《垂线段与点到直线的距离》练习题PPT【答案已隐藏】

合集下载

垂线--垂线段、垂线段最短、点到直线的距离

垂线--垂线段、垂线段最短、点到直线的距离

5.1.2(2)垂线--垂线段、垂线段最短、点到直线的距离一.【知识要点】1.两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

直线AB,CD互相垂直,记作"AB⊥CD"(或"CD⊥AB"),读作"AB垂直于CD"(或"CD垂直于AB")。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。

简称:垂线段最短。

二.【经典例题】1.如图,能表示点到直线的距离的线段共有()A.2条B.3条 C.4条 D.5条2.如图,PA=5 cm,PB=4 cm,PC=3 cm,则点P到直线l的距离( ).A.等于3 cm B.大于3 cm,小于4 cmC.不大于3 cm D.小于3 cm3.如图所示,一辆汽车在直线形的公路AB上由A向B行驶,C,D分别是位于公路AB两侧的村庄.(1)该汽车行驶到公路AB上的某一位置C′时距离村庄C最近,行驶到D′位置时,距离村庄D最近,请在公路AB上作出C′,D′的位置(保留作图痕迹);(2)当汽车从A出发向B行驶时,在哪一段路上距离村庄C越来越远,而离村庄D越来越近?(只叙述结论,不必说明理由)三.【题库】【A】1.如图1,AC⊥BC,CD⊥AB, 垂足为D,图中共有___个直角,它们是__________________,图中线段_______的长表示点C到AB的距离,线段________的长表示点A到BC的距离.2.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.【B】1.直线m外的一点P,它到直线m上三点A,B,C的距离分别是6cm,3cm,5cm,则点P到直线m 的距离为( )A.3cmB. 5cmC. 6cmD. 不大于3cm【C】1.下列说法正确的有()①相等的角的是对顶角;②两条直线相交所成的4个角中,若有一个角是90度,那么这两条直线互相垂直;③直线外一点到这条直线的垂线段叫做点到直线的距离;④过一点有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个【D】。

初中数学《点到直线的距离》练习题 (43)

初中数学《点到直线的距离》练习题 (43)

初中数学《点到直线的距离》练习题
1.如图,是李晓松同学在运动会跳远比赛中最好的一跳,甲、乙、丙三名同学分别测得P A =5.52米,PB=5.37米,MA=5.60米,那么他的跳远成绩应该为 5.37米.
【分析】测量跳远成绩,应从踏板前沿至运动员在沙坑里留下的痕迹的最近点的距离,为运动员的跳远成绩,所以李晓松的跳远成绩为点P到踏板的距离,即点P到踏板所在的直线的垂线段的长度,据此判断出他的跳远成绩应该为多少米即可.
【解答】解:根据跳远规则,李晓松的跳远成绩为点P到踏板的距离,
∵直线外一点到直线的垂线段的长度,叫做点到直线的距离,
∴他的跳远成绩应该为线段PB的长度,
∵PB=5.37米,
∴他的跳远成绩应该为5.37米.
故答案为:5.37.
【点评】此题主要考查了点到直线的距离的含义以及特征,考查了分析推理能力的应用,解答此题的关键是要明确:直线外一点到直线的垂线段的长度,叫做点到直线的距离,特别注意是“垂线段的长度”.
1。

2022-2023学年人教版数学四年级上册点到直线的距离练习题含答案

2022-2023学年人教版数学四年级上册点到直线的距离练习题含答案

2022-2023学年人教版数学四年级上册点到直线的距离练习题学校:___________姓名:___________班级:_______________一、解答题1.下面图形中哪两条线段互相平行?哪两条线段互相垂直?二、填空题2.在长方形中有( )组对边是平行的,两条邻边互相( )。

3.在下图中,线段AB,AC,AD,AE中最短的一条线段是( )。

4.在一个长方形中,相邻两边互相( ),相对两边互相( )。

5.在连结两点的所有线中,( )最短。

6.在括号里填上相应的序号。

互相垂直的有( ),互相平行的有( )。

三、判断题7.公路上有三条小路通往笑笑家,它们的长度分别是243米、187米、205米,其中有一条小路与公路垂直,这条小路长187米。

( )8.如果两条直线平行,那么这两条直线就相等。

( )9.平面内三条直线相交最多有两个交点。

( )10.同一平面内有三条直线a、b、c,已知a⊥b,b⊥c,那么a⊥c。

( )四、选择题11.下面说法中正确的有()个。

⊥两条平行线之间的距离处处相等。

⊥两个锐角的和不一定大于直角。

⊥两个数的商是8,如果被除数不变,除数乘4,则商为32。

A.1B.2C.312.下面说法正确的是()。

A.一个正方形中有4组平行线B.过一点可以做无数条已知直线的垂线C.一组平行线之间的距离都相等D.过一点可以做无数条已知直线的平行线五、作图题13.分别过点A画BC的垂线。

14.在下图中,过P点分别画出已知直线的垂线和平行线。

15.王刚家新建了房子,要把自来水从主管道引到自己家,怎么做最节省?请画图表示。

参考答案:1.见详解【分析】根据平行线和互相垂直的定义:在同一平面内,不相交的两条直线叫做平行线;在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答。

【详解】图一:a与c、d与e互相平行,a与e、a与d、c与d、c与e互相垂直。

图二:l与k互相平行,m与l、m与k互相垂直。

垂线习题(含答案)

垂线习题(含答案)

2019年4月16日初中数学作业学校:___________:___________班级:___________考号:___________一、单选题1.如图是某跳远运动员在一次比赛中跳远时沙坑的示意图,测量成绩时先使皮尺从后脚跟的点A处开始并与起跳线1垂直于点B,然后记录AB的长度,这样做的理由是( )A.过一点可以作无数条直线B.垂线段最短C.过两点有且只有一条直线D.两点之间线段最短【答案】B【解析】【分析】根据垂线段的性质:垂线段最短进行解答即可.【详解】解:这样做的理由是根据垂线段最短.故选:B.【点睛】此题主要考查了垂线段的性质,关键是掌握性质定理.2.下列说法①一个角的余角一定是锐角;②因为∠1=∠2,所以∠1与∠2是对顶角;③过一点与已知直线平行的直线只有一条;④从直线外一点到这条直线的垂线段叫做点到直线的距离;⑤两条直线被第三条直线所截,同位角相等.其中正确的个数为()A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据互余的定义、对顶角的定义、点到直线的距离的定义、平行线的性质来逐一判断即可.【详解】解:一个角的余角一定是锐角,所以①正确;相等的角不一定是对顶角,所以②错误;过直线外一点与已知直线平行的直线只有一条,所以③错误;从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④错误;两条平行直线被第三条直线所截,同位角相等,所以⑤错误.故本题答案应为:A.【点睛】本题主要考查了互余、对顶角、点到直线的距离的定义及平行线的性质等知识点,熟练掌握数学基础知识是解题的关键.3.如图,直线AB和CD相交于O,那么图中∠DOE与∠COA 的关系是()A.对顶角B.相等C.互余D.互补【答案】C【解析】【分析】先由垂直的定义得到∠AOE=∠BOE=90°,则∠DOE+∠BOD=90°,再根据对顶角相等得到∠BOD=∠AOC,所以∠DOE+∠AOC=90°,然后根据互余的定义进行判断.【详解】解:∵OE⊥AB,∴∠AOE=∠BOE=90°,∴∠DOE+∠BOD=90°,∵∠BOD=∠AOC,∴∠DOE+∠AOC=90°,即∠DOE与∠COA互余.故选:C.【点睛】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线的性质过一点有且只有一条直线与已知直线垂直.也考查了对顶角和两角互余.4.下列说确的是( )A.直线一定比射线长B.过一点能作已知直线的一条垂线C.射线AB的端点是A和B D.角的两边越长,角度越大【答案】B【解析】【分析】根据基本概念和公理,利用排除法求解.【详解】解:A、直线和射线长都没有长度,故本选项错误;B、过一点能作已知直线的一条垂线,正确;C、射线AB的端点是A,故本选项错误;D、角的角度与其两边的长无关,错误;故选:B.【点睛】本题考查了直线、射线和线段.相关概念:直线:是点在空间沿相同或相反方向运动的轨迹.向两个方向无限延伸.过两点有且只有一条直线.射线:直线上的一点和它一旁的部分所组成的图形称为射线,可向一方无限延伸.5.如图,BD⊥AC于点D,EC⊥AB于点E,AF⊥BC点F,AF、BD、CE交于点O,则图中能表示点A到直线OC的距离的线段长是()A.AE B.AF C.AD D.OD【答案】A【解析】【分析】根据点到直线的距离的概念即可解答.【详解】解:点A到直线OC的距离的线段长是AE,故选:A.【点睛】本题考查点到直线的距离,解题的关键是理解点到直线的距离的概念.6.如图,A、B、C、D都在直线MN上,点P在直线外,若∠1=60°,∠2=90°,∠3=120°,∠4=150°,则点P到直线MN的距离是()A.P,A两点之间的距离B.P,B两点之间的距离C.P,C两点之间的距离D.P,D两点之间的距离【答案】A【解析】【分析】根据点到直线的距离的定义进行判断即可.【详解】∵∠2=90°,∴点P到直线MN的距离是P,A两点之间的距离,故选A.【点睛】本题考查了点到直线的距离,熟记概念是解题的关键.7.如图,直线AB、CD相交于点O,OE⊥AB于O,∠EOC=35°,则∠AOD的度数为A.125°B.115 C.55°D.35°【答案】A【解析】【分析】根据图形求得∠COB=∠COE+∠BOE=125°;然后由对顶角相等的性质,求∠AOD的度数.【详解】解:∵EO⊥AB,∴∠EOB=90°.又∵∠COE=35°,∴∠COB=∠COE+∠BOE=125°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=125°.故选:A.【点睛】本题考查了垂线,对顶角、邻补角等知识点.本题也可以利用邻补角的定义先求得∠BOD=55°,再由邻补角的定义求∠AOD的度数.8.下列说法中不正确的是A.两点之间的所有连线中,线段最短B.两点确定一条直线C.小于平角的角可分为锐角和钝角两类D.在同一平面,过一点有且只有一条直线与已知直线垂直【答案】C【解析】【分析】利用线段公理、确定直线的条件、角的分类及垂线的定义分别判断后即可确定正确的选项.【详解】解:A、两点之间的所有连线中,线段最短,正确;B、两点确定一条直线,正确;C、小于平角的角可分为锐角、直角和钝角三类,故此选项错误;D、在同一平面,过一点有且只有一条直线与已知直线垂直,正确.故选C.【点睛】本题主要考查了线段、直线、垂线及角的分类.9.在同一平面,下列判断中错误的是()A.过一点有且只有一条直线与已知直线垂直B.垂直于已知线段并且经过这条线段中点的垂线只有一条C.垂直于已知直线的垂线只有一条D.连接直线外一点与直线上各点的所有线段中,垂线段最短【答案】C【解析】【分析】根据垂线的定义和性质分析即可.(1)过直线上或直线外的一点,有且只有一条直线和已知直线垂直;(2)从直线外一点到这条直线上各点所连的线段中,垂直线段最短。

垂线段与点到直线的距离

垂线段与点到直线的距离

所以点A到直线BC的距离为5.
11
A
2.体育课上应该怎样测量同学们的跳远成绩?为什么? 测量身体的最后着地点到跳板前边缘 所在直线的距离
12
A
3.如图,(比例尺:1:5000),公园里有4条纵横 交错的人行道,P点是一喷泉,量出P点到4条道路的距 离.
a c
d
b P
13
A
课堂小结
通过这节课的学习活动,你有什么收获?
P' 直线外一点与直线上各点连结的所有线段中,垂线段最短
或者简单地说成: 垂线段最短.
在图中,垂线段PO的长度叫做点P到直线 l 的距离. 从直线外一点到这条直线的垂线段的长度,叫做点 到直线的距离。
9
A
当堂训练
1.如图所示,某工厂要在河岸 l 上建一个水泵房引水到C 处,问建在哪个位置上才最节省水管?为什么? 解:由C点向l作垂线CP,垂足为P,所以建在P点上最节 省水管
6
A
P
如图,设PO垂直于直线l,O为垂足, 线段PO叫作P点到直线l 的垂线段.
通过P点的其他直线交 l 于A、B、
C…,线段PA,PB,PC都不是垂线 段,称为斜线段.
A
B O Cl
7
A
(1) 如图,设P是直线l 外的一点,其细线一根,一端用图 钉固定在P点,将细线拉直使它与l 垂直,在垂足O处作一 标志,然后拉紧细线左右旋转至PA,PB等位置,比较PO, PA,PB的长度,你能从中猜出什么结论?
p
O
根据操作,我们不难猜想,所有这些线段中,垂线段PO最短. 这个猜想对吗?为什么?
(2) 用小纸片剪一个和三角形POB一样的三
P
角形盖在三角形POB上,将纸片沿直线l翻

《垂线》练习题(含答案)

《垂线》练习题(含答案)

《垂线》练习题(含答案)5.1.2垂线1.(2014·贺州)如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35°B.40°C.45°D.60°2.如图,直线AB与直线CD相交于点O,已知OE⊥AB,∠BOD=45°,则∠COE的度数是()A.125°B.135°C.145°D.155°3.过线段外⼀点,画这条线段的垂线,垂⾜在()A.这条线段上B.这条线段的端点C.这条线段的延长线上D.以上都有可能4.如图所⽰,AD⊥B D,B C⊥C D,A B=a,B C=b,则BD的范围是__________,理由是____________________.5.如图,⽥径运动会上,七年级⼆班的⼩亮同学从C点起跳,假若落地点是 D.当AB与CD__________时,他跳得最远.6.(2014·厦门)已知直线AB,CB,l在同⼀平⾯内,若AB⊥l,垂⾜为B,CB⊥l,垂⾜也为B,则符合题意的图形可以是()CD7.如图,当∠1与∠2满⾜条件__________时,OA⊥OB.8.(2014·河南改编)如图,直线AB,相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为__________.9.如图所⽰,直线AB,CD相交于点O,作∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系;(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度数.10.如图所⽰,⼀辆汽车在直线形的公路AB上由A向B⾏驶,C,D分别是位于公路AB两侧的村庄.(1)该汽车⾏驶到公路AB上的某⼀位置C′时距离村庄C最近,⾏驶到D′位置时,距离村庄D最近,请在公路AB上作出C′,D′的位置(保留作图痕迹);(2)当汽车从A出发向B⾏驶时,在哪⼀段路上距离村庄C越来越远,⽽离村庄D越来越近?(只叙述结论,不必说明理由)参考答案1.A2.B3.D4.b<BD<a垂线段最短5.垂直6.C7.∠1+∠2=90°8.55°9.(1)因为OF平分∠AOE,所以∠AOF=∠EOF=12∠AOE.1⼜因为∠DOE=∠BOD=∠BOE,211所以∠DOE+∠EOF=(∠BOE+∠AOE)=×180°=90°,22即∠FOD=90°.所以OF⊥OD.(2)设∠AOC=x°,因为∠AOC∶∠AOD=1∶5,所以∠AOD=5x°.因为∠AOC+∠AOD=180°,所以x+5x=180,x=30.所以∠DOE=∠BOD=∠AOC=30°.⼜因为∠FOD=90°,所以∠EOF=90°-30°=60°.10.(1)图略.过点C作AB的垂线,垂⾜为C′,过点D作AB的垂线,垂⾜为D′.(2)在C′D′上距离村庄C越来越远,⽽离村庄D越来越近.。

5.1.2 垂线100题(含解析)

5.1.2 垂线100题(含解析)

绝密★启用前一、单选题1.如图,能表示点到直线的距离的线段共有()A.2条B.3条C.4条D.5条【答案】D【解析】根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.2.体育课上,老师测量跳远成绩的依据是()A.垂直的定义B.两点之间线段最短C.垂线段最短D.两点确定一条直线【答案】C【解析】【分析】根据垂线段最短的性质解答.【详解】老师测量跳远成绩的依据是:垂线段最短.故选:C.【点睛】本题考查了垂线段最短在实际生活中的应用,是基础题.3.如图,OA⊥OB,∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.70°【答案】C【解析】试题分析:∵OA⊥OB,∴∠AOB=90°,所以∠2+∠1=90°,∵∠1=35°,∴∠2=55°,故选C.考点:1.余角和补角;2.垂线.4.如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A.35°B.40°C.45°D.60°【答案】A【解析】试题分析:∵OA⊥OB,∴∠AO∠=90°,即∠2+∠1=90°.∵∠1=55°,∴∠2=35°.故选A.考点:1.垂直的性质;2.数形结合思想的应用.5.如图,体育课上测量跳远成绩的依据是()A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线【答案】C【分析】根据垂线段最短即可得.【详解】体育课上测量跳远成绩是:落地时脚跟所在点到起跳线的距离,依据的是垂线段最短故选:C.【点睛】本题考查了垂线段最短的应用,掌握体育常识和垂线段公理是解题关键.6.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD【答案】B【分析】由垂线段最短可解.【详解】由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选B.【点睛】本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属于简单题.7.下列生活实例中,数学原理解释错误的一项是( )A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短【答案】A【分析】根据垂线段最短、直线和线段的性质即可得到结论.【详解】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选A .【点睛】考查了垂线段最短,直线和线段的性质,熟练掌握各性质是解题的关键.8.如图,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,已知OE ⊥AB ,∠BOD =45°,则∠COE 的度数是( )A .125°B .135°C .145°D .155° 【答案】B【解析】试题解析:,OE AB ⊥90,AOE ∴∠=又45,BOD ∠=︒45,AOC ∠=︒∴4590135.COE AOC AOE ∴∠=∠+∠=︒+︒=︒故选B.9.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短【答案】D【分析】根据垂线段的性质:垂线段最短进行解答.【详解】 要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选D.【点睛】本题考查垂线段的性质:垂线段最短.10.如图,直线AD,BE 相交于点O,CO⊥AD 于点O,OF 平分∠BOC.若∠AOB=32°,则∠AOF 的度数为A.29°B.30°C.31°D.32°【答案】A【分析】由CO⊥AD 于点O,得∠AOC=90︒,由已知∠AOB=32︒可求出∠BOC的度数,利用OF 平分∠BOC可得∠BOF=1BOC2∠,即可得∠AOF 的度数.【详解】∵CO⊥AD 于点O,∴∠AOC=90︒,∵∠AOB=32︒,∴∠BOC=122︒,∵OF 平分∠BOC,∴∠BOF=1BOC612∠=︒,∴∠AOF=∠BOF-∠AOB=61︒-3229︒=︒.故选A.【点睛】本题考查垂线,角平分线的定义.11.如图,在A、B 两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC 长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是()A.6千米B.8千米C.10千米D.14千米【答案】B【解析】【分析】根据方位角的定义,结合平行线,可得∠ABG=48°再结合∠CBE=42°,可得∠ABC=90°;再根据点到直线的距离,可以得到线段AB的长度就是点A到BC的距离,由此可以确定选项.【详解】由分析可得∵∠ABG=48°,∠CBE=42°∴∠ABC=180°-48°-42°=90°∴A到BC的距离就是线段AB的长度.∴AB=8千米【点睛】本题主要考查方位角的知识和平行线的性质以及点到直线的距离,熟练掌握该知识点是本题解题的关键.12.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.13.如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°【答案】D【解析】试题分析:∵EO⊥CD,∴∠EOD=90°,又∵∠AOE+∠EOD+∠BOD=180°,∠AOE=36°,∴∠BOD=54°,故选D.考点:垂线.14.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP长不可能是( )A.2.5 B.3 C.4 D.5【答案】A【解析】已知,在△ABC中,∠C=90°,AC=3,根据垂线段最短,可知AP的长不可小于3,当P和C重合时,AP=3,故选A.15.在△ABC中,BC=6,AC=3,过点C作CP⊥AB,垂足为P,则CP长的最大值为()A.5 B.4 C.3 D.2【答案】C【分析】根据垂线段最短得出结论.【详解】根据垂线段最短可知:PC≤3,∴CP长的最大值为3.故选C.本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.16.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°【答案】B【解析】试题分析:根据垂线的定义求出∠3,然后利用对顶角相等解答.解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选B.考点:垂线.17.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=30°,则∠BOC=()A.150°B.140°C.130°D.120°【答案】D【分析】运用垂线,邻补角的定义计算。

湘教版数学七年级下册 垂线段与点到直线的距离(新课件)

湘教版数学七年级下册  垂线段与点到直线的距离(新课件)
如图,垂线段最短.
如图,在三角形 ABC 中,∠ABC = 90°,BD⊥AC, 垂足为 D,AB = 5,BC = 12,AC = 13. 求:(1)点 A 到直线 BC 的距离;(2)点 B 到直线 AC 的距离.
解(1) 因为∠ABC = 90°, 所以 AB⊥BC, B为垂足. 所以线段 AB 即为点 A 到直线 BC 的垂线段. 因为AB = 5, 所以点 A 到直线 BC 的距离为 5.
⑧点 P 到直线 AB 的距离是线段___P_E____的长度.
2. 如图,∠C = 90°,AB = 5,AC = 4,BC = 3,则 点 A 到直线 BC 的距离为__4___,点 B 到直线 AC 的距离 为___3___,A、B 间的距离为___5___.
3. 如图所示,火车站、码头分别位于A,B 两点,直线
Q
②过点 P 作 PE⊥AB,垂足为 E, ③过点 Q 作 QF⊥AC,垂足为 F, ④连 P、Q 两点,
EA
B D
F
解:①②③④ 作图如图所示
⑤ P、Q 两点间的距离是线段__P_Q___的长度,
⑥点 Q 到直线 AB 的距离是线段__Q__D___的长度,
⑦点 Q 到直线 AC 的距离是线段___Q_F___的长度,
2
2
所以 BD = AB BC 512 60 . 所以点 B 到直线 AC 的距离为 60 .
AC
13 13
13
练习
1. 如图,在直角三角形 ABC 中,∠A = 90 °,AB = 3 cm, AC = 4 cm,BC = 5 cm,求点 A 到 BC 的距离,点 C 到 AB 的距离.
解:
简单说成:垂线段最短.
我们知道,连接两点的线段的长度

2023年中考数学一轮复习《点到直线的距离》练习题 (4)

2023年中考数学一轮复习《点到直线的距离》练习题 (4)

2023年中考数学一轮复习《点到直线的距离》练习题1.如图,在三角形ABC中,∠ABC=90°,BD⊥AC垂足为D,AC=10,AB=6,BC=8,则点B到直线AC的距离为 4.8.【分析】根据直角三角形面积的两种算法,即可解答.解:∵∠ABC=90°,BD⊥AC,BC=6,AB=8,AC=10,∴S△ABC=AB×BC=AC×BD,∴BD==4.8,故答案为:4.8.【点评】本题考查了点到直线的距离,解决本题的关键是熟记点到直线的距离.2.如图,△ABC中,∠ACB=90°,CD⊥AB于D,则点A到直线BC的距离是线段AC 的长.【分析】根据点到直线的距离是直线外的点与垂足间的线段的长度,可得答案.解:∵AC⊥BC,∴点A到BC的距离为线段AC的长度,故答案为:AC.【点评】本题考查了点到直线的距离,直线外一点到直线的垂线段的长度,叫做点到直线的距离.3.点P是直线l外一点,点A,B,C,D是直线l上的点,连接P A,PB,PC,PD.其中只有P A与l垂直,若P A=7,PB=8,PC=10,PD=14,则点P到直线l的距离是7.【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离=P A,即点P到直线l的距离=7,故答案为:7.【点评】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.4.如图,直线l外一点P到直线l的距离是线段PC的长度.【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离可得点P到直线l的距离是线段PC的长度.解:点P到直线l的距离是线段PC的长度,故答案为:PC.【点评】此题主要考查了点到直线的距离,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.。

初中数学《点到直线的距离》练习题 (10)

初中数学《点到直线的距离》练习题 (10)

初中数学《点到直线的距离》练习题
1.下列说法正确的是()
A.有且只有一条直线垂直于已知直线
B.互相垂直的直线一定相交
C.从直线外一点到这条直线的垂线段叫做点到直线的距离
D.直线L外一点P与直线L上各点连接而成的线段中最短线段的长度是3cm,则点P 到直线L的距离是3cm.
【分析】根据垂线的性质:在平面内,过一点有且只有一条直线与已知直线垂直;同一平面内的直线的位置关系;点到直线的距离定义;垂线段最短进行分析即可.
【解答】解:A、在平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;
B、互相垂直的直线一定相交,说法错误,应为同一平面内,互相垂直的直线一定相交;
C、从直线外一点到这条直线的垂线段叫做点到直线的距离,说法错误,应为从直线外一
点到这条直线的垂线段的长度叫做点到直线的距离;
D、直线L外一点P与直线L上各点连接而成的线段中最短线段的长度是3cm,则点P
到直线L的距离是3cm.说法正确;
故选:D.
【点评】此题主要考查了点到直线的距离,同一平面内的直线的位置关系,垂线的性质,垂线段的性质,关键是掌握点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.
1。

《点到直线的距离》优质课比赛说课课件PPT课件

《点到直线的距离》优质课比赛说课课件PPT课件

学生互动与反馈
小组合作
学生分组进行讨论和合作,共同完成任务或 解决问题。在讨论点到直线距离的应用时, 可以分组讨论,每组给出一种应用场景。
反馈机制
教师及时收集学生的反馈信息,调整教学策 略。可以通过提问、小组报告、课堂小测验 等方式收集学生的反馈,了解他们对点到直 线距离的理解程度,以便及时调整教学策略。
引导学生思考
点到直线的距离是几何学中的基 本概念,也是解决许多实际问题 的重要工具。
课程背景
01
介绍几何学的发展历程,强调点 到直线距离在几何学中的重要地 位。
02
说明本节课的学习将为后续解决 实际问题打下基础。
教学目标
让学生掌握点到直线 距离的定义和计算方 法。
激发学生对几何学的 兴趣和好奇心,培养 其探索精神。
参数方程形式的公式
总结词
参数方程形式的公式通过引入参数方程,将点到直线的距离 表示为参数的函数,便于分析和计算。
详细描述
参数方程形式的公式将点到直线的距离表示为参数的函数, 通过引入参数方程,将几何问题转化为代数问题。这种形式 的公式便于分析和计算,能够方便地求解距离的最值和轨迹 等问题。
不同维度的推广
距离公式的应用范围。
05 教学方法与策略CH来自PTER教学方法讲授法
教师通过口头语言系统连贯地向学生传授知识的方法。在“点到直线的距离”这一课中,教师需要详 细解释点到直线的距离公式以及其推导过程,适合采用讲授法。
讨论法
在教师的指导下,全班或小组围绕中心问题发表自己的看法,从而进行积极交流和探讨的方法。教师 可以组织学生讨论点到直线距离公式的实际应用或相关问题,加深理解。
教学策略
直观性教学策略
利用实物、模型、图表等直观教具或现 代化教学手段引导学生观察、思考、分 析,帮助他们获得丰富的感性认识,促 进对知识的理解。教师可以利用图形计 算器或几何画板展示点到直线的距离, 使学生更直观地理解。

垂线 习题 (含答案)

垂线 习题 (含答案)

2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图是某跳远运动员在一次比赛中跳远时沙坑的示意图,测量成绩时先使皮尺从后脚跟的点A处开始并与起跳线1垂直于点B,然后记录AB的长度,这样做的理由是( )A.过一点可以作无数条直线B.垂线段最短C.过两点有且只有一条直线D.两点之间线段最短【答案】B【解析】【分析】根据垂线段的性质:垂线段最短进行解答即可.【详解】解:这样做的理由是根据垂线段最短.故选:B.【点睛】此题主要考查了垂线段的性质,关键是掌握性质定理.2.下列说法①一个角的余角一定是锐角;②因为∠1=∠2,所以∠1与∠2是对顶角;③过一点与已知直线平行的直线只有一条;④从直线外一点到这条直线的垂线段叫做点到直线的距离;⑤两条直线被第三条直线所截,同位角相等.其中正确的个数为()A.1B.2C.3D.4【答案】A【解析】【分析】根据互余的定义、对顶角的定义、点到直线的距离的定义、平行线的性质来逐一判断即可.【详解】解:一个角的余角一定是锐角,所以①正确;相等的角不一定是对顶角,所以②错误;过直线外一点与已知直线平行的直线只有一条,所以③错误;从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④错误;两条平行直线被第三条直线所截,同位角相等,所以⑤错误.故本题答案应为:A.【点睛】本题主要考查了互余、对顶角、点到直线的距离的定义及平行线的性质等知识点,熟练掌握数学基础知识是解题的关键.3.如图,直线AB和CD相交于O,那么图中∠DOE与∠COA 的关系是()A.对顶角B.相等C.互余D.互补【答案】C【解析】【分析】先由垂直的定义得到∠AOE=∠BOE=90°,则∠DOE+∠BOD=90°,再根据对顶角相等得到∠BOD=∠AOC,所以∠DOE+∠AOC=90°,然后根据互余的定义进行判断.【详解】解:∵OE⊥AB,∴∠AOE=∠BOE=90°,∴∠DOE+∠BOD=90°,∵∠BOD=∠AOC,∴∠DOE+∠AOC=90°,即∠DOE与∠COA互余.故选:C.【点睛】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线的性质过一点有且只有一条直线与已知直线垂直.也考查了对顶角和两角互余.4.下列说法正确的是( )A.直线一定比射线长B.过一点能作已知直线的一条垂线C.射线AB的端点是A和B D.角的两边越长,角度越大【答案】B【解析】【分析】根据基本概念和公理,利用排除法求解.【详解】解:A、直线和射线长都没有长度,故本选项错误;B、过一点能作已知直线的一条垂线,正确;C、射线AB的端点是A,故本选项错误;D、角的角度与其两边的长无关,错误;故选:B.【点睛】本题考查了直线、射线和线段.相关概念:直线:是点在空间内沿相同或相反方向运动的轨迹.向两个方向无限延伸.过两点有且只有一条直线.射线:直线上的一点和它一旁的部分所组成的图形称为射线,可向一方无限延伸.5.如图,BD⊥AC于点D,EC⊥AB于点E,AF⊥BC点F,AF、BD、CE交于点O,则图中能表示点A到直线OC的距离的线段长是()A.AE B.AF C.AD D.OD【答案】A【解析】【分析】根据点到直线的距离的概念即可解答.【详解】解:点A到直线OC的距离的线段长是AE,故选:A.【点睛】本题考查点到直线的距离,解题的关键是理解点到直线的距离的概念.6.如图,A、B、C、D都在直线MN上,点P在直线外,若∠1=60°,∠2=90°,∠3=120°,∠4=150°,则点P到直线MN的距离是()A.P,A两点之间的距离B.P,B两点之间的距离C.P,C两点之间的距离D.P,D两点之间的距离【答案】A【解析】【分析】根据点到直线的距离的定义进行判断即可.【详解】∵∠2=90°,∴点P到直线MN的距离是P,A两点之间的距离,故选A.【点睛】本题考查了点到直线的距离,熟记概念是解题的关键.7.如图,直线AB、CD相交于点O,OE⊥AB于O,∠EOC=35°,则∠AOD的度数为A.125°B.115C.55°D.35°【答案】A【解析】【分析】根据图形求得∠COB=∠COE+∠BOE=125°;然后由对顶角相等的性质,求∠AOD的度数.【详解】解:∵EO⊥AB,∴∠EOB=90°.又∵∠COE=35°,∴∠COB=∠COE+∠BOE=125°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=125°.故选:A.【点睛】本题考查了垂线,对顶角、邻补角等知识点.本题也可以利用邻补角的定义先求得∠BOD=55°,再由邻补角的定义求∠AOD的度数.8.下列说法中不正确的是()A.两点之间的所有连线中,线段最短B.两点确定一条直线C.小于平角的角可分为锐角和钝角两类D.在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】C【解析】【分析】利用线段公理、确定直线的条件、角的分类及垂线的定义分别判断后即可确定正确的选项.【详解】解:A、两点之间的所有连线中,线段最短,正确;B、两点确定一条直线,正确;C、小于平角的角可分为锐角、直角和钝角三类,故此选项错误;D、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确.故选C.【点睛】本题主要考查了线段、直线、垂线及角的分类.9.在同一平面内,下列判断中错误的是()A.过一点有且只有一条直线与已知直线垂直B.垂直于已知线段并且经过这条线段中点的垂线只有一条C.垂直于已知直线的垂线只有一条D.连接直线外一点与直线上各点的所有线段中,垂线段最短【答案】C【解析】【分析】根据垂线的定义和性质分析即可.(1)过直线上或直线外的一点,有且只有一条直线和已知直线垂直;(2)从直线外一点到这条直线上各点所连的线段中,垂直线段最短。

高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件

高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件


6.了解和名著有关的作家作品及相关 的诗句 、名言 、成语 和歇后 语等, 能按要 求向他 人推介 某部文 学名著 。

7.能够根据所提供的有关文学名著的 相关语 言信息 推断作 品的作 者、作 品的名 称和人 物形象 ,分析 人物形 象的性 格和作 品的思 想内容 并进行 简要评 价。

8.能够由具体的阅读材料进行拓展和 迁移, 联系相 关的文 学名著 展开分 析,提 出自己 的认识 和看法 ,说出 自己阅 读文学 名著的 感受和 体验。
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件 高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
例6:已知点A(1,3),B(3,1),C(-1,0),求的ABC面积
y
A
h
C O
B
x
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
两条平行直线间的距离: 高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件
两条平行直线间的距离是指夹在两条平行直
线间的公垂线段的长.
d=
C1 - C2 A2 + B2
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
练习4 高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件
1.点A(a,6)到直线x+y+1=0的距离为4,求a的值.
2
2.求过点A(-1,2),且与原点的距离等于 2 的直线方程 .

《§5.1.2垂线》作业-有答案

《§5.1.2垂线》作业-有答案

《§5.1.2垂线》作业1.如图是某跳远运动员在一次比赛中跳远时沙坑的示意图,测量成绩时先使皮尺从后脚跟的点A 处开始并与起跳线1垂直于点B,然后记录AB的长度,这样做的理由是( )A.过一点可以作无数条直线B.垂线段最短C.过两点有且只有一条直线D.两点之间线段最短【答案】B【解析】【分析】根据垂线段的性质:垂线段最短进行解答即可.【详解】解:这样做的理由是根据垂线段最短.故选:B.【点睛】此题主要考查了垂线段的性质,关键是掌握性质定理.2.如图,BD⊥AC于点D,EC⊥AB于点E,AF⊥BC点F,AF、BD、CE交于点O,则图中能表示点A到直线OC的距离的线段长是()A.AE B.AF C.AD D.OD【答案】A【解析】【分析】根据点到直线的距离的概念即可解答.【详解】解:点A到直线OC的距离的线段长是AE,故选:A.【点睛】本题考查点到直线的距离,解题的关键是理解点到直线的距离的概念.3.如图,A、B、C、D都在直线MN上,点P在直线外,若∠1=60°,∠2=90°,∠3=120°,∠4=150°,则点P到直线MN的距离是()A.P,A两点之间的距离B.P,B两点之间的距离C.P,C两点之间的距离D.P,D两点之间的距离【答案】A【解析】【分析】根据点到直线的距离的定义进行判断即可.【详解】∵∠2=90°,∴点P到直线MN的距离是P,A两点之间的距离,故选A.【点睛】本题考查了点到直线的距离,熟记概念是解题的关键.4.如图,直线AB、CD相交于点O,OE⊥AB于O,∠EOC=35°,则∠AOD的度数为A.125°B.115 C.55°D.35°【答案】A【解析】【分析】根据图形求得∠COB=∠COE+∠BOE=125°;然后由对顶角相等的性质,求∠AOD的度数.【详解】解:∵EO⊥AB,∴∠EOB=90°.又∵∠COE=35°,∴∠COB=∠COE+∠BOE=125°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=125°.故选:A.【点睛】本题考查了垂线,对顶角、邻补角等知识点.本题也可以利用邻补角的定义先求得∠BOD=55°,再由邻补角的定义求∠AOD的度数.5.下列说法中不正确的是A.两点之间的所有连线中,线段最短B.两点确定一条直线C.小于平角的角可分为锐角和钝角两类D.在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】C【解析】【分析】利用线段公理、确定直线的条件、角的分类及垂线的定义分别判断后即可确定正确的选项.【详解】解:A、两点之间的所有连线中,线段最短,正确;B、两点确定一条直线,正确;C、小于平角的角可分为锐角、直角和钝角三类,故此选项错误;D、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确.故选C.【点睛】本题主要考查了线段、直线、垂线及角的分类.6.在同一平面内,下列判断中错误的是()A.过一点有且只有一条直线与已知直线垂直B.垂直于已知线段并且经过这条线段中点的垂线只有一条C.垂直于已知直线的垂线只有一条D.连接直线外一点与直线上各点的所有线段中,垂线段最短【答案】C【解析】【分析】根据垂线的定义和性质分析即可.(1)过直线上或直线外的一点,有且只有一条直线和已知直线垂直;(2)从直线外一点到这条直线上各点所连的线段中,垂直线段最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档