计数原理树形图
小学数学---计数体系思维导图
二者容斥
三者容斥
常见应用
电灯开关报数转身结合数论知识结合最值问题求几何图形面积
容斥原理
将多于n 件物品任意放到N 个抽屉中,那么必有一个抽屉中至少有2件物品将多于m ×n 件物品任意放到n 个抽屉中,那么必有一个抽屉中至少有m+1件物品
两大基本原理
求“苹果”
最不利原则
求“至少”或“保证”
构造抽屉
余数性质反推法
三大基本题型
抽屉原理
计数体系
分类相加
每一个方法都能完成任务
常用方法
枚举法
标数法(最短路线)树形图法
加法原理
分步相乘
每一个方法只能完成一步
常见应用
染色问题摸球问题
乘法原理
加乘原理
排列组合
排列
要点
方法
)
1()2)(1(+---=m n n n n p m n 有序排列
直接排列法捆绑法插空法
排除法
组合
要点
方法
几何图形计数
!
)1()2)(1(m m n m m m P P C m m m n m
n
+---=
= 无序组合
对应法插板法
概念
方法
概率定义:随机事件发生的可能性的度量相对独立:相互之间发生与否互不影响的事件对立事件:必有一个发生且不能同时发生的两个事件
定义求概率:枚举法概率乘法
概率问题。
加法原理之树形图及标数法(三).学生版
7-1-3加法原理之树形图及标数法学生版page 1 of 71.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.7-1-3.加法原理之树形图及标数法知识要点教学目标模块一、树形图法“树形图法”实际上是枚举的一种,但是它借助于图形,可以使枚举过程不仅形象直观,而且有条理又不重复遗漏,使人一目了然.【例 1】A 、B 、C 三个小朋友互相传球,先从A 开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A 手中,那么不同的传球方式共多少种?【巩固】 一只青蛙在A ,B ,C 三点之间跳动,若青蛙从A 点跳起,跳4次仍回到A 点,则这只青蛙一共有多少种不同的跳法?【例 2】 甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.问:一共有多少种可能的情况?【例 3】 如图,从起点走到终点,要求取出每个站点上的旗子,并且每个站点只允许通过一次,有 种不同的走法。
排列与组合,分步乘法计数原理,分类加法计数原理
排列:1、排列的概念:从n个不同元素中取出m (mWn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、全排列:把n个不同元素全部取出的一个排列,叫做这n个元素的一个全排列。
3、排列数的概念:从n个不同元素中取出m (mWn)个元素的所有排列的个数,叫做从 n 个不同元素中取出m个元素的排列数,用符号白;表示。
4、阶乘:自然数1到n的连乘积,用n!=1X2X3X・・・Xn表示。
规定:0!=15、排列数公式:*”n (n-1)(n-2)(n-3)…(n-m+1)='卡—活"。
组合:1、组合的概念:从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。
2、组合数的概念:从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数用符号C;表示。
b=屋=题…---掰+。
_ /3、组合数公式:1H史耀!的I一对;4、组合数性质:K - …,5、排列数与组合数的关系:量二5,排列与组合的联系与区别:从排列与组合的定义可以知道,两者都是从n个不同元素中取出m个(mWn, n, m£N) 元素,这是排列与组合的共同点。
它们的不同点是:排列是把取出的元素再按顺序排列成一列,它与元素的顺序有关系,而组合只要把元素取出来就可以,取出的元素与顺序无关.只有元素相同且顺序也相同的两个排列才是相同的排列,否则就不相同;而对于组合,只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合,如a, b与b, a是两个不同的排列,但却是同一个组合。
排列应用题的最基本的解法有:(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素,称为元素分析法,或以位置为考察对象,先满足特殊位置的要求,再考虑一般位置,称为位置分析法;(2)间接法:先不考虑附加条件,计算出总排列数,再减去不符合要求的排列数。
排列的定义的理解:①排列的定义中包含两个基本内容,一是取出元素;二是按照一定的顺序排列;②只有元素完全相同,并且元素的排列顺序也完全相同时,两个排列才是同一个排列,元素完全相同,但排列顺序不一样或元素不完全相同,排列顺序相同的排列,都不是同一个排列;③定义中规定了 mWn,如果m<n,称为选排列;如果m=n,称为全排列;④定义中“一定的顺序”,就是说排列与位置有关,在实际问题中,要由具体问题的性质和条件进行判断,这一点要特别注意;⑤可以根据排列的定义来判断一个问题是不是排列问题,只有符合排列定义的说法,才是排列问题。
计数原理与概率学生
计数原理与概率排列组合1. 定义、公式排列与排列数组合与组合数定义1.排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2.排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数。
1.组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合。
2.组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数。
公式。
排列数公式组合数公式性质(1)(2)备注排列组合常见问题及解法一、分析题意明确是分类问题还是分步问题,是排列还是组合问题5. 用0,1,2,3,4,5这六个数字组成无重复数字的五位数,分别求出下列各类数的个数:(1)奇数;(2)5的倍数;(3)比20300大的数;(4)不含数字0,且1,2不相邻的数。
{二、特殊元素,优先处理;特殊位置,优先考虑6. 五个人站成一排,求在下列条件下的不同排法种数:(1)甲必须在排头;(2)甲必须在排头,并且乙在排尾;(3)甲、乙必须在两端;(4)甲不在排头,并且乙不在排尾;(5)甲、乙不在两端;(6)甲在乙前;(7)甲在乙前,并且乙在丙前;三、捆绑与插空7. 8人排成一队(1)甲乙必须相邻(2)甲乙不相邻(3)甲乙必须相邻且与丙不相邻(4)甲乙必须相邻,丙丁必须相邻(5)甲乙不相邻,丙丁不相邻四、间接法8. 四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有多少种五、隔板法9. 10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法(六、定序问题七、10. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法如果要求甲乙丙按从左到右依次排列呢…七、排列组合综合应用11. (1)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有______种.(用数字作答)(2)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有__________种(用数字作答).(1)根据题意,先安排第一棒,再安排最后一棒,由于甲既可以传第一棒,又可以传最后一棒,因此应分类讨论,然后再逐类排出。
高中数学选修2-3 第一章 计数原理 章末检测题 附答案解析
高中数学选修2-3第一章计数原理章末检测题(满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从n 个人中选出2个,分别从事两项不同的工作,若选派方案的种数为72,则n 的值为()A .6B .8C .9D .122.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A .3×3!B .3×(3!)3C .(3!)4D .9!3.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A .85B .56C .49D .284.从集合{0,1,2}到集合{1,2,3,4}的不同映射的个数是()A .81B .64C .24D .125.(2012·重庆卷)82x x 的展开式中常数项为()A.3516B.358C.354D .1056.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()A .2B .-1C .0D .17.某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:序号123456节目如果A 、B 两个节目相邻且都不排在3号位置,那么节目单上不同的排序方式有()A .144种B .192种C .96种D .72种8.(x +1)4(x -1)5的展开式中x 4的系数为()A .-40B .10C .40D .459.已知集合A ={5},B ={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A .33B .34C .35D .3610.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为()A .320B .160C .96D .6011.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A .240种B .360种C .480种D .720种12.绍兴臭豆腐闻名全国,一外地学者来绍兴旅游,买了两串臭豆腐,每串3颗(如图).规定:每串臭豆腐只能自左向右一颗一颗地吃,且两串可以自由交替吃.请问:该学者将这两串臭豆腐吃完,不同的吃法有()A .6种B .12种C .20种D .40种二、填空题(本大题共4个小题,每小题4分,共16分.请把正确的答案填写在题中的横线上)13.84x x 展开式中含x 的整数次幂的项的系数之和为___________________.(用数字作答)14.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.15.已知(1+x )6(1-2x )5=a 0+a 1x +a 2x 2+…+a 11x 11,那么a 1+a 2+a 3+…+a 11=________.16.如图是由12个小正方形组成的3×4矩形网格,一质点沿网格线从点A 到点B 的不同路径之中,最短路径有________条.三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)有0,1,2,3,4,5共六个数字.(1)能组成多少个没有重复数字的四位偶数;(2)能组成多少个没有重复数字且为5的倍数的五位数.18.(本小题满分12分)已知3241nx x 展开式中的倒数第三项的系数为45,求:(1)含x 3的项;(2)系数最大的项.19.(本小题满分12分)(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法?20.(本小题满分12分)设a >0,若(1+ax 12)n 的展开式中含x 2项的系数等于含x 项的系数的9倍,且展开式中第3项等于135x ,那么a 等于多少?21.(本小题满分13分)带有编号1、2、3、4、5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?22.(本小题满分13分)杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)若第n行中从左到右第14与第15个数的比为23,求n的值;(3)求n阶(包括0阶)杨辉三角的所有数的和.参考答案一、选择题1.【解析】∵A2n=72,∴n=9.【答案】C2.【解析】把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.【答案】C3.【解析】分两类计算,C22C17+C12C27=49,故选C.【答案】C4.【解析】利用可重复的排列求幂法可得答案为43=64(个).【答案】B5.【解析】T r+1=C r8(x)8-r2rx=12rC r8x4-r2-r2=12rC r8x4-r,令4-r=0,则r=4,∴常数项为T5=124C48=116×70=358.【答案】B6.【解析】(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+3)4×(-2+3)4=1.【答案】D7.【解析】第一步,将C、D、E、F全排,共有A44种排法,产生5个空,第二步,将A、B捆绑有2种方法,第三步,将A、B插入除2号空位和3号空位之外的空位,有C13种,所以一共有144种方法.【答案】A8.【解析】(x+1)4(x-1)5=(x-1)5(x2+4x x+6x+4x+1),则x4的系数为C35×(-1)3+C25×6+C15×(-1)=45.【答案】D9.【解析】①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33,故选A.【答案】A10.【解析】不同的涂色方法种数为5×4×4×4=320种.【答案】A11.【解析】利用分步计数原理求解.第一步先排甲,共有A 14种不同的排法;第二步再排其他人,共有A 55种不同的排法,因此不同的演讲次序共有A 14·A 55=480(种).【答案】C12.【解析】方法一(树形图):如图所示,先吃A 的情况,共有10种,如果先吃D ,情况相同,所以不同的吃法有20种.方法二:依题意,本题属定序问题,所以有A 66A 33·A 33=20种.【答案】C 二、填空题13.【解析】∵384418841rrr r r r T Cx C xx --+==,当r =0,4,8时为含x 的整数次幂的项,所以展开式中含x 的整数次幂的项的系数之和为C 08+C 48+C 88=72.【答案】7214.【解析】满足题设的取法分三类:①四个奇数相加,其和为偶数,在5个奇数中任取4个,有C 45=5(种);②两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数中任取2个,有C 25·C 24=60(种);③四个偶数相加,其和为偶数,4个偶数的取法有1种.所以满足条件的取法共有5+60+1=66(种).【答案】6615.【解析】令x =0,得a 0=1;令x =1,得a 0+a 1+a 2+…+a 11=-64;∴a 1+a 2+…+a 11=-65.【答案】-6516.【解析】把质点沿网格线从点A 到点B 的最短路径分为七步,其中四步向右,三步向下,不同走法的区别在于哪三步向下,因此,本题的结论是:C 37=35.【答案】35三、解答题17.【解析】(1)符合要求的四位偶数可分为三类:第一类,0在个位时有A 35个;第二类,2在个位时有A 14A 24个;第三类,4在个位时有A 14A 24个.由分类加法计数原理知,共有四位偶数A 35+A 14A 24+A 14A 24=156个.(2)五位数中5的倍数可分为两类:第一类,个位上的数字是0的五位数有A 45个,第二类,个位上的数字是5的五位数有A 14A 34个.故满足条件的五位数有A 45+A 14A 34=216(个).18.【解析】(1)由题设知C n -2n =45,即C 2n =45,∴n =10.则21011130341211010r r r r r r T C x x C x ---+⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭,令11r -3012=3,得r =6,含x 3的项为T 7=C 610x 3=C 410x 3=210x 3.(2)系数最大的项为中间项,即T 6=C 510x55-3012=252x 2512.19.【解析】(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C 24种插法;二是2张同时插入,有C 14种插法,再考虑3人可交换有A 33种方法.所以,共有A 33(C 24+C 14)=60(种).(2)可先让4人坐在4个位置上,有A 44种排法,再让2个“元素”(一个是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空当”之间,有A 25种插法,所以所求的坐法为A 44·A 25=480(种).20.【解析】T r +1=C r n (ax 12)r =C r n a r x r 2,∴4422229135nnn C a C a C a x x⎧=⎪⎨=⎪⎩,∴()()()()()22123914!211352n n n n n n a n n a ⎧----=⎪⎪⎨-⎪=⎪⎩,即()()()22231081270n n a n n a ⎧--=⎪⎨-=⎪⎩,∴(n -2)(n -3)n (n -1)=25.∴3n 2-23n +30=0.解得n =53(舍去)或n =6,a2=27030=9,又a>0,∴a=3.21.【解析】(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A45种放法.(3)将其中的4个球投入一个盒子里共有C45C14种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C25A44种不同的放法.22.【解析】(1)C320=1140.(2)C13nC14n=23⇒14n-13=23,解得n=34.(3)1+2+22+…+2n=2n+1-1.。
小学奥数:计数问题之树形图法基本应用
小学奥数:计数问题之树形图法基本应用
一棵树有树根、树枝、树叶,给人一种分叉的感觉。
在数学中借助树的分叉特征构造出的树形图往往可以对数学问题中有可能出现的多种结论做出逐一的判断。
“树形图”是数学中应用最为广泛的图形之一。
在数学计数问题中,每当我们面对一些非常规的题目一筹莫展、无从下手时,枚举法往往可以发挥巨大的威力。
枚举法又叫穷举法,顾名思义,就是把所有符合题目条件的对象一一列举出来,然后根据要求从中挑出合理的。
但是,怎样在枚举的过程中既不重复也不遗漏地枚举出所有符合条件的对象来呢?
“树形图”就可以使我们的枚举过程不仅形象直观,而且有条理又不易重复或遗漏,使人一目了然。
新教材北师大版高中数学选择性必修第一册第五章计数原理 精品教学课件
类型 2 分步乘法计数原理 【例 2】 某大学食堂备有 6 种荤菜,5 种素菜,3 种汤.现要 配成一荤一素一汤的套餐,问可以配制成多少种不同的品种?
[思路点拨]
[解] 完成这件事是配制套餐,选一个荤菜,选一个素菜,选一 个汤,因此需分三步完成此事,由分步乘法计数原理可得:配制成不 同的套餐品种共有 6×5×3=90 种.
20
55
(1)从三个班中选 1 名学生任学生会主席,有多少种不同的选法?
(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选 1 名学生任
学生会生活部部长,有多少种不同的选法?
[解] (1)从每个班选 1 名学生任学生会主席,共有 3 类不同的方 案:
第 1 类,从高三(1)班中选出 1 名学生,有 50 种不同的选法; 第 2 类,从高三(2)班中选出 1 名学生,有 60 种不同的选法; 第 3 类,从高三(3)班中选出 1 名学生,有 55 种不同的选法. 根据分类加法计数原理知,从三个班中选 1 名学生任学生会主 席,共有 50+60+55=165(种)不同的选法.
(2)分三步: 第一步,选 1 名医生,有 3 种选法; 第二步,选 1 名护士,有 5 种选法; 第三步,选 1 名麻醉师,有 2 种选法. 根据分步乘法计数原理知,共有 3×5×2=30(种)选法.
当堂达标·夯基础
1.加法计数原理针对的是“分类”问题,完成一件事要分为若 干类,各类中的各种方法相互独立,用任何一类中的任何一种方法都 可以单独完成这件事.
1.分类加法计数原理 (1)定义:完成一件事,可以有 n 类办法,在第 1 类办法中有 _m__1种__方__法__,在第 2 类办法中有_m_2_种__方__法__,……在第 n 类办法中有 _m__n种__方__法__,那么,完成这件事共有 N=_m_1_+__m_2_+__…__+__m_n_种方法.(也 称“加法原理”)
计数原理-完整版课件
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,
令
r 3
-
k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.
高中数学 第1章 计数原理 1.2 排列 第1课时 排列与排列数公式学案 苏教版选修2-3-苏教版高
第1课时排列与排列数公式1.了解排列及排列数的意义.2.理解排列数公式的推导并应用.3.掌握排列数公式并会运用.1.排列的定义一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.排列数一般地,从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.3.排列数公式A m n=n(n-1)(n-2)…(n-m+1),其中n,m∈N*,且m≤n.4.全排列与n的阶乘(1)n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列,在排列数公式中,当m=n时,即有A n n=n(n-1)(n-2)·…·3·2·1.(2)正整数1到n的连乘积,叫做n的阶乘,用n!表示,即有A n n=n!.5.排列数公式的阶乘形式A m n=n!(n-m)!(n≥m),规定0!=1.1.判断(正确的打“√”,错误的打“×”)(1)a,b,c与b,a,c是同一个排列.( )(2)同一个排列中,同一个元素不能重复出现.( )(3)在一个排列中,若交换两个元素的位置,则该排列不发生变化.( )(4)从4个不同元素中任取三个元素,只要元素相同得到的就是相同的排列.( ) 答案:(1)×(2)√(3)×(4)×2.下面问题中,是排列问题的是( )A.由1,2,3,4四个数字组成无重复数字的四位数B.从60人中选11人组成足球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案:A3.从甲、乙、丙三人中选两人站成一排的所有站法为________.答案:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙4.A24=________,A33=________.答案:12 6排列的有关概念判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.【解】(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)属于排列问题,(1)(3)(4)不是排列问题.判断一个具体问题是否为排列问题的方法1.判断下列问题是否是排列问题:(1)从1到10十个自然数中任取两个数组成直角坐标平面内的点的坐标,可得多少个不同的点的坐标?(2)从10名同学中任抽两名同学去学校开座谈会,有多少种不同的抽取方法?(3)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式共有多少种?解:(1)由于取出的两数组成点的坐标与哪一个数作横坐标,哪一个数作纵坐标的顺序有关,所以这是一个排列问题.(2)因为从10名同学中抽取两人去学校开座谈会的方式不用考虑两人的顺序,所以这不是排列问题.(3)因为从一门进,从另一门出是有顺序的,所以是排列问题.综上,(1)、(3)是排列问题,(2)不是排列问题.“树形图”解决排列问题四个人A,B,C,D坐成一排照相有多少种坐法?将它们列举出来.【解】先安排A有4种坐法,安排B有3种坐法,安排C有2种坐法,安排D有1种坐法,由分步计数原理,有4×3×2×1=24种.画出树形图:由“树形图”可知,所有坐法为ABCD,ABDC,ACBD,ACDB,ADBC,ADCB,BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.1.若本例条件再增加一条“A不坐排头”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA,共18种坐法.2.若在本例条件中再增加一条“A,B不相邻”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为ACBD,ACDB,ADBC,ADCB,BCAD,BCDA,BDAC,BDCA,CADB,CBDA,DACB,DBCA共12种.利用“树形图”法解决简单排列问题的适用范围及策略(1)适用范围:“树形图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树形图写出排列.2.将语文、数学、英语书各一本分给甲、乙、丙三人,每人一本,共有多少种不同的分法?请将它们列举出来.解:按分步计数原理的步骤:第一步,分给甲,有3种分法;第二步,分给乙,有2种分法;第三步,分给丙,有1种分法. 故共有3×2×1=6种不同的分法. 列出树形图,如下:所以,按甲乙丙的顺序分的分法为:语数英,语英数,数语英,数英语,英语数,英数语.排列数公式及其应用(1)计算2A 58+7A 48A 88-A 59;(2)解方程3A 3x =2A 2x +1+6A 2x . 【解】 (1)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5=8×7×6×5×(8+7)8×7×6×5×(24-9)=1.(2)由3A 3x =2A 2x +1+6A 2x ,得3x (x -1)(x -2)=2(x +1)x +6x (x -1). 因为x ≥3,且x ∈N *,所以3(x -1)(x -2)=2(x +1)+6(x -1), 即3x 2-17x +10=0. 解得x =5,x =23(舍去).所以x =5.利用排列数公式①A m n =n (n -1)(n -2)…(n -m +1)或②A mn =n !(n -m )!解题时,要注意题目特点,当m 较小时,用公式①较方便,第②个公式常用在化简或证明问题中.3.已知3A n -18=4A n -29,则n 等于________.解析:由已知3×8!(9-n )!=4×9!(11-n )!,即4×3(11-n )(10-n )=1,因为n ≤9,所以解得n =7. 答案:71.排列定义的两个要素一是“取出元素”,二是“将元素按一定顺序排列”,这是排列的两个要素. 2.对排列数公式的说明(1)这个公式是在m ,n ∈N *,m ≤n 的情况下成立的,m >n 时不成立.(2)公式右边是m 个数的连乘积,形式较复杂,其特点是:从n 开始,依次递减1,连乘m 个.3.排列与排列数的区别排列与排列数是两个不同的概念,一个排列就是完成一件事的一种方法,不是数;排列数是指所有排列的个数,它是一个数.符号A m n 中,m ,n 均为正整数,且m ≤n ,A mn 是一个整体.10个人走进只有6把不同椅子的屋子,若每把椅子必须且只能坐一人,共有多少种不同的坐法?【解】 坐在椅子上的6个人是走进屋子的10个人中的任意6个人,若把人抽象地看成元素,将6把不同的椅子当成不同的位置,则原问题抽象为从10个元素中取6个元素占据6个不同的位置.显然是从10个元素中任取6个元素的排列问题.从而,共有A 610=151 200(种)坐法.(1)本题易出现以下错解:10个人坐6把不同的椅子,相当于从含10个元素的集合到含6个元素的集合的映射,故有610种不同的坐法.该错解是没弄清题意,题中要求每把椅子必须并且只能坐一个,是从10个人中取出6个人的一个排列问题.(2)在用排列数公式求解时需先对问题是否是排列问题做出判断.1.4×5×6×…×(n -1)×n 等于( ) A .A 4n B .A n -4n C .n !-4!D .A n -3n解析:选D.4×5×6×…×(n -1)×n 中共有n -4+1=n -3个因式,最大数为n ,最小数为4,故4×5×6×…×(n -1)×n =A n -3n .2.从1,2,3,4这四个数字中任取两个不同的数字,则可组成不同的两位数有( ) A .9个 B .12个 C .15个D .18个解析:选B.用树形图表示为:由此可知共有12个. 3.5A 35+4A 24=________.解析:原式=5×5×4×3+4×4×3=348. 答案:3484.若A m 10=10×9×…×5,则m =________. 解析:10-m +1=5,得m =6. 答案:6[A 基础达标]1.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组;②从甲、乙、丙三名同学中选出两人参加一项活动;③从a ,b ,c ,d 中选出3个字母;④从1,2,3,4,5这五个数字中取出2个数字组成一个两位数.其中是排列问题的有( )A .1个B .2个C .3个D .4个 解析:选B.由排列的定义知①④是排列问题. 2.计算A 67-A 56A 45=( )A .12B .24C .30D .36解析:选D.A 67-A 56A 45=7×6×5×4×3×2-6×5×4×3×25×4×3×2=7×6-6=36.3.若α∈N *,且α<27,则(27-α)(28-α)…(34-α)等于( ) A .A 827-α B .A 27-α34-α C .A 734-αD .A 834-α解析:选D.从27-α到34-α共有34-α-(27-α)+1=8个数.所以(27-α)(28-α)…(34-α)=A 834-α.4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( ) A .6 B .4 C .8 D .10解析:选B.列树形图如下:5.不等式A 2n -1-n <7的解集为( ) A .{n |-1<n <5} B .{1,2,3,4} C .{3,4}D .{4}解析:选C.由不等式A 2n -1-n <7, 得(n -1)(n -2)-n <7, 整理得n 2-4n -5<0, 解得-1<n <5.又因为n -1≥2且n ∈N *, 即n ≥3且n ∈N *, 所以n =3或n =4,故不等式A 2n -1-n <7的解集为{3,4}. 6.A n +32n +A n +14=________.解析:由⎩⎪⎨⎪⎧n +3≤2n ,n +1≤4,n ∈N *,得n =3,所以A n +32n +A n +14=6!+4!=744. 答案:7447.给出的下列四个关系式中,其中正确的个数是________.①A mn =(n -m )!n !;②A m -1n -1=n -1!(m -n )!;③A m n =n A m -1n -1;④n !=(n +1)!n +1.解析:①②不成立,③④成立. 答案:28.从a ,b ,c ,d ,e 五个元素中每次取出三个元素,可组成________个以b 为首的不同的排列,它们分别是____________________.解析:画出树状图如下:可知共12个,它们分别是bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed .答案:12 bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed 9.求证:12!+23!+34!+…+n -1n !<1.证明:因为n -1n !=n n !-1n !=1(n -1)!-1n !, 所以12!+23!+34!+…+n -1n !=11!-12!+12!-13!+13!-14!+…+1(n -1)!-1n ! =1-1n !<1. 所以原式得证. 10.计算下列各题. (1)A 215; (2)A 66; (3)A m -1n -1·A n -mn -m A n -1n -1;(4)1!+2·2!+3·3!+…+n ·n !. 解:(1)A 215=15×14=210.(2)A 66=6!=6×5×4×3×2×1=720.(3)原式=(n -1)![n -1-(m -1)]!·(n -m )!·1(n -1)!=(n -1)!(n -m )!·(n -m )!·1(n -1)!=1.(4)因为n ·n !=[(n +1)-1]·n! =(n +1)n !-n! =(n +1)!-n !,所以原式=(2!-1)+(3!-2!)+(4!-3!)+…+[(n +1)!-n !]=(n +1)!-1.[B 能力提升]1.若S =A 11+A 22+A 33+A 44+…+A 100100,则S 的个位数字是( ) A .8 B .5 C .3D .0解析:选C.因为当n ≥5时,A nn 的个位数字是0,故S 的个位数取决于前四个排列数.又A 11+A 22+A 33+A 44=33,故选C.2.若2<(m +1)!A m -1m -1≤42,则满足条件的m 的集合是________. 解析:原不等式可化为2<(m +1)!(m -1)!≤42.即2<m 2+m ≤42.所以⎩⎪⎨⎪⎧m 2+m -2>0m 2+m -42≤0,解不等式组得,-7≤m <-2或1<m ≤6,又m ∈N *,所以满足题意的m 的集合为{2,3,4,5,6}. 答案:{2,3,4,5,6}3.一条铁路有n 个车站,为适应客运需要,新增了m 个车站,且知m >1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解:由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,所以A 2n +m -A 2n =62,即(n +m )(n +m -1)-n (n -1)=62,所以m (2n +m -1)=62=2×31,因为m <2n +m -1,且n ≥2,m ,n ∈N *,所以⎩⎪⎨⎪⎧m =2,2n +m -1=31, 解得m =2,n =15,故原有15个车站,现有17个车站.4.(选做题)A ,B ,C ,D 四名同学重新换位(每个同学都不能坐其原来的位子),试列出所有可能的换位方法.解:假设A ,B ,C ,D 四名同学原来的位子分别为1,2,3,4号,树形图如下:换位后,原来1,2,3,4号座位上坐的同学的所有可能排法有:BADC ,BCDA ,BDAC ,CADB ,CDAB ,CDBA ,DABC ,DCAB ,DCBA .。
高中数学第一章计数原理整合学案北师大版选修23
高中数学第一章计数原理整合学案北师大版选修2-3知识建构综合应用专题一利用两个原理解排列组合问题的常用方法“两个原理”是两种重要的计数方法,它是列式计数时选择加法或者乘法的理论根据,在排列、组合应用题中,基本上全是用加法和乘法连结了排列数与组合数的计算.所以正确地使用加法和乘法原理是解决排列、组合应用题的基础.一、树形图法【例1】将A、B、C、D四名同学按一定顺序排成一行,要求自左向右,且A不排在第一,B 不排在第二,C不排在第三,D不排在第四,试写出他们四个人所有不同的排法.解:由于A不排在第一,所以第一只能排B、C、D中的一个,据此可分为三类:由此可写出所有的排法为BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA.所以他们四个人共有9种不同的排法.二、依次排序法利用分步乘法计数原理求解与排列顺序有关的问题时,可以用依次排序法.依次排序法就是把数字或字母分为前后,首先排前面的数字或字母再依次排后面的数字或字母,将最后的数字或字母排完,则排列结束,这种方法多用于数字问题.【例2】用1、2、3、4四个数字可重复地任意排成三位数,并把这些数由小到大排成一个数列{a n}.(1)写出这个数列的前11项;(2)求这个数列共有多少项;(3)若a n=341,求n.解:(1)用1、2、3、4四个数字排成三位数,前11项由小到大的顺序为111,112,113,114,121,122,123,124,131,132,133.(2)这个数列的项数就是用1、2、3、4排成的三位数的个数,每一个位置都有4种排法,根据分步乘法计数原理共有4×4×4=64项.(3)比a n=341小的数有两类,分别是:①1××2××②31×32×33×根据两个原理得N=2×4×4+3×4=44项,所以n=44+1=45.三、转化法一般情况下研究的排列问题是不重复的排列问题,但是在实际生活中常会遇到这样的问题:车辆牌照的号码、电话号码、电报号码等等,都是一些重复排列.事实上,解决这些问题借助于“两个原理”非常容易办到.【例3】(1)4个同学,分配到3个课外小组中去活动,共有几种分配方法?(2)4个同学,争夺3项竞赛的冠军,冠军获得者共有几种可能?解:(1)因为每个同学都可以分配到任何一个小组中去,有3种分法,所以课外小组的分配共有N=3×3×3×3=34=81种方法.(2)因为每一项冠军都可被任何一个同学获得,有4种可能,所以冠军获得者共有的可能总数为N=4×4×4=43=64种.从此例可以看出,在解重复排列的问题时,首先应把题意分析清楚,判断出应以哪一个为主来考虑分配,也就是说应该正确判断出哪一个应作为底数n,哪一个应作为指数m,这是解题的关键所在.专题二排列组合解题方法一、直接法(元素、位置优先考虑法)1.特殊元素分析法:即以元素为主考虑,先满足特殊元素的要求,再考虑其他元素.2.特殊位置分析法:即以位置为主考虑,先安排有特殊要求的位置,再考虑其他位置. 【例1】有两排坐位,前排11个,后排12个,现安排2人就座,规定前排中间的3个坐位不能坐,并且这2个人不左右相邻,那么不同的排法的种数是().346 C解析:法一:因为前排中间3个坐位不能坐,所以实际可坐的坐位前排8个,后排12个.(1)两人一个前排,一个后排,方法数为C18C112A22;(2)两人均在后排,共A212种,排除两相邻的情况A22A111,即A212-A22A111;(3)两人均在前排,又分两类:①两人一左一右时为C14C14A22;②两人同左或同右时为2(A24-A2213A).综上,不同的排法种数为C18C112A22+(A212-A22A111)+C14C14A22+2(A24-A22A13)=346种.法二:一共可坐的位置有20个,2个人就座方法数为A220,排除两人左右相邻的情况,可把能坐的20个坐位排成连续一行(B与C相接),任两个坐位看成一个整体,即相邻的坐法有A1 19A22,但这其中包括B、C相邻,而这种相邻在实际中是不相邻的,还应再加上2A22.∴不同的排法种数是A2 20-A119·A22+2A22=346种.答案:B绿色通道:本题综合运用了特殊元素分析法与特殊位置分析法、间接法以及分类讨论的思想方法,若考虑不周,很难做对,是难度较大的创新题..二、插空法不相邻问题常用插空法:我们可以根据题目的具体特点,首先排定某些元素,再用余下的元素进行插空,这样处理有关的排列组合问题,往往能收到111良好的解题效果.【例2】马路上有9盏路灯,为了节约用电,可以关掉其中的三盏路灯,要求关掉的路灯不能相邻,且不在马路的两头,那么不同的关灯方案共有多少种?解:本题可以看成被关掉的路灯夹在6盏亮着的灯的空档里.6盏亮着的灯排在一起,中间空档有5个,从5个空档中选出某3个,插进去三盏关掉的路灯,因此,不同的关灯方案共有C35=10种.三、捆绑法对于几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”起来,看作一个元素,与其他元素排列,然后再考虑它们“内部”的排列,这种解决排列问题的方法称为“捆绑法”.【例3】用1,2,3,4,5,6,7,8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数,共有多少个?解:先将1与2,3与4,5与6捆绑起来分别看作一个元素再与7,8排列, 所以共有A 33A 24A 22A 22A 22=576种.四、间接法间接法是求解排列组合问题的常用方法.带有限制条件的排列组合问题,常用“元素分析法”和“位置分析法”,当直接考虑对象较为复杂时,可用逆向思维,使用间接法(排除法),即先不考虑约束条件,求出所有排列、组合总数,然后减去不符合条件的排列、组合种数.【例4】从12人中选出5人去参加一项活动,按下列要求,有多少种不同选法? (1)A 、B 、C 三人至少一人入选; (2)A 、B 、C 三人至多二人入选. (1)解法一:(直接法) 可分三类,①A、B 、C 三人只选一人,有13C ·C 49=378种,②A、B 、C 三人中选择二人,则还须从其余9人中选3人,有C 23·C 39=252种,③A、B 、C 三人都入选则有C 33·C 29=36种, ∴共有378+252+36=666种. 解法二:(间接法)先从12人中任选5人,再减去A 、B 、C 三个都不选的情况,共有C 512-C 59=666种. (2)解法一(直接法)可分三类,由(1)可得共有C 59+13C ·C 49+C 23·C 39=756种. 解法二(间接法)先从12人中任选5人,再减去A 、B 、C 三人均入选的情况,即 C 512-C 29=756种.绿色通道:从以上解题过程可以看出:解决排列组合题目时,要从基本概念入手,正面分析问题、解决问题,直接法为常用方法;但从正面入手,情况较为复杂,不易解决时,可以从问题的反面入手,将其转化为一个简单的等价问题来解决,往往收到意想不到的效果.. 五、隔板法这类问题的特征是:(1)被分的元素没有区别;(2)被分的元素的个数不小于分得的组数;(3)每个小组至少分得一个元素.具备这些条件时就可以用公式:将n 个相同元素分成m 份(n≥m)时,有C 11--m n 种分配方法.【例5】某地区有9所学校,现有先进教师名额11个,要求每所学校至少有一个名额,共有多少种不同的分配方法?解:因为名额没有区别,因此,可以在11个名额所产生的10个空隙中插入8个板,即将这11个名额分成9份,有C 810种分配方法.类似情况还有:将20个相同的小球放入编号为1,2,3,4的4个盒子,每个盒子里的小球数不小于盒子的编号,共有多少种放法?可首先分别在盒子中依次放入0,1,2,3个小球,问题即转化为14个相同元素分成4份的问题,即有C 313种放法. 专题三二项式系数的求法 一、通项公式法通项公式T r+1=C rn a n-r ·b r (r=0,1,2,…,n)仅表示(a+b)n的展开式中的第r+1项. 特别地,对于(a-b)n,其通项公式是 T r+1=(-1)rC rn ·a n-r ·b r(r=0,1,2,…,n). 【例1】求(x 2+24x-4)5的展开式中含x 4的项的系数. 解:∵(x 2+24x-4)5的展开式的通项为 C r5(x 2+24x )5-r (-4)r, 而(x 2+24x)5-r 的二项展开式的通项为C kr -5x 2(5-r-k)(24x)k ,∴T r+1=C rr k C -55x 2(5-r-k)(24x)k ·(-4)r=(-4)rC r 5C kr -54k x10-2r-4k.∵0≤r≤5,0≤k≤5-r,(r,k∈N ), 令10-2r-4k=4,可得k=0,1时,r=3,1.∴含x 4的项的系数为(-4)3C 35C 0240+(-4)1C 15C 1441=-960.二、数列求和法【例2】(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中,x 2的系数为___________. 解析:由等比数列求和公式得 原式=xx x 6)1()1(-+-.所以原式中x 3的系数是(x-1)6的展开式中x 4的系数,即26C ·(-1)2=15.答案:15三、利用乘法分配律【例3】(x+2)10(x 2-1)的展开式中x 10的系数为_____________.解析:要得到含x 10的项,必须是(x+2)10的展开式中的项C 210x 822与第二个因式中的x 2作积或者是(x+2)10的展开式中的项C 010x 1020与-1作积,故x 10的系数为4C 210-1=179.答案:179四、特殊值法(赋值法)【例4】若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为().-1C.解析:令x=1,得a0+a1+a2+a3+a4=(2+3)4;令x=-1,得a0-a1+a2-a3+a4=(2-3)4,两式相乘,得(a0+a2+a4)2-(a1+a3)2=(2+3)4·(2-3)4=1.答案:A五、转化法【例5】在(x2+3x+2)5的展开式中,x的系数为().240 C解析:由于求的是x的系数,故与x2项无关,从而原题可以转化为求(3x+2)5的展开式中x 的系数.(3x)·24=240x,故选B.易求得,T5=C45答案:B科海观潮排列组合的由来排列组合问题,最早见于我国的《易经》一书.所谓“四象”就是每次取两个爻(yáo)的排列,“八卦”是每次取三个爻的排列.在汉代数学家徐岳的《数术记遗》(公元2世纪)中,也曾记载与占卜有关的“八卦算”,即把卦按不同的方法在八个方位中排列起来.它与“八个人围一张圆桌而坐,问有多少种不同坐法”这一典型的排列问题类似.11世纪时,邵雍还进一步研究了六十四卦的排列问题.排列的历史可以上溯到殷周之际的占卜术,较完整的文字记载则见于《易经》.“易”含变化的意思,书中称:“易有太极,是生两仪,两仪生四象,四象生八卦.”“两仪”可=4种不同的排列,称为“四象”,用两种基本符号阳爻和阴爻表示,每次取两个,就有22即太阳、少阴、少阳、太阴;每次取三个,共有23=8种不同的排列,称为“八卦”,即乾(qián)、兑(duì)、离(lí)、震(znèn)、巽(xùn)、坎(kǎn)、艮(gèn)、坤(kūn);若每次取六个,则可得26=64种不同的排列,叫做“六十四卦”.这是一种特殊的排列问题,即从n种事物中每次取r种,而且允许重复的排列数,答案应是n r.但是古代没有指数概念,对于很大的r来说,求出答数并非易事.唐代张遂(公元683年—公元727年)、宋代沈括(公元1031年—公元1095年)都曾计算过棋局总数,即围棋盘上所有可能的不同布局的总数,这相当于从事物(黑子、白子、空位)中每次取出361个(围棋盘的格点数)的排列数,与《易经》中的卦象数目是同一类数学问题.沈括在《梦溪笔谈》中详细地记述了计算棋局总数的理论根据和过程.古代的棋盘共有17路289个点,后来发展到19路361个点.唐朝僧人一行(俗名张遂)曾计算过一切可能摆出的棋局总数.后来,11世纪北宋时期沈括在《梦溪笔谈》中,进一步讨论了围棋布局总数问题.他利用一些排列、组合的办法对一行的计算作了分析.沈括指出,当361个棋子全用上时,棋局总数可达到10 00052的数量级.。
排列(课件)-高二数学(苏教版2019选择性必修第二册)
根据分步乘法计数原理,m个空位的填法种数为:n(n-1)(n-2)...[n-m+1]
探究新知
排列数公式
∗
= − 1 − 2 . . . − + 1 ,其中, ∈ N ,并且 ≤ .
把n个不同的元素全部取出的一个排列,叫做n个元素的一个全排列。此时,
分步乘法计数原理,不同的选法种数为 5 x 5 x 5 = 125
探究新知
二、排列数
问题1:从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上
午的活动,1名同学参加下午的活动,有多少种不同的方法?
解析:要解决该问题,可以分为两个步骤:
(1)从甲、乙、丙3名同学中选择1名参加上午的活动,
(3)排列数公式的第一个常用来计算,第二个常用来证明。
◆排列数公式的应用
探究新知
1.公式 A =n(n-1)·…·(n-m+1)适用于具体计算以及解当m较小时
m
n
的含有排列数的方程或不等式.在运用该公式时要注意它的特点:从n
起连续写出m个数的乘积.
2.公式 A = (n n!m)! 适用于与排列数有关的证明、解方程、解不等式等问题.
少种排法.
问题引入
从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,
另1名同学参加下午的活动,有几种不同的选法?
上午
甲
乙
丙
下午
相应的选法
乙
甲乙
丙
甲
甲丙
乙甲
丙
甲
乙丙
丙甲
丙乙
乙
我们把上面问题中被取出的对象叫做元素.
共有6种选法.
分类计数原理与分步计数原理课件
在实施过程中,需要密切监控方案的执行 情况,及时调整和优化方案,以确保达到 预期的效果。
混合应用的优势与挑战
优势
分类计数原理和分步计数原理的混合应用可以更好地解决复杂的问题,提高解决问题的效率和准确性 。同时,这种应用方式可以更好地满足实际需求,提高生产效率、项目管理和物流管理水平。
挑战
在混合应用中,需要充分考虑各种因素,包括分类和分步的边界、数学模型的建立、实施方案的制定 和实施与监控等。这些因素都需要综合考虑,才能达到最佳的应用效果。同时,这种应用方式也需要 较高的专业知识和技能水平,需要具备丰富的实践经验和管理能力。
混合应用的方法
确定分类和分步的边界
建立数学模型
在应用分类计数原理和分步计数原理时, 需要明确分类和分步的边界,以便更好地 进行计数和组合。
通过建立数学模型,可以更好地描述分类 计数原理和分步计数原理的混合应用,并 进行优化和控制。
制定实施方案
实施与监控
根据分类和分步的边界以及数学模型,制 定具体的实施方案,包括具体的操作步骤 、时间安排、资源分配等。
实例三
一个骰子有6个面,投掷3次骰子, 每次都有6种可能的结果,那么投掷 3次骰子有多少种不同的结果?
分类计数原理的应用
应用一
在生产过程中,如果各个工序之 间相互独立,且每道工序都有n 种不同的加工方法,那么完成整 个产品需要的方法数为n的乘积
。
应用二
在排列组合问题中,如果需要完 成多个独立任务,且每个任务都 有不同的方法数,那么完成这些 任务的方法数为各个方法数的乘
总结词
互斥事件的乘法原则
详细描述
分类计数原理主要应用于多个独立事件,其中每个事件的发生都是互斥的,即一个事件发 生后,其他事件就不会发生。在这种情况下,完成这些事件的种数就是各个事件种数的乘 积。
小学数学解题方法——图示法(3)画树状图法
方法点一画双层树状图解搭配、组合问题例1 食堂午餐食谱如下,一菜一饭可以有多少种不同的搭配?2种主食:米饭、馒头3种副食:白菜、豆腐、芹菜方法指导先从主食中任选一种,再分别与3种副食搭配,画出树状图,枚举出所有可能的组合。
由上图可知,米饭与不同副食的搭配有3种,馒头与不同副食的搭配也有3种,一饭一菜可以有6种不同的搭配。
正确解答2种主食与3种副食,一菜一饭可以有6种不同的搭配。
总结:用树状图可以直观、清晰地呈现出所有可能的情况,避免重复或遗漏。
例2 科学课上,老师把4名同学分到了一个小组开展实验,这4名同学要彼此拍一次手,表示相互鼓励。
4名同学一共要拍手多少次?方法指导分别用A、B、C、D表示这4名同学,由于自己不能与自己拍手,所以A 只能与B、C、D组合,B只能与A、C、D组合,C只能与A、B、D组合,D只能与A、B、C组合(如图一所示),将所有可能的情况列出来,形成完整的树状图(如图二所示)。
上图中共有12种排列方式,但有重复出现的,如(A,B)与(B,A)都表示A、B两人拍一次手,要去掉其中的一个。
把重复的筛选下去,则剩下(A,B)、(A,C)、(A,D)、(B,C)、(B,D)、(C,D)6种不同的组合。
正确解答4名同学一共要拍手6次。
提示:画树状图解组合问题时,不用区分先后顺序,要把重复的搭配筛选掉。
方法点二画双层树状图解可能性问题例3 小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清就随便穿了两只。
小明正好穿的是同一双袜子的可能性是多少?方法指导假设这两双袜子分别为A双和B双,则这四只袜子可分别表示为A1、A2、B1、B2。
小明穿上的第一只袜子可能是4只中的任意一只(如图一所示),在穿第二只时,则可能是剩下三只中的任意一只(如图二所示)。
两次组合的结果只有(A1,A2)或(B1,B2)组合时才能是同一双袜子。
由上面的树状图可知,两双袜子在一起的组合共有12种,其中有4种情况是同一双袜子。
小学三年级教培数学课件:树状图
例1 练习2
许老师有一个带有密码的笔记本,但是忘记密码了,他只记得密码是一个 三位数,这个三位数的百位大于1且小于5,且百位比十位大,十位比个 位大。许老师要打开笔记本,需要多少次才能保证打开?
百位 十位 个位
2
0×
1
0
0×
3
1 2
0 0
0× 1
1
0
4
2 3
0
10
1 2
答:需要10次才能保证打开笔记本。
D
C
D
G
C
G
B
A
E
D
G
B
E
G G
F D
E
A
F
G
G
答:邮递员有6种不同的行走路线。
拓展练习
一只小蜗牛从A点爬到F点,路线图如下,只能沿线向上、
向右或者向右上行走,一共有多少种不同的爬行路线?
E
F
B A
C
F
E
F
D
C
F
F
D
C
A
B
答:这只小蜗牛有4种不同的爬行路线。
3.传球系列
传球系列 小A、小B、小C三人传气球,刚开始气球在小A手里,传了3次 后,一共有多少种不同的传球过程?
同。”这个宝箱的密码可能有多少种情况?
【解析】(6,9)、(9,6)、(7,8)、 (8,7)、(7,9)、(9,7)、(9,8)、 (8,9),共8种情况。
计数原则
按
不
不
照
重
遗
一
复
漏
定
的
顺
序
笔记
一、计数原则:按顺序,不重不漏。
第一部分 介绍树状图
树状图、列表法 ppt课件
ppt课件
1
“剪刀,石头,布”这个 游戏公平吗
ppt课件
2
.
概率的计算公式:
关注结果的个数
所有等可能结果的个数
3. 有一对酷爱运动的年轻夫妇给他们12个月大 的婴儿拼排3块分别写有“20”,“08"和“北 京”的字块,如果婴儿能够排成"2008北京” 或者“北京2008".则他们就给婴儿奖励,假 设婴儿能将字块横着正排,那么这个婴儿能得 到奖励的概率是___________.
4(2011河南12.)现有两个不透明的袋子,其中 一个装有标号分别为1、2的两个小球,另—个装 有标号分别为 2、3、4的三个小球,小球除标号 外其它均相同,从两个袋子中各随机摸出 1个小 球,两球标号恰好相同的概率是 .
2、如图,袋中装有两个完全相同的球,分别 标有数字“1”和“2”.小明设计了一个游 戏:游戏者每次从袋中随机摸出一个球,并自 由转动图中的转盘(转盘被分成相等的三个 扇形).
1 2
3
游戏规则是: 如果所摸球上的数字与转盘转出的数字 之和为2,那么游戏者获胜.求游戏者获胜 的概率.
ppt课件 乙
4
21
老师结束寄语
我们都生活在一个充满概率的世 界里。当我们要迈出人生的一小 步时,就面临着复杂的选择,虽 然你有选择生存的方式和权利, 但你选择的概率永远达不到100%
ppt课件 22
有的同学有99 %想在学习上出 人头地的概率,但却选择了1% 等待的概率,这一等就是一生 的现象已经司空见惯了,你还 在等什么!?
计数原理及举例
计数原理及举例一、两个原理:1.加法原理。
一般地,如果完成一件事情需要n 类办法,在第一类办法中,有1m 种不同方法,在第二类办法中有2m 种不同方法,…,在第n 类办法中,有n m 种不同方法。
那么完成这件事共有n m m m +++ 21种方法。
上述原理称为加法原理。
2.乘法原理。
如果完成一件需要n 个步骤,做第一步有1m 种方法,做第二步有2m 种方法,…,做第n 步有n m 种方法,那么完成这件事共有n m m m ⨯⨯⨯ 21 种方法。
上述原理称为乘法原理。
让我们来看一个简单的例子。
如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路,从丁地到丙地也有3条路。
问:从甲地到丙地共有多少种不同的走法?此题中,首先可根据加法原理,把从甲到丙的走法分为两类。
① 由甲过乙至丙,② 由甲过丁至丙。
而这两类办法中,都需要两个步骤,要应用乘法原理来算,最后总的方法为: 2×4+3×3=17(种)。
下面让我们来看几个具体的题。
例1:有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法?此题要用到加法原理:要拿第n 根火柴,可以从第(n-3)、(n-2)及(n-1)根三种基础上来考虑。
如果拿第(n-3)根有a 种办法,拿第(n-2)根有b 种办法,拿第(n-1)根有c 种办法,因此拿第n 根共有(a+b+c )种办法。
因此只要知道拿1根、2根、3根的火柴数就可以得到具体的种数。
1,2,4,7,13,24,44,81,149,274,504,927,…例2:从2,3,4,5,6,10,11,12这八个数中,取出两个数组成一个最简真分数,共有多少种取法?此题显然是根据分子或分母的情况来分类,最后种数为15种。
例3:在下图中,从A 点沿实线走最短路径到B 点,有多少种走法?甲 乙 丁丙AB P35种,可从图上逐个标注数字,除左边和下边都是1外,其余每个点的种数在计算时都是一个加法原理的应用。
树形图计数——特殊的图逆向搜索法
树形图计数——特殊的图逆向搜索法树形图计数count.pas/c/cpp【问题描述】⼩k同学最近正在研究最⼩树形图问题。
所谓树形图,是指有向图的⼀棵有根的⽣成树,其中树的每⼀条边的指向恰好都是从根指向叶结点的⽅向。
现在⼩k在纸上画了⼀个图,他想让你帮忙数⼀下这个图有多少棵树形图。
【输⼊格式】第1⾏输⼊1个正整数:n,表⽰图中点的个数第2~n+1⾏每⾏输⼊n个字符,描述了这个图的邻接矩阵。
第i+1⾏第j个字符如果是0则表⽰没有从i连向j的有向边,1表⽰有⼀条从i到j的有向边。
【输出格式】输出1⾏1个整数,表⽰这个有向图的树形图个数。
【样例输⼊】count.in40100001000011000【样例输出】count.out4【数据规模和约定】对于100%的数据,n<=8统计树形图即统计⽣成树的个数以下的⽅法是⽤枚举+逆向搜索实现的具体的解释在代码中1program count;2var3 a,b:array[1..10,1..10]of longint;4 f,ff:array[1..10]of boolean;5 fa:array[1..10]of longint;6 n,i,j,k,root:longint;7 ans:qword;8 flag:boolean;9 ch:char;10function judge:boolean;//判断是否构成了⼀棵⽣成树11var12 i,x:longint;13begin14 fillchar(f,sizeof(f),false);15 f[root]:=true;//根标记为已访问16for i:=1to n do//枚举每个节点向上找17begin18 fillchar(ff,sizeof(ff),false);//ff数组标记⽤,判断是否有环19 x:=fa[i];//x为i点的⽗节点20while (fa[x]<>root)and(not f[fa[x]])and(fa[x]<>0) do//当x的⽗节点不是根,且x⽗节点未被访问过,且存在x的⽗节点21begin22if ff[x] then exit(false);//如果x节点在本次寻找中已被访问,则存在环,返回假23 ff[x]:=true;//标记x已访问24 x:=fa[x];//把x赋值为x的⽗节点编号25end;26if fa[x]=0then exit(false);//如果最终x的⽗节点为0,代表i点未能连到根节点,返回假27if (fa[x]=root)or(f[fa[x]]) then//如果x⽗节点为根节点或x⽗节点被(⼤循环中)访问过28begin29 x:=i;//x重新赋值为i30while not f[x] do31begin32 f[x]:=true;33 x:=fa[x];34end;//向上追溯并把沿途的点标记为已访问35end;36end;37 exit(true);//若能执⾏到这步,返回真38end;3940procedure dfs(x:longint);//搜索x节点,按顺序搜——1~n,枚举每个节点的⽗节点41var42 i,j:longint;43begin44if x=root then45begin46 dfs(x+1);47 exit;//如果正在搜根,则跳过48end;49if x=n+1then50begin51if judge then inc(ans);52 exit;53end;//如果已经搜完了所有的点,则判断是否符合题意,若符合,则answer加⼀54for i:=1to n do55if b[i,x]<>0then56begin57 fa[x]:=i;58 dfs(x+1);59end;//再如果是别的情况(不是根节点,且正在访问图中的节点),则枚举每个节点,看是否有i——>x的边60 //若有边,则把x的⽗节点暂定为i,搜索下⼀个点(这样也很好地处理了不同树形的情况)61 //因为回溯回来时会对该点可能的⼊边接着进⾏枚举62end;6364begin65 assign(input,'count.in');66 reset(input);67 assign(output,'count.out');68 rewrite(output);69 readln(n);70for i:=1to n do71begin72for j:=1to n do73begin74 read(ch);75if ch='1'then b[i,j]:=176else b[i,j]:=0;77end;78 readln;79end;//读⼊邻接矩阵并存储80for root:=1to n do//枚举根节点81begin82 flag:=false;83for i:=1to n do84if b[root,i]<>0then85begin86 flag:=true;87 break;88end;//如果flag为true,说明有连出去的边,即,root点可以做根,为下⾯的搜索作判断根据89 fa[root]:=root;//⽗亲数组记录此节点的⽗节点90if flag then dfs(1);//若root可做根,则搜索91end;92 writeln(ans);93 close(input);94 close(output);95end.。