高三物理牛顿运动定律知识点 牛顿运动定律的综合应用
物理学中的牛顿运动定律的应用
物理学中的牛顿运动定律的应用在物理学中,牛顿运动定律是最基本也是最重要的定律之一。
它揭示了物体运动的规律与机理,并被广泛应用于各个领域,包括工程、天文学、生物学等。
本文将从三个方面探讨牛顿运动定律的应用,带您领略它的伟大威力。
一、牛顿第一定律——惯性定律牛顿第一定律,也被称为惯性定律,说明了物体在不受外力作用时的运动状态:静止的物体将保持静止,而匀速运动的物体将保持匀速直线运动。
这个定律在日常生活中无处不在。
航天器的发射过程中,牛顿第一定律的应用显得尤为重要。
在火箭发射前,由于火箭静止,根据牛顿第一定律,我们知道火箭受到的合力为零。
而当火箭点燃燃料并喷出高速燃气时,推力将产生一个合外力,使得火箭产生加速度,最终达到离地成功。
这就是牛顿第一定律的应用。
二、牛顿第二定律——动量定律牛顿第二定律,也被称为动量定律,关系物体受力、质量和加速度之间的关系。
它是牛顿运动定律中最为著名的定律之一。
在汽车碰撞实验中,牛顿第二定律的应用就彰显了它的重要性。
当两辆汽车发生碰撞时,各自受到的外力会影响它们的加速度和运动轨迹。
根据牛顿第二定律,我们可以计算出受力大小与加速度的关系,进而预估碰撞产生的冲击力。
通过控制碰撞的角度、速度和形式,我们可以减小碰撞带来的危害。
这正是牛顿第二定律的应用,它在交通事故研究和汽车安全领域具有重要意义。
三、牛顿第三定律——作用与反作用定律牛顿第三定律阐述了物体之间相互作用的力是相等且方向相反的。
这个定律展示了物体之间的相互关系,从而使我们深入理解了运动的本质。
在火箭发射过程中,牛顿第三定律的应用十分显著。
火箭在离地时,火箭喷射出的燃气向下,根据牛顿第三定律,这个过程同时也会产生一个力向上,这就是火箭获得推力的原因。
牛顿第三定律的应用为火箭的发射提供了基础原理。
此外,牛顿第三定律的应用还可以在物体运动中实现平衡。
想象一个人站在充气娃娃上,当他向下踩踏,娃娃也会给予相等大小的力向上。
这种平衡包括物体的质量、引力和压力等方面的力,是牛顿第三定律的典型应用,为平衡和稳定提供了依据。
牛顿运动定律的综合应用
机器人的移动和操作也遵循牛顿第一定律,通过编程控制机器人的运动轨迹和 姿态,实现各种复杂动作。
02
CATALOGUE
牛顿第二定律的应用
牛顿第二定律的基本理解
01
02
03
牛顿第二定律
物体加速度的大小跟它所 受的合力成正比,跟它的 质量成反比,加速度的方 向跟合力的方向相同。
公式
F=ma,其中F代表物体所 受的合力,m代表物体的 质量,a代表物体的加速 度。
轨道力学
火箭发射和卫星入轨需要精确的力学计算,包括牛顿第二定律的应用 ,以确定火箭所需的推力和轨迹。
THANKS
感谢观看
牛顿运动定律的综 合应用
contents
目录
• 牛顿第一定律的应用 • 牛顿第二定律的应用 • 牛顿第三定律的应用 • 牛顿运动定律的综合应用案例
01
CATALOGUE
牛顿第一定律的应用
惯性系与非惯性系
惯性系
一个不受外力作用的参考系,物 体在该参考系中保持静止或匀速 直线运动状态。
非惯性系
一个受到外力作用的参考系,物 体在该参考系中不会保持静止或 匀速直线运动状态。
划船
划桨时水对桨产生反作用力,使船前进。
3
走路
脚蹬地面时,地面给人一个反作用力,使人前进 。
牛顿第三定律在科技中的应用
喷气式飞机
通过燃烧燃料喷气产生反作用力,推 动飞机前进。
火箭推进器
电磁炮
通过电磁力加速弹丸,使其获得高速 ,射出后产生反作用力推动炮身运动 。
火箭向下喷射燃气产生反作用力,推 动火箭升空。
03
转向稳定性
汽车在转弯时,向心力(根据牛顿第二定律)的作用使车辆维持在转弯
牛顿运动定律的综合应用
3.解题方法 整体法、隔离法. 4.解题思路 (1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出 滑块和滑板的加速度. (2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的 位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都 是相对地的位移.
[典例 1] 长为 L=1.5 m 的长木板 B 静止放在水平冰面上,
3.图象的应用 (1)已知物体在一过程中所受的某个力随时间变化的图线,要 求分析物体的运动情况. (2)已知物体在一运动过程中速度、加速度随时间变化的图线, 要求分析物体的受力情况. (3)通过图象对物体的受力与运动情况进行分析.
4.解答图象问题的策略 (1)弄清图象坐标轴、斜率、截距、交点、拐点、面积的物理 意义. (2)应用物理规律列出与图象对应的函数方程式,进而明确 “图象与公式”、“图象与物体”间的关系,以便对有关物理问 题作出准确判断.
可行的办法是( BD )
A.增大 A 物的质量 B.增大 B 物的质量 C.增大倾角θ D.增大拉力 F
2. 如图所示,质量为 M、中空为半球形的光滑凹槽放置于光 滑水平地面上,光滑槽内有一质量为 m 的小铁球,现用一水平向 右的推力 F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心
和小铁球的连线与竖直方向成 α 角,则下列说法正确的是( C )
A.小铁球受到的合外力方向水平向左 B.凹槽对小铁球的支持力为smingα C.系统的加速度为 a=gtan α D.推力 F=Mgtan α
二、动力学中的图象问题 1.常见的图象有
v-t 图象,a-t 图象,F-t 图象,F-a 图象等.
2.图象间的联系
加速度是联系 v-t 图象与 F-t 图象的桥梁.
练习: 1.(多选)如图(a),一物块在 t=0 时刻滑上一固定斜面,其运
牛顿运动定律综合应用
牛顿运动定律综合应用在物理学中,牛顿运动定律是描述物体运动的基本规律。
这些定律由英国物理学家艾萨克·牛顿在17世纪第二期间提出,经过多次实验证实,并被广泛应用于力学领域。
本文将结合实际问题,通过牛顿运动定律的综合应用来深入探讨相关概念。
一、牛顿第一定律牛顿第一定律也被称为惯性定律,它表明一个物体如果受到平衡外力的作用,将维持静止状态或保持匀速直线运动。
换句话说,物体的运动状态只有在受到外力作用时才会改变。
例如,当一个小车停在水平路面上且没有施加力时,它会始终保持静止。
然而,一旦有外力作用于小车,比如有人推或拉它,它的运动状态就会发生改变。
二、牛顿第二定律牛顿第二定律描述了物体所受力与加速度之间的关系。
它可以用公式F=ma表示,其中F代表力,m代表物体的质量,a代表物体的加速度。
根据这个定律,如果一个物体受到外力作用,它的加速度将与所受力成正比,与物体的质量成反比。
考虑一个拳击手击打一个静止物体的情况。
如果拳击手的力增加,那么物体的加速度也会增加。
相反,如果物体的质量增加,它的加速度就会减小。
三、牛顿第三定律牛顿第三定律表明,对于相互作用的两个物体,彼此施加的力大小相等、方向相反。
简而言之,如果物体A对物体B施加了一个力,那么物体B对物体A也会施加大小相等、方向相反的力。
一个典型的例子是举起一个物体。
当我们试图举起一个重物时,我们感觉到了重力的力道。
然而,我们对物体的施力实际上也同样作用于我们的身体,这就是牛顿第三定律的体现。
结论牛顿运动定律是物体运动的基本规律,广泛应用于各个领域,包括工程学、天文学和生物学等。
通过综合应用牛顿运动定律,我们可以深入分析和解决许多实际问题。
本文简要介绍了牛顿运动定律的三个主要原则,并通过实例进行了说明。
牛顿第一定律告诉我们物体的运动状态只有在受到外力作用时才会改变,牛顿第二定律描述了力、质量和加速度之间的关系,牛顿第三定律则说明了相互作用物体之间的力的作用规律。
物理一轮复习 专题12 牛顿运动定律的综合应用(讲)(含解析)
专题12 牛顿运动定律的综合应用1.掌握超重、失重的概念,会分析有关超重、失重的问题。
2.学会分析临界与极值问题。
3.会进行动力学多过程问题的分析.1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)等于零的情况称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.考点一超重与失重1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma。
★重点归纳★1.物体处于超重状态还是失重状态取决于加速度的方向,与速度的大小和方向没有关系.下表列出了加速度方向与物体所处状态的关系。
加速度超重、失重视重Fa=0不超重、不失重F=mga的方向竖直向上超重F=m(g+a)a的方向竖直向下失重F=m(g-a)a =g ,竖直向下完全失重F =0特别提醒:不论是超重、失重、完全失重,物体的重力都不变,只是“视重”改变. 2.超重和失重现象的判断“三”技巧(1)从受力的角度判断,当物体所受向上的拉力(或支持力)大于重力时, 物体处于超重状态,小于重力时处于失重状态,等于零时处于完全失重状态. (2)从加速度的角度判断,当物体具有向上的加速度时处于超重状态,具有向下的加 速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态. (3)从速度变化角度判断①物体向上加速或向下减速时,超重; ②物体向下加速或向上减速时,失重.★典型案例★在升降电梯内的地板上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图所示,在这段时间内下列说法中正确的是: ( )A.晓敏同学所受的重力变小了B 。
牛顿运动定律知识点总结
牛顿运动定律知识点总结牛顿运动定律是经典力学的基础,由艾萨克·牛顿在 1687 年于《自然哲学的数学原理》一书中总结提出。
这一定律体系对后来的物理学发展产生了深远影响,下面我们来详细总结一下牛顿运动定律的相关知识点。
一、牛顿第一定律牛顿第一定律,也被称为惯性定律。
其内容是:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
从这个定律中,我们可以得出几个重要的概念。
首先是惯性的概念。
惯性是物体保持原有运动状态的性质。
质量是衡量物体惯性大小的唯一量度,质量越大,惯性越大,物体的运动状态就越难改变。
例如,一辆重型卡车和一辆小型轿车,在相同的外力作用下,重型卡车更难改变其运动状态,就是因为它的质量大,惯性大。
其次,牛顿第一定律揭示了力的作用。
力不是维持物体运动的原因,而是改变物体运动状态的原因。
当物体不受力或者所受合力为零时,它将保持静止或匀速直线运动;当物体受到力的作用时,其运动状态就会发生改变。
想象一下,在光滑水平面上滑行的冰球,如果没有摩擦力和其他外力的作用,它将一直匀速直线滑行下去。
二、牛顿第二定律牛顿第二定律是定量描述力与运动关系的定律。
其表达式为:F =ma ,其中 F 表示物体所受的合力,m 是物体的质量,a 是物体的加速度。
这个定律表明,物体的加速度与作用在它上面的合力成正比,与物体的质量成反比。
当合力为零时,加速度也为零,物体将保持匀速直线运动或静止状态。
当合力不为零时,加速度的方向与合力的方向相同。
比如,我们用力推一个质量较大的箱子,如果推力较小,箱子的加速度就小,运动状态改变得就慢;如果推力较大,箱子的加速度就大,运动状态改变得就快。
在实际生活中,汽车的加速、刹车等都是牛顿第二定律的应用。
汽车发动机提供的牵引力越大,汽车的加速度就越大,加速就越快;刹车时,制动力越大,汽车减速就越快。
另外,牛顿第二定律还可以用于计算物体在不同受力情况下的加速度和运动状态。
牛顿运动定律知识点总结
牛顿运动定律1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”(3量度。
(4(52(1(2)(3,F y =ma y ,若F 那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。
(4)牛顿第二定律F=ma 定义了力的基本单位——牛顿(使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N,即1N=1kg.m/s 2.(5)应用牛顿第二定律解题的步骤: ①明确研究对象。
②对研究对象进行受力分析。
同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。
③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;V^2-V0^2=2axT=2x/a^1/2V=v0+at,x=v0t+1/2at^2二、解析典型问题问题1:必须弄清牛顿第二定律的矢量性。
考点名称:牛顿运动定律的应用
c、物体对地初速度V20,与V的方向相反
如图3所示:物体先沿着V20的方向做匀减速直线运动直至对地的速度为零。然后物体反方向(也就是沿着传送带运动的方向)做匀加速直线运动。
若V20小于V,物体再次回到出发点时的速度变为-V20,全过程物体受到的摩擦力大小和方向都没有改变。
物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。其加速度由牛顿第二定律,求得;
在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运,以传送带的速度V共同匀速运动。
b、物体对地初速度不为零其大小是V20,且与V的方向相同,传送带以速度V匀速运动(也就是物体冲到运动的传送带上)
b、明确物体运动的初速度
分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
c、弄清速度方向和物体所受合力方向之间的关系
物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
若V20的方向与V的方向相同且V20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V20的匀加速运动,直至与传送带达到共同速度匀速运动。
若V20的方向与V的方向相同且V20大于V,则物体相对于传送带向前运动,它受到的摩擦力方向向后,如图2所示,摩擦力f的方向与初速度V20方向相反,物体相对于地做初速度是V20的匀减速运动,一直减速至与传送带速度相同,之后以V匀速运动。
②滑动摩擦力对传送带做的功
由功的概念得,也就是说滑动摩擦力对传送带可能做正功也可能做负功。例如图2中物体的速度大于传送带的速度时物体对传送带做正功。
牛顿运动定律综合应用
第3节牛顿运动定律的综合运用【考纲知识梳理】一、超重与失重[1、真重与视重。
如图所示,在某一系统中(如升降机中)用弹簧秤测某一物体的重力,悬于弹簧秤挂钩下的物体静止时受到两个力的作用:地球给物体的竖直向下的重力mg和弹簧秤挂钩给物体的竖直向上的弹力F,这里,mg是物体实际受到的重力,称力物体的真重;F是弹簧秤给物体的弹力,其大小将表现在弹簧秤的示数上,称为物体的视重。
2、超重与失重(1)超重:物体有向上的加速度称物体处于超重。
处于超重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即F=mg+ma;(2)失重:物体有向下的加速度称物体处于失重。
处于失重的物体对支持面的压力F N(或对悬挂物的拉力)小于物体的重力mg,即F N=mg-ma,(3)当a=g时,F N=0,即物体处于完全失重。
二、整体法和隔离法1、整体法:连接体和各物体如果有共同的加速度,求加速度可把连接体作为一个整体,运用牛顿第二定律列方程求解。
2、隔离法:如果要求连接体之间的相互作用力,必须隔离出其中一个物体,对该物体应用牛顿第二定律求解。
【要点名师透析】一、对超重、失重问题的理解1.尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量即a y≠0,物体就会出现超重或失重状态.当a y方向竖直向上时,物体处于超重状态;当a y方向竖直向下时,物体处于失重状态.2.尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重状态.3.超重并不是说重力增加了,失重并不是说重力减小了,完全失重也不是说重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生变化.4.在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等.【例1】物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,如图所示.在物体始终相对于斜面静止的条件下,下列说法中正确的是()A.当θ一定时,a越大,斜面对物体的正压力越小B.当θ一定时,a越大,斜面对物体的摩擦力越大C.当a一定时,θ越大,斜面对物体的正压力越小D.当a一定时,θ越大,斜面对物体的摩擦力越小二、整体法与隔离法的选取原则1.隔离法的选取原则:若连接体或关联体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.2.整体法的选取原则:若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体来分析整体受到的外力,应用牛顿第二定律求出加速度(或其他未知量).3.整体法、隔离法交替运用原则:若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.4.涉及隔离法与整体法的具体问题(1)涉及滑轮的问题,若要求绳的拉力,一般都必须采用隔离法.若绳跨过定滑轮,连接的两物体虽然加速度方向不同,但大小相同.(2)固定斜面上的连接体问题.这类问题一般多是连接体(系统)各物体保持相对静止,即具有相同的加速度.解题时,一般采用先整体、后隔离的方法.建立坐标系时也要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度.(3)斜面体(或称为劈形物体、楔形物体)与在斜面体上物体组成的连接体(系统)的问题.当物体具有加速度,而斜面体静止的情况,解题时一般采用隔离法分析.【例2】如图所示,在光滑的桌面上叠放着一质量为mA=2.0 kg 的薄木板A 和质量为mB=3 kg 的金属块B.A 的长度L=2.0 m.B 上有轻线绕过定滑轮与质量为mC=1.0 kg 的物块C 相连.B 与A 之间的动摩擦因数μ=0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B 位于A 的左端(如图),然后放手,求经过多长时间后B 从 A 的右端脱离(设 A 的右端距滑轮足够远)(取g=10 m/s 2).【感悟高考真题】1.(2011·上海高考物理·T16)如图,在水平面上的箱子内,带异种电荷的小球a 、b 用绝缘细线分别系于上、下两边,处于静止状态。
第4讲 牛顿运动定律的综合应用(二)
甲 (2)v0≠0,且v0与v带同向,如图乙所示。
乙 ①v0<v带时,由(1)可知,物体刚放到传送带上时将做a=μ g的匀加速运动。假
v3=v1+a2Δt ⑩
碰撞后至木板和小物块刚好达到共同速度的过程中,木板的位移为
v1 v3 s1= Δt 2
小物块的位移木板的位移为
Δs=s2-s1
联立⑥⑧⑨⑩ 式,并代入数据得 Δs=6.0 m 因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0 m。 (3)在小物块和木板具有共同速度后,两者向左做匀变速运动直至停止,设加 速度为a4,此过程中小物块和木板运动的位移为s3。由牛顿第二定律及运动 学公式得
mg sin α(α为传送带的倾角)。
(2)物体和传送带一起加速运动 ①若物体和传送带一起向上加速运动,传送带的倾角为α,则对物体有f-mg sin α=ma,即物体受到的静摩擦力方向沿传送带向上,大小为f=ma+mg sin α。
②若物体和传送带一起向下加速运动,传送带的倾角为α,则静摩擦力的大 小和方向决定于加速度a的大小。 当a=g sin α时,无静摩擦力; 当a>g sin α时,有mg sin α+f=ma,即物体受到的静摩擦力方向沿传送带向下,
v 5 t 2= = s=1 s a 5 v 2 25 s2= = =2.5 m 2a 10
s3=s1-s2=(10-2.5) m=7.5 m,
3 t 3= =1.5 s
s v
t总=t1+t2+t3=4.5 s
物理必修一牛顿运动定律的应用知识点
物理必修一牛顿运动定律的应用知识点1. 物体受力平衡的条件:根据牛顿第一定律,物体受力平衡时,其静止物体保持静止,运动物体保持匀速直线运动。
这一定律可以应用于各种力的平衡分析,例如计算平衡力的大小和方向。
2. 物体加速度的计算:根据牛顿第二定律,物体的加速度与作用在物体上的合力成正比,与物体的质量成反比。
这一定律可以用于计算物体的加速度,例如计算拉力、摩擦力和重力等外力对物体的影响。
3. 物体受力分析:根据牛顿第三定律,任何两个物体之间的相互作用力都是大小相等、方向相反的。
这一定律可以用于分析物体之间的相互作用力,例如弹簧力、摩擦力和支持力等。
4. 质量和重力的关系:根据牛顿定律,物体的重力和其质量成正比,可以通过重力加速度g计算物体的质量。
这一定律可以用于计算物体的质量,例如测量天体质量和地球上物体的质量。
5. 斜面上物体的运动分析:根据牛顿定律,斜面上物体受到的平行于斜面的力可以分解为垂直于斜面的分力和平行于斜面的分力。
这一定律可以用于分析斜面上物体的运动,例如计算物体在斜面上的加速度和滑动摩擦力。
6. 弹簧振动的分析:根据牛顿定律,弹簧受到的恢复力和弹簧的伸缩变量成正比。
这一定律可以用于分析弹簧的振动,例如计算弹簧振动的周期和频率。
7. 圆周运动的分析:根据牛顿定律,物体在圆周运动时会受到向心力的作用,该力的大小与物体的质量、速度和半径成正比。
这一定律可以用于分析圆周运动,例如计算物体的向心加速度和向心力。
这些应用知识点涵盖了牛顿运动定律在物理学中的多个应用领域,对于解决各种与运动相关的问题具有重要的指导意义。
【牛顿运动定律】知识点总结
12
考点三 牛顿第二定律的瞬时性问题
师生互动
1.两种模型
加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具
体可简化为以下两种模型:
13
2.求解瞬时加速度的一般思路 分析瞬时变化前、 列牛顿第二 求瞬时 后物体的受力情况 ⇒ 定律方程 ⇒ 加速度
14
考点四 牛顿第三定律的理解和应用
考点一 牛顿第一定律和惯性的理解及应用
自主学习
1.惯性的两种表现形式
(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态
不变(静止或匀速直运动).
(2)物体受到外力时,惯性表现为抗拒运动状态改变的能力.惯性大,物体的运动状
态较难改变;惯性小,物体的运动状态容易改变.
9
2.与牛顿第二定律的对比 牛顿第一定律是在实验的基础上,经过科学抽象、归纳推理总结出来的,科学地揭 示了运动和力的关系,而牛顿第二定律是一条实验定律,明确了加速度 a 与外力 F 和质 量 m 的定量关系.
10
考点二 对牛顿第二定律的理解 1.牛顿第二定律的五个特性
师生互动
11
2.合力、加速度、速度之间的决定关系 (1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度. (2)a=ΔΔvt 是加速度的定义式,a 与 Δv、Δt 无必然联系;a=mF是加速度的决定式,a ∝F,a∝m1 . (3)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动.
3
2.惯性 (1)定义:物体具有保持原来_匀__速__直__线__运__动___状态或__静__止__状态的性质. (2)量度:质量是惯性大小的唯一量度,质量大的物体惯性_大___,质量小的物体惯性 _小___. (3)普遍性:惯性是物体的固有属性,一切物体都具有惯性,与物体的运动情况和受 力情况_无__关___.
高考物理一轮复习课件专题三:牛顿运动定律的综合应用
• 方法二:假定某力沿某一方向,用运动 规律进行验算,若算得正值,说明此力与假
• 2.“极限法”分析动力学问题
•
在物体的运动状态变化过程中,往往
达到某个特定状态时,有关的物理
•
量将发生突变,此状态叫临界状态.
相应的待求物理量的值叫临界
• 2.
• 解析:在施加外力F前,对AB整体受力 分析可得:2mg=kx1,A、B两物体分离时 ,B物体受力平衡,两者加速度恰好为零, 选项A、B错误;对物体A:mg=kx2,由于 x1-x2=h,所以弹簧的劲度系数为k=mg/h ,选项C正确;在 B与A分离之前,由于弹
• 图3-3-7 •2-1 如图3-3-7所示,光滑水平面上放置 质量分别为m、2m的A、B两个物 •• 体解,析A:、当B间A、的B最之大间静恰摩好擦不力发为生μ相m对g,滑现动用 水时平力拉F最力大F拉,B此,时使,AB对以于同A一物体所受的合外
【例3】如图3-3-8所示,一辆卡车后面用轻绳拖着
• 擦因数相同.当用水平力F作用于图3B-上3-3且两 物块共同向右加速运动时,弹簧的伸
【例1】 如图3-3-4所示,质量为m的球与弹簧Ⅰ和 水平细线Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P、 Q.球静止时,Ⅰ中拉力大小为F1,Ⅱ中拉力大小为 F2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间时,球的加速 度a应是( )
压力
橡皮 绳
较大
一般不 能突变
只有拉 力没有
压力
• 当物不体受处力处突然变化时,物体的加速既度可有
轻弹 计 相等
一般不 拉力也
1.
图3-3-1 如图3-3-1所示,A、B两木块间连一轻质弹簧,A、B质量相等,一起静 止地放在一块光滑木板上,若将此木板突然抽去,在此瞬间,A、B两木块 的加速度分别是( )
高三物理关于牛顿运动定律的知识点精讲
高三物理关于牛顿运动定律的知识点精讲牛顿运动定律是高中物理力学部分的核心内容,也是整个物理学的基础之一。
在高三物理的学习中,深入理解和掌握牛顿运动定律对于解决各类力学问题至关重要。
接下来,让我们详细梳理一下这部分的重要知识点。
一、牛顿第一定律(惯性定律)牛顿第一定律指出:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
这里有几个关键要点需要明确:1、“一切物体”意味着无论是固体、液体还是气体,无论是微观粒子还是宏观物体,都遵循这一定律。
2、“总保持”强调了物体具有保持原有运动状态的“惯性”。
惯性是物体的固有属性,其大小只与物体的质量有关,质量越大,惯性越大。
3、“力迫使它改变这种状态”说明力是改变物体运动状态的原因,而不是维持物体运动的原因。
例如,在一辆匀速直线行驶的汽车中,当突然刹车时,乘客会向前倾倒。
这是因为乘客具有保持原来运动状态(向前运动)的惯性,而刹车的力迫使汽车减速,导致乘客相对汽车向前运动。
二、牛顿第二定律牛顿第二定律的表达式为:F = ma,其中 F 是物体所受的合力,m 是物体的质量,a 是物体的加速度。
理解牛顿第二定律要注意以下几点:1、该定律揭示了力、质量和加速度之间的定量关系。
当合力为零时,加速度为零,物体将保持匀速直线运动或静止状态;当合力不为零时,加速度与合力成正比,与质量成反比。
2、加速度的方向与合力的方向始终相同。
如果合力的方向发生改变,加速度的方向也会随之改变。
3、应用牛顿第二定律解题时,要先对物体进行受力分析,求出合力,再代入公式计算加速度。
比如,一个质量为 2kg 的物体,受到水平向右的 10N 拉力和水平向左的 4N 摩擦力,合力为 6N,向右,加速度 a = F/m = 6/2 = 3m/s²,方向向右。
三、牛顿第三定律牛顿第三定律表述为:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
2023年高考物理一轮复习考点微专题《 牛顿运动定律的综合运用》(全国通用)
考向06 牛顿运动定律的综合运用【重点知识点目录】1.超重与失重问题2.整体法与隔离法在动力学中的运用3.滑块-滑板模型4.传送带模型5.动力学中的临界极值问题(多选)1.(2021•乙卷)水平地面上有一质量为m1的长木板,木板的左端上有一质量为m2的物块,如图(a)所示。
用水平向右的拉力F作用在物块上,F随时间t的变化关系如图(b)所示,其中F1、F2分别为t1、t2时刻F的大小。
木板的加速度a1随时间t的变化关系如图(c)所示。
已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因数为μ2。
假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g。
则()A.F1=μ1m1gB.F2=(μ2﹣μ1)gC.μ2>μ1D.在0~t2时间段物块与木板加速度相等【答案】BCD。
【解析】解:A、由图(c)可知,在0~t1时间段物块和木板均静止,在t1时刻木板与地面的静摩擦力达到最大值,对物块和木板整体分析可知F1=μ1(m1+m2)g,故A错误;B、由图(c)可知,t1~t2时间段物块和木板一起加速运动,在t2时刻物块和木板开始相对运动,此时物块和木板间的静摩擦力达到最大值,根据牛顿第二定律,有对物块和木板F2﹣μ1(m1+m2)g=(m1+m2)a m对木板μ2m2g﹣μ1(m1+m2)g=m1a m整理可得F2=(μ2﹣μ1)g故B正确;C、由图(c)可知,对木板μ2m2g﹣μ1(m1+m2)g=m1a m故μ2m2g>μ1(m1+m2)g,即μ2>μ1,故C正确;D、由上述分析可知,在0~t1时间段物块和木板均静止,t1~t2时间段物块和木板一起以共同加速度运动,故在0~t2时间段物块与木板加速度相等,故D正确。
2.(2022•山东)某粮库使用额定电压U=380V,内阻R=0.25Ω的电动机运粮,如图所示,配重和电动机连接小车的缆绳均平行于斜坡,装满粮食的小车以速度v=2m/s沿斜坡匀速上行,此时电流I=40A,关闭电动机后,小车又沿斜坡上行路程L到达卸粮点时,速度恰好为零。
牛顿运动定律的综合应用
产 生 物体有向上的加 条 速度 件
物体有向下的加 速度
a=g,方向向下
视
重
F=m(g+a)
F=m(g-a)
F=0
牛顿运动定律的综合应用
二、整体法与隔离法 1.整体法:当系统中各物体的 加速度 相同时,我们可以把
系统内的所有物体看成一个整体,这个整体的质量等于各 物体的 质量之和 .当整体受到的外力F已知时,可用牛顿 第二定律求出整体的加速度,这种处理问题的思维方法叫 做整体法.
牛顿运动定律的综合应用
2.涉及隔离法与整体法的具体问题 (1)涉及滑轮的问题.若要求绳的拉力,一般都必须采用隔
离法.这类问题中一般都忽略绳、滑轮的重力和摩擦力, 且滑轮大小不计.若绳跨过定滑轮,连接的两物体虽然加 速度方向不同,但大小相同,也可以先整体求a的大小, 再隔离求FT. (2)固定在斜面上的连接体问题.这类问题一般多是连接体 (系统)各物体保持相对静止,即具有相同的加速度.解题 时,一般采用先整体、后隔离的方法.建立坐标系时也要 考虑矢量正交分解越少越好的原则,或者正交分解力,或 者正交分解加速度. 牛顿运动定律的综合应用
牛顿运动定律的综合应用
牛顿运动定律的综合应用
1.当物体处于超重和失重状态时,物体受到的重力并没有
变化.所谓“超”和“失”,是指视重,“超”和
“失”的大小取决于物体的质量和物体在竖直方向的
加速度.
2.物体是处于超重状态还是失重状态,不在于物体向上运
动还是向下运动,而是取决于加速度方向是向上还是
向下.
(3)斜面体(或称为劈形物体、楔形物体)与在斜面体上物体组 成的连接体(系统)的问题.这类问题一般为物体与斜面体 的加速度不同,其中最多的是物体具有加速度,而斜面体 静止的情况.解题时,可采用隔离法,但是相当麻烦,因 涉及的力过多.如果问题不涉及物体与斜面体的相互作 用,则采用整体法用牛顿第二定律求解.
牛顿运动定律综合应用
牛顿定律综合应用1.知道传动带模型和滑板模型的概念。
2.掌握处理传送带问题和滑板模型的方法,形成处理叠加体问题的思路。
3.通过多体多过程的问题分析,培养良好的过程分析与逻辑推理的科学思维。
如何应用力与运动关系解决传送带模型?一.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上运动的力学系统可看做“传送带”模型。
二.模型分类(1)水平传送带模型:求解的关键在于对物体所受的摩擦力进行正确的分析判断。
判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等。
物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。
(2)倾斜传送带模型:求解的关键在于分析清楚物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。
如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况。
当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。
三.传送带模型的一般解法① 确定研究对象;① 分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;① 分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
四.注意事项1. 传送带模型中要注意摩擦力的突变① 滑动摩擦力消失① 滑动摩擦力突变为静摩擦力① 滑动摩擦力改变方向2.传送带与物体运动的牵制。
牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。
3. 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【例题1.1】如图所示,水平传送带两端相距x=8 m,工件与传送带间的动摩擦因数μ=0.6,工件滑上A端时速度v A=10 m/s,设工件到达B端时的速度为v B。
(取g=10 m/s2)(1)若传送带静止不动,求v B;(2)若传送带顺时针转动,工件还能到达B端吗?若不能,说明理由;若能,求到达B 点的速度v B;(3)若传送带以v=13 m/s逆时针匀速转动,求v B及工件由A到B所用的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理牛顿运动定律知识点牛顿运动定律的综合应用
★1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止。
(1)运动是物体的一种属性,物体的运动不需要力来维持。
(2)定律说明了任何物体都有惯性。
(3)不受力的物体是不存在的。
牛顿第一定律不能用实验直接验证。
但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。
(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2.惯性:物体保持匀速直线运动状态或静止状态的性质。
(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关。
因此说,人们只能利用惯性而不能克服惯性。
(2)质量是物体惯性大小的量度。
★★★★3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma
(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础。
(2)对牛顿第二定律的物理表达式F合=ma,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。
(3)牛顿第二定律揭示的是力的瞬间效果。
即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度。
(4)牛顿第二定律F合=ma,F合是矢量,ma也是矢量,且ma与F合的方向总是一致的。
F合可以进行合成与分解,ma也可以进行合成与分解。
4.★牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失。
(2)作用力和反作用力总是同种性质的力。
(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加。
5.牛顿运动定律的适用范围:宏观低速的物体和在惯性系中。
6.超重和失重
(1)超重:物体有向上的加速度称物体处于超重。
处于超重的物体对支持面的压力FN(或对悬挂物的拉力)大于物体的重力mg,即FN=mg+ma。
(2)失重:物体有向下的加速度称物体处于失重。
处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg。
即FN=mg-ma。
当a=g时FN=0,物体处于完全失重。
(3)对超重和失重的理解应当注意的问题
①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力。
②超重或失重现象与物体的速度无关,只决定于加速度的方向。
加速上升和减速下降都是超重;加速下降和减速上升都是失重。
③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等。
6、处理连接题问题----通常是用整体法求加速度,用隔离法求力。
感谢您的阅读!。