临沂大学成人教育复变函数(1)期末考试复习题及参考答案

合集下载

临沂大学成人教育 高等数学期末考试(1) 期末考试复习题及参考答案

临沂大学成人教育 高等数学期末考试(1) 期末考试复习题及参考答案

高等数学期末考试(1)一、单选题(共25题,100分)1、(4.0)A、B、C、D、正确答案: D2、(4.0)A、B、C、D、正确答案: D3、(4.0)A、 0B、 14C、 4D、 12正确答案: B4、(4.0)A、B、C、D、正确答案: C5、(4.0)A、B、 1C、 1/3D、 -1正确答案: B 6、(4.0)A、B、C、D、正确答案: B 7、(4.0)A、B、C、D、正确答案: A8、(4.0)A、B、C、D、正确答案: B9、设向量与向量平行,则k= (4.0)A、B、C、 1D、 -1正确答案: A10、已知,则(4.0)A、 9B、 -9C、 8D、 -8正确答案: B11、幂级数的收敛区间是(4.0)A、B、C、D、正确答案: A12、级数的收敛区间(4.0)A、(4,6)B、(-4,6)C、D、[4,6]正确答案: A13、在空间内方程表示(4.0)A、双曲抛物面B、抛物线C、抛物柱面D、椭圆抛物面正确答案: D14、在空间内方程表示(4.0)A、抛物线B、抛物柱面C、双曲抛物面D、椭圆抛物面正确答案: B15、母线平行于X轴且通过曲线的柱面方程是(4.0)A、B、C、D、正确答案: C16、母线平行于Y轴且通过曲线的柱面方程是(4.0)A、B、C、D、正确答案: C17、平行于面且经过点的平面方程是(4.0)A、B、C、D、正确答案: B18、平行于X轴且经过点和的平面方程(4.0)A、B、C、D、正确答案: C19、若,且,则有(4.0)A、B、C、D、以上结论都不正确正确答案: B20、如果则线段的长度为(4.0)A、 1B、 2C、 3D、 4正确答案: C21、在空间直接坐标系下,下列结论中错误的是(4.0)A、表示椭圆抛物面B、示单位圆C、表示旋转圆锥面D、表示椭球面正确答案: B22、两平面和的夹角为(4.0)A、B、C、D、正确答案: D23、点到平面的距离为(4.0)A、 4B、 3C、 2D、 1正确答案: D24、以为球心且过原点的球面方程为(4.0)A、B、C、D、正确答案: A25、下列级数绝对收敛的是(4.0)A、B、C、D、正确答案: A。

复变函数_期末试卷及答案

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第三象限的复数是( )A. 12i +B. 12i --C. 12i -D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部B. Re()0z >表示上半平面C. 0arg 4z π<<表示角形区域D. Im()0z <表示上半平面4.关于0limz zz zω→=+下列命题正确的是( ) A.0ω=B. ω不存在C.1ω=-D.1ω=5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( )A. cos z 是有界函数B. 22Lnz Lnz =7.在下列复数中,使得ze i =成立的是( ) 8.已知31z i =+,则下列正确的是( ) 9.积分||342z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π10.设C 为正向圆周||4z =, 则10()zC e dz z i π-⎰等于( ) A.110!B.210!iπ C.29!iπ D.29!iπ- 11.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C. 在收敛圆内,幂级数绝对收敛D.在收敛圆周上,条件收敛12.0=z 是函数(1cos )ze z z -的( )A. 可去奇点B.一级极点C.二级极点D. 三级极点13.1(2)z z -在点 z =∞ 处的留数为( )A. 0.1BC.12D. 12-14.设C 为正向圆周1||=z , 则积分 sin z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 15.已知()[()]F f t ω=F ,则下列命题正确的是( ) A. 2[(2)]()j f t eF ωω-=⋅FB. 21()[(2)]j ef t F ωω-⋅=+FC. [(2)]2(2)f t F ω=FD. 2[()](2)jte f t F ω⋅=-F二、填空题(本大题共5小题,每小题2分,共10分) 16. 设121,1z i z =-=,求12z z ⎛⎫=⎪⎝⎭____________. 17. 已知22()()()f z bx y x i axy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =cos zt tdt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(2)z n ∞=-∑的收敛半径为_______. 20. 设3z ω=,则映射在01z i =+处的旋转角为____________,伸缩率为____________. 20. 设函数2()sin f t t t =,则()f t 的拉氏变换等于____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到3-4i 的直线段,计算积分[()2]CI x y xyi dz =-+⎰22. 设2()cos ze f z z z i=+-. (1)求)(z f 的解析区域,(2)求).(z f ' 24.已知22(,)4u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)3f =。

复变函数期末考试及答案(珍藏版)

复变函数期末考试及答案(珍藏版)

一、填空题1、设12z =,则||z = 1 ,Argz =2,0,1,3k k ππ-+=± . 2、曲线422=+y x 在映射z1=ω下的象为2214u v +=.(写出象曲线的方程) 3、设(1)(1,2,)4n n ni n n α-+==+ 则lim n n α→∞=i . 4、=Z k k i k ∈+),32sin()32cos(ππ.5、函数()f z 在z 点可导是()f z 在z 点解析的 必要不充分 条件.(填充分必要性)6、若幂级数0n nn c z ∞=∑在12z i =+处收敛,则该级数在2z =处的敛散性为绝对收敛 .7、|2|12zz e dz z -==-⎰22ie π. 8、0=z 是函数5sin )(z z z z f -=的 2 阶极点。

9、若1()sin f z z =,则0Res ()z f z == 1 。

二、计算题1、设C 为连接0到2a π的摆线,(sin ),(1cos )x a y a θθθ=-=-,求积分2(281)C z z dz ++⎰.解:由于函数2281z z ++在整个z 平面上解析,故 2220(281)(281)a C z z dz z z dz π++=++⎰⎰3223320216(4)|16233a a z z z a a a ππππ=++=++2、判别级数∑∞=1n nn i 是否绝对收敛,是否收敛.解:因为:∑∑∞=∞==111||n n n n n i 发散,故级数 ∑∞=1n n n i 不绝对收敛.由于∑∑∑∞=∞=∞=+==11212sin 2cos )(n n n in n n n i n n e n i πππ ∑∑∞=∞=+=112s i n 2c o s n n n n i n n ππ 而∑∞=12cos n n n π,∑∞=12sin n n n π都为收敛级数,所以原级数收敛, 故原级数条件收敛。

(完整版)复变函数试题库

(完整版)复变函数试题库

《复变函数论》试题库梅一A111《复变函数》考试试题(一)1、 =-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n ...lim 21______________. 8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分) 1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

《复变函数》2018-2019期末试题及答案

《复变函数》2018-2019期末试题及答案
从而有
(c为任意常数)
因此
故得
由f(O)=1得c=0,故得
2.解法1:设
因,(z)在c的内部只有两个有限奇点0与1,故作 由定理4.4有


解法2:设 因f(z)在c的内部只有两个有限奇点0与l,且知0是f(z)的二级极点,l是f(z)的一级极点,由定理7.1得


3.解:因为厂(z)的有限奇点只有z=2,所以f(z)在点z=l可展成幂级数,且f(z)在|z—l |<1内可展开,有
四、证明题(本题l5分)证:因为
而函数 在点z=1解析,且 故由定理6.4得知点z=1为函数f(z)的二级极点.
四、证明题(本题t5分)
试证:点z=l是函数 的二级极点.
试题答案及评分标准
一、单项选择题(本题共20分,每小题4分)
1.C 2.C 3.B 4.A 5.B
二、填空题(本题共20分。每小题4分)
1.闭
2.孤立
3.1
4.0
5.直线
三、计算题(本题共45分,每小题15分)
1.解:由C—R条件有
于是
由此得
《复变函数》2018-2019期末试题及答案
一、单项选择题(本题共20分,每小题4分)
1.设 则 可用z表示为( ).
2.点 是集合 的( ).
A.孤立点B.内点
C.外点D.边界点
A.0B.1(:.2 D.3
5.函数 在点Z=l展成幂级数的收敛半径为( ).
A.1B.2C.3D.4
二、填空题(本题共20分,每小题4分)
1.若点集E的全部聚点都属于E,则称E为()集.
2.设点a为函数f(x)的奇点,若,f(x)在点a的某个去心邻域 内解析,则

(完整word版)《复变函数》考试试题与答案各种总结(2)

(完整word版)《复变函数》考试试题与答案各种总结(2)

《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f (z)在z 0解析. ( ) 2。

有界整函数必在整个复平面为常数. ( ) 3。

若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。

( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5。

若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。

( ) 6。

若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若)(lim 0z f z z →存在且有限,则z 0是函数f (z)的可去奇点。

( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9。

若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10。

若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数。

( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2。

=+z z 22cos sin _________. 3。

函数z sin 的周期为___________.4。

设11)(2+=z z f ,则)(z f 的孤立奇点有__________。

5。

幂级数0n n nz ∞=∑的收敛半径为__________。

6。

若函数f (z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________。

8.=)0,(Re n zz e s ________,其中n 为自然数。

9. zz sin 的孤立奇点为________ 。

10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三。

《复变函数》考试试题与答案各种总结.docx

《复变函数》考试试题与答案各种总结.docx

---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。

复变函数期末试题及答案

复变函数期末试题及答案

复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。

答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。

答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)三 . 计算题( 40 分):dz1、|z z 0 | 1 ( z z )n__________. ( n 为自然数)f ( z)12.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)14. z 2 1 ,则f ( z)的孤立奇点有 __________.设 5. 幂级数nz n的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn ______________.Res(ez8.n,0)z________,其中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若zlimf (z) ___是f (z) 的极点,则z z.1. 设( z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1}内的罗朗展式 .1dz.2.|z| 1cos zf ( z) 3 2 71,其中 C { z :| z |3} ,试求 f '(1 i ).3.d设Czwz 14. 求复数 z 1 的实部与虚部 .四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数, 那么它在 D 内为常数 .2. 试证 :f (z)z(1 z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值解析分支 , 并求出支割线 0 Re z 1 上岸取正值的那支在 z 1 的值 .《复变函数》考试试题(二)二. 填空题 . (20 分)1.设z i ,则| z |__,arg z__, z__2.设 f ( z)(x2 2 xy) i (1 sin( x2y2 ), z x iy C,则lim f (z)________.z1idz_________. (n为自然数)3.|z z0 |1 ( z z )n4.幂级数nz n的收敛半径为 __________ .n05.若 z0是 f(z) 的 m 阶零点且 m>0,则 z0是f ' ( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.18.设 f ( z)1z2,则 f ( z) 的孤立奇点有_________.9.函数 f (z)| z |的不解析点之集为________.10.Res( z41,1)____ . z三.计算题 . (40 分)1.求函数sin(2z3)的幂级数展开式 .2. 在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z i 处的值.计算积分: Ii1)单位圆(| z |1)3.| z | dz,积分路径为(i的右半圆 .sin zdzz22( z)4.求2.四. 证明题 . (20 分)1.设函数 f(z) 在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f ( z)在D内解析.2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(三)二. 填空题 .(20 分)11.设 f ( z),则f(z)的定义域为___________.z212.函数 e z的周期为_________.3.若 z nn 2 i (1 1 )n,则 lim z n __________.1 nn n4. sin 2 z cos 2z___________.dz5.|z z 0 | 1 ( z z )n_________. ( n 为自然数)6.幂级数nx n的收敛半径为 __________.n 07.设f (z)1,则 f ( z ) 的孤立奇点有 __________.z218. 设ez1,则 z___ .9.若z 0 是 f (z) 的极点,则 limf ( z) ___ .z z 010.Res( e z,0)____.z n三. 计算题 . (40分)11.将函数 f ( z)z 2e z在圆环域 0z内展为 Laurent 级数 .n!n2. 试求幂级数nnz的收敛半径 .n3. 算下列积分:e zdz,其中C 是| z| 1.Cz 2 (z29)4. 求z 9 2z 6z28z 2 0 在 | z |<1内根的个数 .四 . 证明题 . (20 分)1.函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设f (z) 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及 M ,使得当| z|R 时| f (z) |M | z |n ,证明f (z) 是一个至多 n 次的多项式或一常数。

《复变函数》考试试题与各种总结

《复变函数》考试试题与各种总结

《复变函数》考试一试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数 f(z) 在 z 0 分析 .( )2. 有界整函数必在整个复平面为常数.()3. 若{ z n }收敛,则{Re z n } 与{Imz n }都收敛 .( )4. 若 f(z)在地区 D 内分析,且 f '( z),则 f ( z)C(常数) . ( )5. 若函数 f(z) 在 z 0 处分析,则它在该点的某个邻域内能够睁开为幂级数 .( )6. 若 z 0 是f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .()lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 . ()8. 若函数 f(z) 在是地区 D 内的单叶函数,则f ' (z) 0(z D ) .( )9. 若 f ( z ) 在地区 D 内分析 , 则对 D 内任一简单闭曲线Cf (z)dz 0 .C( )10. 若函数 f(z) 在地区 D 内的某个圆内恒等于常数,则f(z) 在地区 D 内恒等于常数 . ()二. 填空题( 20 分)1、dz__________. ( n 为自然数) |z z 0 |1 ( z z )n2.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)z 214. 设 1,则f ( z)的孤立奇点有 __________.5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上到处分析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn______________.Re s(e zn ,0)z,此中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若z0 是f (z)lim f (z) ___的极点,则z z.三. 计算题( 40 分):f (z)1(z1)( z 2) ,求 f ( z) 在 D { z : 0| z | 1}内的罗朗展式 .1. 设1dz.2.|z| 1cos zf ( z)3 2 71dC { z :| z | 3} ,试求 f ' (1 i ).3. 设Cz,此中z 1w1的实部与虚部 .4. 求复数z 四 . 证明题 .(20 分 )1. 函数 f (z)在地区D 内分析 . 证明:假如 | f ( z) |D 内在 D 内为常数,那么它在 为常数 .2. 试证 : f (z) z(1z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值分析分支 ,并求出支割线 0 Re z 1登岸取正当的那支在z1的值 .《复变函数》考试一试题(一)参照答案一.判断题1.× 2.√ 3.√4.√ 5.√6.√7.×8.×9.× 10.×二.填空题2 i n 1 ; 3.2k , ( kz) ; 4.z i ; 5. 11.n; 2.1 0 16. 整函数;7. ;8. 1 ;9. 0;10. .(n 1)!三.计算题 .1. 解因为0 z 1, 所以 0 z 1f ( z) 12) 1 1 z n 1 (z)n.( z 1)(z 1 z z ) n 0 2 n 0 22(122. 解因为z1Re s f (z) lim 2 lim 1z cosz sin z ,z z2 2 2Re s f (z) lim z 2 11. cosz limz z z sin z2 2 2所以 1 dz 2 i(Re s f (z) Re s f (z) 0 .z 2 cos zz 2 z 23. 解令 ( ) 3 2 7 1, 则它在 z 平面分析, 由柯西公式有在 z 3内,f (z)c ( )dz 2 i (z) . z所以f (1 i ) 2 i (z) z1 i2 i (13 6i ) 2 ( 6 13i ) .4. 解令 z a bi , 则w z 1 1 2 1 2( a 1 bi ) 1 2(a 1) 2b .z 1 z 1 ( a 1)2 b2 ( a 1)2 b2 (a 1)2 b2故z 112(a 1),z 1 2b. Re( )( a 1)2 b2Im( )(a 1)2 b2z 1 z 1四.证明题.1.证明设在D内 f ( z) C .令 f ( z) u iv ,则 f ( z)2u2v2c2.两边分别对 x, y 求偏导数 , 得uu xvv x 0 (1)uu y vv y 0(2)因为函数在 D 内分析 , 所以 u x v y , u y v x . 代入 (2) 则上述方程组变成uu xvv x 0 . 消去 u x 得, (u 2 v 2 ) v x 0 .vu xuv x 01)若 u 2 v 20 , 则 f ( z)0 为常数 .2) 若 v x0, 由方程 (1) (2)及 C.R. 方程有 u x 0, u y 0 ,v y 0 .所以 u c 1, v c 2 . ( c 1, c 2 为常数 ).所以f ( z)c 1 ic 2 为常数 .2. 证明 f ( z) z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z1的 z 平面内变点就不行能单绕 0 或 1转一周 , 故能分出两个单值分析分支 .因为当 z 从支割线登岸一点出发, 连续改动到 z0,1 时 , 只有 z 的幅角增添. 所以f ( z)z(1 z) 的幅角共增添. 由已知所取分支在支割线登岸取正当 , 于是可以为该2分支在登岸之幅角为 0, 因此此分支在z1 的幅角为 , 故 f ( 1)2e2i2i .2《复变函数》考试一试题(二)一 . 判断题 . (20 分)1.若函数 f (z)u(x, y) iv ( x, y) 在 D 内连续,则 ux,y) 与 v x,y ) 都在 D 内连续.( (( )2. cosz与sinz 在 复 平面 内 有界 .( )3. 若 函 数 f ( z)在 z 0分析,则f ( z) 在z 0 连 续 .()4. 有界整函数必为常数 .( )5.如 z 0 是函数 f ( z) 的天性奇点,则 lim ( ) 必定不存在 .()z z 0f z6. 若 函 数 f ( z) 在 z 0 可 导 , 则f ( z) 在 z 0解 析 .( )7. 若 f ( z) 在地区 D 内分析 , 则对 D 内任一简单闭曲线 Cf ( z)dz 0 .C( )8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )9. 若 f ( z) 在 区 域D 内 解 析 , 则 | f ( z)| 也 在D内分析.( )10. 存在一个在零点分析的函数f ( z) 使 f (1 ) 0 且 f ( 1) 1 , n 1,2,... . n12n2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z __, z __2. 设 f ( z) ( x 2 2 xy) i (1 sin( x 2 y 2 ), z x iy C ,则 lim f (z) ________.z 1 i3.dz_________.( n 为自然数)|z z 0 | 1( z z )n4.幂级数nz n 的收敛半径为 __________ .n 05. 若 z 0 是 f ( z) 的 m 阶零点且 m>0,则 z 0 是 f '( z) 的_____零点 .6.函数 e z 的周期为 __________.7. 方程 2z 5 z 3 3z 8 0 在单位圆内的零点个数为 ________. 8. 设 f ( z)1 ,则 f ( z) 的孤立奇点有 _________. z 219. 函数 f (z) | z |的不分析点之集为 ________.10. Res(z 1,1) ____ .z4三 . 计算题 . (40分 )1.求函数sin(2z3)的幂级数睁开式 .2.在复平面上取上半虚轴作割线 . 试在所得的地区内取定函数z在正实轴取正实值的一个分析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z| 1)i的右半圆 .sin z dzz 2( z) 24.求2.四. 证明题 . (20 分)1. 设函数 f ( z) 在地区 D内分析,试证:f ( z) 在 D 内为常数的充要条件是 f (z) 在D内分析 .2.试用儒歇定理证明朝数基本定理 .《复变函数》考试一试题(二)参照答案一. 判断题 .1.√2.×3.√4.√5.× 6.×7.×8.√9.× 10.× .二.填空题, i ; 2. 3 (1 sin 2)i ; 3. 2 i n 1; 5. m 1.,0 n ; 4.12 16. 2k i ,( k z) .7. 0;8. i ;9. R ;10. 0.三. 计算题1. 解 sin(2 z3 ) ( 1)n (2 z3 )2n 1 ( 1)n 22n 1 z6 n 3 .n 0 (2 n 1)! n 0 (2 n 1)!2. 解令 z re i .i 2 k则 f ( z)z re2,(k 0,1).又因为在正实轴去正实值,所以k 0 .i所以 f (i)e 4 .3. 单位圆的右半圆周为 ze i ,2.2izdz2deiei22i.所以i224. 解zsin z dz 2 i (sin z)2 i cos z2)2( zz2z 2=0.2四. 证明题 .1. 证明(必需性 ) 令 f ( z)c 1 ic 2 , 则 f ( z) c 1 ic 2 . ( c 1 ,c 2 为实常数 ).令 u( x, y) c 1, v( x, y) c 2 . 则 u x v yu yv x 0 .即 u, v 知足 C.R., 且 u x , v y ,u y , v x 连续 , 故 f (z) 在 D 内分析 .(充分性 ) 令 f ( z)u iv , 则 f (z) uiv ,因为 f ( z) 与 f ( z) 在 D 内分析 , 所以u x v y , u yv x , 且 u x ( v)y v y , u y ( v x ) v x .比较等式两边得 u x v yu y v x 0 . 进而在 D 内 u, v 均为常数 , 故 f (z) 在 D 内为常数.2. 即要证“任一n 次方程a 0 zna 1zn 1a n 1z an0 ( a 0 0) 有且只有 n个根” .证明 令 f (z)a 0 z na 1z n 1a n 1z a n0 , 取 Rmax a 1a n,1 , 当a 0z在C : z R上时,有( z) a 1 R n 1a n 1 R a n ( a 1a n )R n 1 a 0 R n .f ( z) .由儒歇定理知在圆z R 内 , 方程 a 0 z n a 1z n 1 a n 1 z a n 0 与 a 0 z n 0 有相同个数的根 . 而 a0 z n 0 在z R 内有一个n 重根z 0 .所以n次方程在 z R 内有 n 个根.《复变函数》考试一试题(三)一. 判断题 . (20 分).1. cos z 与 sin z 的周期均为2k . ( )2. 若 f ( z) 在 z0处知足柯西 - 黎曼条件 , 则 f ( z) 在 z0分析 . ( )3. 若函数 f ( z) 在 z0处分析,则 f ( z) 在 z0连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n} 都收敛. ( )5.若函数 f ( z) 是地区 D 内分析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D内为常数 . ( )6. 若函数 f ( z) 在 z0分析,则 f ( z) 在 z0的某个邻域内可导 . ( )7. 假如函数 f ( z) 在D { z :| z | 1} 上分析,且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) . ()8. 若函数 f ( z) 在 z0 处分析,则它在该点的某个邻域内能够睁开为幂级数.( ) 9. 若 z0是f ( z)的 m阶零点 , 则 z0是 1/ f ( z)的 m阶极点 . ( )10. 若z0是 f (z)的可去奇点,则 Res( f ( z), z0 ) 0. ( )二. 填空题 . (20 分)1. 设 f ( z) 1 ,则 f ( z) 的定义域为 ___________.z2 12. 函数 e z的周期为 _________.3. 若 z n n 2 i (1 1) n,则lim z n__________.1 n n n4. sin 2 z cos2 z ___________.dz5.|z z0 | 1(z z ) n_________. (n为自然数)6. 幂级数nx n的收敛半径为__________.n 07. 设 f (z) 11 ,则 f ( z) 的孤立奇点有 __________.z28. 设 e z1,则 z ___ .9.若z 0 是 f (z)的极点,则 lim f (z) ___.z z 0z10.Res(en ,0)____ .z三 . 计算题 . (40 分)11.将函数f ( z)z 2e z 在圆环域 0z内展为 Laurent级数 .2.试求幂级数n! z n 的收敛半径nn n.3. 算以下积分:e zdz,此中 C 是 | z | 1.Cz 2(z29)4. 求 z92z 6 z 2 8z2 0 在| z|<1 内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在地区 D 内分析 . 证明:假如 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,而且假设存在着一个正整数 n ,以及两个正数 R 及 M ,使适当 | z|R 时| f ( z) |M | z |n ,证明 f (z) 是一个至多 n 次的多项式或一常数。

(完整版)复变函数试题及答案

(完整版)复变函数试题及答案
C是复数其实部等于1D是复数其模等于1
2、下列命题正确的是()
A B零的辐角是零
C仅存在一个数z,使得 D
3、下列命题正确的是()
A函数 在 平面上处处连续
B 如果 存在,那么 在 解析
C每一个幂级数在它的收敛圆周上处处收敛
D如果v是u的共轭调和函数,则u也是v的共轭调和函数
4、根式 的值之一是()
1、 的指数形式是
2、 =
3、若0<r<1,则积分
4、若 是 的共轭调和函数,那么 的共轭调和函数是
5、设 为函数 = 的m阶零点,则m =
6、设 为函数 的n阶极点,那么 =
7、幂级数 的收敛半径R=
8、 是函数 的奇点
9、方程 的根全在圆环内
10、将点 ,i,0分别变成0,i, 的分式线性变换
二、单选题(每小题2分)
1 2 3 4 5
四 计算题(每小题6分,共36分)
1解: , 分
…5分
解得: 分
2解:被积函数在圆周的 内部只有一阶极点z=0
及二阶极点z=1 分
= 2i(-2+2)=0 分
3解:
= …4分
( <2)…6分
4解: 被积函数为偶函数在上半z平面有两个
一阶极点i,2i…1分
I= …2分
= …3分
= …5分
A可去奇点B一阶极点C一阶零点D本质奇点
6、函数 ,在以 为中心的圆环内的洛朗展式
有m个,则m=( )
A 1 B2C3 D 4
7、下列函数是解析函数的为()
A B
C D
8、在下列函数中, 的是()
A B
C D
9、设a ,C: =1,则 ()

复变函数期末考试试题

复变函数期末考试试题

复变函数期末考试试题一、单项选择题(每题3分,共30分)1. 若函数f(z)在z=a处解析,则以下哪个选项是正确的?A. f(z)在z=a的邻域内解析B. f(z)在z=a的任何邻域内解析C. f(z)在z=a处可导D. f(z)在z=a处连续2. 以下哪个函数是解析的?A. |z|B. z^2C. Re(z)D. Im(z)3. 若f(z)=u(x,y)+iv(x,y),则以下哪个条件是f(z)解析的必要条件?A. u_x=v_yB. u_y=-v_xC. u_x=v_y且u_y=-v_xD. u_x=v_y或u_y=-v_x4. 以下哪个函数是整函数?A. e^zB. sin(z)C. z/(z-1)D. 1/z5. 若f(z)和g(z)都是解析函数,则以下哪个函数也是解析的?A. f(z)+g(z)B. f(z)-g(z)C. f(z)g(z)D. f(z)/g(z)(g(z)≠0)6. 以下哪个函数是调和函数?A. e^zB. z^2C. Re(z)D. Im(z)7. 若f(z)是解析函数,则以下哪个函数也是解析的?A. f(z)的实部B. f(z)的虚部C. f(z)的共轭复数D. f(z)的逆函数8. 若f(z)在z=a处有极点,则以下哪个选项是正确的?A. f(z)在z=a处解析B. f(z)在z=a处有界C. f(z)在z=a处无界D. f(z)在z=a处有界且解析9. 若f(z)是解析函数,则以下哪个函数是f(z)的导数?A. u_x+iv_xB. u_x-iv_xC. u_y+iv_yD. u_y-iv_y10. 若f(z)是解析函数,则以下哪个函数是f(z)的积分?A. ∫(u_x+iv_x)dxdyB. ∫(u_x-iv_x)dxdyC. ∫(u_y+iv_y)dxdyD. ∫(u_y-iv_y)dxdy二、填空题(每题4分,共20分)1. 若f(z)=u(x,y)+iv(x,y),则f(z)的柯西-黎曼方程为________。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)1、__________.(为自然数)2。

_________。

3.函数的周期为___________.4.设,则的孤立奇点有__________。

5.幂级数的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________。

7.若,则______________.8。

________,其中n为自然数.9。

的孤立奇点为________。

10.若是的极点,则。

三.计算题(40分):1. 设,求在内的罗朗展式.2.3. 设,其中,试求4. 求复数的实部与虚部.四。

证明题.(20分)1。

函数在区域内解析. 证明:如果在内为常数,那么它在内为常数。

2。

试证:在割去线段的平面内能分出两个单值解析分支,并求出支割线上岸取正值的那支在的值.《复变函数》考试试题(二)二。

填空题. (20分)1。

设,则2。

设,则________。

3. _________。

(为自然数)4. 幂级数的收敛半径为__________ 。

5. 若z0是f(z)的m阶零点且m>0,则z0是的_____零点。

6. 函数e z的周期为__________.7. 方程在单位圆内的零点个数为________.8. 设,则的孤立奇点有_________。

9。

函数的不解析点之集为________。

10. .三。

计算题. (40分)1。

求函数的幂级数展开式。

2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点处的值。

3。

计算积分:,积分路径为(1)单位圆()的右半圆。

4. 求。

四。

证明题。

(20分)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是在D内解析。

2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分)1. 设,则f(z)的定义域为___________.2。

《复变函数与积分变换》期末考试试卷及答案[1](可打印

《复变函数与积分变换》期末考试试卷及答案[1](可打印

------14 分
1i
1.
的幅角是(
2k , k 0 1,2,L
);
2
4
2. Ln(1 i) 的主值是( 1 ln 2 i
z
ez 1)
2
z0
2i
无论采用那种方法给出公式至少给一半分,其他酌情给分。
z15
(3).
dz
z 3 (1 z 2 )2 (2 z 4 )3
共 6 页第 2 页
3/8
解:设 f (z) 在有限复平面内所有奇点均在: z 3 内,由留数定理
z15
dz 2i Re s[ f (z), ]
z 3 (1 z 2 )2 (2 z 4 )3
, Re
s[
f
( z ), ]
(-1
);
二.选择题(每题 4 分,共 24 分)
1.解析函数 f (z) u(x, y) iv(x, y) 的导函数为(B );
(A) f (z) u x iu y ; (B) f (z) u x iu y ; (C) f (z) u x iv y ; (D) f (z) u y ivx .
(D)函数 f (z) u(x, y) iv(x, y) 在区域内解析的充分必要条件是 u(x, y) 、
共 6 页第 1 页
2/8
v(x, y) 在该区域内均为调和函数.
5.下列结论不正确的是( D
( A)、

sin
1、、、、、、 z
).
(B)、 、 sin z、、、、、、
(C )、 、 1 、、、、、 1
2.C 是正向圆周 z 3 ,如果函数 f (z) ( D ),则 f (z)dz 0 . C
3

复变函数 期末试题及答案

复变函数 期末试题及答案

复变函数期末试题及答案一、选择题1. 下列哪个不是复变函数的定义?A. 函数表达式包含复数部分和常数部分。

B. 函数的定义域为复数集合。

C. 函数表达式只包含实数。

D. 复变函数可以进行加法、减法、乘法和除法运算。

答案:C2. 设函数 f(z) = z^2 - 2z。

那么 f(z) 在 z = 1 处的导数是多少?A. 0B. -1C. 2D. 4答案:B3. 设函数 f(z) = sin(z)。

则它的周期是多少?A. 2πB. πC. 2D. 1答案:A二、填空题1. 复数的共轭是指实数部分相等,虚数部分______的两个复数。

答案:相反2. 设 z = a + bi 是一个复数,其中 a 和 b 分别表示实部和虚部。

那么实部 a = ______,虚部 b = ______。

答案:a,b三、计算题1. 计算复数 z = 2 + 3i 和 w = -1 - 4i 的和 z + w。

解答:z + w = (2 + 3i) + (-1 - 4i)= 1 - i答案:1 - i2. 计算复数 z = 1 + 2i 和 w = 3 - i 的乘积 z × w。

解答:z × w = (1 + 2i)(3 - i)= 3 + 6i - i - 2i^2= 3 + 5i + 2= 5 + 5i答案:5 + 5i四、问答题1. 复数的解析函数具有什么特点?答:复数的解析函数具有以下特点:- 函数的实部和虚部都是解析函数。

- 函数的导数在定义域内处处存在。

- 函数满足柯西-黎曼方程。

2. 复数在数学和实际应用中有什么作用?答:复数在数学和实际应用中具有广泛的作用,包括但不限于以下几个方面:- 复数可以用于表示电路中的交流电信号。

- 复数可以用于解决数学方程中的平方根问题。

- 复数可以用于描述波的传播和干涉现象。

- 复数可以用于解析几何中的向量运算。

以上为复变函数期末试题及答案,希望能对您有所帮助。

临沂大学成人教育复变函数 1期末考试复习题及参考答案

临沂大学成人教育复变函数 1期末考试复习题及参考答案

34、下列不是复数
A、 B、 C、 D、 正确答案: C 解析:
35、方程
的值的为( )(2.0)

内有( )个根
(2.0) A、 0 B、 2 C、 4 D、 5 正确答案: B 解析:
36、下列说法中错误的是( )
(2.0) A、 分式线性变换在扩充复平面上是共形的. B、 分式线性变换将圆周映成圆周或直线.
复变函数(1)
一、 单选题(共 50 题,100 分)
1、下列不等式正确的是( )(2.0)
A、 B、 C、 D、 正确答案: D 解析:
2、函数

A、
B、
C、
D、 正确答案: A 解析:
内的洛朗展式为( )(2.0)
3、对于函数
,下列说法错误的是( )(2.0)
A、
是一阶极点
B、
是二阶极点
C、
是一阶极点
D、
是一阶极点
正确答案: B
解析:
A、 2
4、的收敛半径为( )(2.0)
B、 C、 0 D、 正确答案: A 解析:
5、
()
(2.0) A、 B、 C、 D、 正确答案: C 解析:
6、实积分
A、 B、 C、 D、 正确答案: D 解析:
( )(2.0)
7、级数
()
(2.0) A、 收敛 B、 条件收敛 C、 绝对收敛 D、 发散 正确答案: D 解析:
C、
D、 正确答案: B 解析:
28、实积分
(2.0) A、
B、 C、
D、 正确答案: C 解析:
()
29、 是 的( )
(2.0) A、 本质奇点 B、 可去奇点 C、 极点 D、 非孤立奇点 正确答案: B 解析:

《复变函数》考试试题与各种总结

《复变函数》考试试题与各种总结

《复变函数》考试一试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数 f(z) 在 z 0 分析 .( )2. 有界整函数必在整个复平面为常数.()3. 若{ z n }收敛,则{Re z n } 与{Imz n }都收敛 .( )4. 若 f(z)在地区 D 内分析,且 f '( z),则 f ( z)C(常数) . ( )5. 若函数 f(z) 在 z 0 处分析,则它在该点的某个邻域内能够睁开为幂级数 .( )6. 若 z 0 是f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .()lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 . ()8. 若函数 f(z) 在是地区 D 内的单叶函数,则f ' (z) 0(z D ) .( )9. 若 f ( z ) 在地区 D 内分析 , 则对 D 内任一简单闭曲线Cf (z)dz 0 .C( )10. 若函数 f(z) 在地区 D 内的某个圆内恒等于常数,则f(z) 在地区 D 内恒等于常数 . ()二. 填空题( 20 分)1、dz__________. ( n 为自然数) |z z 0 |1 ( z z )n2.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)z 214. 设 1,则f ( z)的孤立奇点有 __________.5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上到处分析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn______________.Re s(e zn ,0)z,此中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若z0 是f (z)lim f (z) ___的极点,则z z.三. 计算题( 40 分):f (z)1(z1)( z 2) ,求 f ( z) 在 D { z : 0| z | 1}内的罗朗展式 .1. 设1dz.2.|z| 1cos zf ( z)3 2 71dC { z :| z | 3} ,试求 f ' (1 i ).3. 设Cz,此中z 1w1的实部与虚部 .4. 求复数z 四 . 证明题 .(20 分 )1. 函数 f (z)在地区D 内分析 . 证明:假如 | f ( z) |D 内在 D 内为常数,那么它在 为常数 .2. 试证 : f (z) z(1z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值分析分支 ,并求出支割线 0 Re z 1登岸取正当的那支在z1的值 .《复变函数》考试一试题(一)参照答案一.判断题1.× 2.√ 3.√4.√ 5.√6.√7.×8.×9.× 10.×二.填空题2 i n 1 ; 3.2k , ( kz) ; 4.z i ; 5. 11.n; 2.1 0 16. 整函数;7. ;8. 1 ;9. 0;10. .(n 1)!三.计算题 .1. 解因为0 z 1, 所以 0 z 1f ( z) 12) 1 1 z n 1 (z)n.( z 1)(z 1 z z ) n 0 2 n 0 22(122. 解因为z1Re s f (z) lim 2 lim 1z cosz sin z ,z z2 2 2Re s f (z) lim z 2 11. cosz limz z z sin z2 2 2所以 1 dz 2 i(Re s f (z) Re s f (z) 0 .z 2 cos zz 2 z 23. 解令 ( ) 3 2 7 1, 则它在 z 平面分析, 由柯西公式有在 z 3内,f (z)c ( )dz 2 i (z) . z所以f (1 i ) 2 i (z) z1 i2 i (13 6i ) 2 ( 6 13i ) .4. 解令 z a bi , 则w z 1 1 2 1 2( a 1 bi ) 1 2(a 1) 2b .z 1 z 1 ( a 1)2 b2 ( a 1)2 b2 (a 1)2 b2故z 112(a 1),z 1 2b. Re( )( a 1)2 b2Im( )(a 1)2 b2z 1 z 1四.证明题.1.证明设在D内 f ( z) C .令 f ( z) u iv ,则 f ( z)2u2v2c2.两边分别对 x, y 求偏导数 , 得uu xvv x 0 (1)uu y vv y 0(2)因为函数在 D 内分析 , 所以 u x v y , u y v x . 代入 (2) 则上述方程组变成uu xvv x 0 . 消去 u x 得, (u 2 v 2 ) v x 0 .vu xuv x 01)若 u 2 v 20 , 则 f ( z)0 为常数 .2) 若 v x0, 由方程 (1) (2)及 C.R. 方程有 u x 0, u y 0 ,v y 0 .所以 u c 1, v c 2 . ( c 1, c 2 为常数 ).所以f ( z)c 1 ic 2 为常数 .2. 证明 f ( z) z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z1的 z 平面内变点就不行能单绕 0 或 1转一周 , 故能分出两个单值分析分支 .因为当 z 从支割线登岸一点出发, 连续改动到 z0,1 时 , 只有 z 的幅角增添. 所以f ( z)z(1 z) 的幅角共增添. 由已知所取分支在支割线登岸取正当 , 于是可以为该2分支在登岸之幅角为 0, 因此此分支在z1 的幅角为 , 故 f ( 1)2e2i2i .2《复变函数》考试一试题(二)一 . 判断题 . (20 分)1.若函数 f (z)u(x, y) iv ( x, y) 在 D 内连续,则 ux,y) 与 v x,y ) 都在 D 内连续.( (( )2. cosz与sinz 在 复 平面 内 有界 .( )3. 若 函 数 f ( z)在 z 0分析,则f ( z) 在z 0 连 续 .()4. 有界整函数必为常数 .( )5.如 z 0 是函数 f ( z) 的天性奇点,则 lim ( ) 必定不存在 .()z z 0f z6. 若 函 数 f ( z) 在 z 0 可 导 , 则f ( z) 在 z 0解 析 .( )7. 若 f ( z) 在地区 D 内分析 , 则对 D 内任一简单闭曲线 Cf ( z)dz 0 .C( )8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )9. 若 f ( z) 在 区 域D 内 解 析 , 则 | f ( z)| 也 在D内分析.( )10. 存在一个在零点分析的函数f ( z) 使 f (1 ) 0 且 f ( 1) 1 , n 1,2,... . n12n2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z __, z __2. 设 f ( z) ( x 2 2 xy) i (1 sin( x 2 y 2 ), z x iy C ,则 lim f (z) ________.z 1 i3.dz_________.( n 为自然数)|z z 0 | 1( z z )n4.幂级数nz n 的收敛半径为 __________ .n 05. 若 z 0 是 f ( z) 的 m 阶零点且 m>0,则 z 0 是 f '( z) 的_____零点 .6.函数 e z 的周期为 __________.7. 方程 2z 5 z 3 3z 8 0 在单位圆内的零点个数为 ________. 8. 设 f ( z)1 ,则 f ( z) 的孤立奇点有 _________. z 219. 函数 f (z) | z |的不分析点之集为 ________.10. Res(z 1,1) ____ .z4三 . 计算题 . (40分 )1.求函数sin(2z3)的幂级数睁开式 .2.在复平面上取上半虚轴作割线 . 试在所得的地区内取定函数z在正实轴取正实值的一个分析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z| 1)i的右半圆 .sin z dzz 2( z) 24.求2.四. 证明题 . (20 分)1. 设函数 f ( z) 在地区 D内分析,试证:f ( z) 在 D 内为常数的充要条件是 f (z) 在D内分析 .2.试用儒歇定理证明朝数基本定理 .《复变函数》考试一试题(二)参照答案一. 判断题 .1.√2.×3.√4.√5.× 6.×7.×8.√9.× 10.× .二.填空题, i ; 2. 3 (1 sin 2)i ; 3. 2 i n 1; 5. m 1.,0 n ; 4.12 16. 2k i ,( k z) .7. 0;8. i ;9. R ;10. 0.三. 计算题1. 解 sin(2 z3 ) ( 1)n (2 z3 )2n 1 ( 1)n 22n 1 z6 n 3 .n 0 (2 n 1)! n 0 (2 n 1)!2. 解令 z re i .i 2 k则 f ( z)z re2,(k 0,1).又因为在正实轴去正实值,所以k 0 .i所以 f (i)e 4 .3. 单位圆的右半圆周为 ze i ,2.2izdz2deiei22i.所以i224. 解zsin z dz 2 i (sin z)2 i cos z2)2( zz2z 2=0.2四. 证明题 .1. 证明(必需性 ) 令 f ( z)c 1 ic 2 , 则 f ( z) c 1 ic 2 . ( c 1 ,c 2 为实常数 ).令 u( x, y) c 1, v( x, y) c 2 . 则 u x v yu yv x 0 .即 u, v 知足 C.R., 且 u x , v y ,u y , v x 连续 , 故 f (z) 在 D 内分析 .(充分性 ) 令 f ( z)u iv , 则 f (z) uiv ,因为 f ( z) 与 f ( z) 在 D 内分析 , 所以u x v y , u yv x , 且 u x ( v)y v y , u y ( v x ) v x .比较等式两边得 u x v yu y v x 0 . 进而在 D 内 u, v 均为常数 , 故 f (z) 在 D 内为常数.2. 即要证“任一n 次方程a 0 zna 1zn 1a n 1z an0 ( a 0 0) 有且只有 n个根” .证明 令 f (z)a 0 z na 1z n 1a n 1z a n0 , 取 Rmax a 1a n,1 , 当a 0z在C : z R上时,有( z) a 1 R n 1a n 1 R a n ( a 1a n )R n 1 a 0 R n .f ( z) .由儒歇定理知在圆z R 内 , 方程 a 0 z n a 1z n 1 a n 1 z a n 0 与 a 0 z n 0 有相同个数的根 . 而 a0 z n 0 在z R 内有一个n 重根z 0 .所以n次方程在 z R 内有 n 个根.《复变函数》考试一试题(三)一. 判断题 . (20 分).1. cos z 与 sin z 的周期均为2k . ( )2. 若 f ( z) 在 z0处知足柯西 - 黎曼条件 , 则 f ( z) 在 z0分析 . ( )3. 若函数 f ( z) 在 z0处分析,则 f ( z) 在 z0连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n} 都收敛. ( )5.若函数 f ( z) 是地区 D 内分析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D内为常数 . ( )6. 若函数 f ( z) 在 z0分析,则 f ( z) 在 z0的某个邻域内可导 . ( )7. 假如函数 f ( z) 在D { z :| z | 1} 上分析,且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) . ()8. 若函数 f ( z) 在 z0 处分析,则它在该点的某个邻域内能够睁开为幂级数.( ) 9. 若 z0是f ( z)的 m阶零点 , 则 z0是 1/ f ( z)的 m阶极点 . ( )10. 若z0是 f (z)的可去奇点,则 Res( f ( z), z0 ) 0. ( )二. 填空题 . (20 分)1. 设 f ( z) 1 ,则 f ( z) 的定义域为 ___________.z2 12. 函数 e z的周期为 _________.3. 若 z n n 2 i (1 1) n,则lim z n__________.1 n n n4. sin 2 z cos2 z ___________.dz5.|z z0 | 1(z z ) n_________. (n为自然数)6. 幂级数nx n的收敛半径为__________.n 07. 设 f (z) 11 ,则 f ( z) 的孤立奇点有 __________.z28. 设 e z1,则 z ___ .9.若z 0 是 f (z)的极点,则 lim f (z) ___.z z 0z10.Res(en ,0)____ .z三 . 计算题 . (40 分)11.将函数f ( z)z 2e z 在圆环域 0z内展为 Laurent级数 .2.试求幂级数n! z n 的收敛半径nn n.3. 算以下积分:e zdz,此中 C 是 | z | 1.Cz 2(z29)4. 求 z92z 6 z 2 8z2 0 在| z|<1 内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在地区 D 内分析 . 证明:假如 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,而且假设存在着一个正整数 n ,以及两个正数 R 及 M ,使适当 | z|R 时| f ( z) |M | z |n ,证明 f (z) 是一个至多 n 次的多项式或一常数。

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。

复变函数期末练习题参考答案

复变函数期末练习题参考答案

复变函数期末练习题 一、填空题 1.0||10()n z z dzz z -==-⎰ .(n 为自然数)2. 22sin cos z z += _________. 3. 函数sin z 的周期为___________. 4. 设21()1f z z =+,则()f z 的孤立奇点有__________. 5. 幂级数nn nz∞=∑的收敛半径为__________.6. 若函数()f z 在整个平面上处处解析,则称它是__________.7. 若lim n n z ξ→∞=,则12 (i)nn z z z n→∞+++= ______________.8. Re (,0)zn e s z= ________,其中n 为自然数.9.sin zz的孤立奇点为________ . 10. 若0z 是()f z 的极点,则0lim ()z z f z →= 。

11. 设z i =-,则||z = ,arg z = ,z = 。

12. 设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.13. 幂级数nn nz∞=∑的收敛半径为__________ .14. 若0z 是()f z 的m 阶零点且0m >,则0z 是)('z f 的_____零点. 15. 函数ze 的周期为__________.16. 方程083235=++-z z z 在单位圆内的零点个数为________. 17. 函数||)(z z f =的不解析点之集为________.18. 41Res(,1)z z -= 。

19. 设21()1f z z =+,则()f z 的定义域为___________.20. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.21. 设1ze =-,则z = .22. 设11z i=-,则Re z = ,Im z = . 23. 函数211)(z z f +=的幂级数展开式为___ _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正确答案: B 我的答案:B得分:10.0分
4
函数 展开成z的幂级数为( )
A、
B、
C、
D、
正确答案: A 我的答案:A得分:10.0分
5
下列函数中,在z平面上解析的函数是( )
A、
B、
C、
D、
正确答案: A 我的答案:A得分:10.0分
6
下列说法错误的是( )
A、
存在共形映照将上半平面映成单位圆.
复变函数
一.单选题
1
是 的( )
A、
本质奇点
B、
可去奇点
C、
极点
D、
非孤立奇点
正确答案: C 我的答案:C得分:10.0分
2
的指数形为( )
A、
B、
C、
D、
正确答案: D 我的答案:D得分:10.0分
答案解析:
3
对于函数 ,下列说法错误的是( )
A、 是一阶极点
B、 是二阶极点
C、 是一阶极点
D、 是一阶极点
B、
存在共形映照将单位圆映成单位圆.
C、
存在共形映照将整个复平面映成单位圆.
D、
存在共形映照将右半平面映成单位圆.
正确答案: C 我的答案:C得分:10.0分
7
下列不是方程 的根的为( )
A、
B、
2
C、
D、
正确答案: B 我的答案:B得分:10.0分
答案解析:
8
将上半z平面共形映成上半W平面的分式线性变换 的系数所满足的条件为( )
A、
是实数,且
B、
是实数,且
C、
是实数,且
D、
正确答案: B 我的答案:B得分:10.0分
式 在复数域内仍成立。
我的答案:√得分:10.0分正确答案:√
2
在区域D内解析,但 在D内可能不解析
我的答案:×得分:10.0分正确答案:×
相关文档
最新文档