结论.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC=∠B+∠C,∴∠C=∠EAC﹣∠B=30°.故选C.【点评】本题考查了平行线的性质、三角形外角性质以及角平分线的定义,解题的关键是求出∠EAC=60°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等或互补的角是关键.3.﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣【考点】立方根.【分析】直接利用立方根的定义分析求出答案.【解答】解:﹣8的立方根是:=﹣2.故选:B.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.4.一个几何体的三视图如图所示,则这个几何体是()A.球体B.圆锥C.棱柱D.圆柱【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选D.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.5.不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个【考点】一元一次不等式组的整数解.【分析】先根据一元一次不等式组的解法求出x的取值范围,然后找出整数解的个数.【解答】解:解不等式2x﹣1≤1得:x≤1,解不等式﹣x<1得:x>﹣2,则不等式组的解集为:﹣2<x≤1,整数解为:﹣1,0,1,共3个.故选C.【点评】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是() A.3,3,0.4 B.2,3,2 C.3,2,0.4 D.3,3,2【考点】方差;算术平均数;中位数;众数.【分析】先根据平均数的定义求出x的值,再根据众数、中位数的定义和方差公式分别进行解答即可.【解答】解:根据题意,=3,解得:x=3,∴这组数据从小到大排列为:2,3,3,3,4;则这组数据的中位数为3,这组数据3出现的次数最多,出现了3次,故众数为3;其方差是:×[(2﹣3)2+3×(3﹣3)2+(4﹣3)2]=0.4,故选A.【点评】本题考查了众数、中位数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].7.如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH【考点】平行四边形的性质.【分析】根据作图过程可得得AG平分∠DAB,再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,【解答】解:根据作图的方法可得AG平分∠DAB,∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴BC=DH,故选D.【点评】此题主要考查了平行四边形的性质、角平分线的作法、平行线的性质;熟记平行四边形的性质是解决问题的关键关键.8.如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合【考点】三角形的内切圆与内心;三角形的外接圆与外心;旋转的性质.【分析】根据I是△ABC的内心,得到AI平分∠BAC,BI平分∠ABC,由角平分线的定义得到∠BAD=∠CAD,∠ABI=∠CBI根据三角形外角的性质得到∠BDI=∠DIB,根据等腰三角形的性质得到BD=DI.【解答】解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,故C正确,不符合题意;∠ABI=∠CBI,∴=,∴BD=CD,故A正确,不符合题意;∵∠DAC=∠DBC,∴∠BAD=∠DBC,∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠BDI=∠DIB,∴BD=DI,故B正确,不符合题意;故选D.【点评】本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.9.如图,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.【考点】勾股定理;锐角三角函数的定义.【分析】直接根据题意构造直角三角形,进而利用勾股定理得出DC,AC的长,再利用锐角三角函数关系求出答案.【解答】解:如图所示:连接DC,由网格可得出∠CDA=90°,则DC=,AC=,故sinA===.故选:B.【点评】此题主要考查了勾股定理以及锐角三角函数关系,正确构造直角三角形是解题关键.10.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据一次函数的图象的性质先确定出a、b的取值范围,然后根据反比例函数的性质确定出c的取值范围,最后根据二次函数的性质即可做出判断.【解答】解:∵一次函数y=ax+b经过一、二、四象限,∴a<0,b>0,∵反比例函数y=的图象在一、三象限,∴c>0,∵a<0,∴二次函数y=ax2+bx+c的图象的开口向下,∵b>0,∴>0,∵c>0,∴与y轴的正半轴相交,故选C.【点评】本题主要考查的是二次函数、一次函数和反比例函数的性质,掌握相关性质是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分.把答案填在答题卡的相应位置上.11.分解因式:2a2﹣2=2(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【点评】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.关于x的一元二次方程x2﹣2x+m﹣1=0有两个相等的实数根,则m的值为2.【考点】根的判别式.【分析】由于关于x的一元二次方程x2﹣2x+m﹣1=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m﹣1=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(m﹣1)=0,故答案为2.【点评】此题主要考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.【考点】利用频率估计概率.【专题】统计与概率.【分析】根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得,摸到黑球和白球的频率之和为:1﹣0.4=0.6,∴总的球数为:(8+4)÷0.6=20,∴红球有:20﹣(8+4)=8(个),故答案为:8.【点评】本题考查利用频率估计概率,解题的关键是明确题意,找出所求问题需要的条件.14.王经理到襄阳出差带回襄阳特产﹣﹣孔明菜若干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜33袋.【考点】一元一次方程的应用.【分析】可设有x个朋友,根据“如果每人分5袋,还余3袋;如果每人分6袋,还差3袋”可列出一元一次方程,求解即可.【解答】解:设有x个朋友,则5x+3=6x﹣3解得x=6∴5x+3=33(袋)【点评】本题主要考查了一元一次方程的应用,解题的关键是根据总袋数相等这一等量关系列方程求解.本题也可以直接设总袋数为x 进行列方程求解.15.如图,AB 是半圆O 的直径,点C 、D 是半圆O 的三等分点,若弦CD=2,则图中阴影部分的面积为 π .【考点】扇形面积的计算.【分析】首先证明OC ∥BD ,得到S △BDC =S △BDO ,所以S 阴=S 扇形OBD ,由此即可计算.【解答】解:如图连接OC 、OD 、BD .∵点C 、D 是半圆O 的三等分点,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD=OB ,∴△COD 、△OBD 是等边三角形,∴∠COD=∠ODB=60°,OD=CD=2,∴OC ∥BD ,∴S △BDC =S △BDO ,∴S 阴=S 扇形OBD ==.【点评】本题考查圆的有关知识、扇形的面积,三角形的面积等知识,解题的关键是学会把求不规则图形面积转化为求规则图形的面积,属于中考常考题型.16.如图,正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM ⊥BE 于点M ,交BD 于点F ,则FM 的长为.【考点】正方形的性质.【分析】先根据ASA判定△AFO≌△BEO,并根据勾股定理求得BE的长,再判定△BFM∽△BEO,最后根据对应边成比例,列出比例式求解即可.【解答】解:∵正方形ABCD∴AO=BO,∠AOF=∠BOE=90°∵AM⊥BE,∠AFO=∠BFM∴∠FAO=∠EBO在△AFO和△BEO中∴△AFO≌△BEO(ASA)∴FO=EO∵正方形ABCD的边长为2,E是OC的中点∴FO=EO=1=BF,BO=2∴直角三角形BOE中,BE==由∠FBM=∠EBO,∠FMB=∠EOB,可得△BFM∽△BEO∴,即∴FM=故答案为:【点评】本题主要考查了正方形,解决问题的关键的掌握全等三角形和相似三角形的判定与性质.解题时注意:正方形的对角线将正方形分成四个全等的等腰直角三角形.三、解答题:本大题共9小题,共72分,解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.17.先化简,再求值:(2x+1)(2x﹣1)﹣(x+1)(3x﹣2),其中x=.【考点】整式的混合运算—化简求值.【分析】首先利用整式乘法运算法则化简,进而去括号合并同类项,再将已知代入求出答案.【解答】解:(2x+1)(2x﹣1)﹣(x+1)(3x﹣2),=4x2﹣1﹣(3x2+3x﹣2x﹣2)=4x2﹣1﹣3x2﹣x+2=x2﹣x+1把x=代入得:原式=(﹣1)2﹣(﹣1)+1=3﹣2﹣+2=5﹣3.【点评】此题主要考查了整式的混合运算以及化简求值,正确正确运算法则是解题关键.18.襄阳市文化底蕴深厚,旅游资源丰富,古隆中、习家池、鹿门寺三个景区是人们节假日玩的热点景区,张老师对八(1)班学生“五•一”小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别:A、游三个景区;B、游两个景区;C、游一个景区;D、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:(1)八(1)班共有学生50人,在扇形统计图中,表示“B类别”的扇形的圆心角的度数为72°;(2)请将条形统计图补充完整;(3)若张华、李刚两名同学,各自从三个景区中随机选一个作为5月1日游玩的景区,则他们同时选中古隆中的概率为.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由A类5人,占10%,可求得总人数,继而求得B类别占的百分数,则可求得“B类别”的扇形的圆心角的度数;(2)首先求得D类别的人数,则可将条形统计图补充完整;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他们同时选中古隆中的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵A类5人,占10%,∴八(1)班共有学生有:5÷10%=50(人);∴在扇形统计图中,表示“B类别”的扇形的圆心角的度数为:×360°=72°;故答案为:50,72°;(2)D类:50﹣5﹣10﹣15=25(人),如图:(3)分别用1,2,3表示古隆中、习家池、鹿门寺,画树状图得:∵共有9种等可能的结果,他们同时选中古隆中的只有1种情况,∴他们同时选中古隆中的概率为:.故答案为:.【点评】此题考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.19.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.【考点】全等三角形的判定与性质.【分析】(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a 2=a2+(2)2,∵a>0,∴a=2,∴AC=2a=4.【点评】本题考查全等三角形的判定和性质、直角三角形30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直角边等于斜边的一半,属于中考常考题型.20.如图,直线y=ax+b与反比例函数y=(x>0)的图象交于A(1,4),B(4,n)两点,与x 轴、y轴分别交于C、D两点.(1)m=4,n=1;若M(x1,y1),N(x2,y2)是反比例函数图象上两点,且0<x1<x2,则y1>y2(填“<”或“=”或“>”);(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标.【考点】反比例函数与一次函数的交点问题;反比例函数的性质;反比例函数图象上点的坐标特征.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可得出m的值,再由点B 也在反比例函数图象上即可得出n的值,由反比例函数系数m的值结合反比例函数的性质即可得出反比例函数的增减性,由此即可得出结论;(2)设过C、D点的直线解析式为y=kx+b,由点A、B的坐标利用待定系数法即可求出直线CD的解析式,设出点P的坐标为(t,﹣t+5),由点P到x轴、y轴的距离相等即可得出关于t的含绝对值符号的一元一次方程,解方程即可得出t的值,从而得出点P的坐标.【解答】解:(1)∵反比例函数y=(x>0)的图象过点A(1,4),∴m=1×4=4.∵点B(4,n)在反比例函数y=的图象上,∴m=4n=4,解得:n=1.∵在反比例函数y=(x>0)中,m=4>0,∴反比例函数y=的图象单调递减,∵0<x1<x2,∴y1>y2.故答案为:4;1;>.(2)设过C、D点的直线解析式为y=kx+b,∵直线CD过点A(1,4)、B(4,1)两点,∴,解得:,∴直线CD的解析式为y=﹣x+5.设点P的坐标为(t,﹣t+5),∴|t|=|﹣t+5|,解得:t=.∴点P的坐标为(,).【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数与一次函数的交点问题、反比例函数的性质以及解含绝对值符号的一元一次方程,解题的关键是:(1)求出m的值;(2)找出关于t的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数的解析式是关键.21.“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)直接利用队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,进而利用总工作量为1得出等式求出答案;(2)直接利用甲队参与该项工程施工的时间不超过36天,得出不等式求出答案.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工90天完成该项工程,根据题意可得:+15(+)=1,解得:x=30,检验得:x=30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出等量关系是解题关键.22.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.【考点】切线的判定.【分析】(1)①欲证明直线AB是⊙O的切线,只要证明OC⊥AB即可.②首先证明OC∥DF,再证明∠FDC=∠OCD,∠EDC=∠OCD即可.(2)作ON⊥DF于N,延长DF交AB于M,在RT△CDM中,求出DM、CM即可解决问题.【解答】(1)①证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.②证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(2)作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在RT△ODN中,∵∠OND=90°,OD=5,DN=3,∴ON==4,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,∴CD===4.【点评】本题考查切线的判定,等腰三角形的性质、垂径定理、平行线的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.【考点】二次函数的应用.【分析】(1)根据:年利润=(售价﹣成本)×年销售量,结合x的取值范围可列函数关系式;(2)将(1)中两个二次函数配方后依据二次函数的性质可得其最值情况,比较后可得答案;(3)根据题意知W≥750,可列关于x的不等式,求解可得x的范围.【解答】解:(1)当40≤x<60时,W=(x﹣30)(﹣2x+140)=﹣2x2+200x﹣4200,当60≤x≤70时,W=(x﹣30)(﹣x+80)=﹣x2+110x﹣2400;(2)当40≤x<60时,W=﹣2x2+200x﹣4200=﹣2(x﹣50)2+800,∴当x=50时,W取得最大值,最大值为800万元;当60≤x≤70时,W=﹣x2+110x﹣2400=﹣(x﹣55)2+625,∴当x>55时,W随x的增大而减小,∴当x=60时,W取得最大值,最大值为:﹣(60﹣55)2+625=600,∵800>600,∴当x=50时,W取得最大值800,答:该产品的售价x为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元;(3)当40≤x<60时,由W≥750得:﹣2(x﹣50)2+800≥750,解得:45≤x≤55,当60≤x≤70时,W的最大值为600<750,∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)的取值范围为45≤x≤55.【点评】本题主要考查二次函数的实际应用,梳理题目中的数量关系,得出相等关系后分情况列出函数解析式,熟练运用二次函数性质求最值是解题的关键.24.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.。
2021年湖北省襄阳市中考数学真题试卷(含答案)
2021年湖北省襄阳市中考数学真题试卷(含答案)一、选择题:本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答。
1.下列各数中最大的是()A.﹣3B.﹣2C.0D.12.下列计算正确的是()A.a3÷a3=a6B.a3•a3=a6C.(a3)3=a6D.(ab3)2=ab6 3.如图,a∥b,AC⊥b,垂足为C,∠A=40°,则∠1等于()A.40°B.45°C.50°D.60°4.若二次根式在实数范围内有意义,则x的取值范围是()A.x≥﹣3B.x≥3C.x≤﹣3D.x>﹣35.如图所示的几何体的主视图是()A.B.C.D.6.随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x,下面所列方程正确的是()A.5000(1+x)2=4050B.4050(1+x)2=5000C.5000(1﹣x)2=4050D.4050(1﹣x)2=50007.正多边形的一个外角等于60°,这个多边形的边数是()A.3B.6C.9D.128.不透明袋子中装有除颜色外完全相同的2个红球和1个白球,从袋子中随机摸出2个球,下列事件是必然事件的是()A.摸出的2个球中至少有1个红球B.摸出的2个球都是白球C.摸出的2个球中1个红球、1个白球D.摸出的2个球都是红球9.我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺10.一次函数y=ax+b的图象如图所示,则二次函数y=ax2+bx的图象可能是()A.B.C.D.二、填空题本大题共6个小题,每小题3分,共18分。
2021年中考数学模拟试卷三(含答案)
2021年中考数学模拟试卷三一、选择题1.3的相反数是( )A.﹣3 B. C.3 D.±32.据海关统计,今年第一季度我国外贸进出口总额是70100亿元人民币,比去年同期增长了3.7%,数70100亿用科学记数法表示为( )A.7.01×104 B.7.01×1011 C.7.01×1012 D.7.01×10133.由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()4.下表表示对x的每个取值某个代数式所对应的值,则满足表中所列条件的代数式是( )A.x+2B.2x - 3C.3x - 10D. - 3x+25.下列运算正确的是( )A.a•a2=a3 B.a6÷a2=a3 C.2a2﹣a2=2 D.(3a2)2=6a46.若※是新规定的运算符号,设a*b=ab+ab+b,则在2*x=-16中,x的值( )A.-8B.6C.8D.-67.如图,某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设.如果∠ABC=135°,∠BCD=65°,则∠CDE的度数应为( )A.135°B.115°C.110°D.105°8.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与D重合,折痕为EF,则BE的长为()A.3cmB.4cmC.5cmD.6cm9.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为( )A. B. C. D.10.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A.40°B.60°C.70°D.80°11.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A. B. C. D.12.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()二、填空题13.使式子有意义,则x的值为.14.已知一次函数y=2x+b,它的图象与两坐标轴围成的面积等于4,则b= .15.把抛物线y=ax2+bx+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=x2-3x+5,则a+b+c= .16.若数据1、﹣2、3、x的平均数为2,则x= .17.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.18.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是弧BC上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为 .三、解答题19.计算:﹣14+(2022﹣π)0﹣(﹣)﹣1+|1-|﹣2sin60°.20.如图,已知D、E两点在线段BC上,AB=AC,AD=AE.证明:BD=CE.21.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.22.某班数学兴趣小组为了测量建筑物AB的高度,他们选取了地面上一点E,测得DE的长度为8.65米,并以建筑物CD的顶端点C为观测点,测得点A的仰角为45°,点B的俯角为37°,点E的俯角为30°.(1)求建筑物CD的高度;(2)求建筑物AB的高度.(参考数据:≈1.73,sin37°≈0.6,cos37°≈0.6,tan37°≈0.75)23.为了抓住文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件, B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24.如图,直线y=kx+1分别交x轴,y轴于点A、B,交反比例函数y2=(x>0)的图象于点C,1CD⊥y轴于点D,CE⊥x轴于点E,S△OAB=1,=.(1)点A的坐标为;(2)求直线和反比例函数的解析式;(3)根据图象直接回答:在第一象限内,当x取何值时,y1≥y2.25.如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.26.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.参考答案27.答案为:A.28.答案为:C.29.A.30.答案为:D31.答案为:A.32.答案为:D.33.答案为:C;34.C.35.答案为:D.36.答案为:D37.答案为:A.38.A39.答案为:x≥﹣2且x≠1.40.答案为:4或﹣4.41.答案:1142.答案为:6.43.答案为:.44.答案为:45.解:原式=1.46.证明:过A作AF⊥BC于F,∵AB=AC,AD=AE,AF⊥BC,∴BF=CF,DF=EF,∴BF﹣DF=CF﹣EF,∴BD=CE.47.解:(1)D厂的零件比例=1﹣20%﹣20%﹣35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.48.49.解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组8a+3b=950,5a+6b=800解方程组得a=100,b=50.∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元.(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100-x)∴100x+50(100-x)≥7500,100x+50(100-x)≤7650解得50≤x≤53∵x为正整数,∴共有4种进货方案.(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.总利润=50×20+50×30=2500(元)∴当购进A种纪念品50件,B种纪念品50件时,获最大利润是2500元.50.解:(1)当x=0时,y=kx+1=1,即OB=1.∵S△OAB=1,∴OA=2.∴A点的坐标为(﹣2,0).故答案为(﹣2,0);(2)把A(﹣2,0)代入y1=kx+1,得k=.∴直线解析式为y1=x+1.∵OB∥CE,∴△AOB∽△AEC.∴.所以CE=,OE=3,∴点C坐标为(3,).∴m=3×=7.5.∴反比例函数解析式为y2=.(3)从图象可看出当x≥3时,y1≥y2.51.解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上;(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,52.解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(x C﹣x B)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).。
2023年襄阳中考数学试卷
中考数学试卷一、单项选择题(共12分)1.如图,在三角形ABC中D,E分别是AB和AC上的点,且DE平行BC,AE 比EC=5/2,D E=10,则BC的长为()。
A.16B.14C.12D.112.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3 D.x1=0,x2=33.如图,以A、B、C为顶点的三角形与以D、E、F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1B.3:1C.4:3D.3:24.如图图形中是中心对称图形的为()A.B. C. D.5.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。
A.B.C.D.二、填空题(共24分)6.小明和小红在阳光下行走,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此刻小红的影长是()米。
7.将抛物线y=﹣x2向右平移一个单位,所得函数解析式为。
|与(tanB−√3)2互为相反数,则∠C的度数8.已知△ABC,若有|sinA−12是。
9.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。
10.两圆的半径分别为3和5,当这两圆相交时,圆心距d的取值范围是。
三、解答题(共20分)x+4的对称轴是直线x=3,且与x轴相交于11.如图,已知抛物线y=ax2+32A,B两点(B点在A点右侧)与y轴交于C点。
(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大?若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标。
12.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1)。
2021年中考数学真题 圆的有关性质(共54题)-(原卷版)
24圆的有关性质(共54题)一、单选题1.(2021·甘肃武威市·中考真题)如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒2.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A ,B 两点,他测得“图上”圆的半径为10厘米,16AB =厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为( ).A .1.0厘米/分B .0.8厘米分C .12厘米/分D .1.4厘米/分4.(2021·山东聊城市·中考真题)如图,A ,B ,C 是半径为1的⊙O 上的三个点,若AB ⊙CAB =30°,则⊙ABC 的度数为( )A .95°B .100°C .105°D .110°5.(2021·湖北鄂州市·中考真题)已知锐角40AOB ∠=︒,如图,按下列步骤作图:⊙在OA 边取一点D ,以O 为圆心,OD 长为半径画MN ,交OB 于点C ,连接CD .⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,连接DE .则CDE ∠的度数为( )A .20︒B .30C .40︒D .50︒6.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒7.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°8.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD∠的度数为( )A .15︒B .22.5︒C .30D .45︒9.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-10.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为( )A .70°B .90°C .40°D .60°11.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅12.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°13.(2021·浙江绍兴市·中考真题)如图,正方形ABCD 内接于O ,点P 在AB 上,则P ∠的度数为( )A .30B .45︒C .60︒D .90︒14.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm15.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .1916.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒17.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 18.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B C D .419.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,620.(2021·广西来宾市·中考真题)如图,O 的半径OB 为4,OC AB ⊥于点D ,30BAC ∠=︒,则OD 的长是( )A B C .2 D .321.(2021·湖北荆州市·中考真题)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若()2,0A ,()4,0D ,以О为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE 、则BED ∠的度数是( )A .15︒B .22.5︒C .30D .45︒22.(2021·湖北宜昌市·中考真题)如图,C ,D 是O 上直径AB 两侧的两点.设25ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .70︒D .65︒23.(2021·河北中考真题)如图,等腰AOB 中,顶角40AOB ∠=︒,用尺规按⊙到⊙的步骤操作: ⊙以O 为圆心,OA 为半径画圆;⊙在O 上任取一点P (不与点A ,B 重合),连接AP ;⊙作AB 的垂直平分线与O 交于M ,N ; ⊙作AP 的垂直平分线与O 交于E ,F .结论⊙:顺次连接M ,E ,N ,F 四点必能得到矩形;结论⊙:O 上只有唯一的点P ,使得OFM OAB S S =扇形扇形.对于结论⊙和⊙,下列判断正确的是( )A .⊙和⊙都对B .⊙和⊙都不对C .⊙不对⊙对D .⊙对⊙不对24.(2021·湖北黄冈市·中考真题)如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .425.(2021·湖南邵阳市·中考真题)如图,点A ,B ,C 是O 上的三点.若90AOC ∠=︒,30BAC ∠=︒,则AOB ∠的大小为( )A .25︒B .30C .35︒D .40︒26.(2021·湖南长沙市·中考真题)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为( )A .27︒B .108︒C .116︒D .128︒27.(2021·湖北武汉市·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒ 二、填空题28.(2021·黑龙江中考真题)如图,在O 中,AB 是直径,弦AC 的长为5cm ,点D 在圆上,且30ADC ∠=︒,则O 的半径为_____.29.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.30.(2021·湖南张家界市·中考真题)如图,ABC 内接于O ,50A ∠=︒,点D 是BC 的中点,连接OD ,OB ,OC ,则BOD ∠=_________.31.(2021·广东中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.32.(2021·江苏宿迁市·中考真题)如图,在Rt⊙ABC 中,⊙ABC =90°,⊙A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则⊙ABE =__________.33.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .34.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.35.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.36.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.37.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.⊙该弧所在圆的半径长为___________;⊙ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ⊙线段PB 长的最小值为_______;⊙若23PCD PAD S S =,则线段PD 长为________.38.(2021·辽宁本溪市·中考真题)如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan =ADC ∠________.39.(2021·内蒙古通辽市·中考真题)如图,AB 是⊙O 的弦,AB =C 是⊙O 上的一个动点,且60ACB ∠=︒,若点M ,N 分别是AB ,BC 的中点,则图中阴影部分面积的最大值是__________.40.(2021·湖北襄阳市·中考真题)点O 是ABC 的外心,若110BOC ∠=°,则BAC ∠为______. 41.(2021·湖北恩施土家族苗族自治州·中考真题)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆形木材的直径___________寸;42.(2021·湖南长沙市·中考真题)如图,在⊙O 中,弦AB 的长为4,圆心O 到弦AB 的距离为2,则AOC ∠的度数为______.43.(2021·湖南怀化市·中考真题)如图,在O 中,3OA =,45C ∠=︒,则图中阴影部分的面积是_________.(结果保留π)三、解答题44.(2021·山东临沂市·中考真题)如图,已知在⊙O 中, AB BC CD ==,OC 与AD 相交于点E .求证: (1)AD ⊙BC(2)四边形BCDE 为菱形.45.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长. 46.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.47.(2021·浙江中考真题)如图,已知AB 是⊙O 的直径,ACD ∠是AD 所对的圆周角,30ACD ∠=︒.(1)求DAB ∠的度数;(2)过点D 作DE AB ⊥,垂足为E ,DE 的延长线交⊙O 于点F .若4AB =,求DF 的长. 48.(2021·四川泸州市·中考真题)如图,ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC(1)求证:ACF B ∠=∠;(2)若AB BC =,AD BC ⊥于点D ,4FC =,2FA =,求AD AE 的值49.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA ,40ACD ∠=︒,求证:OAB CDE ∽.50.(2021·甘肃武威市·中考真题)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,AB C 是弦AB 上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法):⊙作线段AC 的垂直平分线DE ,分别交AB 于点,D AC 于点E ,连接,AD CD ;⊙以点D 为圆心,DA 长为半径作弧,交AB 于点F (,F A 两点不重合),连接,,DF BD BF . (2)直接写出引理的结论:线段,BC BF 的数量关系.51.(2021·四川广元市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,AD 是BAC ∠的平分线,以AD 为直径的O 交AB 边于点E ,连接CE ,过点D 作//DF CE ,交AB 于点F .(1)求证:DF 是O 的切线;(2)若5BD =,3sin 5B ∠=,求线段DF 的长. 52.(2021·四川遂宁市·中考真题)如图,⊙O 的半径为1,点A 是⊙O 的直径BD 延长线上的一点,C 为⊙O 上的一点,AD =CD ,⊙A =30°.(1)求证:直线AC 是⊙O 的切线;(2)求⊙ABC 的面积;(3)点E 在BND 上运动(不与B 、D 重合),过点C 作CE 的垂线,与EB 的延长线交于点F . ⊙当点E 运动到与点C 关于直径BD 对称时,求CF 的长;⊙当点E 运动到什么位置时,CF 取到最大值,并求出此时CF 的长.53.(2021·四川广元市·中考真题)如图1,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(,)x y 的坐标值:(1)求出这条抛物线的解析式及顶点M 的坐标;(2)PQ 是抛物线对称轴上长为1的一条动线段(点P 在点Q 上方),求AQ QP PC ++的最小值;(3)如图2,点D 是第四象限内抛物线上一动点,过点D 作DF x ⊥轴,垂足为F ,ABD △的外接圆与DF 相交于点E .试问:线段EF 的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.54.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线: (2)若2,33OA BE OD ==,求DA 的长.。
2021年中考数学试卷(含答案)
2021年高中阶段学校招生考试数学试卷本试卷满分150分,考试时间120分钟。
注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡上,并检查条形码粘贴是否正确。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.) 1. -2021的绝对值是A .-2021B .2021C .2021±D .120212.下列计算中,正确的是A .2239a a +=+() B . 842a a a ÷=C . 22a b a b -=-() D . 2222a a a += 3.如右图所示的几何体是由6个完全相同的小正方体搭成,其主视图是A .B .C .D .4. 国家统计局2021年5月11日公布了第七次全国人口普查结果,全国总人口约14.1亿人, 将14.1亿用科学记数法表示为A. 14.1×108 B . 1.41×108 C . 1.41×109D . 0.141×10105. 如右图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为A .12cm 2B .9cm 2C .6cm 2D .3cm 2 6. 下列说法正确的是A. 角平分线上的点到角两边的距离相等B. 平行四边形既是轴对称图形,又是中心对称图形C. 在代数式141298523x x b y a a π++,,,,,中,142x b a aπ+,,是分式D. 若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是47. 不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是 A. B .C .D .8. 如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的F 处,则CE 的长是 A . 1 B .43C .32D . 539. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O 的半径为43,∠CDF =15°,则阴影部分的面积为 A .16123π- B .16243π- C .20123π- D .20243π-10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ≠);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2. 其中正确的结论有 A. 2个B . 3个 C .4个D . 5个二、填空题(本大题共5个小题,每小题4分,共20分) 11. 若20a a b -++=,则ab =▲.12. 如右图,在△ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则△ABD 的周长是▲.13. 已知关于x ,y 的二元一次方程组235423x y ax y a +=⎧⎨+=+⎩满足x -y >0,则a 的取值范围是▲. 14. 下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第▲个图形共有210个小球.15. 如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:①ABF=DBE ∠∠②ABF DBE ∽③AF BD ⊥④22BG BH BD = ⑤若CE:DE=1:3,则BH:DH=17:16 你认为其中正确是▲(填写序号)三、计算或解答题(本大题共10个小题,共90分) 16.(7分)计算:11tan 60233122-⎛⎫-+︒--+-- ⎪⎝⎭(π)▲17.(7分)先化简,再求值:⎪⎭⎫ ⎝⎛++-÷+--339442223m m m m m m ,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数.▲18.(8分)如图,在□ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F . (1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形, 并说明理由.▲19.(9分)我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加。
2023年湖北省襄阳市中考数学试卷含答案解析
绝密★启用前2023年湖北省襄阳市中考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.下面四个有理数中,最小的是( )A. −2B. −1C. 0D. 12.下列各式中,计算结果等于a2的是( )A. a2⋅a3B. a5÷a3C. a2+a3D. a5−a03.先贤孔子曾说过“鼓之舞之“,这是“鼓舞“一词最早的起源,如图是喜庆集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的主视图是( )A.B.C.D.4.襄阳气象台发布的天气预报显示,明天襄阳某地下雨的可能性是75%,则“明天襄阳某地下雨”这一事件是( )A. 必然事件B. 不可能事件C. 随机事件D. 确定性事件5.五边形的外角和等于( )A. 180°B. 360°C. 540°D. 720°6.将含有45°角的三角板和直尺按如图方式叠放在一起,若∠1=30°,则∠2度数( )A. 30°B. 20°C. 15°D. 10°7.如图,数轴上表示的是组成不等式组的两个不等式组的解集,则这个不等式组的解集是( )A. x≤1B. x>1C. −1<xD. −1<x≤18.如图,矩形ABCD的对角线相交于点O,下列结论一定正确的是( )A. AC平分∠BADB. AB=BCC. AC=BDD. AC⊥BD9.我国南宋数学家杨辉在1275年提出的一个问题:“直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.”意思是:长方形的面积是864平方步,宽比长少12步,问宽和长各是几步.设宽为x步,根据题意列方程正确的是( )A. 2x+2(x+12)=864B. x2+(x+12)2=864C. x(x−12)=864D. x(x+12)=86410.在同一平面直角坐标系中,一次函数y=kx+k与反比例函数y=k的图象可能是( )xA. B.C. D.二、填空题(本大题共6小题,共18分)11.5月5日,记者从襄阳市文化和旅游局获悉,五一长假期间,我市41家A级景区全部开放,共接待游客约2270000人次.数据2270000用科学记数法表示为______ .12.古隆中、米公祠、水镜庄、习家池是襄阳市4处有代表性的充满浓厚人文气息的旅游景点,若小平同学随机选择一处去游览,她选择古隆中的概率是______ .13.点A(1,y1),B(2,y2)都在反比例函数y=2的图象上,则y1______ y2.(填“>”或“<”)x14.如图,四边形ABCD 内接于⊙O ,点E 在CD 的延长线上.若∠ADE =70°,则∠AOC =______ 度.15.如图,一位篮球运动员投篮时,球从A 点出手后沿抛物线行进,篮球出手后距离地面的高度y(m)与篮球距离出手点的水平距离m)之间的函数关系式是y =−15(x −32)2+72.下列说法正确的是______ (填序号).①篮球行进过程中距离地面的最大高度为3.5m ;②篮球出手点距离地面的高度为2.25m .16.如图,在△ABC 中,AB =AC ,点D 是AC 的中点,将BCD 沿BD 折叠得到△BED ,连接AE.若DE ⊥AB 于点F ,BC =10,则AF 的长为______ .三、解答题(本大题共9小题,共72分。
湖北省2021年中考数学试卷及答案(word版)
F C
将△ACE 沿 AC 翻折得到△ACF,直线 FC 与直线 AB 相交于点 G. A (1)直线 FC 与⊙O 有何位置关系?并说明理由。
O EB
G
(2)若 OB BG 2 ,求 CD 的长.
D
21.(本题满分 9 分)
(第 20 题)
某联欢会上有一个有奖游戏,规则如下:有 5 张纸牌,背面都是喜羊羊头像,正面有 2 张是笑脸,其余 3 张
9.函数 y 2 x 的自变量 x 的取值范围是
.
10.一个几何体的三视图完全相同,该几何体可以是 . (写出一个即可)
11.上海世博会预计约有 69 000 000 人次参观,69 000 000
用科学记数法表示为
.
12.某学校为了解学生大课间体育活动情况,随机抽取本校
100 名学生进行调查.整理收集到的数据,绘制成如图
度,从点 A 沿线段 AB 向点 B 运动。同时点 P 以相同的速度,从点 C 沿折线 C-D-A 向点 A 运动.当点 M 到 达点 B 时,两点同时停止运动.过点 M 作直线 l∥AD,与线段 CD 的交点为 E,与折线 A-C-B 的交点为 Q.点 M 运动的时间为 t(秒).
(1)当 t 0.5 时,求线段 QM 的长。
19.(本题满分 8 分) 已知二次函数 y x2 bx c 的图象与 x 轴两交点的坐标分别为( m ,0),( 3m ,0)( m 0 ).
(1)证明 4c 3b2 。 (2)若该函数图象的对称轴为直线 x 1 ,试求二次函数的最小值.
20.(本题满分 9 分) 如图,在⊙O 中,直径 AB 垂直于弦 CD,垂足为 E,连接 AC,
(2)当 0<t<2 时,如果以 C、P、Q 为顶点的三角形为直角三角形,求 t 的值。 (3)当 t>2 时,连接 PQ 交线段 AC 于点 R.请探究 CQ 是否为定值,若是,试求这个定值。若不是,请说
2021年湖北省襄阳市中考数学试题及参考答案(含解析word版)
2021年湖北省襄阳市中考数学试题及参考答案(含解析word版)2021年湖北省襄阳市中考数学试题及参考答案一、选择题(本大题共10个小题,每小题3分,共30分) 1.-5的倒数是()A.11 B. ? C. 5 D. -5 5532.下列各数中,为无理数的是()A.8 B.14 C. D.2 33. 如图,BD//AC,BE平分?ABD,交AC于点E.若?A?500,则?1的度数为()A. 65°B. 60°C.55°D. 50° 4. 下列运算正确的是()A.3a?a?2B. a??23?a5C. a2?a3?a5D.a6?a3?a25. 下列调查中,调查方式选择合理的是()A.为了解襄阳市初中生每天锻炼所用的时间,选择全面调查B.为了解襄阳电视台《襄阳新闻》栏目的收视率,选择全面调查C. 为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查6. 如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A. B. C. D.7.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.2 C. D.8. 将抛物线y?2?x?4??1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()1A. y?2x2?1B.y?2x2?3C. y?2?x?8??1D.y?2?x?8??3 9. 如图,在?ABC 中,?ACB?900,?A?300,BC?4.以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于交AB于点F.则AF的长为()221BD的长为半径作弧,两弧相交于点E;作射线CE2A. 5B. 6C. 7D.810. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若?a?b??21,大正方形的面积为13,则小正方形的面积为()2A. 3B. 4C. 5D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.某天到襄阳某镇观赏桃花的游客近16000人,数据16000用科学计数法表示为___________. 12.分式方程23?的解是____________. x?3x13.不等式组??2x?1?x?1的解集为 .?x?8?4x?114.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是 . 15.在半径为1的?O中,弦AB,AC的长分别为1和2,则?BAC的度数为 .016.如图,在?ABC中,?ACB?90,点D,E分别在AC,BC上,且?CDE??B,将?CDE 沿DE折叠,点C恰好落在AB边上的点F处,若AC?8,AB?10,则CD的长为 .三、解答题(本大题共9小题,共72分)217.(本小题满分6分)先化简,再求值:??11?1,其中x?5?2,y?5?2. ???2x?yx?yxy?y??18.(本小题满分6分)中华文化,源远流长.在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是____________部,中位数是___________部;扇形统计图中“1部”所在扇形的圆心角为____________度;(2)请将条形统计图补充完整;(3)没有读过四大名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为______________.19.(本小题满分6分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2021年利润为2.88亿元. (1)求该企业从2014年到2021年利润的年平均增长率;(2)若2021年保持前两年利润的年平均增长率不变,该企业2021年的利润能否超过3.4亿元? 20.(本小题满分7分)如图,AE//BF,AC平均?BAE,且交BF于点C,BD平分?ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若?ADB?30,BD?6,求AD的长.21.(本小题满分6分)如图,直线y1?ax?b与双曲线y2?点A的纵坐标为6,点B的坐标为??3,?2?.0k交于A,B两点,与x轴交于点C,x3(1)求直线和双曲线的解析式;(2)求点C的坐标,并结合图象直接写出y1?0时x的取值范围.22.(本小题满分8分)如图,AB为?O的直径,C,D为?O上两点,?BAC??DAC,过点C作直线EF?AD,交AD的延长线于点E,连接BC.(1)求证:EF是?O的切线;?的长l. (2)若DE?1,BC?2,求劣弧BC23.(本小题满分10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为21000m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x?m?,种草所需费用y1??k1x,?0?x?600?2xm(元)与??的函数关系式为y1??,其图象如图所示;栽花所需费用kx?b,600?x?1000????2y2(元)与x?m2?的函数关系式y2??0.01x2?20x?30000?0?x?1000?.(1)请直接写出k1,k2和b的值;(2)设这块1000m空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用2W的最大值;4(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.24.(本小题满分10分)如图,在?ABC中,?ACB?900,CD是中线,AC?BC.一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC,BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE?CF,求证:DE?DF;(2)如图2,在?EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE?4,CF?2,求DN的长.25.(本小题满分13分)如图,矩形OABC的两边在坐标轴上,点A的坐标为?10,0?,抛物线y?ax2?bx?4过B,C两点,且与x轴的一个交点为D??2,0?,点P是线段CB上的动点,设CP?t?0?t?10?.(1)请直接写出B,C两点的坐标及抛物线的解析式;(2)过点P作PE?BC,交抛物线于点E,连接BE,当t为何值时,?PBE??OCD?(3)点Q是x轴上的动点,过点P作PM//BQ,交CQ于点M,作PN//CQ,交BQ 于点N.当四边形PMQN为正方形时,请求出t的值.5。
2022年湖南省襄阳市中考数学(word版有解析)
2022年湖北省襄阳市中考数学试卷一、选择题〔本大题共10个小题,每题3分,共30分〕1.﹣5的倒数是〔〕A.B.﹣C.5D.﹣5【解析】根据乘积为1的两个数互为倒数,可得一个数的倒数.即﹣5的倒数是﹣,应选:B.2.以下各数中,为无理数的是〔〕A.B.C.D.【解析】,,是有理数,是无理数,应选:D.3.如图,BD∥AC,BE平分∠ABD,交AC于点E.假设∠A=50°,那么∠1的度数为〔〕A.65°B.60°C.55°D.50°【解析】∵BD∥AC,∠A=50°,∴∠ABD=130°,又∵BE平分∠ABD,∴∠1=∠ABD=65°,应选:A.4.以下运算正确的选项是〔〕A.3a﹣a=2B.〔a2〕3=a5C.a2•a3=a5D.a6÷a3=a2【解析】A、3a﹣a=2a,故此选项错误;B、〔a2〕3=a6,故此选项错误;C、a2•a3=a5,正确;D、a6÷a3=a3,故此选项错误;应选:C.5.以下调查中,调查方式选择合理的是〔〕A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台襄阳新闻栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查【解析】A、为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B、为了解襄阳市电视台襄阳新闻栏目的收视率,选择抽样调查,故B不符合题意;C、为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D、为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;应选:D.6.如下列图的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是〔〕A.B.C.D.【解析】从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是一个小正方形,应选:A.A.B.C.D.【解析】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.应选C.8.将抛物线y=2〔x﹣4〕2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为〔〕A.y=2x2+1B.y=2x2﹣3C.y=2〔x﹣8〕2+1D.y=2〔x﹣8〕2﹣3【解析】抛物线y=2〔x﹣4〕2﹣1先向左平移4个单位长度,得到的抛物线解析式为y=2〔x﹣4+4〕2﹣1,即y=2x2﹣1,再向上平移2个单位长度得到的抛物线解析式为y=2x2﹣1+2,即y=2x2+1;应选A.9.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,那么AF的长为〔〕A.5B.6C.7D.8【解析】连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.应选B.10.“赵爽弦图〞巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如下列图的“赵爽弦图〞是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,假设〔a+b〕2=21,大正方形的面积为13,那么小正方形的面积为〔〕A.3B.4C.5D.6【解析】∵如下列图:∵〔a+b〕2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.应选:C.二、填空题〔本大题共6个小题,每题3分,共18分〕11.某天襄阳某镇欣赏桃花的游客近16000人,数据16000用科学记数法表示为 1.6×104.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;故答案为:1.6×104.12.分式方程的解是x=9 .【解析】方程的两边同乘x〔x﹣3〕,得3x﹣9=2x,解得x=9.检验:把x=9代入x〔x﹣3〕=54≠0.∴原方程的解为:x=9.故答案为:x=9.13.不等式组的解集为2<x≤3 .【解析】,解不等式①,得x>2.解不等式②,得x≤3,故不等式组的解集为2<x≤3.故答案为2<x≤3.14.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是.【解析】画树状图得得:由树状图可知所有可能情况有8种,其中两枚正面向上,一枚正面向下的情况数为3种,所以两枚正面向上,一枚正面向下的概率=.15.在半径为1的⊙O中,弦AB、AC的长分别为1和,那么∠BAC的度数为15°或105°.【解析】分别作OD⊥AB,OE⊥AC,垂足分别是D、E,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.∵OE⊥AC,OD⊥AB,∴AE=AC=,AD=AB=,∴sin∠AOE==,sin∠AOD==,∴∠AOE=45°,∠AOD=30°,∴∠BAO=60°,∠CAO=90°﹣45°=45°,∴∠BAC=45°+60°=105°,或∠BAC′=60°﹣45°=15°.∴∠BAC=15°或105°.故答案是:15°或105°.16.如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C 恰好落在AB边上的点F处.假设AC=8,AB=10,那么CD的长为.【解析】由折叠可得,∠DCE=∠DFE=90°,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CFA,∴CF2=CD×CA,即52=CD×8,∴CD=,故答案为:.三、解答题〔本大题共9个小题,共72分〕17.〔本小题总分值6分〕先化简,再求值:〔 +〕÷,其中x=+2,y=﹣2.【分析】先根据分式的混合运算顺序和法那么化简原式,再将x、y的值代入求解可得.【解】原式=[+]÷=•y〔x+y〕=,当x=+2,y=﹣2时,原式===.18.〔本小题总分值6分〕中华文化,源远流长,在文学方面,西游记、三国演义、水浒传、红楼梦是我国古代长篇小说中的典型代表,被称为“四大古典名著〞,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部〞的问题做法全校学生中进行了抽样调查,根据调查结果绘制城如下列图的两个不完整的统计图,请结合图中信息解决以下问题:〔1〕本次调查所得数据的众数是 1 部,中位数是 2 部,扇形统计图中“1部〞所在扇形的圆心角为126 度.〔2〕请将条形统计图补充完整;〔3〕没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,那么他们选中同一名著的概率为.【分析】〔1〕先根据调查的总人数,求得1部对应的人数,进而得到本次调查所得数据的众数以及中位数,根据扇形圆心角的度数=局部占总体的百分比×360°,即可得到“1部〞所在扇形的圆心角;〔2〕根据1部对应的人数为40﹣2﹣10﹣8﹣6=14,即可将条形统计图补充完整;〔3〕根据树状图所得的结果,判断他们选中同一名著的概率.【解】〔1〕调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∵2+14+10=26>21,2+14<20,∴中位数为2部,扇形统计图中“1部〞所在扇形的圆心角为:×360°=126°;故答案为:1,2,126;〔2〕条形统计图如下列图,〔3〕将西游记、三国演义、水浒传、红楼梦分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P〔两人选中同一名著〕==.故答案为:.19.〔本小题总分值6分〕受益于国家支持新能源汽车开展和“一带一路〞开展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2022年利润为2亿元,2022年利润为2.88亿元.〔1〕求该企业从2022年到2022年利润的年平均增长率;〔2〕假设2022年保持前两年利润的年平均增长率不变,该企业2022年的利润能否超过3.4亿元?【分析】〔1〕设这两年该企业年利润平均增长率为x.根据题意2022年创造利润250〔1+x〕万元人民币,2022年创造利润250〔1+x〕2 万元人民币.根据题意得方程求解;〔2〕根据该企业从2022年到2022年利润的年平均增长率来解答.【解】〔1〕设这两年该企业年利润平均增长率为x.根据题意得2〔1+x〕2=2.88,解得 x1 =0.2=20%,x2 =﹣2.2 〔不合题意,舍去〕.答:这两年该企业年利润平均增长率为20%.〔2〕如果2022年仍保持相同的年平均增长率,那么2022年该企业年利润为:2.88〔1+20%〕=3.456,3.456>3.4答:该企业2022年的利润能超过3.4亿元.20.〔本小题总分值7分〕如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.〔1〕求证:四边形ABCD是菱形;〔2〕假设∠ADB=30°,BD=6,求AD的长.【分析】〔1〕由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;〔2〕由菱形的性质得出AC⊥BD,OD=OB=BD=3,再由三角函数即可得出AD的长.【解】〔1〕证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,∴四边形ABCD是菱形;〔2〕解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB==,∴AD==2.21.〔本小题总分值6分〕如图,直线y1=ax+b与双曲线y2=交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为〔﹣3,﹣2〕.〔1〕求直线和双曲线的解析式;〔2〕求点C的坐标,并结合图象直接写出y1<0时x的取值范围.【分析】〔1〕由点B的坐标求出k=6,得出双曲线的解析式为y2=.求出A的坐标为〔1,6〕,由点A和B的坐标以及待定系数法即可求出直线的解析式为直线y1=2x+4;〔2〕求出点C的坐标为〔﹣2,0〕,即可得出当y1<0时x的取值范围.【解】〔1〕∵点B〔﹣3,﹣2〕在双曲线y2=上,∴,∴k=6,∴双曲线的解析式为y2=.把y=6代入y2=得:x=1,∴A的坐标为〔1,6〕,∵直线y1=ax+b经过A、B两点,∴,解得:,∴直线的解析式为直线y1=2x+4;〔2〕由直线y1=0得,x=﹣2,∴点C的坐标为〔﹣2,0〕,当y1<0时x的取值范围是x<﹣2.22.〔本小题总分值8分〕如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.〔1〕求证:EF是⊙O的切线;〔2〕假设DE=1,BC=2,求劣弧的长l.【分析】〔1〕连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;〔2〕连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.【解】〔1〕证明:连接OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;〔2〕连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.23.〔本小题总分值10分〕为了“创立文明城市,建设美丽家园〞,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一局部种草,剩余局部栽花,设种草局部的面积为x〔m2〕,种草所需费用y1〔元〕与x〔m2〕的函数关系式为,其图象如下列图:栽花所需费用y2〔元〕与x〔m2〕的函数关系式为y2=﹣0.01x2﹣20x+30000〔0≤x≤1000〕.〔1〕请直接写出k1、k2和b的值;〔2〕设这块1000m2空地的绿化总费用为W〔元〕,请利用W与x的函数关系式,求出绿化总费用W的最大值;〔3〕假设种草局部的面积不少于700m2,栽花局部的面积不少于100m2,请求出绿化总费用W的最小值.【分析】〔1〕将x=600、y=18000代入y1=k1x可得k1;将x=600、y=18000和x=1000、y=26000代入y1=k2x+b 可得k2、b.〔2〕分0≤x<600和600≤x≤1000两种情况,根据“绿化总费用=种草所需总费用+种花所需总费用〞结合二次函数的性质可得答案;〔3〕根据种草局部的面积不少于700m2,栽花局部的面积不少于100m2求得x的范围,依据二次函数的性质可得.【解】〔1〕将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入,得:,解得:;〔2〕当0≤x<600时,W=30x+〔﹣0.01x2﹣20x+30000〕=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01〔x﹣500〕2+32500,∴当x=500时,W取得最大值为32500元;W=20x+6000+〔﹣0.01x2﹣20x+30000〕=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W取最大值为32400,∵32400<32500,∴W取最大值为32500元;〔3〕由题意得:1000﹣x≥100,解得:x≤900,由x≥700,那么700≤x≤900,∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取得最小值27900元.24.〔本小题总分值10分〕如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.〔1〕如图1,假设CE=CF,求证:DE=DF;〔2〕如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②假设CE=4,CF=2,求DN的长.〔2〕①证得△CDF∽△CED,根据相似三角形的性质得到,即CD2=CE•CF,根据等腰直角三角形的性质得到CD=AB,于是得到AB2=4CE•CF;②如图,过D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,求得CD=2,推出△CEN∽△GDN,根据相似三角形的性质得到=2,根据勾股定理即可得到结论.【解】〔1〕证明:∵∠ACB=90°,AC=BC,AD=BD,∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,在△DCE与△DCF中,,∴△DCE≌△DCF,∴DE=DF;∵∠CDF+∠CDE=45°,∴∠F=∠CDE,∴△CDF∽△CED,∴,即CD2=CE•CF,∵∠ACB=90°,AC=BC,AD=BD,∴CD=AB,②如图,过D作DG⊥BC于G,那么∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,由CD2=CE•CF得CD=2,∴在Rt△DCG中,CG=DG=CD•sin∠DCG=2×sin45°=2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△CEN∽△GDN,∴=2,∴GN=CG=,∴DN===.25.〔本小题总分值13分〕如图,矩形OABC的两边在坐标轴上,点A的坐标为〔10,0〕,抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D〔﹣2,0〕,点P是线段CB上的动点,设CP=t〔0<t<10〕.〔1〕请直接写出B、C两点的坐标及抛物线的解析式;〔2〕过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?〔3〕点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.【分析】〔1〕由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;〔2〕可设P〔t,4〕,那么可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得△PBE∽△OCD,利用相似三角形的性质可得到关于t的方程,可求得t的值;〔3〕当四边形PMQN为正方形时,那么可证得△COQ∽△QAB,利用相似三角形的性质可求得CQ的长,在Rt△BCQ中可求得BQ、CQ,那么可用t分别表示出PM和PN,可得到关于t的方程,可求得t的值.【解】〔1〕在y=ax2+bx+4中,令x=0可得y=4,∴C〔0,4〕,∵四边形OABC为矩形,且A〔10,0〕,∴B〔10,4〕,把B、D坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+x+4;〔2〕由题意可设P〔t,4〕,那么E〔t,﹣ t2+t+4〕,∴PB=10﹣t,PE=﹣t2+t+4﹣4=﹣t2+t,∵∠BPE=∠COD=90°,∠PBE=∠OCD,∴△PBE∽△OCD,∴=,即BP•OD=CO•PE,∴2〔10﹣t〕=4〔﹣t2+t〕,解得t=3或t=10〔不合题意,舍去〕,〔3〕当四边形PMQN为正方形时,那么∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴=,即OQ•AQ=CO•AB,设OQ=m,那么AQ=10﹣m,∴m〔10﹣m〕=4×4,解得m=2或m=8,①当m=2时,CQ==2,BQ==4,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC•sin∠PCQ=t,PN=PB•sin∠CBQ=〔10﹣t〕,∴t=〔10﹣t〕,解得t=,②当m=8时,同理可求得t=,∴当四边形PMQN为正方形时,t的值为或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年襄阳市初中毕业生学业考试
数学试题
一、选择题(3*12=36分)
1. 2的相反数是( )
A、-2
B、2
C、
D、
2. 四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学计数法表示为( )
A、1.581×103
B、1.581×104
C、15.81×103
D、15.81×104
3.下列运算正确的是( )
A、B、C、D、
4.如图1,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于( )
A、60°
B、70°
C、80°
D、90°
5.不等式组的解集在数轴上表示正确的是( )
6、如图2,BD平分∠ABC,CD∥AB,若∠BCD =70°,则∠ABD 的度数为( )
A、55°
B、50°
C、45°
D、40°
7、分式方程的解为( )
A、x = 3
B、x = 2
C、x = 1
D、x = -1
8、如图3所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )
9、如图4,平行四边形ABCD的对角线交于点O,且AB = 5,△OCD的周长为23,则平行
四边形ABCD的两条对角线的和是( )
A、18
B、28
C、36
D、46
10二次函数的图像如图5所示:若点A(,),A(,)在此函数图像上,且,则与的大小关系是( )
A、B、C、D、
11、七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:
节水量(m3) 0.2 0.25 0.3 0.4 0.5
家庭数(个) 1 2 2 4 1
那么这组数据的众数和平均数分别是( )
A、0.4和0.34
B、0.4和0.3
C、0.25和0.34
D、0.25和0.3
12、如图6,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为( )
A、B、C、D、
二、填空题(3*5=15分)
13、计算:
14、使代数式有意义的x的取值范围是
15、如图7,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m。
16、襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩。
如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是。
17、在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图8所示的直角梯形,则原直角三角形纸片的斜边长是。
三、解答题(69分)
18、(6分)先化简,再求值:
,其中,
19、(6分)如图9,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)
20、(6分)有一人患了流感,经过两轮传染后共有64人患了流感。
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
21、(6分)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图。
根据统计图提供的信息解答下列问题:
(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;
(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;
(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?
22、(6分)平行四边形ABCD在平面直角坐标系中的位置如图11所示,其中A(-4,0),B(2,0),C(3,3)反比例函数的图像经过点C。
(1)求此反比例函数的解析式;
(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD’C’B,请你通过计算说明点D’在双曲线上;
(3)请你画出△AD’C,并求出它的面积。
23、(7分)如图12-1,点A是线段BC上一点,△ABD和△ACE都是等边三角形。
(1)连结BE,CD,求证:BE=CD;
(2)如图12-2,将△ABD绕点A顺时针旋转得到△AB’D’。
①当旋转角为度时,边AD’落在AE上;
②在①的条件下,延长DD’交CE于点P,连接BD’,CD’。
当线段AB,AC满足什么数量关系时,△BDD’与△CPD’全等?并给予证明。
24、(9分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球拍,供社区居民免费借用。
该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
B超市:买一副羽毛球拍送2个羽毛球。
设在A超市购买羽毛球拍和羽毛球的费用为(元),在B超市购买羽毛球拍和羽毛球的费用为(元)。
请解答下列问题:
(1)分别写出和与x之间的关系式;
(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?
(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案。
25、(10分)如图13,△ABC内接于⊙O,且AB为⊙O的直径。
∠ACB的平分线交⊙O于点
D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF ⊥CD于点F。
(1)求证:DP∥AB;
(2)若AC = 6,BC = 8,求线段PD的长。
26、(13分)如图14,已知抛物线与x轴的一个交点A的坐标为(-1,0),对称轴为直线x = 2.
(1)求抛物线与x轴的另一个交点B的坐标;
(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点。
已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;
(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动。
设点P运动的时间为t秒。
①当t为秒是,△PAD的周长最小?当t为秒时,△PAD是以AD为腰
的等腰三角形?(结果保留根号)
②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由。