Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a specific modality of MRI which is

合集下载

【基础理论】弥散张量成像(DiffusionTensorImage,DTI)

【基础理论】弥散张量成像(DiffusionTensorImage,DTI)

【基础理论】弥散张量成像(DiffusionTensorImage,DTI)展开全文弥散张量成像(Diffusion tensor image, DTI),是通过测量水分子的弥散过程来评价生物组织结构和生理状态,被公认为当前最有吸引力的无创性检查方法。

使用这种方法可获得检测脑白质组织的完整性的量化图,以及辨别脑纤维束三维宏观结构图(如,脑皮层下灰质核的投射区及皮层间的纤维连接)。

最近,有报道使用DTI 评价脑白质的解剖结构和病变进程,虽然这种方法在研究脑白质方面具有很大潜力,但要成为一种临床上常规使用方法仍有一些困难。

本部分将讲述如何计算有效弥散张量(D eff),并讨论数据采集、计算及图象产生的相关问题,同时也将展示一些经验,包括使用量化图和白质束图来评价脑白质和鼠大脑发育过程中的形态改变。

DTI测量中的基本概念矢量通常可以用箭头表示,如对于速度,箭头的方向描述运动的方向,而箭头的长度可以描述运动的速率(m/s)。

这种箭头在数学的描述就可以有3个独立的数字来代表:长度或两个角度,或是三维坐标 (x, y和z轴)。

流动的液体能够通过各个位置上速度矢量进行描述,每一点上的矢量在空间上分布将构成矢量场。

1各向异性和各向同性组织内水分子的随机位移通常受到介质组织结构和生理因素的影响,如果在介质组织中水分子的弥散在所有的方向都是相同的,经过一定时间的弥散后水分子的弥散轨迹将成一个球形,此种弥散过程称为各向同性;相反,如果各方向的弥散相互独立,则称为各向异性,这种情况下水分子经过一段时间的弥散会在空间分布上形成一个椭球(图1)。

扩散的特性能够通过三维椭球图来描述,这需要6个独立的数字来定义方向和椭球轴的长度。

水分子在脑白质中的弥散在三维空间上是各向异性的,主要是由于脑白质神经纤维束在宏观和微观上的结构特点,如髓鞘、轴突和纤维束等对水分子弥散的限制作用,使水分子的弥散过程在空间上表现为椭球形。

通过评估椭球的特点,即可获得有关脑白质的生理和结构(如解剖和组织病理学)信息。

磁共振成像技术中英文名词对照知识讲解

磁共振成像技术中英文名词对照知识讲解
表现扩散系数
Analog-digital conversion ,ADC
模数转换
Arterial spin labeling ,ASL
动脉自旋标记
Balance fast field echo ,B-FFE
平衡式快速场回波
Blood oxygenation level dependent ,BOLD
N-乙酰天门冬氨酸
Palsed arterial spin labeling, PASL
脉冲式动脉自旋标记
Parallel acquisition technique ,PAT
并行采集技术
Phase contrast ,PC
相位对比
Proton density weighted imaging ,PDWI
一般性自动校准部分并行采集
Gradient recalled echo ,GRE
梯度回波
Gradient recalled echo–echo planar imaging,GRE-EPI
梯度回波平面回波成像
Half-fourior acquisition single-shot turbo spin Echo ,HASTE
半傅里叶采集单次激发快速自旋回波
Inversion recovery ,IR
反转恢复
Inversion recovery echo planar imaging ,IR-EPI
反转恢复平面回波成像
Inversion recovery–fast gradient recalled echo , IR-FGRE
对比增强磁共振血管成像
Chemical shift selective saturation,CHESS

磁共振成像技术中英文名词对照

磁共振成像技术中英文名词对照
梯度回波
Gradient recalled echo–echo planar imaging,GRE-EPI
梯度回波平面回波成像
Half-fourior acquisition single-shot turbo spin Echo ,HASTE
半傅里叶采集单次激发快速自旋回波
Inversion recovery ,IR
稳态采集快速成像
Fast inversion recovery,FIR
快速反转恢复
Fast imaging with steady-state precession,FISP
稳态进动快速成像
Fliud attenuated inversion recovery, FLAIR
体液衰减反转恢复序列
Fast low angle shot,FLASH
灌注加权成像
Relative anisotropy ,RA
相对各向异性
Rapid acquisition with relaxation enhancement ,RARE
驰豫增强快速采集
Respiratory compensation , RC
呼吸补偿
Rectangle field of view , RFOV
反转恢复
Inversion recovery echo planar imaging ,IR-EPI
反转恢复平面回波成像
Inversion recovery–fast gradient recalled echo , IR-FGRE
反转恢复快速梯度回波
Inversion recovery fast spin echo , IR-FSE
磁化准备快速梯度回波

磁共振成像技术中英文名词对照

磁共振成像技术中英文名词对照
连续性动脉自旋标记
Contrast enhanced magnetic resonance angiography,CE-MRA
对比增强磁共振血管成像
Chemical shift selective saturation,CHESS
化学位移选择饱和
Contrast to noise ratio ,CNR
并行采集技术
Phase contrast ,PC
相位对比
Proton density weighted imaging ,PDWI
质子密度加权成像
Part per million , ppm
百万分之一
Point resolved spectroscopy ,PRESS
点分辨波谱
Perfusion weighted imaging ,PWI
回波间隙
Echo train length ,ETL
回波链长度
Fractional anisotropy ,FA
分数各向异性
Fast field echo ,FFE
快速场回波
Free induction decay ,FID
自由感应衰减
Fast imaging employing steady-state acquisition, FIESTA
磁化准备快速梯度回波
Magnetization prepared rapid gradient echo imaging, MP-RAGE
磁化准备快速梯度回波成像
Magnetic resonance angiograghy ,MRA
磁共振血管成像
Magnetic resonance cholangiopancreatography,MRCP

非痴呆型血管性认知功能障碍的研究进展

非痴呆型血管性认知功能障碍的研究进展

发现除了精神活动之外 , 即刻语言回忆能 FA ) 。通过 DTI发现所谓的白质病变并不 痴呆的患者升高 , 其可以作为有用的阴性
够很好地鉴别 V - C IND 患者和卒中后无 一定是缺血性病变 , 有些只是一些轴突脱 指标 。
认知功能损害的患者 。
失 [ 22 ] 。D TI最终也使每个传导束神经纤 5 治疗
214 日常生活功能受损 由于 V - C IND 维的数量和其所连接功能区域个数测量成
目前关于 V - C IND 的有效治疗是对
存在不同的认知功能损害 , 其日常生活能 为现实 。磁共振波谱分析 (MRS) 能提 于影响认知功能和卒中的血管性危险因素
C IND 在词语记忆方面存在很大的困难 。 和临床表现之间的关系 [21 ] 。白质病变损 的脑脊液中明显升高 , Tarkow ski等 [32 ] 研
同样 Stephens等 [13 ] 也证实与卒中后无认 害神经元通路的完整性 , 在 D TI上出现高 究表明神经丝蛋白还可能与轴索脱失 、脱
q iuyun tu@ 1261 com
再进行随访 , 发现 30%有不同程度的认 执行功能和视觉记忆方面受损 , 但是执行
·338·
功能的损害与脑白质病变 (WML ) 的严 的老年人进行研究 , 他们将接近脑室 , 且 险 。
重程度有关 , 与梗死灶的数目没有关联 。 长轴与室壁平行的白质规定为脑室周围白 412 脑脊液生物学标志物 与血清生物
- C IND ) 是由血管因素导致的认知功能 1 流行病学
者简易精神状态检查 (MM SE) 量表评分
损害的异质群体 , 其认知损害的程度尚未
目前 V - C IND 的研究受到选用标准 、 总分提高 2分 。 Ingles等 [9 ]发现影响 V -

【综述】胶质瘤诊治中临床影像难题

【综述】胶质瘤诊治中临床影像难题

【综述】胶质瘤诊治中临床影像难题《Journal of Neuroimaging.》杂志2020年1⽉10⽇在线发表美国University of Washington的Bonm AV , Ritterbusch R , Throckmorton P , Graber JJ .撰写的综述《胶质瘤诊治中临床影像的诊断难题。

Clinical Imaging for Diagnostic Challenges in the Management of Gliomas: A Review.》(. doi: 10.1111/jon.12687.)神经影像学在胶质瘤患者的管理中起着⾄关重要的作⽤。

虽然常规的磁共振成像(MRI)仍然是标准的成像⽅式,但它往往不能充分指导作出临床决策。

需要⼀种⾮侵袭性策略来可靠地鉴别低级别和⾼级别的胶质瘤,确认胶质瘤的重要分⼦特征,选择合适的靶区进⾏活检,勾画⼿术或放射外科的靶区,以鉴别肿瘤进展(TP)和假性进展(PsP)。

最近的⼀项进展是在标准化MRI上识别T2/液体衰减反转恢复失配信号( T2/fluid-attenuated inversion recovery mismatch sign)来识别异柠檬酸脱氢酶突变星形细胞瘤( isocitrate dehydrogenase mutant astrocytomas)。

然⽽,为了应对其他挑战,神经肿瘤学家正越来越多地转向先进的成像模式。

弥散加权成像⽅法包括弥散张量成像( diffusion tensor imaging)和弥散峰度成像(diffusion kurtosis imaging )可以帮助勾画肿瘤边界和更好的组织结构的可视化。

灌注成像包括使⽤钆(gadolinium)或纳⽶氧化铁( ferumoxytol )对⽐剂的动态增强MRI,以帮助分级以及鉴别肿瘤进展(TP)和假性进展(PsP)。

正电⼦发射断层摄影是⼀种测量肿瘤代谢的有效⽅法,它与肿瘤的分级有关,并能在适当的条件下鉴别肿瘤进展(TP)/假性进展(PsP)。

感兴趣区的神经纤维提取方法、系统、设备及存储介质发明专利

感兴趣区的神经纤维提取方法、系统、设备及存储介质发明专利

感兴趣区的神经纤维提取方法、系统、设备及存储介质技术领域本发明实施例涉及医学影像处理技术,尤其涉及一种感兴趣区的神经纤维提取方法、系统、设备及存储介质。

背景技术弥散张量成像(diffusion tensor imaging,简称DTI)是一种先进的核磁共振(Magnetic Resonance Imaging,简称MRI)技术,可以无创性的观察脑白质纤维的宏观及微观解剖结构的成像方法,能定量的探测大脑组织的微观结构,主要利用对水分子的布朗运动的感知进行成像。

现有技术中进行DTI成像方法时,通常采用DTI处理软件进行追踪以获取大脑的神经纤维,医生根据解剖相数据在DTI图像上手动绘制感兴趣区,然后对手动绘制的感兴趣区的神经纤维进行追踪,得到感兴趣区的神经纤维的追踪结果。

但是,现有技术中通过手动绘制的方式获得DTI图像的感兴趣区过程较为繁琐,进而导致感兴趣区的神经纤维追踪的效率较低。

发明内容本发明实施例提供了一种感兴趣区的神经纤维提取方法、系统、设备及存储介质,可以自动提取感兴趣区,提高感兴趣区的神经纤维的追踪效率。

第一方面,本发明实施例提供了一种感兴趣区的神经纤维提取方法,其中,包括:获取当前检测部位的解剖图像和弥散张量图像,其中,所述弥散张量图像包括所述当前检测部位的弥散数据,所述解剖图像包含所述当前检测部位的解剖相数据;基于所述解剖相数据、所述弥散数据以及预先存储的所述当前检测部位的感兴趣区蒙版数据,提取所述弥散张量图像的至少一个感兴趣区;采用预设追踪算法追踪通过所述弥散张量图像的所述至少一个感兴趣区的目标神经纤维。

第二方面,本发明实施例还提供了一种感兴趣区的神经纤维提取系统,其中,包括:获取模块,用于获取当前检测部位的解剖图像和弥散张量图像;其中,所述弥散张量图像包括所述当前检测部位的弥散数据,所述解剖图像包含所述当前检测部位的解剖相数据;提取模块,用于基于所述解剖相数据、所述弥散数据以及预先存储的所述当前检测部位的感兴趣区蒙版数据,提取所述弥散张量图像的至少一个感兴趣区;追踪模块,用于采用预设追踪算法追踪通过所述弥散张量图像的所述至少一个感兴趣区的目标神经纤维。

磁共振adc值和fa值评价放射性粒子125i对兔脊髓放射性损伤的应用研究

磁共振adc值和fa值评价放射性粒子125i对兔脊髓放射性损伤的应用研究

中文摘要磁共振ADC值和FA值评价放射性粒子125I对兔脊髓放射性损伤的应用研究目的:本论文通过建立兔脊髓放射损伤的动物模型,在兔胸椎椎板两侧植入放射性粒子125I,使其受到过量的射线照射,结合病理结果,观察脊髓损伤情况。

通过大体观察和在不同时间点用MRI扫描兔脊髓损伤的动物模型,获取并观察相应部位的ADC值和FA值,探讨ADC值和FA值在评价兔脊髓放射性损伤的可行性。

方法:1. 对12只普通级新西兰家兔进行饲养和观察,用1.5T磁共振机的DTI序列分别扫描兔脑部和脊髓,利用Functool软件获取兔中枢神经系统区域正常的ADC值和FA值,研究其特点和规律,并结合家兔的解剖特点,找出适合实验和观察的家兔脊髓节段。

2. 随机采取选取8只家兔,分别在胸10椎体上缘水平两侧椎板旁植入5~6颗0.8mCi125I粒子,建立125I粒子植入近距离放射治疗的动物模型。

在粒子植入前制定预期剂量分布,经治疗计划系统TPS进行剂量的计算,使脊髓的受照剂量达到100(±5%)Gy。

3. 分别在粒子植入术前、术后2周、4周、6周、8周、10周、12周、4个月、5个月、6个月对胸10椎体水平观察区的脊髓进行MRI 扫描,分别扫描T2WI、DTI序列,并获取放射性粒子125I水平脊髓的ADC值和FA值。

4. 在粒子植入术后6个月处死全部受试兔,获取观察区域的脊髓组织进行病理学观察,用HE染色以及NF200抗体和CD31抗体的免疫组化染色来检测脊髓损伤。

结果:1. 兔脑部ADC平均值为0.87±0.09×10-3mm²/s,FA平均值为0.23±0.09;颈髓ADC平均值为1.06±0.16×10-3mm²/s,FA平均值为0.55±0.08;胸髓ADC平均值为1.14±0.12×10-3mm²/s,FA平均值为0.57±0.06;腰髓ADC平均值为1.22±0.13×10-3mm²/s,FA平均值为0.61±0.06。

多模态MRI技术介绍

多模态MRI技术介绍

多模态MRI技术是在常规MRI的基础上,对多种功能MRI技术的一种柔性组合[1]。

目前用于神经外科手术的多模态MRI主要有常规MRI、血氧水平依赖功能磁共振成像(blood oxygenation level dependent functional magnetic resonance imaging, BOLD-fMRI)、弥散张量成像(diffusion tensor imaging DTI)、灌注加权成像(perfusion-weighted imaging, PWI)等,多模态MRI技术结合神经导航已经成为神经外科手术的重要辅助工具之一。

2012年1月—2014年11月我们利用多模态MRI技术结合神经导航及术中超声对20例大脑枕叶视觉功能区胶质瘤进行显微外科手术,取得了很好的疗效,现总结如下。

1资料与方法1.1一般资料回顾性分析2012年1月—2014年11月安徽医科大学附属省立医院神经外科收治的20例大脑枕叶视觉功能区胶质瘤患者的临床资料,所有病例经病理证实为脑胶质瘤,临床、病理资料完整。

患者均知情同意并经过医院伦理委员会审核同意(批文号201212)。

其中男9例,女11例;年龄27~72岁,平均49.9岁。

主要症状为视物模糊9例,癫痫5例,头晕3例,头痛、呕吐等高颅压症状3例。

复发胶质瘤3例。

均采用多模态MRI技术结合神经导航进行显微外科手术。

病例纳入标准:(1)肿瘤位于大脑枕叶视觉功能区,且术后病理确诊为胶质瘤;(2)能配合完成所需要的多模态影像检查,图像质量具有分析价值;(3)临床资料和随访资料完整。

排除标准:(1)不能配合多模态影像检查者;(2)图像有运动伪影和其他因素造成质量降低而影响分析者。

1.2多模态影像检查方法扫描设备为荷兰Philips公司Achieva 3.0T超导型MR扫描仪,16通道标准头线圈进行头部扫描,扫描前佩戴标准3M除噪耳机。

1.2.1常规导航扫描序列采用FSE序列。

two Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) volumes.

two Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) volumes.

Visualizing Diffusion Tensor Volume DifferencesM.J.da Silva,S.Zhang,C¸.Demiralp,idlawBrown University Computer Science,Providence,RI,USA.1IntroductionWe present a technique for visualizing the differences betweentwo Diffusion Tensor Magnetic Resonance Imaging(DT-MRI)vol-umes.Our technique registers two DT-MRI’s and then producesa3D model that allows a user to simultaneously view structure inboth volumes.The geometric model is based on an earlier one de-veloped to visually represent a single volume with a carefully cho-sen set of streamtubes[6,7].In the new model,we choose corre-sponding tubes from both volumes and show how they differ.Col-lectively,this illustrates the differences between the volumes.Sat-uration is used to indicate the magnitude of the difference betweencorresponding points on streamtubes.Streamtubes follow the ori-entation of the principal eigenvector of the diffusion tensor at eachpoint in the volume.The cross-section at each point of the stream-tube is an ellipse determined by the second and third eigenvectorsand eigenvalues of the diffusion tensor.We apply the method to three cases.In thefirst,we compare thestreamtubes generated with different integration methods to showhow the choice of method can lead to different streamtubes.In thesecond case,we show difference models for two volumes that areidentical except for noise.In the third case we show differencesbetween two volumes acquired from the same human subject but atdifferent orientations.2MethodsThe technique used to generate the difference models presented inthis paper consists of four steps.First,two DT-MRIs are resampledto the same isotropic resolution.The resampling is done using tricu-bic interpolation of each of the six diffusion tensor components.Basser et al.showed that such component-wise interpolation wassufficient in several experiments[1].Next,the two volume data sets are registered semi-automaticallyusing the gradient-based methods described in[2]to align T2-weighted images.This approach works best when the differencein orientation between the two images is small enough that mostvoxels need move less than eight voxels.Therefore,an initial esti-mate of the transformation matrix is applied to one of the originalimages,and this image is then used by the automatic image regis-tration program.Once the transformation matrix is calculated,it isapplied to one of the DT-MRI volumes.It is important to realizethat the diffusion tensors must also undergo a transformation to re-flect the change in coordinates.To achieve this,we apply the lineartransform to the diffusion tensor.Once the volumes are aligned,the third step is to generate cor-responding streamtubes in each image.Wefirst generate a modelfor one of the volumes.This is described in more detail in[6,7].Astreamtube is analogous to the streamline influidflow visualization.It follows the principal direction of water diffusion.This is accom-plished by integrating the principal eigenvectorfield(as discussedin[1])both forward and backward starting at a particular point.Wechoose many seed points on a jittered grid.Streamtubes that aresimilar to previously generated streamtubes are culled,as are shortstreamtubes and streamtubes with low average linear anisotropy(less than0.2).The numerical integration is carried out by either Euler,Runge-Kutta,or Adams integration using Numerical Algorithms Group[8]or Numerical Recipes[9]software.Diffusion tensor values atnon-grid coordinates are found by tricubic interpolation of the sixcomponent values.Figure2:A streamtube difference image of the data used infigure1 with noise added.Two new brain DT-MRI’s were generated.Note the differences in streamtubes caused by the noise.its corresponding streamtube in the other data set.The distance is defined to be the minimum distance between the current point and all points on the other streamtube.The fourth andfinal step is the rendering of the difference model. Each streamtube is rendered as a tube.At each sampled point of the tube the second and third eigenvectors are used to construct an elliptical cross-section.The color assigned to each point on the cross-section is defined to be,where is the distance found and stored in the previous step and is an ar-bitrary constant(we used ten voxels)representing the maximum voxel distance that can be represented.The elliptical cross-sections are stitched together to produce a continuous tube and output as a VRML meshfile,which can then be viewed in standard viewing applications.3Results and DiscussionThefirst type of comparisons we examined were those between nu-merical integration algorithms.Figure[1]shows that results can vary depending on the integration scheme chosen.We then used the same integration techniques to compare differ-ent DT-MRI’s.First,we assessed the effect of noise on our tech-nique.Figure[2]suggests that our technique is moderately sensi-tive to noise in the two images.We then evaluated the effect align-ment has on our technique in Figure[3].The significant amounts of gray are consistent with data collected from the same subject. The color that is present may be due to noise,to inaccuracies in the registration,or to thresholding,which can turn very small changes in the tensor into large changes in the location of a threshold.Streamtubes are well suited for showing changes in the orien-tation of the principal direction of diffusion,but poorly suited for depicting changes in anisotropy.While the second and third eigen-vectors are encoded in a streamtube,it is difficult to determine by sight the differences in these values between corresponding stream-tubes.4ConclusionsThis extended abstract describes a method designed to help investi-gators visualize differences between DT-MRI’s.Despite some lim-itations,the images show differences that are difficult to see con-textually as well using othermethods.Figure3:A different image between two acquisitions of the same brain.The acquisitions were taken at different orientation and the datasets registered before the different image was created. AcknowledgmentsThis work was partially supported by the Human Brain Project (NIDA and NIMH)and NSF(CCR-0086065).Thanks to Susumu Mori for the data used in Figs1and2and to Benjamin Green-berg,Carlo Pierpaoli,and Peter Basser for the data used in Fig.3. Thanks also to Eileen L.V ote for her careful reading and sugges-tions.Opinions expressed in this paper are those of the authors and do not necessarily reflect the opinions of NSF.References[1]Basser,P.J.,Pajevic,S.,Pierpaoli,C.,Duda,J.,Aldroubi,A.,Magn.Res.in Med., 44:625-632,2000.[2]Nestares,O.,Heeger,D.,Magn.Res.in Med.,43:705-715,2000.[3]Laidlaw,D.H.,Ahrens,E.T.,Kremers,D.,Proceedings Visualization’98.[4]Delmarcelle,T.,Hesselink,L.,Proc.Vis.’92,316-323,1992.[5]Pierpaoli,C.,Basser,P.J.,Mag.Res.in Med.,6:893-906:1996.[6]Zhang,S.,Curry,C.T.,Morris,D.S.,and Laidlaw,D.H.,Proc.Vis.Work in Progress’00,2000.[7]Zhang,S.,and Laidlaw,D.H.,Proc.Int’l Soc.Magn.Reson.in Med.,’01,2001.[8]NAG,Numerical Fortran Library,1993[9]Press,W.H.,Teukolsky,S.A.,Vetterling,W.T.,and Flannery B.P.,Numerical Recipes in C:The Art of puting,Cambridge U.P.,1992[10]/research/graphics/research/pub/dtdiffviz01.pdf。

弥散张量成像(diffusion

弥散张量成像(diffusion

弥散张量成像(diffusion tensor imaging,DTI)技术综述(转)磁共振弥散成像技术是⽬前在活体上测量⽔分⼦弥散运动与成像的唯⼀⽅法,最常⽤的主要包括弥散加权成橡(diffusion weighted imaging,DWI)和弥散张量成像(diffusion tensor imaging,DTI)。

DTI在中枢神经系统尤其对⽩质和灰质的区别以及⽩质纤维的⾛⾏有很好的成像效果,可了解病变造成的⽩质纤维束受压移位、浸润与破坏,为病变的诊断与鉴别诊断提供更多信息,为⼿术⽅案的制定,术后随访提供依据。

DTI对于神经科学是⼀个新的突破,使得研究者得以了解活体的神经纤维⾛⾏,这不仅有助于深⼊了解⼈脑纤维的结构,⽽且在临床上有很⼤的价值,成为近期脑功能成像技术研究的最新热点之⼀。

⼀、概念 1. Diffusion 是指分⼦的随机移动,即布朗运动。

2. DWI 利⽤组织中⽔分⼦弥散运动的特性进⾏成像。

通过对成像脉冲序列的设计,将弥散对MRI信号的作⽤放⼤化的⼀种新型功能性磁共振成像序列。

DWI使MRI对⼈体的研究深⼊到细胞⽔平的微观世界。

特点:是⼀种对急性组织变化⽐较敏感的磁成像模式;图像的信号强度随着组织的病理变化⽽变化;但它只是⼀种⽤来观察组织情况的定性⼯具。

3. DTI 利⽤组织中⽔分⼦弥散的各向异性(anisotropy)来探测组织微观结构的成像⽅法。

脑⽩质的各向异性是由于平⾏⾛⾏的髓鞘轴索纤维所致,脑⽩质的弥散在平⾏神经纤维⽅向最⼤,即弥散各向异性FA最⼤,接近于1。

这⼀特性⽤彩⾊标记可反映出脑⽩质的空间⽅向性,即弥散最快的⽅向指⽰纤维⾛⾏的⽅向。

DTI是⼀种⽤于研究中枢神经系统解剖神经束弥散各向异性和显⽰⽩质纤维解剖的磁共振技术。

表观弥散系数(Apparent Diffusion Coefficient,ADC) 反映体内⽔分⼦向各个⽅向弥散的平均值,⽔分⼦弥散运动越明显,ADC值增⾼。

磁共振弥散张量成像在胶质瘤诊治中的应用研究进展

磁共振弥散张量成像在胶质瘤诊治中的应用研究进展

MR—DTI在脑胶质瘤诊治中的应用 MR.DTI在神经病和神经外科学中已经得到广
泛的应用,尤其在颅脑恶性肿瘤如胶质瘤的诊治中。 据报道FA值与肿瘤的细胞增殖及肿瘤内血管分布 呈正相关【l 01,FA值取值范围为0~l。通过测定不 同胶质瘤的FA值可以在一定程度上鉴别胶质瘤的 良恶性。高级别胶质瘤恶性程度高,其瘤细胞增殖 十分活跃,肿瘤内异常血管大量存在,并容易发生微 囊坏死和出血。尽管高级别胶质瘤内细胞较低级别 胶质瘤排列密集,但其瘤细胞的微结构完整性破坏 明显,水分子的各向异性弥散下降显著。通过比较 肿瘤实质部分的FA值发现,高级别胶质瘤比低级别 胶质瘤各向异性弥散降低得更明显。除此之外,在 当前的临床工作中,MR—DTI一个最突出的优势是用 来研究肿瘤和其毗邻的白质纤维束的关系¨¨。白质 被肿瘤累及的情况可以根据MR.DTl分为如下几类: 取代、浸润、水肿和破坏,这些类型有助于指导术者 选择合适的手术径路及控制肿瘤的切除程度¨2|。魏 大年等¨列根据MR—DTI的三维纤维示踪图及受累白 质纤维和对侧正常白质纤维的比值将脑胶质瘤与周 围白质纤维束的关系分为挤压型、浸润型、破坏型。 选择能够避开重要脑自质纤维束的手术人路,不同 DTI类型的肿瘤采取不同的手术策略:对挤压型关系 的肿瘤争取显微镜下全切,严格保护瘤周正常组织 尤其是靠近锥体束的部位;对浸润型关系的肿瘤采 取显微镜下次全切或大部切除,对肿瘤边界的处理 尽量采用明胶海绵或止血纱而少用电凝以减少对神 经功能的损害;对破坏型关系的肿瘤除尽量全切肿 瘤外,非重要部位适当扩大切除范围,统计学分析结 果表明这些术式对患者神经功能的保护,效果良好。
reseet
valuate the tally
with
stages of glioma
exactly and choose the suitable modas operandi neurological

磁共振成像技术中英文名词对照

磁共振成像技术中英文名词对照
低温超导材料
Emergency run-down unit ,ERDU
磁体急停单元
Hybrid magnet
混合型磁体
shiming
匀场
Passive shimming
被动匀场
Active shimming
主动匀场
Shimming coils
匀场线圈
Gauss meter
高斯计
Hall effect
快速小角度激发
Field of view,FOV
视野
Fast spin echo,FSE
快速自旋回波
Generalized autocalibrating partially parallel acquisition,GRAPPA
一般性自动校准部分并行采集
Gradient recalled echo ,GRE
反转恢复快速自旋回波
Inversion recovery turbo spin echo , IR-TSE
反转恢复快速自旋回波
Liver acquisition with volrme acceleration ,LAVA
肝脏容积加速采集
Line scan , LS
线扫描
Magnetization prepared fast gradient recalled echo,MP-FGRE
磁共振成像技术中英文名词对照
abdomen
腹部
Apparent diffusion coefficient, ADC
表现扩散系数
Analog-digital conversion ,ADC
模数转换
Arterial spin labeling ,ASL

核磁弥散张量成像弥散系数

核磁弥散张量成像弥散系数

核磁弥散张量成像弥散系数核磁共振扫描技术(NMR)已成为临床和科学研究中非常重要的工具之一。

其中,核磁弥散张量成像(diffusion tensor imaging,DTI)是一种常见的核磁共振成像技术,用于测量水分子在生物组织中的弥散程度和走向。

这种技术不仅可以提供微观组织结构的信息,还可以用于研究神经系统的结构与功能之间的关系。

在DTI中,最常用的参数是弥散系数(diffusion coefficient),用于描述水分子在组织中的弥散情况。

弥散系数是衡量分子自由扩散的速率,可以反映组织的微观结构特征。

主要包括平均弥散系数(mean diffusion coefficient)和各向异性弥散系数(anisotropic diffusion coefficient)。

平均弥散系数(ADC)是指在所有方向上测量的弥散率的平均值。

它可以用来评估组织中水分子的分散程度,常用于研究脑组织中的病变或损伤。

各向异性弥散系数(ADC)是指沿特定方向测量的弥散率与垂直于该方向的弥散率之比。

它可用于测量水分子在组织中的走向和固定程度,常用于研究神经纤维束的定位和纤维束的连接性。

DTI中的弥散系数与组织的微观结构特征有关,例如细胞膜的通透性、细胞排列的有序性、组织纤维的密度等。

通过测量组织中的弥散系数,可以对组织的完整性、纤维结构和微观结构的异常进行评估,进而为临床诊断和治疗提供重要信息。

弥散系数在医学研究中具有广泛应用,特别是在神经科学领域。

它可以用于研究脑白质的病变与退化、白质损伤与修复、脑卒中和肿瘤等疾病的诊断与治疗。

此外,弥散系数还可以用于研究癫痫、多发性硬化症、帕金森病和阿尔茨海默症等神经系统疾病的发病机制和变化。

除了以上介绍的平均弥散系数和各向异性弥散系数外,核磁弥散张量成像还可以生成其他参数,如扩散张量、扩散图像和方向编码散弹激发(diffusion-weighted imaging,DWI)等,这些参数都在各自的应用领域中发挥着重要的作用。

髓母细胞瘤功能磁共振成像的研究进展

髓母细胞瘤功能磁共振成像的研究进展

·综述·髓母细胞瘤功能磁共振成像的研究进展姚蓉金彪【摘要】髓母细胞瘤是儿童常见的中枢神经系统恶性肿瘤,侵袭性高,易复发,预后较差,严重影响儿童的健康及生命质量。

近年,先进的磁共振功能成像技术,包括弥散加权成像(DWI)、弥散张量成像(DTI)及氢质子波谱成像(1H-MRS)作为无创性影像诊断新技术,在髓母细胞瘤的诊断、鉴别诊断及预后评估等方面显示出重要的临床价值,并取得了一些新进展。

本文对DWI、DTI及1H-MRS在髓母细胞瘤中的应用研究及进展作一综述。

【关键词】髓母细胞瘤;磁共振成像,弥散;弥散张量成像;氢质子磁共振波谱Application of functional magnetic resonance imaging in medulloblastoma Yao Rong,Jin Biao.Department of Radiology,Xinhua Hospital,Shanghai Jiaotong University School of Medicine,Shanghai200092,ChinaCorresponding author:Jin Biao,Email:*****************[Abstract]Medulloblastoma was a common malignant,invasive neoplasm of the central nervoussystem occurring in children.This disease had the characteristics of easy recurrence and the prognosisremained relatively poor,which heavily influenced healthy and quality of life of children.In recent years,advanced magnetic resonance imaging(MRI)techniques such as diffusion weighted imaging(DWI),diffusion tensor imaging(DTI)and1H-magnetic resonance spectroscopy(1H-MRS)were the new noninvasive technique of diagnostic imaging to be used in the diagnosis and prognosis of medulloblastoma,which showed very significant clinical value and made some new progress.In thisstudy,we talked about the DWI,DTI and1H-MRS used in medulloblastoma.[Key words]Medulloblastoma;Diffusion magnetic resonance imaging;Diffusion tensorimaging;1H-magnetic resonance spectroscopy髓母细胞瘤是儿童常见的侵袭性小脑胚胎性肿瘤,属原始神经外胚瘤(primitive neuroectodermal tumors,PNET),WHO分级为Ⅳ级。

磁共振成像技术中英文名词对照新选

磁共振成像技术中英文名词对照新选
信号采集
signal sampling
信号采样
data acquisition
数据采集
raw data
原始数据
Analogue to digital converter , ADC
模数转换器
frequency resolution
频率分辨力
Analog to digital conversion data
平衡式快速场回波
Blood oxygenation level dependent ,BOLD
血氧水平依赖
Balance steady state free preceesion ,Balance-SSFP
平衡式稳态自由进动
Continuous arterial spin labeling ,CASL
失谐
tuning
调谐
coupling
耦合
decoupling
去耦
Dynamic decoupling
动态去耦
Static decoupling
静态去耦
Specific absorption rate ,SAR
特殊吸收比率
Free induction decay , FID
自由感应衰减
Signal acquisition
梯度场切换率
Digital to analogue converter , DAC
数模转换器
Gradient control unit , GCU
梯度控制器
eddy current
涡电流或涡流
ghosting
鬼影
Radio frequency system
射频系统
Radio frequency ,RF
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3D DT-MRI Data Visualisation using the Dual TreeComplex Wavelet TransformNick Kingsbury and Argyris ZymnisSignal Processing Group,Cambridge University Engineering DepartmentTrumpington Street,Cambridge,CB21PZ,United KingdomEmail:[ngk,az224]@1IntroductionDiffusion Tensor Magnetic Resonance Imaging (DT-MRI)is a specific modality of MRI which is based on the calculation of the diffusion of water along different directions within the brain.It can be used efficiently to map white matter tracts within the human brain.In previous work [1],we have shown how the Dual Tree Complex Wavelet Transform[2],[3]can be used to visualise DT-MRI data in 2dimensions.Our method produces images which contain more detail than images developed using standard techniques [4],[5]and are also more easy to physically interpret.In this paper we will present an extension of this method to 3dimensions.2Method and Results 2.1Preliminary Tensor AnalysisA DT-MRI dataset consists of a 3D array of voxels,for each of which a 3x3diffusion tensor is calculated.By diagonalising each of these diffusion tensors we can obtain their sorted eigenvalues and corresponding eigenvectors.A computationally efficient way of calculating the eigenvectors and eigenvalues of a DT-MRI dataset is described in[6].The eigenvectors show the main directions of diffusion and the relative size of the eigenvalues is a measure of preferential diffusion in a given direction [4],[5].We decided to split diffusion into two components:a scalar isotropic component (X is )and a vectorial anisotropic component (−−→X an ).The value of X is is equal to the average of the two smaller eigenvalues and the magnitude of −−→X an is equal to the difference of the largest eigenvalue from X is .The direction of −−→X an is along the eigenvector with largest eigenvalue.2.22D VisualisationIn the method described in [1]that we developed,we are using the 2D Dual Tree Complex Wavelet Transform to visualise the data.The 2D DT-CWT is a multilevel transform that has 6directional subbands per level.Each of these subbands picks out details of an image in different directions (i.e.at ±15o ,45o ,75o )[3].For each slice in a DT-MRI dataset,we can calculate the component of the anisotropic vector field along each CWT subband direction.We then feed these components into their corresponding subbands (using random values for the complex phase)and we also feed the isotropic component into the LoLo subband.By then applying the inverse CWT,we will get an image which will show isotropic diffusion as grey-scale pixel intensity and anisotropic diffusion as “stripiness”.We then apply the forward and inverse CWT iteratively for about five iterations,in order to achieve better phase alignment of the “stripes”.In the final iteration we apply 2levels of inverse CWT in order to increase the resolution of the image by 2in each dimension.This makes details more readily discernible.We also need to include the anisotropic vertical component in the image.We do this in two ways.We firstly superimpose a red-scale image on our grey-scale image,where red pixel intensity represents the vertical component.Secondly,we superimpose an image with stripes which are perpendicular to the anisotropic component in order to synthesise an “end-on”view of stripes that are almost normal to the image plane.The amount of perpendicular stripes is equal to the amount of parallel ones if anisotropy is completely vertical and it is zero if anisotropy is completely horizontal.Figure 1shows the result of our 2D method applied to the 4th slice of a 128x128x8DT-MRI dataset of a healthy person.It can be seen that our method can provide useful detail even in low anisotropy regions,such as close to the cortical surface (skull boundary).Figure1:Representation of the fourth slice of the dataset in2dimensions2.3Interpolating between slicesur initial dataset has8slices each with128x128voxels.The spacing between slices is10mm and the intervoxel spacing is1mm.Hence we decided to increase the number of slices from8to64and a number of different interpolation strategies was considered.The simplest strategy is averaging.This consists of averaging the eigenvalues of the top and bottom slice to compute the eigenvalues of the interpolated slice.The principal eigenvectors of the interpolated slice are then computed by just adding the principal eigenvectors of the top and bottom slices and normalising.The major disadvantage of this method is the fact that averaging causes blurring of the edges,thus reducing image quality.The second strategy that was considered made use of a least squared error criterion.This consists of computing an interpolated voxel by looking at its neighbouring voxels in the top and bottom slices.For each interpolated voxel, the squared error(difference)of each eigenquantity is computed for pairs of voxels on the top and bottom slices,in a small square neighbourhood near the interpolated voxel.The pair of voxels that gives the minimum squared error is then used to compute the interpolated voxel’s eigenquantities.This method,however seems to give worst results than averaging and was therefore not used.This was probably due to the fact that original slice spacing is much larger that intervoxel spacing.This method probably works better for smaller slice spacings.Thefinal method that was considered takes advantage of the anisotropic components of the3D tensors in the dataset.This requiresfinding a pair of voxels in adjacent slices,whose principal eigenvector points to the same voxel in the interpolated slice.Having found this pair of voxels we then compute its eigenvalues and eigenvectors as some form of weighted mean of the eigenquantities of the top and bottom voxels.If no two vectors line up properly for a given interpolated voxel,we can just perform simple averaging.A threshold,defined by the dot product of each vector with the vector connecting the interpolated voxel to the original voxel,is used to decide if the vector criterion or simple averaging will be used.This technique only seems to work if this threshold is very large,i.e.the only vectors used are those that almost perfectly line up.Otherwise,it tends toflare up the areas with a large vertical component. It is also not efficient in calculating horizontal vectors.We decided to initially use the simple averaging technique,despite its drawbacks.This was because the least squared error technique does not work in this case and the vector technique is still under development.However,an ideal interpolating technique should make use of the third vectorial method,as well as some sort of method offinding voxels whose eigenvectors are parallel.2.43D VisualisationBy applying the previous method to a given DT-MRI dataset,we obtain a3D set which contains useful information only parallel to the xy plane.The cross sections parallel to the xz or yz planes do not give us good images.The reason for this is the fact that our method is separately applied to each slice.In order to overcome this we must develop a transformation which is applied to the whole dataset simultaneously.Hence for3D visualisation we make use of the 3D DT-CWT.The3D DT-CWT has28directional subbands per level,oriented approximately uniformly over the surface of a hemisphere(7bands per quadrant).Each of these subbands has a planar-like impulse response.For each anisotropic vector in the dataset,we want to generate afilament-like structure(similar in cross-section to the criss-cross pattern used previously for the vertical anisotropic component).To do this we excite two subbands, whose planes of impulse response both contain the given anisotropic vector and are approximately perpendicular to each other.One strategy is to compute the dot product of each anisotropic vector with each directional vector for the 28subbands and then select the subband which gives us the smallest dot product value.Then we use a lookup table tofind the subbands which are perpendicular to the one selected and out of those select the one which has the smallestdot product with the given anisotropic vector.These two subbands are then excited with an amount proportional to the anisotropic magnitude.As before,the isotropic component is fed into the LoLo subband and we iteratively apply the forward and inverse CWT to achieve better phase alignment of thefilaments.We found however,that the output images of this algorithm are not satisfactory.This is due to two main reasons. Thefirst one is the fact that we are using all available highpass subbands,including the HiHiHi bands,which increase the amount of high frequency information within the image,thus causing distortion.The second one is the fact that the problem offinding two planes perpendicular to each other which contain a given vector does not have a single solution,as the normals of the two planes can rotate about the axis defined by the given vector.Thus small changes in the anisotropic direction can cause large changes in the output image,which is undesirable.We thus need a way of interpolating between subbands which is unambiguous and which produces images that change smoothly with direction.2.53D DT-CWT Subband Interpolation StrategyIn order to minimise ambiguities,the number of subbands used must be reduced.Hence it was decided to make use only of the LHH,HLH,HHL subbands(just3per quadrant of a hemisphere,making12in total).The normals of the impulse responses of these subbands are the vertices of the structure shown infigure2.This structure is in essence a cube,with a tetrahedral volume removed from each of its corners and having six octagonal sides.Figure2:Structure depicting used subband normalsSuppose we want to visualise an anisotropic vector that has a direction parallel to vector V infigure2.In order to do that,we draw the plane whose normal is V and which passes through the origin O.In the above case this plane is P1.The points of intersection of this plane are then computed(I1,I2,I3and I4infigure2).Note that due to the spherical symmetry of the3D DT-CWT subband structure,points I1and I3are identical and so are I2and I4.These intersection points show which subbands have to be used to visualised a specific anisotropic vector.For this particular example,we can use subbands HHL1,HHL2,HHL3and HHL4to synthesize V.The number of edge intersections indicates what proportion of the total anisotropy must be allocated to each pair of subbands in each edge.In this case there are essentially two edge intersections(due to symmetry),thus each edge gets half the total anisotropy.This edge components is then divided between the two subbands using as a weighting factor the exact position of the intersection point.Hence for V HHL2will get a higher weighting than HHL1and similarly HHL3will get a higher weighting than HHL4.If for example V was parallel to the z-axis(i.e.vertical),the four subbands would each get a weighting of a quarter.The method described above works well for vectors which lie close to the x,y or z axes.However,vectors which are not close to a particular axis are not very well represented.This is especially true for vectors which define a line that cuts through any of the four triangular sides of the structure(i.e.which have almost equal amounts of x,y and z components).Some steps can be taken to avoid this ambiguity,for example we can ignore edges that are almost parallel to the plane defined by a specific vector.This technique is currently under development.We then apply the above interpolation method to each anisotropic vector within the DT-MRI dataset,weighing each subband magnitude by the specific anisotropic vector’s magnitude.We can then apply the iterative technique described for 2D to get an output image of the DT-MRI dataset.1002003004005006005010015020025030035040045050055010020030040050060050100150200250300350400450500550Figure 3:Output images for 3D techniqueFigure 3shows two sets of slices viewed along the x (top right),y (bottom left)and z (top left)axes for a 72x99x64cuboid within our original dataset.The algorithm interpolates the dataset up to a cuboid size of 288x396x256.Note how the top left output image for the set of slices on the left is very similar to figure 1.This shows that our 3D technique is a natural evolution of the 2D technique.By looking at the images of figure 3,it is evident that our method produces criss-cross patterns for groups of vectors viewed end on.This can be clearly seen in the bottom left subimage of the left side set of slices.It is also evident that if these same vectors are viewed along a direction perpendicular to their direction,they create “stripy”patterns.These two properties suggest that our method creates filament-like structures for anisotropy vectors,as desired.Even though stripe continuity is not always guaranteed,image quality is adequate for viewing purposes.3ConclusionsWe have presented an iterative algorithm which can be used to visualise Diffusion Tensor Magnetic Resonance Imaging data in three dimensions.The distinct advantage of our method compared to standard techniques is that it contains both the isotropic and anisotropic components of diffusion on the same ing this method a high level of detail can be achieved and the images are also easy to physically interpret.References[1]N.G.Kingsbury,A.Zymnis,and A.Pena,“DT-MRI data visualisation using the dual tree complex wavelet transform,”in Proc.(IEEE)International Symposium of Biomedical Imaging (ISBI’04),Arlington,USA,Apr.2004,p.currently under submission.[2]N.G.Kingsbury,“Image processing with complex wavelets,”in Phil.Transactions of London Royal Society ,1999.[3]N.G.Kingsbury,“Complex wavelets for shift invariant analysis and filtering of signals,”Journal of Applied and Computational Harmonic Analysis ,vol.10,2001.[4]Y.Masutani,S.Aoki,O.Abe,N.Hayashi,and K.Otomo,“MR diffusion tensor imaging:recent advance and new techniques for diffusion tensor visualisation,”European Journal of Radiology ,vol.46,pp.53–66,2003.[5]C.F.Westin,S.Maier,H.Mamata,A.Nabavi,F.A.Jolesz,and R.Kikinis,“Processing and visualisation for diffusion tensor MRI,”Medical Image Analysis ,vol.6,pp.93–108,2002.[6]K.M.Hasan,P.J.Basser,D.L.Parker,and A.L.Alexander,“Analytical computation of the eigenvalues and the eigenvectors in DT-MRI,”Journal of Magnetic Resonance ,vol.152,pp.41–47,2001.。

相关文档
最新文档