2019届浙江省杭州市高考命题比赛模拟(二十一)数学试卷(PDF版)
浙江省杭州市2019届高三高考模拟卷模拟数学试卷19附答案
2019年浙江省高考模拟试卷 数学卷本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共40分)注意事项:1考生将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.选择题用2B 铅笔把答题纸上对应题目的答案标号涂黑,答在试题卷上无效。
参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式 ()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高 ()()()P A B P A P B ⋅=⋅ 棱锥的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 13V S h =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π= ()1213V h S S =球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高一、选择题:(本大题共10小题,每小题4分,共40分。
)1、(原创)已知集合R U =,集合},2{R x y y M x ∈==,集合)}3lg({x y x N -==,则()=N M C U ( )(考点:集合运算)A .{}3≥y y B. {}0≤y y C. {}30<<y y D. ∅2、(原创)已知实数,,x y 则“2≥xy ”是“422≥+y x ”的( )(考点:充分必要条件) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3、(引用2017年十二校联考题)某几何体的三视图如图所示, 其中俯视图是半圆,则该几何体的表面积为( )(考点:三视图的表面积)A .3π2+B .πC .3π2D .5π24.已知m,n 是两条不同直线,βα,是两个不同平面,以下命题正确的是( ) (考点:点线面位置关系)(A )若,,//αα⊂n m 则n m // (B) 若,,n m m ⊥=βα 则α⊥n (C )若,//,//ααn m 则n m // (D) 若n m m =⊂βαβα ,,//则n m //5、(15年海宁月考改编)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+-≥-a y y x y x 41,目标函数y x z 23-=的最小值为4-,则a 的值是( )(考点:线性规划)A .1-B .0C .1D .126、(原创)为了得到函数sin 2y x =的图像,只需把cos 2y x =的图像( )(考点:三角函数的图像变换)(A )向左平移4π (B )向右平移4π(C )向左平移2π (D )向左平移2π7、(改编)如图,F 1,F 2分别是双曲线2222:1x y C a b-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交于点M ,若|MF 2|=|F 1F 2|,则C 的离心率是( )(考点:圆锥曲线离心率)8、(原创)现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( ) (考点:排列组合) A .27种B .35种C .29种D .125种9、(引用自诸暨中学联考题)若正实数y x ,满足xy y x 442=++,且不等式03422)2(2≥-+++xy a a y x 恒成立,则实数a 的取值范围是( ) (考点:不等式)A .]25,3[- B .),25[]3,(+∞--∞ C .]25,3(- D .),25(]3,(+∞--∞10、(改编)已知2*11()2,()(),()(())(2,)n n f x x x c f x f x f x f f x n n N -=-+==≥∈,若函数()n y f x x =-不存在零点,则c 的取值范围是( ) (考点:函数与零点) A. 14c <B.34c ≥C.94c >D.94c ≤非选择题部分(共110分)二、填空题:( 本大题共7小题, 单空题每题4分,多空题每题6分,共36分。
浙江省杭州市2019届高考数学命题比赛模拟试题4Word版含答案
浙江省杭州市2019届高考数学命题比赛模拟试题4试卷命题双向细目表2019年高考模拟试卷数学卷本试卷分卷I 和卷II 两部分.考试时间120分钟.满分150分.请考生按规定用笔将所有试题的答案涂、写在答题卡上。
选择题部分 (共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只 有一项是符合题目要求的。
1.(原创)若集合},0x {N x a x A ∈<<=有且只有一个元素,则实数a 的取值范围为( )A .(1,2)B. [1,2]C. [1,2)D. (1,2]2.(原创)已知复数1z 对应复平面上的点(1,1)-,复数2z 满足122z z =-,则2|2i |z +=( )A.2 C.103.(原创)“3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4. (改编)函数)0,0,0(cos sin )(≠≠≠+=ϖϖϖb a x b x a x f ,则)(x fA .是非奇非偶函数B .奇偶性与b a ,有关C .奇偶性与ϖ有关D .奇偶性与b a ,无关3π34RV =5.(原创)函数2ln )(x xx f =的图象大致是 ( )A. B. C. D.6.(原创)已知不等式组⎪⎩⎪⎨⎧≤--≤-+≥022041y x y x x ,则11+-+=y x x y z 的取值范围是 ( ) A .]41[,B .]141[, C .]4150[,D .]4172[,7.(改编)P 是双曲线116252=-yx 在第一象限....上的动点,12,F F 分别是双曲线的左右焦点,M 是12F PF ∠的平分线上的一点,且MP M F ⊥2,则OM 的值是( )A .4 B.5 C.8 D.108. (改编)已知平面上的两个向量和a =b =,且221a b +=,0=⋅,若向量),(R ∈+=μλμλ,且()()222221214a b λμ-+-=,则的最大值为( )A .1B .23C .2D .49.(改编)已知函数()222,0,e e ,0,x x x a x f x ax x ⎧++<⎪=⎨-+-≥⎪⎩恰有两个零点,则实数a 的取值范围是( )A.)(1,0B.)(+∞,eC.)()(+∞⋃,e 1,0 D.)()(+∞⋃,e 1,0210.(改编)如图1,在平面四边形ABCD 中,1AB =,BC =,AC CD ⊥,CD =,当ABC ∠变化时,当对角线BD 取最大值时,如图2,将ABC ∆沿AC 折起,在将ABC ∆开始折起到与平面ACD 重合的过程中,直线AB 与CD 所成角的余弦值的取值范围是 ( )ABD图1 图2A .]6426,0[+B . ]1,6426[+ C .]1,6426[- D .]6426,0[-第Ⅱ卷(共110分)二、填空题(本大题共7小题,共36分,将答案填在答题纸上)11.(原创)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知ABC △的顶点()2,0A ,()0,4B ,AC BC =,则ABC △的欧拉线方程为12.(原创)若9922109)1()1()1(1-+⋯⋯+-+-+=+x a x a x a a x )(,则7a = , =+⋯⋯+++9321932a a a a13.(改编)已知函数()1122f x x x m =--的最大值为4,则实数 m = ;若0,02m m x ><<222x x +-的最小值为 14. 例3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )15.(改编)已知数列}{a n 满足13)1()2(,2a 11++=++++=+n n n a n a n n ,则=3a ,数列}{a n 的通项公式=n a16.(改编)6辆不同的汽车需停在并排连续的6个车位上,则甲车不能停在首尾两个车位上,且甲车和乙、丙两车中至少一辆相邻的概率是 .17. (改编)函数)1(+=x f y 的图像关于直线1-=x 对称,且)(x f y =在),0[+∞上单调递减,若]3,1[∈x 时,不等式)23(ln )3(2)3ln 2(mx x f f x mx f -+-≥--恒成立,则实数m 的取值范围为 .三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分14分)(改编)ABC∆的内角A,B,C的对边分别为a,b,c已知222a c b+=,cos0A B+=.(1)求cos C;(2)若ABC∆的面积52S=,求b.(改编)已知梯形BFEC如图(1)所示,其中45==BFEC,,四边形是边长为2的正方形,现沿进AD行折叠,使得平面⊥EDAF平面ABCD,得到如图(2)所示的几何体(1)求证:平面⊥AEC平面BDE(2)已知点H在线段上BD,且//AH平面BEF,求FH与平面BEF所成角的正弦值。
浙江省杭州市2019届高考数学命题比赛模拟试题122019051601165
浙江省杭州市2019届高考数学命题比赛模拟试题12试卷命题双向细目表说明:题型及考点分布按照《2019考试说明》参考样卷。
绝密★启用前2019年普通高等学校招生全数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=L 台体的体积公式11221()3V S S S S h =++其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. (原创)已知集合{}1,3,4A =,{}2,4B =,{}1,2,5C =,则()A B C =U I ( ){}.2A {}.1,2B {}.1,2,4C {}.1,2,4,5D(命题意图:考察集合的关系与集合的运算,属容易题) 【预设难度系数】0.85 2. (原创)若2z i =+,则23izz =-( ) .1A .1B - .C i .D i -(命题意图:考察复数的概念及运算,属容易题) 【预设难度系数】0.853. (改编自2017浙江镇海中学模拟卷二)已知抛物线2:2C y x =-,则其准线方程为( )1.2A x =1.2B x =- 1.8C y = 1.8D y =- (命题意图:考察抛物线的简单几何性质,属容易题) 【预设难度系数】0.84. (原创)设l 是平面α外的一条直线,m 是平面α内的一条直线,则“m l ⊥”是“α⊥l ”的( ).A 充要条件 .B 充分不必要条件.C 必要不充分条件 .D 既不充分又不必要条件(命题意图:考察空间线面的位置关系,充分条件,必要条件,属容易题) 【预设难度系数】0.85. (原创)随机变量X 的取值为0,1,2,若()105P X ==,()1E X =,则()D X =( ) 1.5A 2.5B 5.5C 10.5D (命题意图:考察离散型随机变量的均值与方差问题,属容易题) 【预设难度系数】0.856. 某几何体的三视图如图所示,则该几何体的体积为( )1.3A π+2.3B π+ 1.23C π+ 2.23D π+ (命题意图:考察三视图,能画出直观图,求几何体的体积,属中档题) 【预设难度系数】0.77. (改编自网络)函数()(1cos )sin f x x x =-在[],ππ-上的图像大致为( )(命题意图:考察函数的图像,属中档题) 【预设难度系数】0.658. (改编自2017浙江测试卷)在三棱锥D ABC -中,记二面角C AB D --的平面角为θ,直线DA 与平面ABC 所成的角为1θ,直线DA 与BC 所成的角为2θ,则( )1.A θθ≥ 1.B θθ≤2.C θθ≥ 2.D θθ≤(命题意图:考察立体几何线线角、线面角问题,属中档偏难题) 【预设难度系数】0.559. (改编自镇海中学交流卷)已知2a b c ===r r r ,且0a b ⋅=r r ,()()0a c b c -⋅-≤r r r r ,则a b c ++r r r ( ).25A -有最小值.2B +.52C +有最小值,最大值.1D -有最小值(命题意图:考察平面向量的综合应用,属较难题) 【预设难度系数】0.55 10. 已知函数()23,1,2, 1.x x x x x x f x -+≤+>⎧=⎨⎩设a R ∈,若关于x 的不等式()2x f x a≥+在R 上恒成立,则a 的取值范围是( )47.,216A ⎡⎤-⎢⎥⎣⎦ 4739.,1616B ⎡⎤-⎢⎥⎣⎦.C ⎡⎤-⎣⎦39.16D ⎡⎤-⎢⎥⎣⎦(命题意图:考察分段函数的应用及不等式恒成立问题,属较难题) 【预设难度系数】0.5非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2019届浙江省杭州市高考命题比赛模拟(二)数学试卷
2019年浙江省普通高校招生考试模拟卷数学卷双向细目表2019年浙江省普通高校招生考试模拟卷数学试题卷本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至3页;非选择题部分3至6页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式: 如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )= P (A )+ P (B )V =Sh如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 P (A •B )= P (A )•P (B )锥体的体积公式如果事件A 在一次试验中发生的概率为p , V =13Sh那么n 次独立重复试验中事件A 恰好发生 其中S 表示锥体的底面积,h 表示锥体的高. k 次的概率球的表面积公式P n (k )=(1)(0,1,2,,)k k n k n C p p k n --= S =4πR 2 台体的体积公式球的体积公式V =13(S 1S 2) h V =43πR 3其中S 1、S 2表示台体的上、下底面积, 其中R 表示球的半径 h 表示棱台的高.选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创题)已知集合{}3P x x =->,104x Q xx ⎧-⎫=≤⎨⎬+⎩⎭,则()R C P Q = A.(]3,1-B.(],4-∞-C.(]1-∞,D.[)1+∞,高三数学试题卷第1页,共6页。
浙江省杭州市2019届高考数学命题比赛模拟试题1
浙江省杭州市2019届高考数学命题比赛模拟试题1 本试卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分,考试时间120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题卷规定的位置上。
2.答题前,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)已知集合,,那么()A. B. C.D.2.(原创)设,,则的值是() A.B.C.D.3.(原创)若复数(是虚数单位),则()A. B. C. D.4.(摘抄)已知是等比数列的公比,则“”是“数列是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.(摘抄)已知为异面直线,为两个不同平面,,,且直线满足,,,,则()A.且 B.且C.与相交,且交线垂直于 D.与相交,且交线平行于6.(改编)若正数满足,则的最小值为()A.4 B.6 C.9 D.167.(原创)已知是双曲线的左、右焦点,若点关于直线的对称点也在双曲线上,则该双曲线的离心率为()A. B. C. D.8.(原创)已知关于的方程有解,其中不共线,则参数的解的集合为()A.或 B. C. D.9.(摘抄)已知为抛物线的焦点,为抛物线上三点,当时,称为“和谐三角形”,则“和谐三角形”有()A.0个B.1个C.3个D.无数个10.(摘抄)已知函数,满足且,,则当时,()A.B.C.D.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(原创)二项式的展开式中,(1)12.(摘抄)正四面体(即各条棱长均相等的三棱锥)的棱长为6,某学生画出该正四面体的三视图如下,其中有一个视图是错误的,则该视图修改正确后对应图形的面积为______,该四面体的体积为_________.13.(原创)若将向量围绕起点按逆时针方向旋转,得到向量,则向量的坐标为_____,与共线的单位向量_____.14.(原创)在这个自然数中,任取个数,(1)这个数中恰有个是偶数的概率是;(用数字作答)(2)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是).则随机变量的数学期望.15.(原创)若变量满足:,且满足:,则参数的取值范围为______________.16.(原创)若点为的重心,且,则的最大值为_________________.17.(改编)若存在,使得方程有三个不等的实数根,则实数的取值范围是.三、解答题:本大题共5小题,满分74分,解答须写出文字说明、证明过程或演算步骤.18.(本小题满分14分)(原创)在中,内角的对边分别为,且,.EC1AA(Ⅰ)求角的大小;(Ⅱ)设边的中点为,,求的面积.19.(本小题满分15分)(原创)正方体的棱长为1,是边在正方体内部或正方体的面上,且满足:面(Ⅰ)求动点轨迹在正方体内形成的平面区域的面积;(Ⅱ)设直线与动点轨迹所在平面所成的角记为,求.20.(本小题满分15分)(原创)已知数列是等差数列,,,数列的前项和为,且.(Ⅰ)求数列、的通项公式;(Ⅱ)记,若数列的前项和为,证明:.21.(本小题满分15分)(原创)已知椭圆的左右焦点分别为,,直线过椭圆的右焦点与椭圆交于两点.(Ⅰ)当直线的斜率为1,点为椭圆上的动点,满足条件的使得的面积的点有几个,并说明理由;(Ⅱ)的内切圆的面积是否存在最大值,若存在,求出这个最大值及此直线的方程,若不存在,请说明理由.22.(本小题满分15分)(摘抄)已知函数,且曲线在点处的切线方程为.(Ⅰ)求实数,的值;(Ⅱ)函数有两个不同的零点,,求证:.2019年高考模拟试卷数学卷答题卷本次考试时间120分钟,满分150分,所有试题均答在答题卷上一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.所以的数学期望为.15.【命题意图】本题考查可行域及直线恒过定点,属于中档题.【解题思路】,所以直线恒过定点,画出可行域,由题意知,直线恒过定点点及可行域内一点,直线方程可改写成:,(1)由图知,当斜率不存在时,符合题意;(2)当斜率存在时,;综上:。
浙江省杭州市2019届高考数学命题比赛模拟试题152019051601168
浙江省杭州市2019届高考数学命题比赛模拟试题15本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式其中S 表示棱锥的底面面积,h 表示棱锥的高343V R =π台体的体积公式其中R 表示球的半径 1()3a b V h S S =柱体的体积公式其中S a ,S b 分别表示台体的上、下底面积V =Sh h 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[原创] 设集合{}{}212,log 2A x x B x x =-≤=<,则A B ⋃=( ) A. []1,3-B. [)1,4-C. (]0,3D. (),4-∞2.[原创] 已知R b R a ∈∈,,则“b a >”是“ba 11<”成立的( )条件 A.充分不必要 B.必要不充分 C.充分必要 D.既不充分也不必要3.[原创] 已知i 为虚数单位,则复数i+12的模等于( ) A.2 B.1 C.2 D.22 4.[改编自2018全国高考III ] 中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B.C. D. (第4题图)5.[原创] 为了得到函数x x y 3cos -3sin =的图象,可将函数x y 3sin 2=的图象( )A. 左平移4π 个单位 B. 向右平移4π个单位 C. 向左平移12π 个单位 D. 向右平移12π个单位6. [原创] 若y x ,满足约束条件247,239,211.x y x y x -≥-⎧⎪+≥⎨⎪≤⎩则1010z x y =+的最大值是( )A.80B.85C.90D.1007.[原创] 已知非零向量,满足•=0,||=3,且与+的夹角为,则||=( )A.6B.3C.2D.38.[改编自优化方案] 过双曲线22221x y a b-=(0,0)a b >>左焦点(,0)(0)F c c ->,作圆2224a x y +=的切线,切点为E ,延长FE 交双曲线右支于点P ,若2OP OE OF =-,则双曲线的离心率为 ( )A B9.[改编自步步高] 如图ABC Rt ∆中,90=∠ACB ,直线过点A 且垂直于平面ABC ,动点l P ∈,当点P 逐渐远离点A 时,PBC ∠的大小( )A .不变B .变小C .变大D .先变大,再变小(第9题图)已知数列 ]全国数学联2018改编10.[赛自}{n a 中,,,3,2,1,2,711⋅⋅⋅=+==+n a a a a n nn 满足20194>n a 的时候,n 可以取的整数为( )A. 9B.10C.11D.12非选择部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
浙江省杭州市2019届高考数学命题比赛模拟试题112019051601164
浙江省杭州市2019届高考数学命题比赛模拟试题11试卷命题双向细目表说明:题型及考点分布按照《2019考试说明》参考样卷。
绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、(原创)设⎭⎬⎫⎩⎨⎧∈<<=Z x x x A ,521|,{}a x x B >=|,若B A ⊆,则实数a 的取值范围是( )A. 1<aB. 1≤aC.21<a D. 21≤a (命题意图:考查集合的关系与集合的运算,属容易题) 【预设难度系数】0.85 【答案】A2、(原创) “216a >”是“4a >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 (命题意图:考查充要条件的性质,属容易题) 【预设难度系数】0.85 【答案】B3、(改编) 已知函数x x f y +=)(是偶函数,且=-=)2(,1)2(f f 则( )A 、-1B 、1C 、-5D 、5【根据2017年浙江省高考数学样卷改编】(命题意图:考查函数性质,属容易题) 【预设难度系数】0.7 【答案】D4、(原创)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( ) .A.23π B. 3π C. 29π D. 169π(命题意图:考查三视图,能画出直观图,求几何体的体积,属容易题) 【预设难度系数】0.7 【答案】D5、(原创) 已知函数()cos (,0)4f x x x πωω⎛⎫=+∈> ⎪⎝⎭R 的最小正周期为π,为了得到函数()sing x x ω=的图象,只要将()y f x =的图象( )A. 向左平移34π个单位长度 B. 向右平移34π个单位长度 C. 向左平移38π个单位长度 D. 向右平移38π个单位长度 【根据2016年浙江省高考卷改编】(命题意图:考查此题主要考察三角函数性质,属中档题。
浙江省杭州市2019届高考数学命题比赛模拟试题142019051601167
浙江省杭州市2019届高考数学命题比赛模拟试题14本试卷分为选择题和非选择题两部分。
考试时间120分种。
请考生按规定用笔将所有试题的答案标号涂、写在答题纸上。
参考公式:球的表面积公式 柱体的体积公式24πS R = V=Sh球的体积公式 其中S 表示锥体的底面积,h 表示锥体的高34π3V R =台体的体积公式: 其中R 表示球的半径 V=31h (2211S S S S ++) 棱锥的体积公式 其中21,s s 分别表示台体的上、下底面积,V=31Sh h 表示台体的高 其中S 表示锥体的底面积, 如果事件A B ,互斥,那么 h 表示锥体的高 ()()()P A B P A P B +=+第I 卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的。
请在答题卡指定区域内作答。
1.【原创】在复平面内,复数2)21(21i iiz -+-=对应的点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.【原创】盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .恰有2只是好的C .4只全是好的D .至多有2只是坏的3.【原创】在243)1(xx -的展开式中,x 的幂指数是整数的项共有 ( ) A .3项 B .4项 C .5项 D .6项4.【原创】已知集合{}034|2≤+-=x x x A ,{}a x x B ≥=|,则下列选项中不是φ=B A I 的充分条件的是 ( ) A .4≥aB .3≥aC .3>aD .43<<a5.一个多面体的三视图如图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该多面体的表面积为 ( ) A .246+ B .224+ C .244+D .26.【原创】将函数f (x )=)23sin(x +π(cos x -2sin x )+sin 2x 的图象向左平移π8个单位长度后得到函数g (x ),则g (x )具有性质 ( )A .在(0,π4)上单调递增,为奇函数B .周期为π,图象关于(π4,0)对称C .最大值为2,图象关于直线x =π2对称D .在(-π2,0)上单调递增,为偶函数7.经过双曲线=1(a >b >0)的右焦点为F 作该双曲线一条渐近线的垂线与两条渐近线相交于M ,N 两点,若O 是坐标原点,△OMN 的面积是,则该双曲线的离心率是( )A .2B .C .D .8.【原创】设等差数列{}n a 的前n 项和为n S ,若786S S S <<,则满足01<•+n n S S 的正整数n 的值为 ( )A .12B .13C .14D .159.已知f (x )=x (1+lnx ),若k ∈Z ,且k (x ﹣2)<f (x )对任意x >2恒成立,则k 的最大值为 ( )A .3B .4C .5D .610.【原创】已知C B A ,,三点共线,O 为平面直角坐标系原点,且满足m m 34+=,R m ∈,若函数a mxbmx x f ++=)(,),[+∞∈a x ,其中R b a ∈>,0,记),(b a m 为)(x f 的最小值,则当2),(=b a m 时,b 的取值范围为( )A.0>b B .0<b C .1>b D .1<b第II 卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分。
浙江省杭州市2019届高考数学命题比赛模拟试卷十一PDF.pdf
2019 年高考模拟试卷数学卷命题双向细目表
题序 考查内容
分值
1
集合运算
4
2
复数及其运算
4
3
充分条质
4
5
数列及其前 n 项和性质
4
6
函数的图像与性质
4
7
线性规划
4
8
导数定义及其应用
高三教学 试题卷 第 2 页(共 13 页)
微信公众号:“免费下载站”第一时间更新初高中所有大型考试的试题和答案,免费提供下载
2019 年高考模拟试卷数学卷
注意事项: 1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷的密封线内填写学校、
班级、学号、姓名; 2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 6 页,全卷满分 150 分,考试
微信公众号:“免费下载站”第一时间更新初高中所有大型考试的试题和答案,免费提供下载
第Ⅰ卷
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只 有一项是符合题目 要求的。
1.(2019.01 台州一模改编)设集合 A {1, 2,3, 4}, B {x N| 9-x2 0} ,则 A B
3
棱柱的体积公式 V Sh ,其中 S 表示棱柱的底面
积, h 表示棱柱的高.
棱锥的体积公式V 1 Sh ,其中 S 表示棱锥的底面 3
积, h 表示棱锥的高.
棱台的体积公式 V
1 3
h( S1
S1S2 S2 ) ,其中
S1 , S2 分别表示棱台的上、下底面积,h 表示棱台的
浙江省杭州市2019届高考数学命题比赛模拟试题92019051601180
浙江省杭州市2019届高考数学命题比赛模拟试题9考生须知:1. 本卷满分150分,考试时间120分钟;2. 答题前务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的地方。
3. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范答题,在本试卷纸上答题一律无效。
4. 考试结束后,只需上交答题卷。
参考公式:如果事件,A B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+V Sh =如果事件,A B 相互独立,那么其中S 表示柱体的底面积,h 表示柱体的高 ()()()P AB P A P B =锥体的体积公式如果事件A 在一次试验中发生的概率为p ,那么n 13V Sh =次独立重复试验中事件A 恰好发生k 次的概率为其中S 表示锥体的底面积,h 表示锥体的高()()10,1,2),,(k k n k n n P k C p p k n -==⋯- 球的表面积公式台体的体积公式 24S R =π121()3V S S h =球的体积公式 其中12,S S 分别表示台体的上、下底面积,343V R =πh 表示为台体的高其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)已知U=R ,集合⎭⎬⎫⎩⎨⎧<=23|x x A ,集合{}1|>=y y B A.⎪⎭⎫⎢⎣⎡+∞,23 B.(]⎪⎭⎫⎢⎣⎡+∞⋃∞-,231, C.⎪⎭⎫ ⎝⎛23,1 D.⎪⎭⎫ ⎝⎛∞-23,(命题意图:考查集合的含义及运算,属容易题)2.(原创)已知i 是虚数单位,若iiz 213-+=,则z 的共轭复数z 等于 A.371i - B.371i + C.571i - D.571i +(命题意图:共轭复数的概念,属容易题)3.(原创)若双曲线122=-y mx 的焦距为4,则其渐近线方程为 A. x y 33±= B. x y 3±= C. x y 55±= D.x y 5±= (命题意图:考查双曲线性质,属容易题)4.(原创)已知α,β是两个相交平面,其中α⊂l ,则 A.β内一定能找到与l 平行的直线 B.β内一定能找到与l 垂直的直线C.若β内有一条直线与l 平行,则该直线与α平行D.若β内有无数条直线与l 垂直,则β与α垂直(命题意图:直线与平面间垂直、平行的概念,属容易题)5.(原创)等差数列}{n a 的公差为d ,01≠a ,n S 为数列}{n a 的前n 项和,则“0=d ”是“∈nnS S 2Z ”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 (命题意图:充分必要条件的判定,属容易题) 6.(原创)随机变量ζ的分布列如下:1 其中a ,b ,c 成等差数列,若()9=ζE ,则()ζD = A. 811 B.92 C. 98 D.8180 (命题意图:考查离散型随机变量的分布、数学期望和方差,属中档题) 7.(原创)若存在正实数y ,使得yx x y xy 451+=-,则实数x 的最大值为 A.51 B. 45C. 1D. 4 (命题意图:考查不等式和函数性质,属中档题)8.(原创)从集合{}F E D C B A ,,,,,和{}9,8,7,6,5,4,3,2,1中各任取2个元素排成一排(字母和数字均不能重复)。
2019年杭州市高考数学命题比赛模拟卷一及答案解析
2019年杭州市高考数学命题比赛模拟卷一本试卷满分150分,考试时间120分钟。
参考公式:若事件,A B 互斥,则()()()P A B P A P B +=+棱柱的体积公式V Sh=若事件,A B 相互独立,则()()()P A B P A P B ⋅=⋅其中S 表示棱柱的底面积,h 表示棱柱的高若事件A 在一次试验中发生的概率是p ,则n 次棱锥的体积公式13V Sh=独立重复试验中事件A 恰好发生k 次的概率其中S 表示棱锥的底面积,h 表示棱锥的高()(1),(0,1,2,,)k kn k n n P k C p p k n -=-= 球的表面积公式台体的体积公式24S R π=)(312211S S S S h V ++=球的体积公式其中S 1,S 2分别表示棱台的上、下底面积,h 表示334R V π=棱台的高其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)已知集合}215412{≤-=x x M ,}1{x y x N -==,那么=N M ()A.}12{<≤-x x B.}12{≤≤-x x C.}2{-<x x D.}2{≤x x 2.(原创)设ααsin 2sin =,)0,2(πα-∈,则tan 2α的值是()A.3B.3-C.33D.33-3.(原创)若复数i z +=1(i 是虚数单位),则()A.01222=--z z B.01222=+-z z C.0222=--z z D.0222=+-z z 4.(摘抄)已知q 是等比数列}{n a 的公比,则“1>q ”是“数列}{n a 是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(摘抄)已知n m ,为异面直线,βα,为两个不同平面,α⊥m ,β⊥n ,且直线l 满足m l ⊥,n l ⊥,α⊄l ,β⊄l ,则()A.βα//且α//l B.βα⊥且β⊥l C.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l6.(改编)若正数,a b 满足111a b +=,则14111a b +=--的最小值为()A.4B.6C.9D.167.(原创)已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,若点2F 关于直线x a by =的对称点M 也在双曲线上,则该双曲线的离心率为()A.25B.2C.5D.28.(原创)已知关于x 的方程2(2)0ax a b x mb +-+= 有解,其中,a b不共线,则参数m 的解的集合为()A.{0}或{2}- B.{0,2}- C.{|20}m m -≤≤ D.Φ9.(摘抄)已知F 为抛物线2:4C y x =的焦点,,,A B C 为抛物线C 上三点,当0FA FB FC ++=时,称ABC∆为“和谐三角形”,则“和谐三角形”有()A.0个B.1个C.3个D.无数个10.(摘抄)已知函数2()f x x ax b =++,,m n 满足m n <且()f m n =,()f n m =,则当m x n <<时,()A.()f x x m n+<+B.()f x x m n+>+C.()0f x x -<D.()0f x x ->非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(原创)二项式61(2)2x x-的展开式中,(1)常数项是;(2)所有项的系数和是.12.(摘抄)正四面体(即各条棱长均相等的三棱锥)的棱长为6,某学生画出该正四面体的三视图如下,其中有一个视图是错误的,则该视图修改正确后对应图形的面积为______,该四面体的体积为_________.13.(原创)若将向量3)a =围绕起点按逆时针方向旋转23π,得到向量,则向量的坐标为_____,与共线的单位向量=_____.14.(原创)在1,2,3,,9 这9个自然数中,任取3个数,(1)这3个数中恰有1个是偶数的概率是;(用数字作答)(2)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).则随机变量ξ的数学期望E ξ=.15.(原创)若变量,x y 满足:2202403110x y x y x y -+≤⎧⎪+-≥⎨⎪-+≥⎩,且满足:(1)(2)0t x t y t ++++=,则参数t 的取值范围为______________.16.(原创)若点G 为ABC ∆的重心,且BG AG ⊥,则C sin 的最大值为_________________.17.(改编)若存在[]1,2a ∈,使得方程22()()x x a a a t -=+有三个不等的实数根,则实数t 的取值范围是.D 1C 1B 1A 1DA三、解答题:本大题共5小题,满分74分,解答须写出文字说明、证明过程或演算步骤.18.(本小题满分14分)(原创)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且23sin 5a B c =,11cos 14B =.(Ⅰ)求角A 的大小;(Ⅱ)设BC 边的中点为D ,192AD =,求ABC ∆的面积.19.(本小题满分15分)(原创)正方体1111ABCD A B C D -的棱长为1,E 是边11D C 的中点,点F 在正方体内部或正方体的面上,且满足://EF 面11A BC 。
浙江省杭州市2019届高考数学命题比赛模拟试题22019051601172
二项式 解三角形,平面向量
函数与方程 排列组合,概率
绝对值 三角函数 立体几何
数列 解析几何
导数
考试要求 了解 理解 掌握 应用
◆★ ◆★ ◆★ ◆★ ◆★ ◆★ ◆★ ◆★● ◆★● ◆★●■ ◆★ ◆★ ◆★ ◆★ ◆★● ◆★● ◆★●■ ◆★ ◆★ ◆★● ◆★●■ ◆★●■
B. 79 3
C. 76 3
【命题意图】本题考查学生的空间想象能力、抽象概括能力.
非选择高题三部数分学(试共题卷11第03分页),共 6 页
D. 316 3
二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.
11.(原创题)计算: log3
3 3
, 3 log9 4log3 4
.
8
【命题意图】本题考查含有绝对值不等式的解法,以及数形结合、等价转化、分类讨论等数
学思想和能力.
高三数学试题卷第 4 页,共 6 页
三、解答题:本大题共 5 小题,共 74 分.解答应写出文字说明、证明过程或演算步骤. 18.(原创题)(本题满分 14 分)已知角 的顶点与原点 O 重合,始边与 x 轴的非负半轴重合,
选择题
1 [A] [B] [C] [D] 2 [A] [B] [C] [D] 3 [A] [B] [C] [D] 4 [A] [B] [C] [D] 5 [A] [B] [C] [D]
x y m
的平面
区域的面积为 1 ,则 m 6
A. 13 6
B. 13 3
C. 3
浙江省杭州市2019届高考数学命题比赛模拟试题
浙江省杭州市高考数学命题比赛模拟试题第Ⅰ卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019.01台州一模改编)设集合{1,2,3,4}A =,{B x =∈N 2|9-0}x ≥,则A B =A .{1,2,3,4}B .{3,2,1,0,1,2,3,4}---C .{1,2,3}D .{1,2}2.(2019.01嘉兴一模改编)已知复数112i z =-,22i z =+(i 是虚数单位),则12z z ⋅=A .i 3B .i 34+-C .i 34+D .i 34-3.(2019.01宁波一模)已知平面α,直线,m n 满足,,m n αα⊄⊂,则"//"m n 是"//"m α的( ).A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件4.(2019.01上虞一模改编)已知双曲线22221y x a b-=的一条渐近线方程为x y 3=,则此双曲线的离心率是A.3B C . 2 D .35.(2019.01绍兴一中模拟改编)设为数列的前项和,,,若4096k a =,则=A .B .C .D . 6.(2019.01浙南联考)函数sin xy x=的图象可能是A. B.C. D.7.(2018.01台州一模)已知实数,x y 满足不等式组0,20,30,x x y x y ì³ïïï-?íïï+-?ïïî则22(1)(2)x y -++的取值范围是A .[1,5] B. C .[5,25] D .[5,26]8.(2018.03温州二模)已知函数()f x 与()f x '的图象如图所示,则()()xe g xf x =( )A.在区间()01,上是减函数B.在区间14(,)上是减函数C. 在区间413(,)上是减函数D.在区间443(,)上是减函数9.(2018.04浙江高考模拟)已知841++=+yx y x (0,>y x ),则y x +的最小值为 A .35 B .9 C .264+ D . 1010.(暨阳联谊学校2018届高三4月联考)()f x 是定义在R 上的函数,若(2)504f =,对任意x R ∈,满足:(4)()2(1)f x f x x +-≤+及(12)()6(5)f x f x x +-≥+,则(2018)(2)f f 的值为( )A 、2017B 、2018C 、2019D 、2020第Ⅱ卷二、填空题(本大题共7小题,多空题6分,单空题4分,共36分)11. (2017浙江名校协作体)一个棱长为2的正方体被一个平面截去一部分后,剩下部分的三视图如下图所示,则该几何体的表面积为 ,体积为 .12.(2018.05宁波模拟)已知直线:1l mx y -=.若直线l 与直线10x my --=平行,则m 的值为 ;动直线l 被圆222240x x y ++-=截得弦长的最小值为 .13.(2018.05镇海中学模拟改编)随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)= ,方差取最大值时a 的值是 . 14.(2017.12七彩阳光期中模拟改编)若5542433324251066)1()1()1()1()1()1(x x a x x a x x a x x a x x a a x x ++++++++++=++,且)5,4,3,2,1,0(=i a i 是常数,则=0a _______;24a a +=________.15.(2018绿色联盟)有7个球,其中红色球2个(同色不加区分),白色,黄色,蓝色,紫色,灰色球各1个,将它们排成一行,要求最左边不排白色,2个红色排一起,黄色和红色不相邻,则有 种不同的排法(用数字回答).16.(2018.05柯桥二模)已知向量,,a b c满足||||2||1,b c a ===则()()c a c b -⋅-的最大值是__________第11题图俯视图侧视图正视图17.(2018.01宁波一模)如图,在平面四边形ABCD 中,AB=BC=1,AD=CD=2,︒=∠=∠90DCB DAB ,点P 为AD 中点,M,N 分别在线段BD,BC 上,则MN PM 22+的最小值为三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤) 18.2018.01台州一模改编(本小题满分14分)已知函数22()sin cos (cos sin )(R f x a x x b x x x =--∈,,a b 为常数),且π()2f =,π1()124f =-. (Ⅰ)求()f x 的单调递减区间; (Ⅱ)当ππ[,]44x ∈-时,求函数()f x 的值域.19.2016.01温州十校 (本题满分15分)如图四边形PABC 中,90PAC ABC ∠=∠=,4PA AB AC ===,现把PAC ∆沿AC 折起,使PA 与平面ABC 成60,设此时P 在平面ABC 上的投影为O 点(O 与B 在AC 的同侧),(1)求证://OB 平面PAC ;(2)求二面角P -BC -A 大小的正切值。
浙江省杭州市2019届高考数学命题比赛模拟试题132019051601166
浙江省杭州市2019届高考数学命题比赛模拟试题13本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
第I 卷(共40分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式:球的表面积公式 棱柱的体积公式24S R π= V Sh =球的体积公式 其中S 表示棱柱的底面积,h 表示棱柱的高343V R π= 棱台的体积公式其中R 表示球的半径 11221()3V h S S S S =++ 棱锥的体积公式 其中12,S S 分别表示棱台的上、下底面积,13V Sh = h 表示棱台的高其中S 表示棱锥的底面积,h 表示棱锥的高 如果事件,A B 互斥,那么 ()()()P A B P A P B +=+一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)设函数,0,(),0,x x f x x x ⎧≥⎪=⎨-<⎪⎩ 若()(1)2f a f +-=,则=( )A .– 3B . 3C .– 1D . 12. (原创)复数为纯虚数的充要条件是( )A. B. C. D.3.(原创)甲,乙两人分别独立参加某高校自主招生考试,若甲,乙能通过面试的概率都为,则面试结束后通过的人数的数学期望是( )A. B. C.1 D.4. (改编)复数 (i为虚数单位)的共轭复数是A.B.C.D.5. (改编)已知直线平面,直线平面,下面有三个命题:①;②;③其中假命题的个数为()(第6题)6. (改编)已知函数f(x)的图象如右图所示,则f(x)的解析式可能是()A. B.C. D.7.(原创)等差数列的前n项和为,且满足,则下列数中恒为常数的是( )A. B. C. D.8. (改编)已知双曲线的左、右焦点分别为,过作双曲线的一条渐近线的垂线,垂足为,若的中点在双曲线上,则双曲线的离心率为()A. B.C.2 D.39.(原创)已知满足不等式,且目标函数最大值的变化范围,则t的取值范围( )A. B. C. D.10.(改编)若函数,则对于不同的实数,则函数的单调区间个数不可能是( )A.1个B. 2个C.3个D.5个非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
浙江省杭州市2019届高考数学命题比赛模拟试题52019051601176
浙江省杭州市2019届高考数学命题比赛模拟试题5本试卷分选择题和非选择题两部分。
全卷共6页,选择题部分1-3页,非选择题部分3-7页。
满分150分,考试时间120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效。
参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+球的体积公式34π3V R = 如果事件A B ,相互独立,那么其中R 表示球的半径)()()(B P A P AB P =棱柱的体积公式 V Sh =如果事件A 在一次试验中发生的概率是p 棱锥的体积公式 13V Sh = 那么n 次独立重复试验中恰好发生k 次的概率: 棱台的体积公式:()(1)(01,2)k kn k n n P k C P P k n -=-=,,, 13V h =(2211S S S S ++)选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【原创】1.已知A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8},则A 可以是( ) A .{1,8}B .{2,3}C .{0}D .{9}(命题意图:考查集合含义及运算) 【原创】2. 复数z =(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( ) A .第一象限B .第二象限C .第三象限D .第四象限(命题意图:考查复数概念及复数的运算)【原创】3. 已知πcos(-)+sin =6αα354,则7sin(+π)6α的值是( )A . -532 B . 532 C .-54 D .54(命题意图:考查诱导公式及三角运算)【原创】4.等比数列{}n a 中,10a >,则“14a a <”是“35a a <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件(命题意图:考查充要条件、等价命题转化)【原创】5. 若x ,y 满足约束条件,则y x z 3+=的取值范围是( )A .[0,9]B .[0,5]C .[9,)+∞D .[5,)+∞(命题意图:考查线性规划最值问题)【原创】6.函数()()()1g x x f x '=-( ) (命题意图:考查函数的图像及导数的应用)【改编】7.已知随机变量ξi 满足P (ξi =0)=p i ,P (ξi =1)=1﹣p i ,且0<p i,i =1,2.若E (ξ1)<E (ξ2),则( ) A .p 1<p 2,且D (ξ1)<D (ξ2) B .p 1>p 2,且D (ξ1)>D (ξ2) C .p 1<p 2,且D (ξ1)>D (ξ2) D .p 1>p 2,且D (ξ1)<D (ξ2)(命题意图:考查期望与方差概念) 【改编】8. 设椭圆(a >b >0)的一个焦点F (2,0)点A (﹣2,1)为椭圆E 内一点,若椭圆E 上存在一点P ,使得|PA |+|PF |=8,则椭圆E 的离心率的取值范围是( )A .B .C .D .(命题意图:考查椭圆的几何性质)【改编】9.如图,已知正四棱锥P ABCD -的各棱长均相等,M 是AB 上的动点(不包括端点),N 是AD 的中点,分别记二面角P MN C --,P AB C --,P MD C --为,,αβγ则( )A . γαβ<<B .αγβ<< C. αβγ<< D .βαγ<<(命题意图:考查二面角的求法)【改编】10.已知函数2()f x x ax b =++,,m n 满足m n <且()f m n =,()f n m =,则当m x n<<时,( )A .()f x x m n +<+B .()f x x m n +>+C .()0f x x -<D .()0f x x ->(命题意图:考查函数的性质)非选择题部分(共110分)二、填空题(本大题共7小题,多空题每小题6分,单空题每小题4分,共32分。
浙江省杭州市2019届高考数学命题比赛模拟试题11及参考答案
【答案】 B
3、 ( 改编 ) 已知函数 y f ( x) x 是偶函数,且 f (2) 1, 则 f ( 2) ( )
A、 -1
B、 1 C 、 -5 D 、 5
【根据 2017 年浙江省高考数学样卷改编】
(原题) 若函数 f (x) (x∈ R)是奇函数,则 A .函数 f ( x2)是奇函数 C.函数 f (x) x2 是奇函数
浙江省杭州市 2019 届高考数学命题比赛模拟试题 11
试卷命题双向细目表
题序
考查内容
1
集合的关系与集合的运算
2
不等式及充要条件的判断
3
函数性质
4
三视图,直观图
5
三角函数化简、平移
6
排列组合的分配问题
7
二项式定理通项公式
8
线性规划
9
直线与抛物线的位置关系及函数的最值
10
函数与方程、函数的零点及不等式
B .函数 [ f (x) ] 2 是奇函数 D.函数 f (x)+ x2 是奇函数
(命题意图:考查函数性质,属容易题) 【预设难度系数】 0.7 【答案】 D
4、( 原创 ) 某几何 体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为
( ).
2
A.
B.
3
2
16
C.
D.
3
9
9
(命题意图:考查三视图,能画出直观图,求几何体的体积,属容易题)
是( )
A. a 1 B. a 1 C. a 1 D. 2
(命题意图:考查集合的关系与集合的运算,属容易题)
a1 2
【预设难度系数】 0.85 【答案】 A
2、 ( 原创 ) “ a 2 16 ”是“ a 4 ”的( )
浙江省杭州市2019届高考数学命题比赛模拟试卷(二)(PDF)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目
要求的.
1.(原创题)已知集合
P
x
x> 3
,Q
x
x 1 x4
0
,则 CR P
Q
A. 3,1
B. ,4
C. ,1
1页
D. 1,
【命题意图】本题主要考查集合的交、并、补的运算,检测对基础知识的了解程度.
2.(原创题)抛物线 y 4x2 的焦点坐标
A. 1,0
B. 0,1
C.
116,0
D.
0,1 16
【命题意图】本题主要考查抛物线的基本概念.
3.(原创题)复数 z 满足 1 2i z 2 ( i 为虚数单位),则 z 的虚部是
分 150 分.考试用时 120 分钟.
考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规
定的位置上.
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上
的作答一律无效.
参考公式: 如果事件 A、B 互斥,那么
柱体的体积公式
e1=
1 2
.若空间向量
a
满足
a e1=a e2 =
33 2
,且
对于任意 x, y R , a xe1 ye2 4 ,则 a e3 的最小值为
A. 3 6 4 3 3
C. 3 3 4 6 3
B. 3 6+4 3 3
浙江省杭州市2019届高考数学命题比赛模拟试题202019051601173
浙江省杭州市2019届高考数学命题比赛模拟试题20考试设计说明本试卷设计是在认真研读《2019年考试说明》的基础上精心编制而成,以下从三方面加以说明。
一、在选题上:(1)遵循“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。
(2)试卷保持相对稳定,适度创新,逐步形成“立意鲜明,背景新颖,设问灵活,层次清晰”的特色。
二、命题原则:(1)强化主干知识,从学科整体意义上设计试题. (2)注重通性通法,强调考查数学思想方法.(3)注重基础的同时强调以能力立意,突出对能力的全面考查.(4)考查数学应用意识,坚持“贴近生活,背景公平,控制难度”的原则. (5)结合运动、开放、探究类试题考查探究精神和创新意识. (6)体现多角度,多层次的考查,合理控制试卷难度。
2019年高考模拟试卷数学卷本试卷分第(Ⅰ)卷(选择题)和第(Ⅱ)卷(非选择题)两部分.满分150分,考试时间120分钟 请考生按规定用笔将所有试题的答案涂、写在答题纸上。
参考公式:球的表面积公式:24πS R =,其中R 表示球的半径; 球的体积公式:34π3V R =,其中R 表示球的半径;棱柱体积公式:V Sh =,其中S 为棱柱的底面面积,h 为棱柱的高; 棱锥体积公式:13V Sh =,其中S 为棱柱的底面面积,h 为棱柱的高; 台体的体积公式:()112213V h S S S S = 其中12,S S 分别表示台体的上底、下底面积,h 表示台体的高.第Ⅰ卷(选择题 共40分) 注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创) 设集合}11{ 2,{ 22xA x N xB x ⎛⎫⎫=∈≤=≤⎬ ⎪⎝⎭⎭,则A∩B =( )A. }{ 1x x ≥B. }{0 ,1C. }{1 ,2D. }{ 1x x ≤ 2.(改编)已知R b a ∈,“0>>b a ”是“11->-b a ”的 ( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件3.(摘录)设复数z 满足i 2i z ⋅=+,其中i 为虚数单位,则复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(改编) 若直线l 不平行于平面a ,且a l ⊄则 ( ) A.a 内所有直线与l 异面 B.a 内只存在有限条直线与l 共面 C.a 内存在唯一的直线与l 平行 D.a 内存在无数条直线与l 相交5.(改编) 已知函数()y f x =的导函数()y f x '=的图象如图所示,则()f x ( ) A .有极小值,但无极大值 B .既有极小值,也有极大值 C .有极大值,但无极小值 D .既无极小值,也无极大值6. (改编)设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是( ).A .0a ≤B .85a ≥ 3C .8875a a ≤-≥或 D .87a ≤-7.(改编2017高考)已知随机变量i ξ(i=1,2)的分布列如下表所示:ξ0 1 2p13i pi 2p 3- 若0<p 1<12<p 2<23,则( ) A .1()E ξ>2()E ξ,1()D ξ>2()D ξ B .1()E ξ<2()E ξ,1()D ξ>2()D ξ C .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ<2()E ξ,1()D ξ<2()D ξ8.(改编).设θ为两个非零向量,a b r r 的夹角,且02πθ<<,已知对任意实数()1,1t ∈-,b ta +r r 无最小值,则以下说法正确的是( )A .若θ和b r 确定,则a r 唯一确定B .若θ和b r 确定,则a r由最大值C .若θ确定,则a b ≥rr D .若θ不确定,则a r 和br 的大小关系不确定9.(改编)已知函数()222,0,e e ,0,x x x a x f x ax x ⎧++<⎪=⎨-+-≥⎪⎩恰有两个零点,则实数a 的取值范围是( )A. )()(+∞⋃,e 1,02B.)(+∞,eC.)()(+∞⋃,e 1,0D.)(1,0 10.如图1,在平面四边形ABCD 中,1AB =,3BC =,AC CD ⊥,3CD AC =,当ABC ∠变化时,当对角线BD 取最大值时,如图2,将ABC ∆沿AC 折起,在将ABC ∆开始折起到与平面ACD 重合的过程中,直线AB 与CD 所成角的余弦值的取值范围是 ( )图1 图2A .]6426,0[+B . ]1,6426[+ C .]1,6426[- D .]6426,0[-第Ⅱ卷(非选择题 共110分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上。
浙江省杭州市2019届高考数学命题比赛模拟试题82019051601179.pdf
0 的左右焦点分别为 F1, F2 , P 为双曲线 C
上一点,
Q
为双曲线渐近线 C
上一点,
P, Q
均位于第一象限,且
2 QP
PF2 , QF1 QF2
0
,则双曲
线 C 的离心率为( )
A. 3 1
B. 3 1
C. 13 2
D. 13 2
10.已 知 f (x) (3 a)x 1 b (a,b R), x [1 ,3] , 记 f (x) 的 最 大 值 为 M (a,b) , 则
14
分)已知向量
a
(2
sin
x,
cos
x),
b
(
3 cos x, 2 cos x) .
(1)若 x k , k Z ,且 a b ,求 2 sin2 x cos2 x 的值;
2
(2)定
义函数
f
(x) =
a
•
b
+1
,求函数
f
(x)
的单调递减区间;并求当
x [0,
f (x) = x3 ,则 f (-3) =
; f (7)=
.
2
13.(教材改编)随机变量 X 的分布列如右表所示,若 E( X ) 1 , 3
则 ab=
; D(3X 2)
.
π
14.(教材改编)在△ABC 中,D 是 AC 边的中点,∠BAC= ,
3
cos∠BDC= 2 ,△ABC 的面积为 6 ,则 AC=
x
3
M (a, b) 的最小值是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考模拟试卷数学卷命题双向细目表考试设计说明本试卷设计是在认真研读《2019年考试说明》的基础上精心编制而成,以下从三方面加以说明。
一、在选题上:(1)遵循“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养。
(2)试卷保持相对稳定,适度创新,逐步形成“立意鲜明,背景新颖,设问灵活,层次清晰”的特色。
二、命题原则:(1)强化主干知识,从学科整体意义上设计试题.(2)注重通性通法,强调考查数学思想方法.(3)注重基础的同时强调以能力立意,突出对能力的全面考查.(4)考查数学应用意识,坚持“贴近生活,背景公平,控制难度”的原则.(5)结合运动、开放、探究类试题考查探究精神和创新意识.(6)体现多角度,多层次的考查,合理控制试卷难度。
2019年高考模拟试卷数学卷本试卷分第(Ⅰ)卷(选择题)和第(Ⅱ)卷(非选择题)两部分.满分150分,考试时间120分钟请考生按规定用笔将所有试题的答案涂、写在答题纸上。
参考公式:球的表面积公式:24πS R =,其中R 表示球的半径; 球的体积公式:34π3V R =,其中R 表示球的半径; 棱柱体积公式:V Sh =,其中S 为棱柱的底面面积,h 为棱柱的高; 棱锥体积公式:13V Sh =,其中S 为棱柱的底面面积,h 为棱柱的高;台体的体积公式:()1213V h S S = 其中12,S S 分别表示台体的上底、下底面积,h 表示台体的高.第Ⅰ卷(选择题 共40分) 注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创) 设集合}11{ 2,{ 22xA x N xB x ⎛⎫⎫=∈≤=≤⎬ ⎪⎝⎭⎭,则A∩B =( )A. }{ 1x x ≥B. }{0 ,1C. }{1 ,2D. }{ 1x x ≤ 2.(改编)已知R b a ∈,“0>>b a ”是“11->-b a ”的 ( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件3.(摘录)设复数z 满足i 2i z ⋅=+,其中i 为虚数单位,则复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(改编) 若直线l 不平行于平面a ,且a l ⊄则 ( )A.a 内所有直线与l 异面B.a 内只存在有限条直线与l 共面C.a 内存在唯一的直线与l 平行D.a 内存在无数条直线与l 相交 5.(改编) 已知函数()y f x =的导函数()y f x '=的图象如图所示,则()f x ( )A .有极小值,但无极大值B .既有极小值,也有极大值C .有极大值,但无极小值D .既无极小值,也无极大值6. (改编)设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是( ).A .0a ≤B .85a ≥3 C .8875a a ≤-≥或 D .87a ≤- 7.(改编2017高考)已知随机变量i ξ(i=1,2)的分布列如下表所示:若0<p 1<12<p 2<23,则( ) A .1()E ξ>2()E ξ,1()D ξ>2()D ξ B .1()E ξ<2()E ξ,1()D ξ>2()D ξ C .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ<2()E ξ,1()D ξ<2()D ξ8.(改编).设θ为两个非零向量,a b 的夹角,且02πθ<<,已知对任意实数()1,1t ∈-,b ta+无最小值,则以下说法正确的是( )A .若θ和b 确定,则a 唯一确定B .若θ和b 确定,则a 由最大值C .若θ确定,则a b≥ D .若θ不确定,则a和b的大小关系不确定9.(改编)已知函数()222,0,e e ,0,x x x a x f x ax x ⎧++<⎪=⎨-+-≥⎪⎩恰有两个零点,则实数a 的取值范围是( )A. )()(+∞⋃,e 1,02B.)(+∞,eC.)()(+∞⋃,e 1,0D.)(1,0 10.如图1,在平面四边形ABCD 中,1AB =,BC=,AC CD ⊥,CD =,当ABC∠变化时,当对角线BD 取最大值时,如图2,将ABC ∆沿AC 折起,在将ABC ∆开始折起到与平面ACD 重合的过程中,直线AB 与CD 所成角的余弦值的取值范围是 ( )图1 图2AB C DA .]6426,0[+B . ]1,6426[+ C .]1,6426[- D .]6426,0[-第Ⅱ卷(非选择题 共110分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二、填空题:本大题7小题,11-14题每题6分,15-17每题4分,共36分,把答案填在题中的横线上.11.(原创) 若正项等比数列{}n a 满足243a a +=,351a a =,则公比q = ,n a = .12.(原创) 某几何体的三视图如图所示,则该几何体的体积为 . 表面积是 .13.(摘录)已知实数x ,y 满足条件1,4,20,-≥-⎧⎪+≤⎨⎪-≤⎩x y x y x y 若存在实数a 使得函数)0(<+=a y ax z 取到最大值)(a z 的解有无数个,则=a ,)(a z = .14.(原创)多项式51(2)(2)xx ++的展开式中,含2x 的系数是 .常数项是 .15.(原创) 有编号分别为1,2,3,4的4个红球和4个黑球,从中取出3个,则取出的编号互不相同的概率是 .16.(改编)倾斜角为的直线l 经过双曲线的左焦点,交双曲线于A 、B 两点,线段AB 的垂直平分线过右焦点,则此双曲线的渐近线方程为 .17.(摘录)设x ∈R ,(){}{}22max ,22min 1,33f x x x x x x =++++-,则函数()f x 在R 上的最小值为 .三、解答题:本大题共5小题,共74分.解答题应写出必要的文字说明、证明过程或演算步骤. 18.(原创)(本题满分14分) 1. 已知,为钝角且,.求的值;求的值.19.(本题满分15分)如图,在四棱锥P ABCD -中,//AD BC ,2AB BC ==,4AD PD ==,60BAD ∠=o,120ADP ∠=o ,点E 为PA 的中点.(1)求证://BE 平面PCD ;(2)若平面PAD ⊥平面ABCD ,求直线BE 与平面PAC 所成角的正弦值.20.(本小题满分15分) (摘录)已知数列满足,.(1)证明是等比数列,并求的通项公式;(2)证明:.21.(本小题满分15分) (改编). 已知椭圆的方程为,离心率,且短轴长为4.求椭圆的方程;已知,,若直线l 与圆相切,且交椭圆E 于C 、D 两点,记的面积为,记的面积为,求的最大值22.(本题满分15分)已知函数()(),,,R.x f x e g x ax b a b ==+∈(1) 若存在1,x e e ⎛⎫∈ ⎪⎝⎭使得不等式f (x )>x 2+m 成立,求实数m 的取值范围;(2) 若对任意实数a ,函数F (x )=f (x )-g (x )在()0,+∞上总有零点,求实数b 的取值范围.PECDA2019年高考模拟试卷数学卷参考答案与解题提示一、选择题:本大题共10小题,每小题4分,共40分.1.C 【命题意图】 本题考查集合的运算,∵{}{}0,1,2,|1A B x x ==≥,∴{}1,2A B ⋂=.故选C. 点晴:集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解不等式.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.属于容易题. 2.D 【命题意图】 本题考查绝对值的概念,属于容易题. 3.D 【命题立意】本题主要考查复数的定义,属于容易题.4.D 【命题意图】本题考查空间中直线与平面的位置关系,属于容易题 命题意图空间中直线与平面的位置关系5.A .【命题意图】本题考查函数导数性质等基础知识,意在考查学生的学生读图能力,观察分析,解决问题的能力. 6.D 87a ≤-【命题意图】函数奇偶性,不等式恒成立 试题分析:因为()y f x =是定义在R 上的奇函数,所以当0x =时,()0f x =;当0x >时,22()()[97]97a a f x f x x x x x =--=--++=+--,因此01a ≥+且2971a x a x+-≥+对一切0x >成立所以1a ≤-且8716717a a a a ≥+⇒--≥+⇒≤-,即87a ≤-.7.A 【命题意图】 本题考查两点分布数学期望与方差属于中档题【解题思路】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确. 8.B 9. A 10. D点睛:本题主要考查二面角的平面角和直线与平面所成的角,意在考查学生对这些基础知识的掌握能力和空间想象能力分析推理能力.属于难题二、填空题:本大题7小题,11-14题每题6分,15-17每题4分,共36分.11.2,222n -试题分析:因为23541a a a ==,40a >,所以41a =,因为243a a +=,所以22a =,因为24212a q a ==,0q >,所以2q =,所以22222222n nn n a a q ---⎛⎫==⨯= ⎪ ⎪⎝⎭,所以答案应填:2,222n -.【命题立意】本题考查:1、等比数列的性质;2、等比数列的通项公式.基本量运算,属于容易题. 12.5,14+ 试题分析:试题分析:由三视图可知该几何体为长方体截去两个三棱锥后剩下的部分,如图.根据三视图可知,长方体的长、宽、高分别为2,1,3,所以几何体的体积51631121312312=-=⨯⨯⨯⨯⨯-⨯⨯=V ,表面积1112323212312=14222S =⨯⨯+⨯+⨯+⨯⨯⨯⨯+.【命题意图】本题考查三视图及棱柱、棱锥的体积公式.属于容易题 13.1-;1【命题意图】本题考查:线性规划的基本问题;属于容易题. 14. 200 144【命题意图】 本题考查二项式展开式的计算.属于容易题. 15.74【命题立意】本题考查:1、古典概型;2、概率的计算公式;试题分析: 先由组合数公式计算从8个小球中取出3个的取法38C ,要满足条件,可以有分步原理3个球是同一个颜色342C ,也可以是不同的颜色12214342,C C C C ,则取出的编号互不相同的概率是324567P == 16.由垂直平分线性质定理可得,运用解直角三角形知识和双曲线的定义,求得,结合勾股定理,可得a,c的关系,进而得到a,b的关系,即可得到所求双曲线的渐近线方程。