2019届江西省新余市高三第二次模拟考试数学(文)试卷及解析
江西省新余市第四中学2019届高考数学全真模拟考试试题文
江西省新余市第四中学高考数学全真模拟考试试题 文(考试时间:120分钟 试卷满分:150分)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合(){}x y x A -==2log 2,{}0232<+-=x x x B ,则=B C A ( )A. ()1,∞-B. (]1,∞-C. ()+∞,2D. [)+∞,2 2.“2-=a ”是“复数()()i i a z +-+=12,()R a ∈为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.已知1.0e x =,ey 9.0=,e z 9.0log =,(e 为自然对数的底数),则( )A.z x y >>B. z y x >>C. x z y >>D. y z x >> 4.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化B. 这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 5.在等差数列{}n a 中,1851=-+a a a ,529=-a a ,则=5a ( )A. 4B. 5C. 6D. 76.已知向量与的夹角为︒602=5=,则-2在方向上的投影为( )A .23-B .23 C .2 D .25 7. 执行如图所示的框图,如果输出73=S ,则n 的值为( )A.1B. 2C. 3D. 4 8.已知⎪⎭⎫ ⎝⎛∈2,0πα,⎪⎭⎫ ⎝⎛∈2,0πβ,且αααββ2sin cos 22cos 1cos sin ++=,则=⎪⎭⎫ ⎝⎛++42tan πβα( ) A. 1- B. 1 C. 322 D. 322-9. 已知函数)(x f 是定义在]2,3[--a 上的奇函数,且在]0,3[-上单调递增,则满足0)()(>-+a m f m f 的m 的取值范围是( )A.]825(, B. ]3,2[ C. ]3,25( D.]3,3[-10. 过双曲线)0,0(12222>>=-b a b y a x 左焦点)0)(0,(>-c c F ,作圆4222a y x =+的切线,切点为E ,延长FE 交双曲线右支于点P ,若-=2,则双曲线的离心率为( ) A. 10 B.510 C. 210D. 2 11.一个空间几何体的三视图如图所示,俯视图为正三角形,则它的外接球的表面积为( ) A.π4 B.3112π C. 328π D. π16 12.已知函数()⎪⎩⎪⎨⎧>≤<-=1,110,ln x xx x x f ,若b a <<0 且满足()()b f a f =,则()()a bf b af + 的取值范围是( )A. ⎪⎭⎫ ⎝⎛+11,1eB. ⎥⎦⎤ ⎝⎛+∞-11,eC. ⎥⎦⎤ ⎝⎛+11,1e D. ⎪⎭⎫ ⎝⎛+11,0e 二、填空题:本大题共4小题,每小题5分.把答案填在答题卡的相应位置. 13. 已知函数=''+=)2(,)1(3)(2f x f x x f 则 .14.若y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≥+-≥,042,01,0y x y x y 则()1log 2-+=y x z 的最大值为__________.15. 中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗 活动的民间艺术,蕴涵了极致的数学美和丰富的传统文化信息。
江西省重点中学协作体2019届高三第二次联考数学(文)试题 含解析
20.已知椭圆 : 的离心率为 ,长轴长为8.
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图所示,椭圆 的左顶点为 ,右焦点为 ,经过点 的动直线 与椭圆 交于 , 两点,求四边形 面积 的最大值.
【答案】(Ⅰ) (Ⅱ)
【点睛】本小题主要考查三角恒等变换:辅助角公式,考查三角函数的最大值和最小值,属于中档题.
11.双曲线 : 的左焦点为 ,右顶点为 ,虚轴的一个端点为 ,若 为等腰三角形,则双曲线 的离心率是( )
A. B. C. 或 D.
【答案】D
【解析】
【分析】
根据 为等腰三角形,得到 ,在直角三角形 中,利用勾股定理列方程,由此求得离心率.
7.已知在正项等比数列 中, , ,则 的个位数字是( )
A. 2B. 4C. 6D. 8
【答案】C
【解析】
【分析】
根据已知条件求得 ,求得 的表达式,由此求得其各位数字.
【详解】依题意 ,解得 ,故 ,注意到 个位数是 , 个位数是 , 个位数是 , 的个位数是 , 的个位数是 , 的个位数是 ,故 的个位数的周期为 ,而 ,故其个位数为 ,故选C.
【点睛】本ห้องสมุดไป่ตู้题主要考查利用导数研究不等式的整式解,考查化归与转化的数学思想方法,属于中档题.
二、填空题.
13.已知向量 , ,则 ______.
【答案】-10
【解析】
【分析】
利用向量减法和数量积的运算,直接计算出结果.
【详解】依题意 .
【点睛】本小题主要考查向量的减法和数量积运算,属于基础题.
14.函数 的图像在点 处的切线斜率为______.
江西省新余市2019-2020学年高考第二次模拟数学试题含解析
江西省新余市2019-2020学年高考第二次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.盒中有6个小球,其中4个白球,2个黑球,从中任取()1,2i i =个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数()1,2i X i =,则( )A .()()1233P X P X =>=,12EX EX >B .()()1233P X P X =<=,12EX EX >C .()()1233P X P X =>=,12EX EX <D .()()1233P X P X =<=,12EX EX <【答案】C【解析】【分析】根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】13X =表示取出的为一个白球,所以()14116233C P X C ===.12X =表示取出一个黑球,()12116123C P X C ===,所以()121832333E X =⨯+⨯=. 23X =表示取出两个球,其中一黑一白,()11422268315C C P X C ===,22X =表示取出两个球为黑球,()22226115C P X C ==,24X =表示取出两个球为白球,()242266415C P X C ===,所以()2816103241515153E X =⨯+⨯+⨯=.所以()()1233P X P X =>=,12EX EX <. 故选:C【点睛】 本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.2.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( )A .3πB.2 C .12π D .24π【答案】C【解析】【分析】首先根据垂直关系可确定OP OA OB OC ===,由此可知O 为三棱锥外接球的球心,在PAB ∆中,可以算出AP 的一个表达式,在OAG ∆中,可以计算出AO 的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积.【详解】取AP 中点O ,由AB BP ⊥,AC PC ⊥可知:OP OA OB OC ===,O ∴为三棱锥P ABC -外接球球心,过P 作PH ⊥平面ABC ,交平面ABC 于H ,连接AH 交BC 于G ,连接OG ,HB ,HC ,PB PC =Q ,HB HC ∴=,AB AC ∴=,G ∴为BC 的中点由球的性质可知:OG ⊥平面ABC ,OG//PH ∴,且112OG PH ==. 设AB x =, 22PB =Q 211822AO PA x ∴==+ 1222AG BC x ==Q ,∴在OAG ∆中,222AG OG OA +=, 即222211822x x ⎛⎫+=+ ⎪ ⎪⎝⎭,解得:2x =, ∴三棱锥P ABC -的外接球的半径为:()()2221122422322x AO +=+==,∴三棱锥P ABC -外接球的表面积为2412S R ππ==.故选:C .【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.3.已知F 为抛物线24y x =的焦点,点A 在抛物线上,且5AF =,过点F 的动直线l 与抛物线,B C 交于两点,O 为坐标原点,抛物线的准线与x 轴的交点为M .给出下列四个命题:①在抛物线上满足条件的点A 仅有一个; ②若P 是抛物线准线上一动点,则PA PO +的最小值为213③无论过点F 的直线l 在什么位置,总有OMB OMC ∠=∠;④若点C 在抛物线准线上的射影为D ,则三点B O D 、、在同一条直线上.其中所有正确命题的个数为( )A .1B .2C .3D .4 【答案】C【解析】【分析】①:由抛物线的定义可知15AF a =+=,从而可求A 的坐标;②:做A 关于准线1x =-的对称点为'A ,通过分析可知当',,A P O 三点共线时PA PO +取最小值,由两点间的距离公式,可求此时最小值'A O ;③:设出直线l 方程,联立直线与抛物线方程,结合韦达定理,可知焦点坐标的关系,进而可求0MB MC k k +=,从而可判断出,OMB OMC ∠∠的关系;④:计算直线,OD OB 的斜率之差,可得两直线斜率相等,进而可判断三点B O D 、、在同一条直线上.【详解】解:对于①,设(),A a b ,由抛物线的方程得()1,0F ,则15AF a =+=, 故4a =,所以()4,4A 或()4,4-,所以满足条件的点A 有二个,故①不正确;对于②,不妨设()4,4A ,则A 关于准线1x =-的对称点为()'6,4A -,故''PA OP PA OP A O +=+≥==,当且仅当',,A P O 三点共线时等号成立,故②正确;对于③,由题意知,()1,0M - ,且l 的斜率不为0,则设l 方程为:()10x my m =+≠,设l 与抛物线的交点坐标为()()1122,,,B x y C x y ,联立直线与抛物线的方程为,214x my y x=+⎧⎨=⎩ ,整理得2440y my --=,则12124,4y y m y y +==-,所以 21242x x m +=+,()()221212114411x x my my m m =++=-++= 则()()()()1221121212121212121122211111MB MC y x y x y y y y my y k k x x x x x x x x ++++++=+==+++++++ 2242404211m m m ⨯-⨯==+++.故,MB MC 的倾斜角互补,所以OMB OMC ∠=∠,故③正确. 对于④,由题意知()21,D y - ,由③知,12124,4y y m y y +==- 则12114,OB OD y k k y x y ===- ,由12211440OB OD y y k k y y y +-=+==, 知OB OD k k =,即三点B O D 、、在同一条直线上,故④正确.故选:C.本题考查了抛物线的定义,考查了直线与抛物线的位置关系,考查了抛物线的性质,考查了直线方程,考查了两点的斜率公式.本题的难点在于第二个命题,结合初中的“饮马问题”分析出何时取最小值. 4.已知等差数列{a n },则“a 2>a 1”是“数列{a n }为单调递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{a n }中,若a 2>a 1,则d >0,即数列{a n }为单调递增数列,若数列{a n }为单调递增数列,则a 2>a 1,成立,即“a 2>a 1”是“数列{a n }为单调递增数列”充分必要条件,故选C .考点:必要条件、充分条件与充要条件的判断.5.如图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是( )A .从2000年至2016年,该地区环境基础设施投资额逐年增加;B .2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C .2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D .为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5y t =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.【答案】D【解析】【分析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.对于A 选项,由图像可知,投资额逐年增加是正确的.对于B 选项,20002004-投资总额为1119253537127++++=亿元,小于2012年的148亿元,故描述正确.2004年的投资额为37亿,翻两翻得到374148⨯=,故描述正确.对于D 选项,令10t =代入回归直线方程得9917.510274+⨯=亿元,故D 选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.6.如图,点E 是正方体ABCD-A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF//BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值【答案】C【解析】【分析】采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A 错误由EF ⊂平面AEC ,1BC //1AD而1AD 与平面AEC 相交,故可知1BC 与平面AEC 相交,所以不存在EF//BC 1B 错误,如图,作11B M BD ⊥由11,,AC BD AC BB BD BB B ⊥⊥⋂=又1,BD BB ⊂平面11BB D D ,所以AC ⊥平面11BB D D又1B M ⊂平面11BB D D ,所以1B M AC ⊥由OE //1BD ,所以1B M OE ⊥AC OE O =I ,,AC OE ⊂平面AEC所以1B M ⊥平面AEC ,又AE ⊂平面AEC所以1B M AE ⊥,所以存在C 正确四面体EMAC 的体积为13M AEC AEC V S h -∆=⋅⋅ 其中h 为点M 到平面AEC 的距离,由OE //1BD ,OE ⊂平面AEC ,1BD ⊄平面AEC所以1BD //平面AEC ,则点M 到平面AEC 的距离即点B 到平面AEC 的距离,所以h 为定值,故四面体EMAC 的体积为定值D 错误由AC //11A C ,11A C ⊂平面11A C B ,AC ⊄平面11A C B所以AC //平面11A C B ,则点F 到平面11A C B 的距离1h 即为点A 到平面11A C B 的距离,所以1h 为定值所以四面体FA 1C 1B 的体积1111113F A C B A C B V S h -∆=⋅⋅为定值 故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.7.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,离心率为2,1F 、2F 分别为双曲线C 的左、右焦点,点P 在双曲线C 上运动,若12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .()B .()C .()D .()【答案】A【解析】【分析】 由已知先确定出双曲线方程为2213y x -=,再分别找到12F PF △为直角三角形的两种情况,最后再结合122PF PF -=即可解决.【详解】由已知可得22a =,2c a=,所以1,2,a c b ==== 2213y x -=,不妨设点P 在双曲线C 右支上运动,则122PF PF -=,当12PF PF ⊥时, 此时221216PF PF +==122()2PF PF -+12PF PF ,所以126PF PF =,122()PF PF +=22122PF PF ++1228PF PF =,所以12PF PF += 当2PF x ⊥轴时,221216PF PF =+,所以121682PF PF =+=,又12F PF △为锐角三角形,所以12PF PF +()∈.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到12F PF △为锐角三角形的临界情况,即12F PF △为直角三角形,是一道中档题.8.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3B .2C .32D .1【答案】A【解析】【分析】根据题意,求导后结合基本不等式,即可求出切线斜率3k ≥,即可得出答案.【详解】 解:由于312ln 3y x x =+,根据导数的几何意义得:()()2221130k f x x x x x x x '==+=++≥=>, 即切线斜率3k ≥,当且仅当1x =等号成立, 所以312ln 3y x x =+上任意一点处的切线斜率的最小值为3. 故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.9.已知复数21ai bi i -=-,其中a ,b R ∈,i 是虚数单位,则a bi +=( )A .12i -+B .1C .5D 【答案】D【解析】 试题分析:由21ai bi i-=-,得()21,1,2ai i bi b i a b -=-=+∴=-=,则12,12a bi i a bi i +=-+∴+=-+== D.考点:1、复数的运算;2、复数的模. 10.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A .40B .60C .80D .100 【答案】D【解析】【分析】由正态分布的性质,根据题意,得到(110)(60)P X P X ≥=≤,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X 近似服从正态分布()285,N σ,则正态分布曲线的对称轴为85x =,根据正态分布曲线的对称性,求得(110)(60)0.50.30.2P X P X ≥=≤=-=,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为5000.2100⨯=人,故选:D .【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.11.已知直线x y t +=与圆()2222x y t t t R +=-∈有公共点,则()4t t -的最大值为( )A .4B .289C .329D .327 【答案】C【解析】【分析】根据()2222x y t t t R +=-∈表示圆和直线x y t +=与圆()2222x y t t t R +=-∈有公共点,得到403t ≤≤,再利用二次函数的性质求解. 【详解】因为()2222x y t t t R +=-∈表示圆,所以220->t t ,解得02t <<,因为直线x y t +=与圆()2222x y t t t R +=-∈有公共点,所以圆心到直线的距离d r ≤,即≤ 解得403t ≤≤, 此时403t ≤≤, 因为()()()224424=-=-+=--+f t t t t t t ,在40,3⎡⎤⎢⎥⎣⎦递增, 所以()4t t -的最大值34329⎛⎫=⎪⎝⎭f . 故选:C【点睛】 本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.12. “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是( )A .165B .325C .10D .185【答案】D【解析】【分析】直接根据几何概型公式计算得到答案.【详解】 根据几何概型:809200S p ==,故185S =. 故选:D .【点睛】本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.二、填空题:本题共4小题,每小题5分,共20分。
江西省新余市2019-2019学年度高三年级第二次模拟考试文综试题精品文档14页
江西省新余市2019-2019学年度高三年级第二次模拟考试文科综合能力试题本试卷分第I 卷和第II 卷两部分。
满分300分。
考试用时150分钟。
答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号填写在试卷和答题纸规定的位置。
考试结束后,将本试卷和答题纸一并交回。
第I 卷(必做,共140分)本卷共35小题。
每小题4分,共140分。
在每小题列出的四个选项中,只有一项是符合题目要求的。
中国南海因其位于我国大陆的南方,亦称南中国海。
散布着大小200多个岛屿礁滩,统称为南海诸岛。
2019年7月24日,我国最南端的地级市——三沙市(约16°50′N ,ll2°20′E )在永兴岛正式成立,下辖西沙群岛、南沙群岛、中沙群岛的岛礁及其海域。
下图为南海部分海域等深线示意图,读图回答1~2题。
1.当北印度洋的表层海水大规模向东流时,C 国主要盛行的风向及其地带性植被分别是( )A .西南风 热带季雨林B .东北风 热带雨林C .东北风 热带季雨林D .西南风 亚热带常绿阔叶林2.三沙市管辖区域的珊瑚礁地貌景观非常典型,其形成的主要地质作用是( )A .海浪侵蚀B .流水堆积C .生物堆积D .生物风化 下图是我国不同产业地理集中程度及其变化趋势统计图(基尼系数数值越高,表明地理集中程度或专业化程度越高),读图回答3~4题。
3.20世纪80年代以来,分布从较为分散到显著集中的产业是( )A.电子制造业B.服装制造业C.食品加工业D.黑色金属冶炼业4.该种产业从较为分散到集中分布,直接引起了我国( )A.北煤南运B.南水北调C.西气东输D.人口迁移5.下图为“不同距离条件下高速铁路与航空运输两种运输方式的竞争关系模型图”, 由图可知,两种运输方式竞争最激烈的运距是A .0—600kmB .900—1100kmC .1200—1600kmD .大于1800km 长江中游城市集群是指以武汉城市群、长株潭城市群和环鄱阳湖城市群为核心,外加湘鄂赣三省沿长江、环洞庭湖、环鄱阳湖的若干城市形成的城市集群。
2019届江西省新余市高三第二次模拟考试数学(文)试题(解析版)
2019届江西省新余市高三第二次模拟考试数学(文)试题一、单选题1.已知全集{1,3,5,7}U =,集合{1,3}A =,}5,3{=B ,则()()U UA B ⋂=痧( )A .{3}B .{7}C .{3,7}D .{1,3,5}【答案】B【解析】根据集合补集及交集的定义即可求解。
【详解】由题可得}{5,7U A =ð ,}{1,7U B =ð,所以()()}{7U UA B ⋂=痧,故答案选B 。
【点睛】本题主要考查集合间的运算,属于基础题。
2.在复平面内,复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】通过复数的运算求出复数的代数形式,然后再进行判断即可. 【详解】 由题意得,所以复数在复平面内对应的点为,在第四象限.故选D . 【点睛】解题的关键是将复数化为代数形式,然后再根据复数的几何意义进行判断,属于基础题.3.已知(1,1)a =,),2(m b =,()a a b ⊥-,则||b =( )A .2 BC .1D .0【答案】A【解析】根据向量垂直的定义即可得到关于m 的方程,解方程即可得到答案。
)1,1(=→a ,),2(m b =→,∴(1,1)a b m →→-=--,又()a a b →→→⊥-,∴()0a a b →→→⋅-=,即110m -+-=,解得0m =,∴(2,0)b →=,2b →==,故答案选A 。
【点睛】本题主要考查向量坐标的表示,向量垂直的关系以及向量模的公式,属于基础题。
4.执行如图所示的程序框图,若输入a 的值为,则输出的S 的值是( )A .B .C .D .【答案】C【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟程序的运行,可得 a =﹣1,S =0,k =1满足条件k <5,执行循环体,S =﹣1,a =1,k =2 满足条件k <5,执行循环体,S,a =3,k =3满足条件k <5,执行循环体,S ,a =5,k =4满足条件k <5,执行循环体,S ,a =7,k =5此时,不满足条件k <5,退出循环,输出S 的值为. 故选:C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.5.如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷800个点,其中落入黑色部分的有453个点,据此可估计黑色部分的面积约为( )A .11B .10C .9D .8【答案】C【解析】计算正方形二维码的面积,利用面积比等于对应的点数比,即可求出黑色部分的面积. 【详解】因为边长为4的正方形二维码面积为,设图中黑色部分的面积为,则,所以.故选C 【点睛】本题主要考查模拟方法估计概率,熟记模拟估计方法即可,属于基础题型.6.设0.32a =,23.0=b ,()2log 0.3m c m =+(1)m >,则a ,b ,c 的大小关系是( ) A .c b a << B .c a b <<C .c b a <<D .a c b <<【答案】B【解析】利用指数函数与对数函数的单调性,进行大小比较,从而得出相应答案。
江西省新余市2019-2020学年高考数学仿真第二次备考试题含解析
江西省新余市2019-2020学年高考数学仿真第二次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=u u u r u u u r( ) A .134-B .54C .5D .154【答案】B 【解析】 【分析】据题意以菱形对角线交点O 为坐标原点建立平面直角坐标系,用坐标表示出,DE DF u u u r u u u r,再根据坐标形式下向量的数量积运算计算出结果. 【详解】设AC 与BD 交于点O ,以O 为原点,BD u u u r的方向为x 轴,CA u u u r 的方向为y 轴,建立直角坐标系,则1,12E ⎛⎫- ⎪⎝⎭,1,12F ⎛⎫-- ⎪⎝⎭,(1,0)D ,3,12DE ⎛⎫=- ⎪⎝⎭u u u r ,3,12DF ⎛⎫=-- ⎪⎝⎭u u u r ,所以95144DE DF ⋅=-=u u u r u u u r .故选:B. 【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解. 2.已知随机变量X 的分布列是X12 3P1213a则()2E X a +=( ) A .53B .73C .72D .236【答案】C 【解析】 【分析】利用分布列求出a ,求出期望()E X ,再利用期望的性质可求得结果. 【详解】由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=,因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭. 故选:C. 【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.3.已知命题:0p x ∀>,ln(1)0x +>;命题:q 若a b >,则22a b >,下列命题为真命题的是( ) A .p q ∧ B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B 【解析】解:命题p :∀x >0,ln (x+1)>0,则命题p 为真命题,则¬p 为假命题; 取a=﹣1,b=﹣2,a >b ,但a 2<b 2,则命题q 是假命题,则¬q 是真命题. ∴p ∧q 是假命题,p ∧¬q 是真命题,¬p ∧q 是假命题,¬p ∧¬q 是假命题. 故选B .4.已知3ln 3,log ,log a b e c e π===,则下列关系正确的是( ) A .c b a << B .a b c <<C .b a c <<D .b c a <<【答案】A 【解析】 【分析】首先判断,,a b c 和1的大小关系,再由换底公式和对数函数ln y x =的单调性判断,b c 的大小即可. 【详解】因为ln3ln 1a e =>>,311log ,log ln 3ln b e c e ππ====,1ln3ln π<<,所以1c b <<,综上可得c b a <<.故选:A【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题. 5.已知集合{}10,1,0,12x A x B x -⎧⎫=<=-⎨⎬+⎩⎭,则A B I 等于( )A .{}11x x -<< B .{}1,0,1- C .{}1,0- D .{}0,1【答案】C 【解析】 【分析】先化简集合A ,再与集合B 求交集. 【详解】 因为{}10212x A xx x x -⎧⎫=<=-<<⎨⎬+⎩⎭,{}1,0,1B =-,所以{}1,0A B ⋂=-. 故选:C 【点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.6.函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭(0>ω),当[]0,x π∈时,()f x 的值域为⎡⎤⎢⎥⎣⎦,则ω的范围为( ) A .53,62⎡⎤⎢⎥⎣⎦B .55,63⎡⎤⎢⎥⎣⎦C .14,23⎡⎤⎢⎥⎣⎦D .50,3⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】首先由[]0,x π∈,可得3x πω-的范围,结合函数()f x 的值域和正弦函数的图像,可求的关于实数ω的不等式,解不等式即可求得范围. 【详解】因为[]0,x π∈,所以,333x πππωωπ⎡⎤-∈--⎢⎥⎣⎦,若值域为2⎡⎤-⎢⎥⎣⎦, 所以只需4233πππωπ≤-≤,∴5563ω≤≤. 故选:B【点睛】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.7.已知12,F F 分别为双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线C 的左、右两支分别交于,A B 两点,若22240,5BF AB BF AF ⋅==uu u r u u u u r ,则双曲线C 的离心率为( ) A .13 B .4C .2D .3【答案】A 【解析】 【分析】由已知得2AB BF ⊥,24BF x =,由已知比值得25,3AF x AB x ==,再利用双曲线的定义可用a 表示出1AF ,2AF ,用勾股定理得出,a c 的等式,从而得离心率. 【详解】2220,0,0,90AB BF AB BF ABF ⋅=≠≠∴∠=︒u u u r u u u u r u u u r u u u u r Q .又2245BF AF =Q ,∴可令24BF x =,则25,3AF x AB x ==.设1AF t =,得21122AF AF BF BF a -=-=,即()5342x t x t x a -=+-=,解得3,t a x a ==,∴24BF a =,116BF AB AF a =+=, 由2221212BF BF F F +=得222(6)(4)(2)a a c +=,2213c a =,13c a =,∴该双曲线的离心率13ce a==. 故选:A.【点睛】本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点,A B 到焦点的距离都用a 表示出来,从而再由勾股定理建立,a c 的关系.8.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P 表示π的近似值),若输入10n =,则输出的结果是( )A .11114(1)35717P =-+-+⋅⋅⋅+ B .11114(1)35719P =-+-+⋅⋅⋅- C .11114(1)35721P =-+-+⋅⋅⋅+D .11114(1)35721P =-+-+⋅⋅⋅-【答案】B 【解析】 【分析】执行给定的程序框图,输入10n =,逐次循环,找到计算的规律,即可求解. 【详解】由题意,执行给定的程序框图,输入10n =,可得: 第1次循环:1,2S i ==;第2次循环:11,33S i =-=;第3次循环:111,435S i =-+=;L L第10次循环:11111,1135719S i =-+-+-=L , 此时满足判定条件,输出结果111144(1)35719P S ==-+-+⋅⋅⋅-,故选:B. 【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.2021年部分省市将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A .18B .14 C .16D .12【答案】B 【解析】 【分析】 【详解】甲同学所有的选择方案共有122412C C =种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有133C =种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率31124P ==,故选B . 10.若集合M ={1,3},N ={1,3,5},则满足M ∪X =N 的集合X 的个数为( ) A .1 B .2 C .3 D .4【答案】D 【解析】X 可以是{}{}{}{}5,1,5,3,5,1,3,5共4个,选D.11.设复数z 满足2z iz i -=+(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】由复数的除法运算可整理得到z ,由此得到对应的点的坐标,从而确定所处象限. 【详解】由2z iz i -=+得:()()()()2121313111222i i i i z i i i i ++++====+--+, z ∴对应的点的坐标为13,22⎛⎫⎪⎝⎭,位于第一象限.故选:A . 【点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.12.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )A .()()⋅f x g x 是偶函数B .()()f x g x ⋅是奇函数C .()()f x g x ⋅是奇函数D .()()f x g x ⋅是奇函数【答案】C 【解析】 【分析】根据函数奇偶性的性质即可得到结论. 【详解】解:()f x Q 是奇函数,()g x 是偶函数,()()f x f x ∴-=-,()()g x g x -=,()()()()f x g x f x g x --=-g g ,故函数是奇函数,故A 错误, |()|()|()|()f x g x f x g x --=g g 为偶函数,故B 错误, ()|()|()|()|f x g x f x g x --=-g g 是奇函数,故C 正确. |()()||()()|f x g x f x g x --=g g 为偶函数,故D 错误,故选:C . 【点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键. 二、填空题:本题共4小题,每小题5分,共20分。
江西省新余市2019—2019学年度高三第二次模拟考试卷
2011年新余市高三“二模”考试文科综合能力测试注意事项:1、本试卷第Ⅰ(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3、回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4、考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷本卷共35个小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
24.在中国古代最令妖邪胆战心惊并且法力无边的四大神兽就是青龙、白虎、朱雀、玄武四兽了,故有“青龙、白虎、朱雀、玄武,天之四灵,以正四方,王者制宫阙殿阁取法焉。
”就中国房屋的一般座向而言,其中“玄武”应该置于“宫阙殿阁”的()A.前方B.后方C.左方D.右方25.一古代算数例题:“今有大夫、不更、簪褭、上造、公士凡五人。
共猎得五鹿,欲以爵次分之,问各得几何?”书中记载正确的答案是:他们依次分别得到1又2/3、1又1/3、1、2/3、1/3只鹿。
请问,这题算数反映了古代中国社会的哪项特色()A.年龄在鹿肉分配上的重要性B.古代中国人特殊的数学观念C.个人的地位由猎鹿活动决定D.不同爵位者的分配权利差异26.“宋朝开历史之先河,采取‘不立田制’、‘不抑兼并’的土地政策。
”以致“到了宋真宗时期变成了‘百姓康乐,户口蕃庶,田野日辟’的景象”。
对此理解最恰当的是()A.土地兼并这一千百年来的问题在宋代得到基本解决B.宋代统治者通过不抑土地兼并政策解决了唐末五代农业的不景气状况C.土地兼并顺应了宋代社会发展要求,促进了宋代的长治久安D.土地兼并在一定时期内起到了促进经济发展的作用27.儒家“尊王”“忠君”思想的精神实质,从来都不是让人们无条件地服从君权,或无止境地强化王室权威,而是敏感于地方势力的膨胀,以及诸侯兴起、地方权力过大破坏天下安宁的教训。
江西省新余市2019-2020学年高考数学模拟试题含解析
江西省新余市2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数2|sin |2()61x f x x=-+的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】用偶函数的图象关于y 轴对称排除C ,用()0f π<排除B ,用()42f π>排除D .故只能选A .【详解】 因为22|sin()||sin |22()66()1()1x x f x f x x x--===+-+ ,所以函数()f x 为偶函数,图象关于y 轴对称,故可以排除C ;因为2|sin |242()61111f πππππ==++11101122<-=-=+,故排除B , 因为2|sin |22()2()621()2f ππππ==+426164ππ+42616444>-+46662425=>-=-=由图象知,排除D . 故选:A 【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.2.设等差数列{}n a 的前n 项和为n S ,若495,81a S ==,则10a =( ) A .23 B .25C .28D .29【答案】D【解析】 【分析】由981S =可求59a =,再求公差,再求解即可. 【详解】解:{}n a Q 是等差数列95981S a ∴==59a ∴=,又45a =Q , ∴公差为4d =,410629a a d ∴=+=,故选:D 【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题. 3.设01p <<,随机变量ξ的分布列是则当p 在(,)34内增大时,( ) A .()E ξ减小,()D ξ减小 B .()E ξ减小,()D ξ增大 C .()E ξ增大,()D ξ减小 D .()E ξ增大,()D ξ增大【答案】C 【解析】 【分析】1121()(1)(1)3333E p p p ξ=-⨯-+=-,22()()()D E E ξξξ=-,判断其在23(,)34内的单调性即可.【详解】解:根据题意1121()(1)(1)3333E p p p ξ=-⨯-+=-在23,34p ⎛⎫∈ ⎪⎝⎭内递增, 22111()(1)(1)333E p p ξ=-⨯-+=222221121442411()()()(1)()3333999923D E E p p p p p p ξξξ⎛⎫=-=-+--=-++=-- ⎪+⎝⎭,是以12p =为对称轴,开口向下的抛物线,所以在23,34⎛⎫⎪⎝⎭上单调递减,故选:C . 【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题. 4.已知命题p :,x R ∃∈使1sin 2x x <成立. 则p ⌝为( ) A .,x R ∀∈1sin 2x x ≥均成立 B .,x R ∀∈1sin 2x x <均成立 C .,x R ∃∈使1sin 2x x ≥成立D .,x R ∃∈使1sin 2x x =成立【答案】A 【解析】试题分析:原命题为特称命题,故其否定为全称命题,即:p ⌝,sin 2x x x ∀∈≥R . 考点:全称命题.5.如图,已知平面αβ⊥,l αβ⋂=,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D --的余弦值的最小值是( )A 5B .3C .12D .1【答案】B 【解析】 【分析】PBA ∠为所求的二面角的平面角,由DAP CPB ~n n 得出PAPB,求出P 在α内的轨迹,根据轨迹的特点求出PBA ∠的最大值对应的余弦值 【详解】DA l ⊥Q ,αβ⊥,l αβ⋂=,AD β⊂ AD α∴⊥,同理BC α⊥DPA ∴∠为直线PD 与平面α所成的角,CPB ∠为直线PC 与平面α所成的角DPA CPB ∴∠=∠,又90DAP CBP ∠=∠=︒DAP CPB ∴~n n ,12PA DA PB BC == 在平面α内,以AB 为x 轴,以AB 的中垂线为y 轴建立平面直角坐标系则()()3030A B -,,,,设()()0P x y y >, ()()2222233x y x y ∴++=-+()22516x y ++=P ∴在α内的轨迹为()50M -,为圆心,以4为半径的上半圆 Q 平面PBC ⋂平面BC β=,PB BC ⊥,AB BC ⊥PBA ∴∠为二面角P BC D --的平面角,∴当PB 与圆相切时,PBA ∠最大,cos PBA ∠取得最小值此时4843PM MB MP PB PB ==⊥=,,,433cos PB PBA MB ∠===故选B 【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.6.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩………,则32y x --的取值范围为( )A .3,42⎡⎤⎢⎥⎣⎦B .(1,2]C .(,0][2,)-∞+∞UD .(,1)[2,)-∞⋃+∞【答案】C 【解析】 【分析】 设32y k x -=-,则k 的几何意义为点(,)x y 到点(2,3)的斜率,利用数形结合即可得到结论.解:设32y k x -=-,则k 的几何意义为点(,)P x y 到点(2,3)D 的斜率, 作出不等式组对应的平面区域如图:由图可知当过点D 的直线平行于x 轴时,此时302y k x -==-成立; 32y k x -=-取所有负值都成立; 当过点A 时,32y k x -=-取正值中的最小值,1(1,1)0x A x y =⎧⇒⎨-=⎩,此时3132212y k x --===--; 故32y x --的取值范围为(,0][2,)-∞+∞U ; 故选:C. 【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.7.已知ABC ∆中,角A 、B 所对的边分别是a ,b ,则“a b >”是“A B >”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充分必要条件【答案】D 【解析】 【分析】由大边对大角定理结合充分条件和必要条件的定义判断即可. 【详解】ABC ∆中,角A 、B 所对的边分别是a 、b ,由大边对大角定理知“a b >”⇒“A B >”,“A B >”⇒“a b >”.因此,“a b >” 是“A B >”的充分必要条件.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题. 8.若函数()x f x e =的图象上两点M ,N 关于直线y x =的对称点在()2g x ax =-的图象上,则a 的取值范围是( ) A .,2e ⎛⎫-∞ ⎪⎝⎭B .(,)e -∞C .0,2e ⎛⎫ ⎪⎝⎭D .(0,)e【答案】D 【解析】 【分析】由题可知,可转化为曲线()2g x ax =-与ln y x =有两个公共点,可转化为方程2ln ax x -=有两解,构造函数2ln ()xh x x+=,利用导数研究函数单调性,分析即得解 【详解】函数()xf x e =的图象上两点M ,N 关于直线y x =的对称点在ln y x =上,即曲线()2g x ax =-与ln y x =有两个公共点, 即方程2ln ax x -=有两解,即2ln xa x+=有两解, 令2ln ()xh x x +=,则21ln ()xh x x --'=,则当10x e<<时,()0h x '>;当1x e >时,()0h x '<,故1x e =时()h x 取得极大值1h e e ⎛⎫= ⎪⎝⎭,也即为最大值, 当0x →时,()h x →-∞;当x →+∞时,()0h x →, 所以0a e <<满足条件. 故选:D 【点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.9.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x 的值为A .3B .3.4C .3.8D .4【答案】D 【解析】 【分析】根据三视图即可求得几何体表面积,即可解得未知数. 【详解】由图可知,该几何体是由一个长宽高分别为,3,1x 和 一个底面半径为12,高为5.4x -的圆柱组合而成. 该几何体的表面积为()()233 5.442.2x x x π+++⋅-=,解得4x =, 故选:D. 【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.10.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A .1,0a b <-< B .1,0a b <-> C .1,0a b >-< D .1,0a b >->【答案】C 【解析】 【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得. 【详解】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x =+-',当10a +…,即1a -…时,0y '…,()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a >-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点,如图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,310(116,)b a a >>-+∴>-. 故选C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.11.若复数z 满足()134i z i +=+,则z 对应的点位于复平面的( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】利用复数模的计算、复数的除法化简复数z ,再根据复数的几何意义,即可得答案; 【详解】Q ()55(1)5513451222i i z i z i i -+=+=⇒===-+, ∴z 对应的点55(,)22-,∴z 对应的点位于复平面的第四象限.故选:D. 【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.12.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为ˆy=0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重比为58.79kg 【答案】D 【解析】根据y 与x 的线性回归方程为 y=0.85x ﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A 正确; 回归直线过样本点的中心(,x y ),B 正确;该大学某女生身高增加 1cm ,预测其体重约增加 0.85kg ,C 正确;该大学某女生身高为 170cm ,预测其体重约为0.85×170﹣85.71=58.79kg ,D 错误. 故选D .二、填空题:本题共4小题,每小题5分,共20分。
江西省新余市2019-2020学年高考数学二模考试卷含解析
江西省新余市2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量()0,2=r a,()b x =r ,且a r 与b r 的夹角为3π,则x=( )A .-2B .2C .1D .-1【答案】B 【解析】 【分析】由题意cos 3a b a bπ⋅=r rr r ,代入解方程即可得解. 【详解】由题意1cos 32a b a b π⋅===r r r r ,所以0x >,且2x =2x =.故选:B. 【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.2.羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从3名男生1A ,2A ,3A 和3名女生1B ,2B ,3B 中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则1A 和1B 两人组成一队参加比赛的概率为( ) A .19B .29C .13D .49【答案】B 【解析】 【分析】根据组合知识,计算出选出的4人分成两队混合双打的总数为2211332222C C C C A ,然后计算1A 和1B 分在一组的数目为1122C C ,最后简单计算,可得结果. 【详解】 由题可知:分别从3名男生、3名女生中选2人 :2233C C将选中2名女生平均分为两组:112122C CA将选中2名男生平均分为两组:112122C CA则选出的4人分成两队混合双打的总数为:221111112223322212133222222218C C C C C C C C C C A A A A == 1A 和1B 分在一组的数目为11224C C =所以所求的概率为42189= 故选:B 【点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成m 组,则要除以mm A ,即!m ,审清题意,细心计算,考验分析能力,属中档题.3.已知定义在R 上的偶函数()f x 满足(2)()f x f x +=-,且在区间[]1,2上是减函数,令12121ln 2,,log 24a b c -⎛⎫=== ⎪⎝⎭,则()()(),,f a f b f c 的大小关系为( )A .()()()f a f b f c <<B .()()()f a f c f b <<C .()()()f b f a f c <<D .()()()f c f a f b <<【答案】C 【解析】 【分析】可设[]0,1x ∈,根据()f x 在R 上为偶函数及(2)()f x f x +=-便可得到:()()(2)f x f x f x =-=-+,可设1x ,[]20,1x ∈,且12x x <,根据()f x 在[]1,2上是减函数便可得出12()()f x f x <,从而得出()f x 在[]0,1上单调递增,再根据对数的运算得到a 、b 、c 的大小关系,从而得到()()(),,f a f b f c 的大小关系. 【详解】解:因为ln1ln 2ln e <<,即01a <<,又12124b -⎛⎫== ⎪⎝⎭,12log 21c ==-设[]0,1x ∈,根据条件,()()(2)f x f x f x =-=-+,[]21,2x -+∈; 若1x ,[]20,1x ∈,且12x x <,则:1222x x -+>-+;()f x Q 在[]1,2上是减函数;12(2)(2)f x f x ∴-+<-+;12()()f x f x ∴<;()f x ∴在[]0,1上是增函数;所以()()()20f b f f ==,()()()11f c f f =-=∴()()()f b f a f c <<故选:C 【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设12x x <,通过条件比较1()f x 与2()f x ,函数的单调性的应用,属于中档题.4.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向右平移5π6个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向左平移5π12个长度单位【答案】D 【解析】55cos(2)sin(2)sin(2)sin 2()332612y x x x x πππππ=+=++=+=+,所以要的函数cos(2)3y x π=+的图象,只需将函数sin 2y x =的图象向左平移512π个长度单位得到,故选D5.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍”的原则取整数,相关数据:lg30.4771≈,lg 20.3010≈) A .2 B .3C .4D .5【答案】C 【解析】 【分析】由题意可利用等比数列的求和公式得莞草与蒲草n 天后长度,进而可得:131212212112nn ⎛⎫- ⎪-⎝⎭⨯=--,解出即可得出. 【详解】由题意可得莞草与蒲草第n 天的长度分别为1113,122n n n n a b --⎛⎫=⨯=⨯ ⎪⎝⎭据题意得:131212212112nn ⎛⎫- ⎪-⎝⎭⨯=--, 解得2n =12, ∴n 122lg lg ==232lg lg +≈1. 故选:C . 【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.6.正项等比数列{}n a 中,153759216a a a a a a ++=,且5a 与9a 的等差中项为4,则{}n a 的公比是 ( ) A .1 B .2 C.2D【答案】D 【解析】 【分析】设等比数列的公比为q ,q 0>,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q . 【详解】由题意,正项等比数列{}n a 中,153759a a 2a a a a 16++=,可得222337737a 2a a a (a a )16++=+=,即37a a 4+=,5a 与9a 的等差中项为4,即59a a 8+=,设公比为q ,则()2237q a a 4q 8+==,则q =负的舍去),故选D .【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.7.已知角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(3,4)P --,则tan 24πα⎛⎫+ ⎪⎝⎭的值为( )A .247-B .1731-C .247D .1731【答案】B 【解析】 【分析】根据三角函数定义得到4tan 3α=,故24tan 27α=-,再利用和差公式得到答案.【详解】∵角α的终边过点(3,4)P --,∴4tan 3α=,22tan 24tan 21tan 7ααα==--. ∴241tan 2tan1774tan 2244311tan 2tan 1147παπαπα-++⎛⎫+===- ⎪⎝⎭-⋅+⨯. 故选:B . 【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力. 8.已知cos(2019)πα+=,则sin(2)2πα-=( )A .79B .59C .59-D .79-【答案】C 【解析】 【分析】利用诱导公式得cos(2019)cos παα+=-,sin(2)cos 22παα-=,再利用倍角公式,即可得答案.【详解】由cos(2019)3πα+=-可得cos()3πα+=-,∴cos 3α=,∴225sin(2)cos22cos 121299πααα-==-=⨯-=-. 故选:C. 【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.9.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A 【解析】 【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形, 且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。
江西省新余市高三数学下学期第二次模拟试卷文)(含解析)
2015年江西省新余市高考数学二模试卷(文科)一、选择题(本题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项符合要求的)1.设集合A={x|y=lg(3﹣2x)},集合B={x|y=},则A∩B=()A. B.(﹣∞,1] C. D.2.若复数Z的实部为1,且|Z|=2,则复数Z的虚部是()A.﹣ B.± C.±i D.i3.已知向量=(1,2),=(1,0),=(4,﹣3).若λ为实数,(+λ)⊥,则λ=()A. B. C. 1 D. 24.下列说法正确的是()A.样本10,6,8,5,6的标准差是5.3B.“p∨q为真”是“p∧q为真”的充分不必要条件C. K2是用来判断两个分类变量是否相关的随机变量,当K2的值很小时可以推定两类变量不相关D.设有一个回归直线方程为=2﹣1.5x,则变量x毎增加一个单位,y平均减少1.5个单位5.等差数列{a n}中的a1、a4025是函数f(x)=x3﹣4x2+6x﹣1的极值点,则log2a2013() A. 2 B. 3 C. 4 D. 56.如图,给出的是计算的值的程序框图,其中判断框内应填入的是()A. i≤2021 B. i≤2019 C. i≤2017 D. i≤20157.已知三棱锥的三视图,则该三棱锥的体积是()A. B. C. D.8.函数f(x)的部分图象如图所示,则f(x)的解析式可以是()A. f(x)=x+sinx B.C. f(x)=xcosx D.9.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则(n∈N+)的最小值为()A. 4 B. 3 C. 2﹣2 D.10.若,则z=x+2y的取值范围是()A.(0,] B. [0,] C. [0,﹣] D. [0,+]11.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. B. C. D.12.已知双曲线C:﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,若双曲线C的离心率为2,△AOB的面积为,则△AOB的内切圆半径为()A.﹣1 B.+1 C. 2﹣3 D. 2+3二、填空题(本题共4小题,每小题5分,共20分)13.已知tan(3π﹣x)=2,则= .14.在区间[﹣3,5]上随机取一个数a,则使函数f(x)=x2+2ax+4无零点的概率是.15.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴棒的根数为.16.已知过抛物线x2=4y的焦点F的直线交抛物线于A,B两个不同的点,过A,B分别作抛物线的切线,且二者相交于点C,则△ABC的面积的最小值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知直线两直线l1:xcosα+y﹣1=0;l2:y=xsin(a+),△ABC中,内角A,B,C对边分别为a,b,c,a=2,c=4,且当a=A时,两直线恰好相互垂直;(Ⅰ)求A值;(Ⅱ)求b和△ABC的面积.18.随机抽取某中学高三年级甲乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图.其中甲班有一个数据被污损.(Ⅰ)若已知甲班同学身高平均数为170cm,求污损处的数据;(Ⅱ)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.19.如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=CD=2,M是线段AE上的动点.(Ⅰ)试确定点M的位置,使AC∥平面MDF,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求平面MDF将几何体ADE﹣BCF分成的两部分的体积之比.20.已知两点F1(﹣1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.(1)求椭圆C的方程;(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.21.设函数f(x)=x2﹣mlnx,h(x)=x2﹣x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,求实数a 的取值范围;(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.四、选修4-1,几何证明选讲22.已知△ABC中,AB=AC,D是△ABC外接圆上上的点(不与点A、C重合),延长BD至F.(1)求证:AD延长线DF平分∠CDE;(2)若∠BAC=30°,△ABC中BC边上的高为2+,求△ABC外接圆的面积.五、选修4-4:坐标系与参数方程23.直角坐标系下,曲线C的参数方程为(φ为参数).(1)在横坐标系下,曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB的面积;(2)在直角坐标系下,直线l的参数方程为(t为参数),求曲线C与直线l 的交点坐标.六、选修4-5:不等式选讲24.(C)已知函数f(x)=|2x+3|+|2x﹣1|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.2015年江西省新余市高考数学二模试卷(文科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项符合要求的)1.设集合A={x|y=lg(3﹣2x)},集合B={x|y=},则A∩B=()A. B.(﹣∞,1] C. D.考点:交集及其运算.专题:集合.分析:求出A中x的范围确定出A,求出B中x的范围确定出B,找出A与B的交集即可.解答:解:由A中y=lg(3﹣2x),得到3﹣2x>0,解得:x<,即A=(﹣∞,),由B中y=,得到1﹣x≥0,即x≤1,∴B=(﹣∞,1],则A∩B=(﹣∞,1].故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若复数Z的实部为1,且|Z|=2,则复数Z的虚部是()A.﹣ B.± C.±i D.i考点:复数求模.专题:数系的扩充和复数.分析:设出复数,然后利用复数的模求解即可.解答:解:复数Z的实部为1,设Z=1+bi.|Z|=2,可得=2,解得b=.复数Z的虚部是.故选:B.点评:本题考查复数的模的应用,复数的基本概念,基本知识的考查.3.已知向量=(1,2),=(1,0),=(4,﹣3).若λ为实数,(+λ)⊥,则λ=()A. B. C. 1 D. 2考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由题意可得+λ=(1+λ,0),由垂直可得数量积为0,可得λ的方程,解方程可得.解答:解:∵=(1,2),=(1,0),=(4,﹣3).∴+λ=(1+λ,2)∵(+λ)⊥,∴4(1+λ)﹣3×2=0,解得λ=故选:B点评:本题考查数量积与向量的垂直关系,属基础题.4.下列说法正确的是()A.样本10,6,8,5,6的标准差是5.3B.“p∨q为真”是“p∧q为真”的充分不必要条件C. K2是用来判断两个分类变量是否相关的随机变量,当K2的值很小时可以推定两类变量不相关D.设有一个回归直线方程为=2﹣1.5x,则变量x毎增加一个单位,y平均减少1.5个单位考点:独立性检验;必要条件、充分条件与充要条件的判断;极差、方差与标准差;线性回归方程.专题:综合题;推理和证明.分析:对四个命题分别进行判断,A,求出平均数、方差、标准差可得结论;B,p∧q为真,则p、q均为真,p∨q为真,p、q至少一个为真;C,K2的值很小时,只能说两个变量的相关程度低,不能推定两个变量不相关;D,设有一个回归直线方程为=2﹣1.5x,通过回归直线方程的性质,即可得出结论.解答:解:A,样本10,6,8,5,6的平均数为7,方差为,标准差是,故不正确;B,p∧q为真,则p、q均为真,p∨q为真,p、q至少一个为真,故“p∨q为真”是“p∧q 为真”的必要不充分条件,故不正确;C,K2的值很小时,只能说两个变量的相关程度低,不能推定两个变量不相关.所以C错;D,设有一个回归直线方程为=2﹣1.5x,则变量x毎增加一个单位,y平均减少1.5个单位,正确.故选:D.点评:本题考查命题的真假判断,考查学生分析解决问题的能力,比较基础.5.等差数列{a n}中的a1、a4025是函数f(x)=x3﹣4x2+6x﹣1的极值点,则log2a2013() A. 2 B. 3 C. 4 D. 5考点:函数在某点取得极值的条件.专题:导数的综合应用.分析:利用导数即可得出函数的极值点,再利用等差数列的性质及其对数的运算法则即可得出.解答:解:f′(x)=x2﹣8x+6,∵a1、a4025是函数f(x)=x3﹣4x2+6x﹣1的极值点,∴a1、a4025是方程x2﹣8x+6=0的两实数根,则a1+a4025=8.而{a n}为等差数列,∴a1+a4025=2a2013,即a2013=4,从而==2.故选A.点评:熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.6.如图,给出的是计算的值的程序框图,其中判断框内应填入的是()A. i≤2021 B. i≤2019 C. i≤2017 D. i≤2015考点:程序框图.专题:图表型;算法和程序框图.分析:根据流程图写出每次循环i,S的值,和比较即可确定退出循环的条件,得到答案.解答:解:根据流程图,可知第1次循环:i=2,S=;第2次循环:i=4,S=;第3次循环:i=6,S=……第1008次循环:i=2016,S=;此时,i=2018,设置条件退出循环,输出S的值.故判断框内可填入i≤2016.对比选项,故选:C.点评:本题主要考察程序框图和算法,属于基础题.7.已知三棱锥的三视图,则该三棱锥的体积是()A. B. C. D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:如图所示,AB=BC=CA=2,点P在侧面ABC的射影为O,OP=2.利用三棱锥的体积计算公式即可得出.解答:解:如图所示,AB=BC=CA=2,点P在侧面ABC的射影为O,OP=2.∴该三棱锥的体积V===.故选:B.点评:本题考查了三棱锥的三视图及其体积计算公式,属于基础题.8.函数f(x)的部分图象如图所示,则f(x)的解析式可以是()A. f(x)=x+sinx B.C. f(x)=xcosx D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:通过函数的图象的奇偶性、定义域、验证函数的表达式,排除部分选项,利用图象过(,0),排除选项,得到结果.解答:解:依题意函数是奇函数,排除D,函数图象过原点,排除B,图象过(,0)显然A不正确,C正确;故选C点评:本题是基础题,考查函数的图象特征,函数的性质,考查学生的视图能力,常考题型.9.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则(n∈N+)的最小值为()A. 4 B. 3 C. 2﹣2 D.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由题意得(1+2d)2=1+12d,求出公差d的值,得到数列{a n}的通项公式,前n项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.解答:解:∵a1=1,a1、a3、a13 成等比数列,∴(1+2d)2=1+12d.得d=2或d=0(舍去),∴a n =2n﹣1,∴S n==n2,∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A.点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.10.若,则z=x+2y的取值范围是()A.(0,] B. [0,] C. [0,﹣] D. [0,+]考点:简单线性规划的应用.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义结合导数求出切线斜率,即可得到结论.解答:解:作出不等式组对应的平面区域,由z=x+2y,得y=,平移直线y=,由图象可知当直线经过点O时,直线y=的截距最小,此时z最小,z=0,当直线y=与y=cosx相切时,直线的截距最大,此时z最大,函数y=cosx的导数f′(x)=﹣sinx,目标函数的斜率k=,由﹣sinx=得sinx=,解得x=,此时y=cos=,即切点坐标为(,),此时z=+2×=+,故z的取值范围是[0,+],故选:D.点评:本题主要考查线性规划的应用,利用数形结合以及导数的几何意义求出切点坐标是解决本题的关键.综合性较强.11.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. B. C. D.考点:球的体积和表面积.分析:蛋槽的边长是原来硬纸板的对角线长度的一半,为1cm,蛋槽立起来的小三角形部分高度是,鸡蛋的半径根据已知的表面积4π=4πr2得到r=1cm,直径D=2cm,大于折好的蛋巢边长1cm,由此能求出鸡蛋中心(球心)与蛋巢底面的距离.解答:解:蛋槽的边长是原来硬纸板的对角线长度的一半,为1cm,蛋槽立起来的小三角形部分高度是,鸡蛋的半径根据已知的表面积4π=4πr2得到r=1cm,直径D=2cm,大于折好的蛋巢边长1cm,四个三角形的顶点所在的平面在鸡蛋表面所截取的小圆直径就是蛋槽的边长1cm,根据图示,AB段由三角形AB求出得:AB=,AE=AB+BE=,∴鸡蛋中心(球心)与蛋巢底面的距离为.故选:D.点评:本题考查点、线、面间距离的计算,解题时要认真审题,注意挖掘题设中的隐含条件,合理地化空间问题为平面问题,注意数形结合法的合理运用.12.已知双曲线C:﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,若双曲线C的离心率为2,△AOB的面积为,则△AOB的内切圆半径为()A.﹣1 B.+1 C. 2﹣3 D. 2+3考点:双曲线的简单性质.专题:解三角形;圆锥曲线的定义、性质与方程.分析:由双曲线的离心率公式及a,b,c的关系可得b=a,由双曲线的渐近线方程和抛物线的准线方程解得A,B,求出三角形AOB的面积,进而解得p=2,即有A,B的坐标,进而得到三角形AOB的三边,再由内切圆的半径与三角形的面积之间的关系,计算即可得到r.解答:解:由e====2,可得=.由,求得A(﹣,),B(﹣,﹣),所以S△AOB=••=.将=代入,得p2=4,解得p=2.所以A(﹣1,),B(﹣1,﹣),则△AOB的三边分别为2,2,2,设△AOB的内切圆半径为r,由(2+2+2)r=,解得r=2﹣3,故选C.点评:本题考查双曲线和抛物线的综合应用.求解这类问题关键是结合两个曲线的位置关系,找到它们对应的几何量,然后利用图形中的平面几何性质解答问题.二、填空题(本题共4小题,每小题5分,共20分)13.已知tan(3π﹣x)=2,则= ﹣3 .考点:二倍角的余弦;三角函数的化简求值.专题:三角函数的求值.分析:已知等式左边利用诱导公式化简,求出tanx的值,原式分子利用二倍角的余弦函数公式化简,再利用同角三角函数间的基本关系变形,把tanx的值代入计算即可求出值.解答:解:∵tan(3π﹣x)=﹣tanx=2,即tanx=﹣2,∴原式====﹣3.故答案为:﹣3点评:此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.14.在区间[﹣3,5]上随机取一个数a,则使函数f(x)=x2+2ax+4无零点的概率是.考点:几何概型.专题:概率与统计.分析:本题属于几何概型,只要求出区间长度以及满足条件的区间长度,由几何概型公式解答.解答:解:由已知区间[﹣3,5]长度为8,使函数f(x)=x2+2ax+4无零点即判别式△=4a2﹣16<0,解得﹣2<a<2,即(﹣2,2),区间长度为4,由几何概型的公式得使函数f(x)=x2+2ax+4无零点的概率是;故答案为:.点评:本题考查了几何概型的运用;关键是明确几何测度,利用公式解答.15.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴棒的根数为6n+2 .考点:归纳推理.专题:规律型.分析:观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6.解答:解:由题意知:图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6,∴第n条小鱼需要(2+6n)根,故答案为:6n+2.点评:本题考查了规律型中的图形变化问题,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n条小鱼所需要的火柴棒的根数.16.已知过抛物线x2=4y的焦点F的直线交抛物线于A,B两个不同的点,过A,B分别作抛物线的切线,且二者相交于点C,则△ABC的面积的最小值为 4 .考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:求出抛物线x2=4y的焦点坐标,设直线l方程为y=kx+1,与抛物线方程联立,设A (x1,y1),B(x2,y2),利用韦达定理,以及函数的求出切线方程,解出C的坐标,利用弦长公式求出|AB|点C到直线AB的距离,表示出S△AOCB,利用二次函数的性质即可得出三角形的面积的最小值.解答:解:∵抛物线x2=4y的焦点F(0,1),∴设直线l方程为y=kx+1,由,消去y得x2﹣4kx﹣4=0,设A(x1,y1),B(x2,y2),x1+x2=4k,x1x2=﹣4.抛物线x2=4y,即二次函数y=x2,对函数求导数,得y′=x,所以抛物线在点A处的切线斜率为k1=x1,可得切线方程为y﹣y1=x1(x﹣x1),化简得y=x1x﹣x12,同理,得到抛物线在点B处切线方程为y=x2x﹣x22,两方程消去x,得两切线交点C纵坐标满足y c==1,横坐标为:x=(x1+x2)=2k.点C(2k,﹣1)到直线AB的距离为d=,线段AB的长度为|x1﹣x2|=,S△ACB=|AB|•d==≥4.当k=0的等号成立,∴S△ACB面积的最小值为:4,故答案为:4.点评:本题考查了直线与抛物线相交相切问题、弦长公式、三角形的面积计算公式、函数的导数求解切线方程、二次函数的单调性,考查了推理能力与计算能力.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知直线两直线l1:xcosα+y﹣1=0;l2:y=xsin(a+),△ABC中,内角A,B,C对边分别为a,b,c,a=2,c=4,且当a=A时,两直线恰好相互垂直;(Ⅰ)求A值;(Ⅱ)求b和△ABC的面积.考点:三角函数中的恒等变换应用;余弦定理;直线的一般式方程与直线的垂直关系.专题:三角函数的求值;三角函数的图像与性质;解三角形.分析:(Ⅰ)首先利用直线垂直的充要条件求出三角函数的关系式,进一步利用三角函数关系式的恒等变换,把函数关系式变形成郑先兴函数,进一步求出角A的值.(Ⅱ)利用上步的结论,利用余弦定理求出b的大小,进一步利用三角形的面积公式求出三角形的面积.解答:解:(Ⅰ)当:α=A时,直线 l1:xcosα+﹣1=0,l2:y=xsin()的斜率分别为:k1=﹣2cosA,,两直线相互垂直所以:即:可得:=所以:,所以:即:即:因为:0<A<π,0<2A<2π,所以:所以只有:所以:(Ⅱ)△ABC中,内角A,B,C对边分别为a,b,c,a=2,c=4,A=,所以:即:解得:b=2所以△ABC的面积为点评:本题考查的知识要点:直线垂直的充要条件,三角函数关系式的恒等变换,正弦型函数的性质的应用,余弦定理的应用,三角形面积的应用.属于基础题型.18.随机抽取某中学高三年级甲乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图.其中甲班有一个数据被污损.(Ⅰ)若已知甲班同学身高平均数为170cm,求污损处的数据;(Ⅱ)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.考点:列举法计算基本事件数及事件发生的概率;茎叶图.专题:概率与统计.分析:(Ⅰ)设污损处的数据为a,根据甲班同学身高平均数为170cm,求污损处的数据;(Ⅱ)设“身高为176 cm的同学被抽中”的事件为A,列举出从乙班这10名同学中随机抽取两名身高不低于173cm的同学的基本事件个数,及事件A包含的基本事件个数,进而可得身高为176cm的同学被抽中的概率.解答:解:(Ⅰ)设污损处的数据,∵甲班同学身高平均数为170cm,∴=(158+162+163+168+168+170+171+179+a+182)=170 …(4分)解得a=179 所以污损处是9.…(6分)(Ⅱ)设“身高为176 cm的同学被抽中”的事件为A,从乙班10名同学中抽取两名身高不低于173 cm的同学有:{181,173},{181,176},{181,178},{181,179},{179,173},{179,176},{179,178},{178,173},{178,176},{176,173}共10个基本事件,…(8分)而事件A含有4个基本事件,…(10分)∴P(A)==…(12分)点评:本题考查的知识点是茎叶图,列举出计算基本事件及事件发生的概率,难度不大,属于基础题.19.如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=CD=2,M是线段AE上的动点.(Ⅰ)试确定点M的位置,使AC∥平面MDF,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求平面MDF将几何体ADE﹣BCF分成的两部分的体积之比.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)首先,根据所给图形,得到当M是线段AE的中点时,AC∥平面MDF.然后,根据线面平行的判定定理进行证明即可;(Ⅱ)利用补图法,将几何体ADE﹣BCF补成三棱柱ADE﹣B′CF,然后,借助于柱体和椎体的体积公式进行求解即可.解答:解析:(Ⅰ)当M是线段AE的中点时,AC∥平面MDF.证明如下:连结CE,交DF于N,连结MN,由于M、N分别是AE、CE的中点,所以MN∥AC,由于MN⊂平面MDF,又AC⊈平面MDF,所以AC∥平面MDF.(Ⅱ)如图,将几何体ADE﹣BCF补成三棱柱ADE﹣B′CF,三棱柱ADE﹣B′CF的体积为,则几何体ADE﹣BCF的体积V ADE﹣BCF=V三棱柱ADE﹣BCF﹣V F﹣BB'C=.三棱锥F﹣DEM的体积V三棱锥M﹣DEF=,故两部分的体积之比为(答1:4,4,4:1均可).点评:本题综合考查了线面平行的判定定理、柱体和椎体的体积公式等知识,属于中档题,在解题中,如果求解不规则几何体的体积时,一般用割补法进行运算和求解,这就是转化思想在解题中的应用.20.已知两点F1(﹣1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.(1)求椭圆C的方程;(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.考点:直线与圆锥曲线的综合问题;数列与解析几何的综合;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(1)依题意,设椭圆C的方程为,c=1.再利用|PF1|、|F1F2|、|PF2|构成等差数列,即可得到a,利用b2=a2﹣c2得到a即可得到椭圆的方程;(2)将直线l的方程y=kx+m代入椭圆C的方程3x2+4y2=12中,得到关于x的一元二次方程,由直线l与椭圆C仅有一个公共点知,△=0,即可得到m,k的关系式,利用点到直线的距离公式即可得到d1=|F1M|,d2=|F2N|.法一:当k≠0时,设直线l的倾斜角为θ,则|d1﹣d2|=|MN|×|tanθ|,即可得到四边形F1MNF2面积S的表达式,利用基本不等式的性质即可得出S的最大值;法二:利用d1及d2表示出及d1d2,进而得到,再利用二次函数的单调性即可得出其最大值.解答:解:(1)依题意,设椭圆C的方程为.∵|PF1|、|F1F2|、|PF2|构成等差数列,∴2a=|PF1|+|PF2|=2|F1F2|=4,a=2.又∵c=1,∴b2=3.∴椭圆C的方程为.(2)将直线l的方程y=kx+m代入椭圆C的方程3x2+4y2=12中,得(4k2+3)x2+8kmx+4m2﹣12=0.由直线l与椭圆C仅有一个公共点知,△=64k2m2﹣4(4k2+3)(4m2﹣12)=0,化简得:m2=4k2+3.设,,法一:当k≠0时,设直线l的倾斜角为θ,则|d1﹣d2|=|MN|×|tanθ|,∴,=,∵m2=4k2+3,∴当k≠0时,,,.当k=0时,四边形F1MNF2是矩形,.所以四边形F1MNF2面积S的最大值为.法二:∵,.∴=.四边形F1MNF2的面积=,=.当且仅当k=0时,,故.所以四边形F1MNF2的面积S的最大值为.点评:本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系、等差数列、二次函数的单调性、基本不等式的性质等基础知识,考查运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.21.设函数f(x)=x2﹣mlnx,h(x)=x2﹣x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,求实数a 的取值范围;(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.考点:函数恒成立问题;函数单调性的性质;函数的零点与方程根的关系.专题:计算题;压轴题.分析:(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2﹣mlnx≥x2﹣x,转化为即:m≤在(1,+∞)上恒成立,从而得出实数m的取值范围.(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,即:k(x)=x﹣2lnx﹣a,设y1=x﹣2lnx,y2=a,分别画出它们的图象,由图得实数a的取值范围.(3)先假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2﹣mlnx在x=处取得极小值即可.解答:解:(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2﹣mlnx≥x2﹣x,mlnx≤x,即:m≤在(1,+∞)上恒成立,因为在(1,+∞)上的最小值为:e,∴m≤e.实数m的取值范围:m≤e(2)当m=2时,若函数k(x)=f(x)﹣h(x)在[1,3]上恰有两个不同零点,即:k(x)=x﹣2lnx﹣a,设y1=x﹣2lnx,y2=a,分别画出它们的图象,由图得:实数a的取值范围(2﹣2ln2,3﹣2ln3];(3)假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2﹣mlnx在x=处取得极小值即可.∵f(x)=x2﹣mlnx∴f′(x)=2x﹣m×,将x=代入得:1﹣2m=0,∴m=故存在实数m=,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性.点评:数形结合思想是解析函数图象交点个数、函数零点个数中最常用的方法,即画出满足条件的图象,然后根据图象直观的分析出答案,但数形结合的前提是熟练掌握各种基本初等函数的图象和性质.四、选修4-1,几何证明选讲22.已知△ABC中,AB=AC,D是△ABC外接圆上上的点(不与点A、C重合),延长BD至F.(1)求证:AD延长线DF平分∠CDE;(2)若∠BAC=30°,△ABC中BC边上的高为2+,求△ABC外接圆的面积.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:(1)根据A,B,C,D四点共圆,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,从而得解.(2)设O为外接圆圆心,连接AO并延长交BC于H,则AH⊥BC.连接OC,设圆半径为r,则r+r=2+,求出r,即可求△ABC外接圆的面积.解答:(1)证明:如图,∵A,B,C,D四点共圆,∴∠CDF=∠ABC.又AB=AC,∴∠ABC=∠ACB,且∠ADB=∠ACB,∴∠ADB=∠CDF,又由对顶角相等得∠EDF=∠ADB,故∠EDF=∠CDF,即AD的延长线DF平分∠CDE.…(5分)(2)解:设O为外接圆圆心,连接AO并延长交BC于H,则AH⊥BC.连接OC,由题意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°,设圆半径为r,则r+r=2+,得r=2,外接圆的面积为4π.…(10分)点评:本题以圆为载体,考查圆的内接四边形的性质,考查等腰三角形的性质,考查外接圆的面积,属于中档题.五、选修4-4:坐标系与参数方程23.直角坐标系下,曲线C的参数方程为(φ为参数).(1)在横坐标系下,曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB的面积;(2)在直角坐标系下,直线l的参数方程为(t为参数),求曲线C与直线l 的交点坐标.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先把直角坐标方程转化为极坐标方程,进一步利用直线的方程求出|OA|和|OB|的长,最后求出三角形的面积.(2)利用直线和曲线的关系建立方程组,直接利用参数求出交点的坐标.解答:解:(1)曲线C在直角坐标系下的普通方程为:,转化为极坐标方程为:,分别代入和,得:,因为,故△AOB的面积:.(2)将l的参数方程代入曲线C的普通方程,得:,即t=2,代入l的参数方程,得:,y=2,所以曲线C与直线l的交点坐标为.点评:本题考查的知识要点:直角坐标方程与极坐标方程的互化,三角形面积的应用,利用代入法求直线与曲线的关系,求交点的坐标.主要考查学生的应用能力.六、选修4-5:不等式选讲24.(C)已知函数f(x)=|2x+3|+|2x﹣1|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.考点:带绝对值的函数.专题:不等式的解法及应用.分析:(Ⅰ)利用绝对值的几何意义直接求不等式f(x)≤6的解集;(Ⅱ)求出函数的最小值,然后求解关于x的不等式f(x)<|m﹣1|的解集非空,得到实数m的取值范围.解答:解:(Ⅰ)不等式f(x)≤6,即|2x+3|+|2x﹣1|≤6.不等式的几何意义,是数轴是的点2x,到﹣3与1的距离之和不大于6,∴﹣4≤2x≤2,解得﹣2≤x≤1,不等式的解集为{x|﹣2≤x≤1};(Ⅱ)函数f(x)=|2x+3|+|2x﹣1|.由绝对值的几何意义可知:f(x)min≥4,关于x的不等式f(x)<|m﹣1|的解集非空,只须:4<|m﹣1|,解得m<﹣3或m>5.。
2019届江西省新余四中、上高二中高三第二次联考数学(文)试题(解析版)
2019届江西省新余四中、上高二中高三第二次联考数学(文)试题一、单选题1.已知集合()(){|2330}A x Z x x =∈+-<, {|B x y ==,则A B ⋂=( )A .(]0,e B .{}0,e C .{}1,2 D .()1,2 【答案】C【解析】{}(]1,0,1,2,0,A B e =-= ,所以{}1,2A B ⋂= ,选C. 2.已知复数z 满足11212ii z+=+(i 为虚数单位),则z 的虚部为( ) A .4 B .4i C .4- D .4i - 【答案】C 【解析】112i 11420i34i 12i 5z ++-===-+ ,所以z 的虚部为4-,选C. 3.设,则A .B .C .D .【答案】C【解析】分析:三个数形式迥异,可与中间数 比较大小.详解:,而 ,又,故三个数的大小关系是,故选C.点睛:实数的大小比较,一般方法是构造函数并利用函数的单调性比较大小.如果构造函数较为复杂,那么可以找一些中间数(如等),考虑这些中间数与题设中的数的大小关系.4.中国古代数学著作《算法统宗》巾有这样一个问题:“三百七十八里关,初行健步不为难 日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了A.60里B.48里C.36里D.24里【答案】C【解析】每天行走的里程数是公比为的等比数列,且前和为,故可求出数列的通项后可得.【详解】设每天行走的里程数为,则是公比为的等比数列,所以,故(里),所以(里),选C.【点睛】本题为数学文化题,注意根据题设把实际问题合理地转化为数学模型,这类问题往往是基础题.5.设是两条不同的直线,是两个不同的平面,则的一个充分不必要条件是()A.,,B.,,C.,,D.,,【答案】A【解析】的一个充分不必要条件,为的判定条件。
江西省新余市2019-2020学年高考数学二月模拟试卷含解析
江西省新余市2019-2020学年高考数学二月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.等腰直角三角形ABE的斜边AB为正四面体ABCD侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:(1)四面体E-BCD的体积有最大值和最小值;⊥;(2)存在某个位置,使得AE BDθ≥∠;(3)设二面角D AB E--的平面角为θ,则DAE(4)AE的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.其中,正确说法的个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】【详解】解:对于(1),当CD⊥平面ABE,且E在AB的右上方时,E到平面BCD的距离最大,当CD⊥平面ABE,且E在AB的左下方时,E到平面BCD的距离最小,∴四面体E﹣BCD的体积有最大值和最小值,故(1)正确;对于(2),连接DE,若存在某个位置,使得AE⊥BD,又AE⊥BE,则AE⊥平面BDE,可得AE⊥DE,进一步可得AE=DE,此时E﹣ABD为正三棱锥,故(2)正确;对于(3),取AB中点O,连接DO,EO,则∠DOE为二面角D﹣AB﹣E的平面角,为θ,直角边AE绕斜边AB旋转,则在旋转的过程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正确;对于(4)AE的中点M与AB的中点N连线交平面BCD于点P,P到BC的距离为:d P﹣BC,因为<1,所以点P的轨迹为椭圆.(4)正确.故选:C.点睛:该题考查的是有关多面体和旋转体对应的特征,以几何体为载体,考查相关的空间关系,在解题的过程中,需要认真分析,得到结果,注意对知识点的灵活运用.2.231+=-ii()A.15i22-+B.1522i--C.5522i+D.5122i-【答案】A【解析】【分析】分子分母同乘1i+,即根据复数的除法法则求解即可. 【详解】解:23(23)(1)151(1)(1)22i i iii i i+++==-+--+,故选:A【点睛】本题考查复数的除法运算,属于基础题.3.已知实数,x y满足,10,1,x yx yy≥⎧⎪+-≤⎨⎪≥-⎩则2z x y=+的最大值为()A.2 B.32C.1 D.0【答案】B【解析】【分析】作出可行域,平移目标直线即可求解. 【详解】解:作出可行域:由2z x y =+得,1122y x z =-+ 由图形知,1122y x z =-+经过点时,其截距最大,此z 时最大10y x x y =⎧⎨+-=⎩得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,11,22C ⎛⎫ ⎪⎝⎭ 当1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,max 1232222z =+⨯=故选:B 【点睛】考查线性规划,是基础题.4.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A 必须排在前三项执行,且执行任务A 之后需立即执行任务E ,任务B 、任务C 不能相邻,则不同的执行方案共有( ) A .36种 B .44种 C .48种 D .54种【答案】B 【解析】 【分析】分三种情况,任务A 排在第一位时,E 排在第二位;任务A 排在第二位时,E 排在第三位;任务A 排在第三位时,E 排在第四位,结合任务B 和C 不能相邻,分别求出三种情况的排列方法,即可得到答案. 【详解】六项不同的任务分别为A 、B 、C 、D 、E 、F ,如果任务A 排在第一位时,E 排在第二位,剩下四个位置,先排好D 、F ,再在D 、F 之间的3个空位中插入B 、C ,此时共有排列方法:222312A A =;如果任务A 排在第二位时,E 排在第三位,则B ,C 可能分别在A 、E 的两侧,排列方法有122322=12C A A ,可能都在A 、E 的右侧,排列方法有2222=4A A ;如果任务A 排在第三位时,E 排在第四位,则B ,C 分别在A 、E 的两侧11222222=16C C A A ; 所以不同的执行方案共有121241644+++=种. 【点睛】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题. 5.某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .4【答案】B 【解析】 【分析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积. 【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为211421333ABCD V S PA =⋅=⨯⨯=正方形. 故选:B. 【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.6.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为176,320,则输出的a 为( )A .16B .18C .20D .15【答案】A 【解析】 【分析】根据题意可知最后计算的结果为a b ,的最大公约数. 【详解】输入的a ,b 分别为176,320,根据流程图可知最后计算的结果为a b ,的最大公约数,按流程图计算320-176=144,176-144=32,144-32=112,112-32=80,80-32=48,48-32=16,32-16=16,易得176和320的最大公约数为16, 故选:A. 【点睛】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.7.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b c a >>D .a c b >>【答案】D 【解析】 【分析】由指数函数的图像与性质易得b 最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较a 和c 的大小关系,进而得解.【详解】根据指数函数的图像与性质可知1314120131b ⎛⎫<= ⎪⎭<⎝,由对数函数的图像与性质可知12log 131a =>,13log 141c =>,所以b 最小;而由对数换底公式化简可得1132log 13log 14a c -=-lg13lg14lg12lg13=- 2lg 13lg12lg14lg12lg13-⋅=⋅ 由基本不等式可知()21lg12lg14lg12lg142⎡⎤⋅<+⎢⎥⎣⎦,代入上式可得()2221lg 13lg12lg14lg 13lg12lg142lg12lg13lg12lg13⎡⎤-+⎢⎥-⋅⎣⎦>⋅⋅221lg 13lg1682lg12lg13⎛⎫- ⎪⎝⎭=⋅11lg13lg168lg13lg16822lg12lg13⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭=⋅((lg13lg13lg 0lg12lg13+⋅-=>⋅所以a c >, 综上可知a c b >>, 故选:D. 【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.8.已知x ,y 满足条件0020x y y x x y k ≥≥⎧⎪≤⎨⎪++≤⎩,(k 为常数),若目标函数3z x y =+的最大值为9,则k =( )A .16-B .6-C .274-D .274【答案】B 【解析】 【分析】由目标函数3z x y =+的最大值为9,我们可以画出满足条件 件0,0(20x y y xk x y k ⎧⎪⎨⎪++⎩厖……为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数k 的方程组,消参后即可得到k 的取值. 【详解】画出x ,y 满足的0,0(20x y y xk x y k ⎧⎪⎨⎪++⎩厖……为常数)可行域如下图:由于目标函数3z x y =+的最大值为9, 可得直线0y =与直线93x y =+的交点(3,0)B , 使目标函数3z x y =+取得最大值, 将3x =,0y =代入20x y k ++=得:6k =-.故选:B . 【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x ,y 后,即可求出参数的值.9.已知i 为虚数单位,复数()()12z i i =++,则其共轭复数z =( ) A .13i + B .13i -C .13i -+D .13i --【答案】B 【解析】 【分析】先根据复数的乘法计算出z ,然后再根据共轭复数的概念直接写出z 即可.由()()1213z i i i =++=+,所以其共轭复数13z i =-. 故选:B. 【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易. 10.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()A .B .C .D .【答案】A 【解析】 【分析】 由直线过椭圆的左焦点,得到左焦点为,且,再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解. 【详解】 由题意,直线经过椭圆的左焦点,令,解得,所以,即椭圆的左焦点为,且① 直线交轴于,所以,,因为,所以,所以,又由点在椭圆上,得 ②由,可得,解得,所以,所以椭圆的离心率为.故选A.本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).11.一个正三角形的三个顶点都在双曲线221x ay +=的右支上,且其中一个顶点在双曲线的右顶点,则实数a 的取值范围是( ) A .()3,+∞ B .()3,+∞C .(,3-∞-D .(),3-∞-【答案】D 【解析】 【分析】因为双曲线分左右支,所以0a <,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为(1t +,3)(0)t >,将其代入双曲线可解得. 【详解】因为双曲线分左右支,所以0a <,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为(1t +,3)(0)t >,将其代入双曲线方程得:223(1)()1t a ++=, 即2113t a -=+,由0t >得3a <-.故选:D . 【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平. 12.已知31(2)(1)mx x--的展开式中的常数项为8,则实数m =( )A .2B .-2C .-3D .3【答案】A 【解析】 【分析】先求31(1)x-的展开式,再分类分析(2)mx -中用哪一项与31(1)x-相乘,将所有结果为常数的相加,即为31(2)(1)mx x--展开式的常数项,从而求出m 的值.31(1)x -展开式的通项为313311()(1)r r r r r r r T C C x x--+=⋅-=⋅-,当(2)mx -取2时,常数项为0322C ⨯=,当(2)mx -取mx -时,常数项为113(1)3m C m -⨯⨯-=由题知238m +=,则2m =. 故选:A. 【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对(2)mx -所取的项要进行分类讨论,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
江西省新余市2019-2020学年高考数学第二次押题试卷含解析
江西省新余市2019-2020学年高考数学第二次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知随机变量X 的分布列是则()2E X a +=( ) A .53B .73C .72D .236【答案】C 【解析】 【分析】利用分布列求出a ,求出期望()E X ,再利用期望的性质可求得结果. 【详解】由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=,因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭. 故选:C. 【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.2.已知命题p:直线a ∥b ,且b ⊂平面α,则a ∥α;命题q:直线l ⊥平面α,任意直线m ⊂α,则l ⊥m.下列命题为真命题的是( ) A .p ∧q B .p ∨(非q )C .(非p )∧qD .p ∧(非q )【答案】C 【解析】 【分析】首先判断出p 为假命题、q 为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项. 【详解】根据线面平行的判定,我们易得命题:p 若直线//a b ,直线b ⊂平面α,则直线//a 平面α或直线a 在平面α内,命题p 为假命题;根据线面垂直的定义,我们易得命题:q 若直线l ⊥平面α,则若直线l 与平面α内的任意直线都垂直,命题q 为真命题.故:A 命题“p q ∧”为假命题;B 命题“()p q ∨⌝”为假命题;C 命题“()p q ⌝∧”为真命题;D 命题“()p q ∧⌝”为假命题. 故选:C. 【点睛】本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.3.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的最小正周期为π,且满足()()f x f x ϕϕ+=-,则要得到函数()f x 的图像,可将函数()sin g x x ω=的图像( ) A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 【答案】C 【解析】 【分析】依题意可得2ω=,且x ϕ=是()f x 的一条对称轴,即可求出ϕ的值,再根据三角函数的平移规则计算可得; 【详解】解:由已知得2ω=,x ϕ=是()f x 的一条对称轴,且使()f x 取得最值,则3πk ϕ=,π3ϕ=,π5ππ()cos 2cos 23122f x x x ⎡⎤⎛⎫⎛⎫=+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,π()sin 2cos 22g x x x ⎛⎫==- ⎪⎝⎭,故选:C. 【点睛】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.4.设集合{}1,0,1,2A =-,{}22530B x x x =-++>,则A B =I ( )A .{}0,1,2B .{}0,1C .{}1,2D .{}1,0,1-【答案】A 【解析】 【分析】解出集合B ,利用交集的定义可求得集合A B I .【详解】因为{}{}2212530253032B x x x x x x x x ⎧⎫=-++>=--<=-<<⎨⎬⎩⎭,又{}1,0,1,2A =-,所以{}0,1,2A B ⋂=.故选:A. 【点睛】本题考查交集的计算,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题. 5.命题“(0,1),ln x x e x -∀∈>”的否定是( ) A .(0,1),ln x x e x -∀∈≤ B .000(0,1),ln x x e x -∃∈> C .000(0,1),ln x x e x -∃∈<D .000(0,1),ln x x ex -∃∈≤【答案】D 【解析】 【分析】根据全称命题的否定是特称命题,对命题进行改写即可. 【详解】全称命题的否定是特称命题,所以命题“(0,1)x ∀∈,ln x e x ->”的否定是:0(0,1)x ∃∈,00ln x e x -≤.故选D . 【点睛】本题考查全称命题的否定,难度容易.6.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=【答案】D 【解析】 【分析】 根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a =,25b =,即得结果. 【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x y a b-=,得()()12122x x x x a +-= ()()12122y y y y b +-,2223a ⨯-=() 2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D . 【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.7.已知函数()y f x =在R 上可导且()()f x f x '<恒成立,则下列不等式中一定成立的是( ) A .3(3)(0)f e f >、2018(2018)(0)f e f > B .3(3)(0)f e f <、2018(2018)(0)f e f > C .3(3)(0)f e f >、2018(2018)(0)f e f < D .3(3)(0)f e f <、2018(2018)(0)f e f < 【答案】A 【解析】 【分析】 设()()xf xg x e =,利用导数和题设条件,得到()0g x '>,得出函数()g x 在R 上单调递增, 得到()0(3)(2018)g g g <<,进而变形即可求解. 【详解】由题意,设()()x f x g x e =,则()2()()()()()x x x xf x e f x e f x f xg x e e '''--'==, 又由()()f x f x '<,所以()()()0xf x f xg x e '-'=>,即函数()g x 在R 上单调递增,则()0(3)(2018)g g g <<,即032018(0)(3)(2018)(0)f f f f e e e=<<, 变形可得32018(3)(0),(2018)(0)f e f f e f >>.故选:A. 【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.8.已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线的倾斜角为θ,且cos θ=率为( ) ABC .2D .4【答案】A 【解析】 【分析】由倾斜角的余弦值,求出正切值,即,a b 的关系,求出双曲线的离心率. 【详解】解:设双曲线的半个焦距为c ,由题意[0,)θπ∈又cos θ=sin θ=tan 2θ=,2b a =,所以离心率c e a === 故选:A. 【点睛】本题考查双曲线的简单几何性质,属于基础题9.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数12()4324x x f x -=-⋅+(02x <<),则函数[]()y f x =的值域为( )A .13,22⎡⎫-⎪⎢⎣⎭B .{}1,0,1-C .{}1,0,1,2-D .{}0,1,2【答案】B 【解析】 【分析】利用换元法化简()f x 解析式为二次函数的形式,根据二次函数的性质求得()f x 的取值范围,由此求得[]()y f x =的值域.【详解】 因为12()4324x x f x -=-⋅+(02x <<),所以()21241324232424x x x x y =-⋅+=-⋅+,令2x t =(14t <<),则21()342f t t t =-+(14t <<),函数的对称轴方程为3t =,所以min 1()(3)2f t f ==-,max 3()(1)2f t f ==,所以13(),22f x ⎡⎫∈-⎪⎢⎣⎭,所以[]()y f x =的值域为{}1,0,1-. 故选:B 【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识. 10.在复平面内,31ii+-复数(i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】将复数化简得=12z i +,12z i =-,即可得到对应的点为()1,2-,即可得出结果. 【详解】3(3)(1)12121(1)(1)i i i z i z i i i i +++===+⇒=---+,对应的点位于第四象限. 故选:D . 【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易. 11.若复数12biz i-=+(b R,i ∈为虚数单位)的实部与虚部相等,则b 的值为( )A .3B .3±C .3-D .【答案】C 【解析】 【分析】利用复数的除法,以及复数的基本概念求解即可. 【详解】()221125b b ibi z i --+-==+,又z 的实部与虚部相等, 221b b ∴-=+,解得3b =-.故选:C 【点睛】本题主要考查复数的除法运算,复数的概念运用.12.已知数列{}n a 满足:12125 1,6n n n a a a a n -≤⎧=⎨-⎩L …()*n N ∈)若正整数()5k k ≥使得2221212k k a a a a a a ++⋯+=⋯成立,则k =( )A .16B .17C .18D .19【答案】B 【解析】 【分析】计算2226716...5n n a a a a a n ++++=-+-,故2221211...161k k k a a a a k a +++++=+-=+,解得答案.【详解】当6n ≥时,()1211111n n n n n a a a a a a a +--==+-L ,即211n n n a a a +=-+,且631a =.故()()()222677687116......55n n n n a a a a a a a a a n a a n +++++=-+-++-+-=-+-,2221211...161k k k a a a a k a +++++=+-=+,故17k =.故选:B . 【点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用. 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 23 页 2019届新余市高三第二次模拟考试
数学(文)试卷
一、单选题
1.已知全集{1,3,5,7}U =,集合{1,3}A =,}5,3{=B ,则()()U U A B ⋂=
痧( ) A .{3}
B .{7}
C .{3,7}
D .{1,3,5}
【答案】B
【解析】根据集合补集及交集的定义即可求解。
【详解】
由题可得}{5,7U A =ð ,}{1,7U B =ð,所以()()}{7U U A B ⋂=痧, 故答案选B 。
2.在复平面内,复数
对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限 【答案】D
【解析】通过复数的运算求出复数的代数形式,然后再进行判断即可.
【详解】 由题意得, 所以复数在复平面内对应的点为,在第四象限.
故选D . 3.已知(1,1)a =,),2(m b = ,()a a b ⊥-,则||b =( )
A .2
B
C .1
D .0
【答案】A 【解析】根据向量垂直的定义即可得到关于m 的方程,解方程即可得到答案。
【详解】
)1,1(=→a ,),2(m b =→
,
∴(1,1)a b m →→-=--,
第 2 页 共 23 页
又
()a a b →→→⊥-, ∴()0a a b →→→⋅-=,即110m -+-=,解得0m =,
∴(2,0)b →=
,2b →
==, 故答案选A 。
4.执行如图所示的程序框图,若输入a 的值为,则输出的S 的值是( )
A .
B .
C .
D .
【答案】C 【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.
【详解】
模拟程序的运行,可得
a =﹣1,S =0,k =1
满足条件k <5,执行循环体,S =﹣1,a =1,k =2
满足条件k <5,执行循环体,S ,a =3,k =3
满足条件k <5,执行循环体,S ,a =5,k =4
满足条件k <5,执行循环体,S ,a =7,k =5。