大数据十大经典算法PageRank 讲解共35页文档

合集下载

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

PageRank算法

PageRank算法

PageRank算法1. PageRank算法概述PageRank,即⽹页排名,⼜称⽹页级别、Google左側排名或佩奇排名。

是Google创始⼈拉⾥·佩奇和谢尔盖·布林于1997年构建早期的搜索系统原型时提出的链接分析算法,⾃从Google在商业上获得空前的成功后,该算法也成为其他搜索引擎和学术界⼗分关注的计算模型。

眼下许多重要的链接分析算法都是在PageRank算法基础上衍⽣出来的。

PageRank是Google⽤于⽤来标识⽹页的等级/重要性的⼀种⽅法,是Google⽤来衡量⼀个站点的好坏的唯⼀标准。

在揉合了诸如Title标识和Keywords标识等全部其他因素之后,Google通过PageRank来调整结果,使那些更具“等级/重要性”的⽹页在搜索结果中另站点排名获得提升,从⽽提⾼搜索结果的相关性和质量。

其级别从0到10级,10级为满分。

PR值越⾼说明该⽹页越受欢迎(越重要)。

⽐如:⼀个PR值为1的站点表明这个站点不太具有流⾏度,⽽PR值为7到10则表明这个站点很受欢迎(或者说极其重要)。

⼀般PR值达到4,就算是⼀个不错的站点了。

Google把⾃⼰的站点的PR值定到10,这说明Google这个站点是很受欢迎的,也能够说这个站点很重要。

2. 从⼊链数量到 PageRank在PageRank提出之前,已经有研究者提出利⽤⽹页的⼊链数量来进⾏链接分析计算,这样的⼊链⽅法如果⼀个⽹页的⼊链越多,则该⽹页越重要。

早期的⾮常多搜索引擎也採纳了⼊链数量作为链接分析⽅法,对于搜索引擎效果提升也有较明显的效果。

PageRank除了考虑到⼊链数量的影响,还參考了⽹页质量因素,两者相结合获得了更好的⽹页重要性评价标准。

对于某个互联⽹⽹页A来说,该⽹页PageRank的计算基于下⾯两个基本如果:数量如果:在Web图模型中,如果⼀个页⾯节点接收到的其它⽹页指向的⼊链数量越多,那么这个页⾯越重要。

大数据十大经典算法讲解1概要

大数据十大经典算法讲解1概要

一个实验所有实验都是在实验室搭建的Hadoop平台上运行的.平台有5台机器,都是四核IntelCorei3处理器,4GB内存.Hadoop版本0.20.2,java版本1.6.25.每台机器之间用千兆以太网卡,通过交换机连接.实验所用的数据是人工数据,维度是48维.为了测试算法的性能,实验中构造了分别含有10^4,10^5,10^6,2*10^6 条记录的数据来进行测试.由于KMeans算法中有随机初始化中心点的操作,因此对每一组实验重复执行25次,取其平均执行时间作为最终实验结果
算法改进后的实效a的的可n运K以s行M看算效e出法率a:要n基远s于远算M高法a于p传R统e的dKuMcee
Q&A。

大数据经典算法PageRank 讲解

大数据经典算法PageRank 讲解

如果按这个公式迭代算下去,会发现自连接点的问题解决了,从而每个页面 都拥有一个合理的pagerank。
分块式Pagerank算法:
火龙果整理
单击此处添加段落文字内容
原来的算法存在的问题:
1.时间开销大。每次迭代就算时间开销为
2.因特网中数据大部分是分布式的,计算过程需要多次传递数据,网 络负担太大。
火龙果整理
PageRank算法
基本PageRank 面向主题PageRank Link Spam与反作弊 导航页与权威页
一小组:王高翔,李渠,刘晴,柳永康,刘昊骋 二小组: 王飞,李天照,赵俊杰,陈超,陈瑾翊
一.Pagerank定义及终点,自连接点的概念
早期搜索引擎的弊端
火龙果整理
火龙果整理
TrustRank
TrustRank的思想很直观:如果一个页面的普通rank远高 于可信网页的topic rank,则很可能这个页面被spam了。 设一个页面普通rank为P,TrustRank为T,则定义网页的 Spam Mass为:(P – T)/P。 Spam Mass越大,说明此页面为spam目标页的可能性越 大。
为了克服这种问题,需要对PageRank 计算方法进行一个平滑处理,具体做 单击添加 法是加入“跳转因子(teleporting)”。所谓跳转因子,就是我们认为在任 何一个页面浏览的用户都有可能以一个极小的概率瞬间转移到另外一个随机 页面。当然,这两个页面可能不存在超链接,因此不可能真的直接转移过去, 跳转因子只是为了算法需要而强加的一种纯数学意义的概率数字。
3.n维矩阵式一个稀疏矩阵,无论计算还是存储都很浪费资源。
能否考虑先算出局部的Pagerank值??
分块式Pagerank算法:

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。

非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。

0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。

不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。

时间复杂度:对排序数据的总的操作次数。

反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述比较相邻的元素。

如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。

1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。

PageRank算法简析

PageRank算法简析

Google PageRank搜索引擎算法简析摘要伴随着互联网的发展,网络资源已经越来越复杂与繁琐,想在浩瀚的网页中找到用户所需要的信息也变得十分复杂。

因此需要按某种规律对搜索出的信息进行自动排列,才能使用户更高效率地查找信息。

搜索引擎技术为解决这一难题做出了突出贡献,搜索引擎提供的结果集中页面质量的好坏以及高质量的页面能否在结果集中有较好的排名,对搜索引擎用户来说具有重要意义,同时也是衡量搜索引擎技术优劣的关键指标,所以对页面进行重要性评估并按重要性排序是搜索引擎要解决的技术核心。

本文中所要探讨的Google搜索引擎最初是斯坦福大学的博士研究生Sergey Brin和Lawrence Page实现的一个原型系统,现在已经发展成为WWW上最好的搜索引擎之一。

Google的体系结构类似于传统的搜索引擎,它与传统的搜索引擎最大的不同处在于对网页进行了基于权威值的排序处理,使最重要的网页出现在结果的最前面。

Google通过PageRank元算法计算出网页的PageRank值,从而决定网页在结果集中的出现位置,PageRank值越高的网页,在结果中出现的位置越前。

Google的PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。

PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。

这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。

PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

PageRank是Google衡量网页重要性的工具,测量值范围为从1至10,分别表示某网页的重要性。

在Google工具栏可以随时获得某网页的PageRank值。

在这里我们将透视PageRank的一些特殊之处,从而对其能够获得较为深入的了解,使广大用户能够更好的使用和了解Googel。

pageRank 详细解析(具体例子)

pageRank 详细解析(具体例子)

PageRank解释方法一1.PageRank的核心思想(1)R(x)表示x的PageRank,B(x)表示所有指向x的网页。

公式(1)的意思是一个网页的重要性等于指向它的所有网页的重要性相加之和。

粗看之下,公式(1)将核心思想准确地表达出来了。

但仔细观察就会发现,公式(1)有一个缺陷:无论J有多少个超链接,只要J指向I,I都将得到与J一样的重要性。

当J有多个超链接时,这个思想就会造成不合理的情况。

例如:一个新开的网站N只有两个指向它的超链接,一个来自著名并且历史悠久的门户网站F,另一个来自不为人知的网站U。

根据公式(1),就会得到N比F更优质的结论。

这个结论显然不符合人们的常识。

弥补这个缺陷的一个简单方法是当J有多个超链接(假设个数为N),每个链接得到的重要性为R(j)/N。

于是公式(1)就变成公式(2):(2)N(j)表示j页面的超链接数图2 来自Lawrence Page的文章从图2可以看出,如果要得到N比F更优质的结论,就要求N得到很多重要网站的超链接或者海量不知名网站的超链接。

而这是可接受的。

因此可以认为公式(2)将核心思想准确地表达出来了。

为了得到标准化的计算结果,在公式(2)的基础上增加一个常数C,得到公式(3):(3)2.计算,实例由公式(3)可知,PageRank是递归定义的。

换句话就是要得到一个页面的PageRank,就要先知道另一些页面的PageRank。

因此需要设置合理的PageRank初始值。

不过,如果有办法得到合理的PageRank初始值,还需要这个算法吗?或者说,这个严重依赖于初始值的算法有什么意义吗?依赖于合理初始值的PageRank算法是没意义的,那么不依赖于初始值的PageRank算法就是有意义的了。

也就是说,如果存在一种计算方法,使得无论怎样设置初始值,最后都会收敛到同一个值就行了。

要做到这样,就要换一个角度看问题,从线性代数的角度看问题。

将页面看作节点,超链接看作有向边,整个互联网就变成一个有向图了。

PageRank算法解析.ppt

PageRank算法解析.ppt

Pagerank算法原理:
PageRank 的核心思想
PageRank 是基于「从许多优质的网页链接过来的网页,必定还是优质网页」的
回归关系,来判定所有网页的重要性。
因此,如果从类似于 Yahoo! 那 样的 PageRank 非常高的•站链点入被链接数 (单纯的意义上的受欢 链接的话,仅此网页的 Pa迎ge度Ra指nk标) 也会一下子上升;相反地,无论 有多少链入链接数,如果•全链都入是链接是否来自推荐度高的页面 从那些没有多大意义的页(面有链根接据的受欢迎指标) 过来的话,PageRank 也不会轻易
Pagerank
创始人:拉里 佩奇(Larry Page )
—Google创始人之一 谢尔盖·布林(Sergey Brin)
应 用:Google是用来衡量一个网站 好坏的唯一标准。
PageRank的提出
Google的创始人之一Larry Page于1998年提出了 PageRank,并应用在Google搜索引擎的检索结果排序 上,该技术也是Google早期的核心技术之一
Google查询过程
Google 查询的全过程通常 不超过半秒时间,但在这 短短的时间内需要完成多 个步骤,然后才能将搜索 结果交付给搜索信息的用 户。
PageRank?
PageRank算法
背景介绍 Google的网页排序 PageRank简化模型 PageRank随机浏览模型 PageRank的计算
• Sergey Brin(谢尔盖·布林 )和Lawrence Page(拉里·佩奇)在1998年提出 了PageRank算法,同年J. Kleinberg(J·克莱因伯格)提出了HITS算法 Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd, 'The PageRank Citation Ranking: Bringing Order to the Web', 1998, /~backrub/pageranksub.ps • 为了更高效地计算 PageRank,以下是改良以后的一篇论文。Taher H. Haveliwala, ‘Efficient Computation of PageRank’, Stanford Technical Report, 1999, :8090/pub/1999-31

大数据——PageRank算法41页PPT

大数据——PageRank算法41页PPT
曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联

大数据十大经典算法讲解优秀课件

大数据十大经典算法讲解优秀课件

求最大的δ
➢因为w是超平面的法向量,所以w 实际上只由在H1平面上的样本点确 定; ➢在H1上的向量则叫做Supported Vectors ,因为它们“撑”起了分 界线。
求最大的δ
➢于是问题便转化成了求 ➢很容易看出当||w||=0的时候就得到了目标函数的最小值。反映在图中,就是H1与H2 两条直线间的距离无限大,所有样本点都进入了无法分类的灰色地带 ➢解决方法:加一个约束条件
我们注意到:
非线性分类
若令 Φ(x1) = [√2η1 , η12, √2η2 , η22, √2η1η2 , 1]T 则:
那么区别在于什么地方呢?
1. 一个是将低维空间数据映射到高维空间中,然后再根据内积的公式进行计算; 2. 另一个则直接在原来的低维空间中进行计算,而不需要显式地写出映射后的结果。 3. 当样本空间处于高维度时,第一种方法将引发维度灾难,第二种方法仍然能够从容处理
➢ 机:一个算法
➢ 基于统计学习理论的一种机器学习方法。简单的说, 就是将数据单元表示在多维空间中,然后对这个空间 做划分的算法。
SVM的特点
SVM是建立在统计学习理论的VC维理论和结构风险最 小原理基础上的,根据有限的样本信息在模型的复杂性 之间寻求最佳折衷,以期获得最好的推广能力(或泛化 能力)。
核函数
➢ 核函数:
➢ 概念:x,z∈X, X属于Rn空间,非线性函数Φ实现输入空间X到特征空间F 的映射,其中F属于Rm,n<<m。核函数技术接收2个低维空间的向量, 能够计算出经某变换后高维空间里的向量内积值。
➢ 根据核函数技术有: K(x,z) = <Φ(x),Φ(z) >
➢ 其中:<, >为内积,K(x,z)为核函数。

大数据经典算法PageRank 讲解

大数据经典算法PageRank 讲解

通过迭代计算每个网页的 PageRank值。
设定阈值,当计算结果变化小于 阈值时停止迭代。
结果
结果展示
以可视化方式展示每个网页的PageRank值 。
结果分析
对结果进行深入分析,挖掘有价值的信息。
结果应用
将PageRank值应用于实际场景,如网页排 名、信息筛选等。
04
CATALOGUE
PageRank算法优化
社交网络的兴起
随着社交媒体的兴起,网页之间的链接关系变得更加复杂 和多样化,需要更复杂的算法来准确计算PageRank值。
算法的可解释性问题
缺乏可解释性
PageRank算法是一个黑箱模型,其运算过程和结果难以 解释,使得人们难以理解其工作原理和决策依据。
可解释性与准确性的权衡
为了提高算法的可解释性,可能会牺牲一定的准确性,这 需要在可解释性和准确性之间进行权衡。
推荐系统
PageRank可以用于推荐系 统,通过分析用户行为和物 品之间的关系,为用户推荐 相关内容。
信息提取和筛选
PageRank可以用于信息提 取和筛选,通过分析网页之 间的链接关系,提取有用的 信息并筛选出高质量的内容 。
02
CATALOGUE
PageRank算法原理
网页链接关系
网页之间的链接关系
链接分析
PageRank算法通过分析网页之间的链接数量和质量,判 断每个网页的价值。一个网页如果有较多的外部链接,且 这些链接都来自质量较高的网页,那么这个网页的 PageRank值就会相应提高。
广告定位
Google AdWords等广告平台也利用PageRank算法,将 广告投放到与内容相关的网页上,从而提高广告的点击率 和转化率。

大数据的经典的四种算法

大数据的经典的四种算法

大数据的经典的四种算法大数据是指数据量巨大、种类繁多且变化速度快的数据集合。

为了高效地处理和分析大数据,需要使用特定的算法。

下面列举了大数据处理中经典的四种算法。

一、MapReduce算法MapReduce是一种分布式计算模型,用于处理大规模数据集。

它由两个阶段组成:Map阶段和Reduce阶段。

在Map阶段,原始数据集被映射为一系列键值对,然后经过分组和排序。

在Reduce阶段,对每个键值对进行聚合和计算,最终得到结果。

MapReduce算法具有良好的可扩展性,可以有效地处理大规模数据。

二、PageRank算法PageRank是一种用于评估网页重要性的算法,广泛应用于搜索引擎中。

它通过分析网页之间的链接关系,计算每个网页的重要性指数。

PageRank算法将网页排名问题转化为一个随机游走问题,通过迭代计算网页的重要性。

这个算法对处理大规模的网页数据非常高效。

三、K-means算法K-means是一种常用的聚类算法,用于将数据分为多个簇。

该算法将数据集划分为k个簇,并将每个数据点分配到最近的簇。

在初始阶段,随机选择k个中心点,然后迭代计算每个数据点与中心点的距离,并更新簇的中心点。

最终得到稳定的簇划分结果。

K-means 算法在大数据处理中具有较高的效率和可扩展性。

四、Apriori算法Apriori算法是一种用于挖掘关联规则的算法,常用于市场篮子分析等场景。

该算法通过扫描数据集,计算项集的支持度,并根据设定的最小支持度阈值,筛选出频繁项集。

然后,根据频繁项集构建关联规则,并计算规则的置信度。

Apriori算法通过迭代逐渐增加项集的大小,从而挖掘出频繁项集和关联规则。

以上四种算法在大数据处理中具有重要的作用。

MapReduce算法可用于分布式处理大规模数据;PageRank算法可用于评估网页的重要性;K-means算法可用于大规模数据的聚类分析;Apriori算法可用于挖掘大规模数据中的关联规则。

大数据十大经典算法PageRank 讲解PPT

大数据十大经典算法PageRank 讲解PPT

作弊者可在他网页上增 加一个词项,并将该词 项重复千百次,搜索引 擎可能以为该网页与检 索关键词高度相关而把 该网页放在搜索结果的
前列
2.Pagerank的定义
Pagerank思想:
“被越多优质的网页所指的网页,它是优质的概率就 越大”
2.Pagerank的定义
Pagerank是一个函数,它对Web中的每个网页赋予一个实数 值。它的意图在于,网页的Pagerank越高,那么它就越“重要”。
4.自连接点
如下图,D有外链所以不是终止点,但是它只链向自己(注 意链向自己也算外链,当然同时也是个内链)。这种节点叫 做自连接点,如果对这个图进行计算,会发现D的rank越来越 大趋近于1,而其它节点rank值几乎归零。
为了克服这种问题,需要对Page单R击an添k加计算方法进行一个平滑处理,具体做 法是加入“跳转因子(teleporting)”。所谓跳转因子,就是我们认为在任 何一个页面浏览的用户都有可能以一个极小的概率瞬间转移到另外一个随机 页面。当然,这两个页面可能不存在超链接,因此不可能真的直接转移过去, 跳转因子只是为了算法需要而强加的一种纯数学意义的概率数字。

链接农场是指由互联网中的一部分网页组成,这些

网页非常密集地互相连接在一起。链接农场是通过

创建一个堆砌大量链接而没有实质内容的网页,这

பைடு நூலகம்
些链接彼此互链,或指向特定网站,以提高某个或
者某些特定网页的Pagerank值为目的。

交换链接是指网站之间人为地互相增加对方网站的

链接,是增加外链成本最低和使用最多的一种方法。
击添加
单击此其的处中原添β因往是加往这段被个落设公文置式为字的一内前个容半比部较分小是的向参量数,(因0此.2或必更须小将)β/N,转e为为N向维量单才位能向相量加,。加这入样e,

大数据的经典的四种算法

大数据的经典的四种算法

大数据的经典的四种算法大数据算法是在大数据环境下为了处理和分析大规模数据而设计的算法。

这些算法通常具有高效性、可伸缩性和准确性,在大数据应用中发挥着重要作用。

下面列举了大数据的四种经典算法。

一、PageRank算法PageRank算法是由谷歌公司创始人之一拉里·佩奇(Larry Page)提出的一种用于评估网页重要性的算法。

PageRank算法通过分析网页之间的链接关系,将每个网页赋予一个权重值,表示该网页的重要程度。

重要的网页具有更高的权重值,从而在搜索引擎结果中排名更高。

PageRank算法的核心思想是基于图的链接结构进行网页排序,是搜索引擎中常用的排序算法之一。

二、k-means算法k-means算法是一种基于距离的聚类算法,用于将数据集划分成k 个不同的簇。

该算法将数据点分配到与其最近的簇中,然后根据每个簇的平均值更新簇的中心点,迭代进行,直到达到收敛条件。

k-means算法的优点是简单、高效,适用于大规模数据集。

它在聚类分析、图像分割和模式识别等领域有广泛应用。

三、Apriori算法Apriori算法是一种用于挖掘关联规则的算法。

关联规则指的是数据集中项之间的相关性。

Apriori算法通过扫描数据集,计算项集的支持度和置信度,从而找到频繁项集和关联规则。

该算法的核心思想是通过逐层扩展频繁项集,从而减少搜索空间,提高算法效率。

Apriori算法在市场篮子分析、推荐系统和广告投放等领域有广泛应用。

四、随机森林算法随机森林算法是一种集成学习算法,通过构建多个决策树并集成它们的结果来进行分类或回归任务。

随机森林算法的核心思想是通过随机选择特征和样本,构建多个决策树,并通过投票或平均等方式集成它们的预测结果,从而提高模型的准确性和泛化能力。

随机森林算法具有较好的抗噪声能力和可解释性,广泛应用于数据挖掘、图像识别和自然语言处理等领域。

五、朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理和特征条件独立假设的分类算法。

大数据算法十大经典算法

大数据算法十大经典算法

⼤数据算法⼗⼤经典算法⼀、C4.5C4.5,是机器学习算法中的⼀个分类决策树算法,它是决策树(决策树也就是做决策的节点间的组织⽅式像⼀棵树,其实是⼀个倒树)核⼼算法ID3的改进算法,所以基本上了解了⼀半决策树构造⽅法就能构造它。

决策树构造⽅法其实就是每次选择⼀个好的特征以及分裂点作为当前节点的分类条件。

C4.5相⽐于ID3改进的地⽅有:1、⽤信息增益率来选择属性。

ID3选择属性⽤的是⼦树的信息增益,这⾥可以⽤很多⽅法来定义信息,ID3使⽤的是熵(entropy,熵是⼀种不纯度度量准则),也就是熵的变化值.⽽C4.5⽤的是信息增益率。

对,区别就在于⼀个是信息增益,⼀个是信息增益率。

⼀般来说率就是⽤来取平衡⽤的,就像⽅差起的作⽤差不多,⽐如有两个跑步的⼈,⼀个起点是10m/s的⼈、其10s后为20m/s;另⼀个⼈起速是1m/s、其1s后为2m/s。

如果紧紧算差值那么两个差距就很⼤了,如果使⽤速度增加率(加速度,即都是为1m/s^2)来衡量,2个⼈就是⼀样的加速度。

因此,C4.5克服了ID3⽤信息增益选择属性时偏向选择取值多的属性的不⾜。

2、在树构造过程中进⾏剪枝,在构造决策树的时候,那些挂着⼏个元素的节点,不考虑最好,不然容易导致overfitting。

3、对⾮离散数据也能处理。

4、能够对不完整数据进⾏处理。

⼆、The k-means algorithm 即K-Means算法k-means algorithm算法是⼀个聚类算法,把n的对象根据他们的属性分为k个分割(k < n)。

它与处理混合正态分布的最⼤期望算法(本⼗⼤算法第五条)很相似,因为他们都试图找到数据中⾃然聚类的中⼼。

它假设对象属性来⾃于空间向量,并且⽬标是使各个群组内部的均⽅误差总和最⼩。

三、 Support vector machines⽀持向量机,英⽂为Support Vector Machine,简称SV机(论⽂中⼀般简称SVM)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档