辽宁省沈阳铁路实验中学2014-2015学年高二上学期期初检测数学试题

合集下载

2014-2015学年高中数学基础巩固试题第一章《立体几何初步综合测试》A新人教B版必修2

2014-2015学年高中数学基础巩固试题第一章《立体几何初步综合测试》A新人教B版必修2

高中数学第一章立体几何初步综合测试A 新人教B版必修2时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2014·广西南宁高一期末测试)用符号表示“点A在直线l上,l在平面α外”正确的是( )A.A∈l,l⊄αB.A∈l,l∉αC.A⊂l,l∉αD.A⊂l,l⊄α[答案] A[解析] 点在直线上用“∈”表示,直线在平面外用“⊄”表示,故选A.2.(2014·河北邢台一中高一月考)若直线l不平行于平面α,且l⊄α,则( ) A.平面α内所有直线与l异面B.平面α内存在惟一的直线与l平行C.平面α内不存在与l平行的直线D.平面α内的直线都与l相交[答案] C[解析] ∵直线l不平行于平面α,且l⊄α,∴l与平面α相交,故平面α内不存在与l平行的直线.3.一长方体木料,沿图①所示平面EFGH截长方体,若AB⊥CD那么图②四个图形中是截面的是( )[答案] A[解析] 因为AB、MN两条交线所在平面(侧面)互相平行,故AB、MN无公共点,又AB、MN在平面EFGH内,故AB∥MN,同理易知AN∥BM.又AB⊥CD,∴截面必为矩形.4.(2014·湖南永州市东安天成实验中学高一月考)正方体ABCD-A1B1C1D1的体对角线AC1的长为3cm,则它的体积为( )A.4cm3B.8cm3C.11272cm3D.33cm3[答案] D[解析] 设正方体的棱长为a cm ,则3a 2=9,∴a = 3.则正方体的体积V =(3)3=33(cm 3).5.(2014·山东菏泽高一期末测试)某几何体的三视图如图所示,则该几何体的体积是( )A .2πB .4πC .πD .8π[答案] C[解析] 由三视图可知,该几何体是底面半径为1,高为2的圆柱的一半,其体积V =12×π×12×2=π.6.将棱长为1的正方体木块切削成一个体积最大的球,则该球的体积为( ) A.π6B.2π3 C.3π2D.4π3[答案] A[解析] 将棱长为1的正方体木块切削成一个体积最大的球,球的直径应等于正方体的棱长,故球的半径为R =12,∴球的体积为V =43πR 3=43π×(12)3=π6.7.设α表示平面,a 、b 、l 表示直线,给出下列命题,①⎭⎪⎬⎪⎫a ⊥l b ⊥la ⊂αb ⊂α⇒l ⊥α; ②⎭⎪⎬⎪⎫a ∥αa ⊥b⇒b ⊥α; ③⎭⎪⎬⎪⎫a ⊄αb ⊂αa ⊥b ⇒a ⊥α;④直线l 与平面α内无数条直线垂直,则l ⊥α.其中正确结论的个数为( ) A .0 B .1 C .2 D .3[答案] A[解析] ①错,缺a 与b 相交的条件;②错,在a ∥α,a ⊥b 条件下,b ⊂α,b ∥α,b 与 α斜交,b ⊥α都有可能; ③错,只有当b 是平面α内任意一条直线时,才能得出a ⊥α,对于特定直线b ⊂α,错误;④错,l 只要与α内一条直线m 垂直,则平面内与m 平行的所有直线就都与l 垂直,又l 垂直于平面内的一条直线是得不出l ⊥α的.8.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )[答案] B[解析] (可用排除法)由正视图可把A ,C 排除, 而由左视图把D 排除,故选B.9.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是,这截面把圆锥母线分为两段的比是( )A .B .3-1)C .3[答案] B[解析] 如图由题意可知,⊙O 1与⊙O 2面积之比为,∴半径O 1A 1与OA 之比为3,∴PA 1PA =13,∴PA 1AA 1=13-1. 10.在正方体ABCD -A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E 、交CC ′于F ,则以下结论中错误的是( )A .四边形BFD ′E 一定是平行四边形B .四边形BFD ′E 有可能是正方形C .四边形BFD ′E 有可能是菱形D .四边形BFD ′E 在底面投影一定是正方形 [答案] B[解析] 平面BFD ′E 与相互平行的平面BCC ′B ′及ADD ′A ′的交线BF ∥D ′E ,同理BE ∥D ′F ,故A 正确.特别当E 、F 分别为棱AA ′、CC ′中点时,BE =ED ′=BF =FD ′,则四边形为菱形,其在底面ABCD 内的投影为正方形ABCD ,∴选B.11.如图所示,在斜三棱柱ABC -A 1B 1C 1的底面△ABC 中,∠A =90°,且BC 1⊥AC ,过C 1作C 1H ⊥底面ABC ,垂足为H ,则点H 在()A .直线AC 上B .直线AB 上C .直线BC 上D .△ABC 内部[答案] B[解析]⎭⎪⎬⎪⎫⎭⎪⎬⎪⎫AC ⊥ABAC ⊥BC 1AB ∩BC 1=B ⇒AC ⊥平面ABC 1 AC ⊂平面ABC⇒平面ABC 1⊥平面ABC ,⎭⎪⎬⎪⎫ 平面ABC 1∩平面ABC =AB C 1H ⊥平面ABC⇒H 在AB 上.12.如图1,在透明密封的长方体ABCD -A 1B 1C 1D 1容器内已灌进一些水,固定容器底面一边BC 于水平的地面上,再将容器倾斜,随着倾斜度的变化,有下列四个命题:①有水的部分始终呈棱柱形; ②水面四边形EFGH 的面积不会改变; ③棱A 1D 1始终与水面EFGH 平行;④当点E 、F 分别在棱BA 、BB 1上移动时(如图2),BE ·BF 是定值. 其中正确命题的序号是( ) A .①②③ B .①③④ C .③④ D .①②[答案] B[解析] 由于BC 固定于水平地面上, ∴由左右两个侧面BEF ∥CGH ,可知①正确; 又∵A 1D 1∥BC ∥FG ∥EH ,∴③正确;水的总量保持不变,总体积V =12BE ·BF ·BC ,∵BC 一定,∴BE ·BF 为定值,故④正确;水面四边形随着倾斜程度不同,面积随时发生变化, ∴②错.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.用斜二测画法,画得正方形的直观图面积为182,则原正方形的面积为________. [答案] 72 [解析] 由S 直=24S 原,得S 原=22S 直=22×182=72. 14.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.[答案][解析] 设球半径为a ,则圆柱、圆锥、球的体积分别为:πa 2·2a ,13πa 2·2a ,43πa 3.所以体积之比2πa323πa 343πa 3=2343=15.考察下列三个命题,在“________”处都缺少同一个条件,补上这个条件其构成真命题(其中l 、m 为不同直线,α、β为不重合平面),则此条件为________.①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α; ②⎭⎪⎬⎪⎫l ∥mm ∥α ⇒l ∥α; ③⎭⎪⎬⎪⎫l ⊥βα⊥β ⇒l ∥α. [答案] l ⊄α[解析] ①体现的是线面平行的判定定理,缺的条件是“l 为平面α外的直线”,即“l ⊄α”.它同样适合②③,故填l ⊄α.16.一块正方形薄铁片的边长为4cm ,以它的一个顶点为圆心,一边长为半径画弧,沿弧剪下一个扇形(如图),用这块扇形铁片围成一个圆锥筒,则这个圆锥筒的容积等于________cm 3.[答案]153π [解析] 据已知可得圆锥的母线长为4,设底面半径为r , 则2πr =π2·4⇒r =1(cm),故圆锥的高为h =42-1=15(cm), 故其体积V =13π·1215=15π3(cm 3).三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.[解析] 圆台轴截面如图,设上、下底半径分别为x 和3x ,截得圆台的圆锥顶点为S ,在Rt △SOA 中,∠ASO =45°,∴SO =AO =3x ,∴OO 1=2x ,又轴截面积为S =12(2x +6x )·2x =392,∴x =7,∴高OO 1=14,母线长l =2OO 1=142,∴圆台高为14cm ,母线长为142cm ,两底半径分别为7cm 和21cm.18.(本题满分12分)(2014·陕西汉中市南联中学高一期末测试)在正方体ABCD -A 1B 1C 1D 1中,AA 1=2,E 为棱CC 1的中点.(1)求四棱锥E -ABCD 的体积; (2)求证:B 1D 1⊥AE ; (3)求证:AC ∥平面B 1DE .[解析] (1)V E -ABCD =13×1×2×2=43.(2)∵BD ⊥AC ,BD ⊥CE ,CE ∩AC =C , ∴BD ⊥平面ACE , ∴BD ⊥AE 1,又∵BD ∥B 1D 1,∴B 1D 1⊥AE .(3)如图,取BB 1的中点F ,连接AF 、CF 、EF .则EF 綊AD ,∴四边形ADEF 为平行四边形, ∴AF ∥DE .又CF∥B1E,AF∩CF=F,DE∩B1E=E,∴平面AFC∥平面B1DE,∴AC∥平面B1DE.19.(本题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC.E是PC的中点,作EF⊥PB交PB于F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD.[解析] (1)如图,设AC交BD于O,连接EO.∵底面ABCD是正方形,∴点O是AC的中点.△PAC中,EO是中位线.∴PA∥EO,而EO⊂平面EDB,且PA⊄平面EDB.∴PA∥平面EDB.(2)∵PD⊥底面ABCD,且DC⊂底面ABCD,∴PD⊥DC.由PD=DC知△PDC是等腰直角三角形,而DE是斜边PC的中线,∴DE⊥PC①又由PD⊥底面ABCD,得PD⊥BC∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC,而DE⊂面PDC,∴BC⊥DE②由①和②推得DE⊥平面PBC,而PB⊂平面PBC,∴DE⊥PB又EF⊥PB且DE∩EF=F,所以PB⊥平面EFD.20.(本题满分12分)如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,M、N分别是AA1、AC 的中点.(1)求证:MN ∥平面BCD 1A 1; (2)求证:MN ⊥C 1D ; (3)求VD -MNC 1.[解析] (1)连接A 1C ,在△AA 1C 中,M 、N 分别是AA 1、AC 的中点,∴MN ∥A 1C .又∵MN ⊄平面BCA 1D 1且A 1C ⊂平面BCD 1A 1, ∴MN ∥平面BCD 1A 1.(2)∵BC ⊥平面CDD 1C 1,C 1D ⊂平面CDD 1C 1, ∴BC ⊥C 1D .又在平面CDD 1C 1中,C 1D ⊥CD 1,BC ∩CD 1=C , ∴C 1D ⊥平面BCD 1A 1,又∵A 1C ⊂平面BCD 1A 1,∴C 1D ⊥A 1C , 又∵MN ∥A 1C ,∴MN ⊥C 1D .(3)∵A 1A ⊥平面ABCD ,∴A 1A ⊥DN , 又∵DN ⊥AC ,∴DN ⊥平面ACC 1A 1, ∴DN ⊥平面MNC 1.∵DC =2,∴DN =CN =2,∴NC 21=CC 21+CN 2=6,MN 2=MA 2+AN 2=1+2=3,MC 21=A 1C 21+MA 21=8+1=9,∴MC 21=MN 2+NC 21,∴∠MNC 1=90°, ∴S △MNC 1=12MN ·NC 1=12×3×6=322,∴VD -MNC 1=13·DN ·S △MNC 1=13·2·322=1.21.(本题满分12分)(2014·山东文,18)如图,四棱锥P -ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E 、F 分别为线段AD 、PC 的中点.(1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面PAC .[解析] (1)证明:如图所示,连接AC 交BE 于点O ,连接OF .∵E 为AD 中点,BC =12AD ,AD ∥BC ,∴四边形ABCE 为平行四边形. ∴O 为AC 的中点,又F 为PC 中点, ∴OF ∥AP .又OF ⊂面BEF ,AP ⊄面BEF , ∴AP ∥面BEF .(2)由(1)知四边形ABCE 为平行四边形. 又∵AB =BC ,∴四边形ABCE 为菱形. ∴BE ⊥AC .由题意知BC 綊12AD =ED ,∴四边形BCDE 为平行四边形. ∴BE ∥CD .又∵AP ⊥平面PCD , ∴AP ⊥CD . ∴AP ⊥BE . 又∵AP ∩AC =A , ∴BE ⊥面PAC .22.(本题满分14分)(2014·广东文,18)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2,作如图2折叠,折痕EF ∥DC .其中点E 、F 分别在线段PD 、PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1)证明:CF ⊥平面MDF ;(2)求三棱锥M -CDE 的体积.[解析] (1)如图PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,MD ⊂平面ABCD ,MD ⊥CD ,∴MD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥MD ,又CF ⊥MF ,MD ,MF ⊂平面MDF ,MD ∩MF =M ,∴CF ⊥平面MDF .(2)∵CF ⊥平面MDF ,∴CF ⊥DF ,又易知∠PCD =60°,∴∠CDF =30°,从而CF =12CD =12,∵EF ∥DC ,∴DE DP =CF CP ,即DE 3=122,∴DE =34, ∴PE =334,S △CDE =12CD ·DE =38, MD =ME 2-DE 2=PE 2-DE 2 =3342-342=62, ∴V M -CDE =13S △CDE ·MD =13×38×62=216.。

辽宁省沈阳铁路实验中学2014-2015学年高二上学期期中考试数学(文)试题

辽宁省沈阳铁路实验中学2014-2015学年高二上学期期中考试数学(文)试题

辽宁省沈阳铁路实验中学2014-2015学年高二上学期期中考试数学(文)试题一、选择题:(每题5分共60分)1命题“对任意x R ∈都有21x ≥”的否定是( )A . 对任意x R ∈,都有21x <B .不存在x R ∈,使得21x <C .存在0x R ∈,使得201x ≥D .存在0x R ∈,使得201x <2 .已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )(a +b +c )=ab ,则角C 的大小为 ( ) A .60° B .90° C .120° D .150°3.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( )A.12B.22C. 2D.324 .在△ABC 中,已知sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形5 .如果0a b <<,那么下列不等式成立的是 ( ) A .11a b < B .2ab b < C .2ab a -<- D .11a b-<- 6 .目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,则有 ( )A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值7 .下列有关命题的说法正确的是 A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”;B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”;C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件;D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.8.等比数列{}n a 中,已知对任意自然数n ,12321n n a a a a ++++=-,则2222123n a a a a +++等于( ) A .()221n - B .()1213n - C .41n - D .()1413n - 9 .已知等差数列{}n a 的前n 项和为n S ,111a =-,564a a +=-,n S 取得最小值时n 的值为() A .6 B .7 C .8 D .910.已知椭圆222a x +222b y =1(a >b >0)与双曲线22a x -22by =1有相同的焦点,则椭圆的离心率为 A .22 B .21 C .36 D .66二.填空题(每题5分共20分)[来13.不等式022>++bx ax 的解集是)31,21(-,则a +b 的值是 14.若双曲线的两条渐进线的夹角为 60,则该双曲线的离心率为________15.若实数,x y 满足221x y xy ++=,则x y +的最大值___________;16.已知数列{}n a 满足133a =,12n n a a n +-=,则n a n的最小值为____. 三、解答题(每题12分) 17.命题P :关于x 的不等式0422>++ax x 对于一切R x ∈恒成立,命题Q :[],0,2,12≥-∈∀a x x 若pVq 为真,q p Λ为假,求实数a 的取值范围。

辽宁省实验中学分校2014-2015学年高一10月月考数学试题

辽宁省实验中学分校2014-2015学年高一10月月考数学试题

辽宁省实验中学分校2014-2015学年高一10月月考数学试题一、选择题(本大题共12小题,每小题5分,满分60分,每题四个选项中只有一项是符合题目要求的)1、已知全集{}1,2,3,4,5,6,7,8U =, {}{}1,3,5,7,5,6,7M N ==则()U C M N =( ) (A) {}5,7 (B ){}2,4 (C ){}2,4,8 (D ){}1,3,5,72、已知集合{}{}0,1,2,3,4,2,4,8A B ==,那么A B 子集的个数是:( )(A)4 (B)5 (C)7 (D)83、已知函数1,1()3,1x x f x x x +≤⎧=⎨-+>⎩,则5()2f =( ) (A)12 (B)32 (C)52 (D)924、已知I 为全集,()I B C A B =,则A B =( ).(A)A (B)B (C)I C B (D)∅5、 在映射:f A B →中,A B R ==,且:(,)(,)f x y x y x y →-+,则与A 中的元素(2,1)在B 中的象为( ).(A) (3,1)-(B)(1,3) (C) (1,3)-- (D) (3,1)6、函数()f x =的定义域为( ). (A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-7、拟定从甲地到乙地通话m 分钟的电话费由)1][5.0(06.1)(+=m m f 给出,其中0>m ,][m 是不超过m 的最大整数(如3]3[=,[3.7]3=,[3.1]3=),则从甲到乙通话6.5分钟的话费为( )(A)、3.71 (B)、3.97 (C)、4.24 (D)、4.778、在区间(0,+∞)上不是增函数的是 ( )(A)()21f x x =- (B)()231f x x =- (C) ()1f x x =+ (D) ()3f x x =-+ 9、若函数()f x 的定义域为[0,3],则函数()(1)(1)g x f x f x =+--的定义域为 ( )(A)[1,2] (B)[1,4]- (C)[1,2]- (D)[1,4]10、 已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = ( ) (A)3 (B)3- (C) -5或-3 (D)-5-33或或11、已知函数()f x 的定义域是),0(+∞,且满足()()()f xy f x f y =+,1()12f = 如果对于0x y <<,都有()()f x f y >,不等式()()32f x f x -+-≥-的解集为 ( )(A)[)(]-1,03,4 (B)[)-1,0 (C)(]3,4 (D)[]-1,412、设函数2,1()11,1x x f x x x +⎧≠⎪=-⎨⎪=⎩ 则123201()()()()101101101101f f f f ++++的值为( ) (A)199 (B)200 (C)201 (D)202二、填空题(本大题共4小题,每小题5分,共20分)13、若集合{}1A x x =>,{}3B x x =<,,则A B =I ______________.14、已知函数()3f x x =-在区间[]2,4上的最大值为_____________. 15、设函数()1x f x x a+=+在区间()3+∞,上是减函数,则实数a 的取值范围是___________. 16、设2 (||1)() (||1)x x f x x x ⎧≥=⎨<⎩,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域 是___________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17、(本小题满分10分) 设集合{}28150A x x x =-+=,{}10B x ax =-=. (1) 若15a =,判断集合A 与B 的关系; (2) 若A B B =,求实数a 组成的集合C .18、(本小题满分12分)求下列函数值域(1)[]()()=351,3f x x x +∈-(2)()3()11x f x x x +=>+19、(本小题满分12分) 已知二次函数()y f x =,当2x =时函数取最小值1-,且()(1)43f f +=.(1) 求()f x 的解析式;(2) 若()()g x f x kx =-在区间[1,4]上不单调,求实数k 的取值范围。

辽宁省实验中学分校2014-2015学年高二10月月考数学试题 Word版含答案(人教A版)

辽宁省实验中学分校2014-2015学年高二10月月考数学试题 Word版含答案(人教A版)

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知1,,4x --成等比数列,则x 的值为( )A .2 B. 52-C. 2 或2- D .2.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是 ( )A. 1a <1b B .a 2>b 2 C.a c 2+1>bc 2+1 D .a |c |>b |c | 3.已知等差数列{}n a 中,247,15a a ==,则前10项的和10S = ( ) A 100 B 210 C 380 D 4004.等比数列中,a 5a 14=5,则a 8·a 9·a 10·a 11= ( )A .10B .25C .50D .755.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *)那么a n +1-a n 等于 ( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +26.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为 ( ) A .M <N B .M ≤N C .M >N D .M ≥N7.在数列{a n }中,已知对任意正整数n ,有a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n 等于( )A .(2n -1)2 B.13(2n -1)2 C .4n -1 D.13(4n -1)8.已知221(2),2(0)2b m a a n b a -=+>=≠-,则,m n 的大小关系是 ( ) A m n > B m n < C m n = D 不确定9.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .1810.在数列{a n }中,a 3=2,a 7=1,如果数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,那么a 11等于 ( )A.13B.12C.23D .111.若{}n a 是等差数列,首项110071008100710080,0,0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是 ( ) A.2012 B.2013 C.2014 D .201512.设{}n a 是由正数组成的等差数列,{}n b 是由正数组成的等比数列,且11a b =,20032003a b =,则必有( )A.10021002a b >B.10021002a b =C.10021002a b ≥D.10021002a b ≤二、填空题(本大题共4小题,每小题5分,共20分) 13.已知22ππαβ-≤<≤,则2βα-的范围为 。

辽宁省师大附中2014-2015学年高二上学期10月模块考试数学试卷(解析版)

辽宁省师大附中2014-2015学年高二上学期10月模块考试数学试卷(解析版)

辽宁省师大附中2014-2015学年高二上学期10月模块考试数学试卷(解析版)一、选择题1.若0<<b a ,则下列结论中不恒成立....的是( ) A .a b > B .11a b > C .ab b a 222>+ D.a b +>-【答案】D 【解析】试题分析:由不等式的基本性质可知A 、B 是正确的;选项C 是重要不等式ab b a 222≥+,由于b a <,所以等号不成立,因此C 正确;D 选项中ab b a 2-<+恒成立,答案选D. 考点:不等式的性质2.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x 、y 、z ,则下列选项中能反映x 、y 、z 关系的是( ) A .65=++z y xB .⎪⎩⎪⎨⎧>>=++z y z x z y x 65 C .⎪⎩⎪⎨⎧>>>>=++0065z y z x z y xD .⎪⎪⎩⎪⎪⎨⎧<<<=++65656565z y x z y x【答案】C 【解析】试题分析:由题意可知年龄和为65,且父母的年龄比小孩大,小孩的年龄是正数,答案选C.考点:线性规划的约束条件3.等差数列}{n a 的前n 项和为2811,30n S a a a ++=若,那么13S 值的是 ( ) A .130 B .65 C .70 D .以上都不对 【答案】A 【解析】试题分析:因为71111823)6(3183a d a d a a a a =+=+=++,所以107=a ,因此130132)(13713113==+=a a a S ,答案选A.考点:等差数列的性质与求和4.设}{n a 是等差数列,}{n b 为等比数列,其公比q ≠1, 且0>i b (i=1、2、3 …n )若11b a =,1111b a =则( )A .66b a =B .66b a >C .66b a <D .66b a >或 66b a < 【答案】B 【解析】试题分析:由等差、等比数列的性质可知221111116b b a a a +=+=,1116b b b =,又0>i b ,由基本不等式可知66b a ≥,而q ≠1,所以等号不成立,因此答案选B. 考点:等差、等比数列的性质和基本不等式5.设等比数列{}n a 的公比2=q , 前n 项和为n S ,则=45a S ( ) A .2 B .4 C .831 D .431 【答案】C【解析】试题分析:由等比数列的性质可知8312)21(21)1()1()1()1(35315145145=--=--=--=q a q q a a q q a a S ,答案选C.考点:等比数列的性质6.在等比数列{a n }中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于( ) A .9 B .10 C .11 D .12 【答案】C 【解析】试题分析:由等比数列的性质可知1110143215154321)(a q a q a a a a a a a m ====+++,答案选C. 考点:等比数列的性质7.数列n {a }中,对任意*N n ∈,n 12n a +a ++a =21⋅⋅⋅-,则22212n a +a ++a ⋅⋅⋅等于( ) A .()2n2-1B .3)12(2-n C.14-nD .314-n【答案】D【解析】试题分析:由1221-=+++n n a a a 得121121-=+++--n n a a a ,两式相减得11222--=-=n n n n a ,所以数列n {a }是首项为1,公比为2的等比数列,所以数列}{2na 是首项为1,公比为4的等比数列,因此314414122221-=--=+++n n n a a a ,答案选D. 考点:等比数列的性质8.若两个等差数列{a n }、{b n }的前n 项和分别为A n 、B n ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为( ) A.97 B.78 C.2019 D.87【答案】D【解析】 试题分析:由等差数列的性质可知:87517521742/)(172/)(171717171171171171135135=-⨯+⨯==++=++=++B A b b a a b b a a b b a a ,答案选D.考点:等差数列的性质9.已知数列}{n a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n ,则312215S S S -+的值是( )A .-76B .76C .46D .13 【答案】A 【解析】试题分析:(并项求和法)由已知可知:⎪⎪⎩⎪⎪⎨⎧⨯--⨯+=为偶数为奇数n n n n S n 2)4(2141,所以2921154115=-⨯+=S ,6121314131=-⨯+=S ,44222)4(22-=⨯-=S ,因此76614429312215-=--=-+S S S ,答案选A.考点:并项求和10.设数列}{n a 为等差数列,其前n 项和为n S ,已知99741=++a a a ,852a a a ++93=,若对任意*N n ∈,都有k n S S ≤成立,则k 的值为( ) A .22 B .21 C .20 D .19【答案】C 【解析】试题分析:由等差数列的性质可知:9934741==++a a a a ,9335852==++a a a a ,所以31,3354==a a ,因此数列的首项为39,公差为-2,所以412)1(239+-=--=n n a n ,令0>n a 得241<n ,从而有0,02120<>a a ,因此k 的值为20,答案选C. 考点:等差数列的性质11.设数列}{n a 是以2为首项,1为公差的等差数列,}{n b 是以1为首项,2为公比的等比数列,则=+++1021b b b a a a ( )A .1033B .2057C .1034D .2058 【答案】A 【解析】试题分析:(分组求和法)由已知得1+=n a n ,12-=n n b ,所以121+=-n b n a ,因此103310212110)222()12()12()12(1091911011=+--=++++=++++++=+++ b b b a a a ,故答案选A.考点:等差数列与等比数列的性质与求和 12.已知0,0>>b a ,4112=+b a ,若不等式m b a 42≥+恒成立,则m 的最大值为( ) A .10 B .9 C .8 D .7 【答案】B 【解析】 试题分析:由已知可得1)12(4=+ba ,所以36)45(4)225(4)12(4)2(2=+≥++=+⋅+=+abb a b a b a b a ,所以364≤m 即9≤m ,答案选B.考点:基本不等式的应用二、填空题13.已知0<ab ,则||||||ab ab b b a a ++= . 【答案】-1 【解析】试题分析:由已知知a ,b 异号,所以0||||=+b ba a ,1||-=ab ab ,所以答案为-1. 考点:不等式的性质14.不等式0)12(1≥--x x 的解集为____________【答案】),21[+∞ 【解析】试题分析:去绝对值得⎩⎨⎧≥--≥0)12)(1(1x x x 或⎩⎨⎧≥--<0)12)(1(1x x x ,解得1≥x 或121<≤x ,故答案为),21[+∞. 考点:解不等式15.设等差数列{}n a 的前n 项和为n S .若272k S =,且118k k a a +=-,则正整数=k .【答案】4 【解析】试题分析:由已知可得181=++k k a a ,72)(2)(221212=+=+=k k k a a k a a k S ,而121++=+k k k a a a a ,所以k 1872=,解得k=4.考点:等差数列的性质16.关于数列有下列命题:①数列{n a }的前n 项和为n S ,且)(1R a a S n n ∈-=,则{n a }为等差或等比数列; ②数列{n a }为等差数列,且公差不为零,则数列{n a }中不会有)(n m a a n m ≠=, ③一个等差数列{n a }中,若存在)(0*1N k a a k k ∈>>+,则对于任意自然数k n >,都有0>n a ;④一个等比数列{n a }中,若存在自然数k ,使01<⋅+k k a a ,则对于任意*N n ∈,都有01<⋅+n n a a ,其中正确命题的序号是___ __。

2014-2015学年人教a版数学选修2-2第1章《导数及其应用》综合检测(含答案)

2014-2015学年人教a版数学选修2-2第1章《导数及其应用》综合检测(含答案)

第一章综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·天津红桥区高二段测)二次函数y =f (x )的图象过原点且它的导函数y =f ′(x )的图象是如图所示的一条直线,y =f (x )的图象的顶点在( )A .第Ⅰ象限B .第Ⅱ象限C .第Ⅲ象限D .第Ⅳ象限[答案] A[解析] 设f (x )=ax 2+bx +c ,∵二次函数y =f (x )的图象过原点,∴c =0,∴f ′(x )=2ax +b ,由y =f ′(x )的图象可知,2a <0,b >0,∴a <0,b >0,∴-b 2a >0,4ac -b 24a =-b 24a >0,故选A.2.(2013·华池一中高二期中)曲线y =-1x 在点(12,-2)处的切线方程为( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x -4[答案] B[解析] ∵y ′=1x 2,∴y ′|x =12=4,∴k =4,∴切线方程为y +2=4(x -12),即y =4x -4.3.(2014·淄博市临淄区学分认定考试)下列函数中,x =0是其极值点的函数是( ) A .f (x )=-x 3 B .f (x )=-cos x C .f (x )=sin x -x D .f (x )=1x[答案] B[解析] 对于A ,f ′(x )=-3x 2≤0恒成立,在R 上单调递减,没有极值点;对于B ,f ′(x )=sin x ,当x ∈(-π,0)时,f ′(x )<0,当x ∈(0,π)时,f ′(x )>0,故f (x )=-cos x 在x =0的左侧区间(-π,0)内单调递减,在其右侧区间(0,π)内单调递增,所以x =0是f (x )的一个极小值点;对于C ,f ′(x )=cos x -1≤0恒成立,在R 上单调递减,没有极值点;对于D ,f (x )=1x在x =0没有定义,所以x =0不可能成为极值点,综上可知,答案选B. 4.(2013·北师大附中高二期中)已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,-3),∪(3,+∞)B .(-3,3)C .(-∞,-3]∪[3,+∞)D .[-3,3][答案] D[解析] f ′(x )=-3x 2+2ax -1,∵f (x )在(-∞,+∞)上是单调函数,且f ′(x )的图象是开口向下的抛物线,∴f ′(x )≤0恒成立,∴Δ=4a 2-12≤0,∴-3≤a ≤3,故选D.5.(2013·武汉实验中学高二期末)设函数f (x )在定义域内可导,y =f (x )的图象如下图所示,则导函数y =f ′(x )的图象可能是( )[答案] A[解析] f (x )在(-∞,0)上为增函数,在(0,+∞)上变化规律是减→增→减,因此f ′(x )的图象在(-∞,0)上,f ′(x )>0,在(0,+∞)上f ′(x )的符号变化规律是负→正→负,故选A.6.(2012·陕西文,9)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点[答案] D[解析] 由f ′(x )=-2x 2+1x =1x (1-2x )=0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减,当x >2时 f ′(x )>0,f (x )单调递增.所以x =2为极小值点.7.(2014·天门市调研)已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y =f (3π4-x )是( )A .偶函数且图象关于点(π,0)对称B .偶函数且图象关于点(3π2,0)对称C .奇函数且图象关于点(3π2,0)对称D .奇函数且图象关于点(π,0)对称 [答案] D[解析] ∵f (x )的图象关于x =π4对称,∴f (0)=f (π2),∴-b =a ,∴f (x )=a sin x -b cos x =a sin x +a cos x =2a sin(x +π4),∴f (3π4-x )=2a sin(3π4-x +π4)=2a sin(π-x )=2a sin x .显然f (3π4-x )是奇函数且关于点(π,0)对称,故选D.8.(2013·武汉实验中学高二期末)定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}[答案] B[解析] 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0, ∴当x <1时,g (x )<0,即2f (x )<x +1,故选B.9.(2013·华池一中高二期中)若关于x 的方程x 3-3x +m =0在[0,2]上有根,则实数m 的取值范围是( )A .[-2,2]B .[0,2]C .[-2,0]D .(-∞,-2)∪(2,+∞)[答案] A[解析] 令f (x )=x 3-3x +m ,则f ′(x )=3x 2-3=3(x +1)(x -1),显然当x <-1或x >1时,f ′(x )>0,f (x )单调递增,当-1<x <1时,f ′(x )<0,f (x )单调递减,∴在x =-1时,f (x )取极大值f (-1)=m +2,在x =1时,f (x )取极小值f (1)=m -2.∵f (x )=0在[0,2]上有解,∴⎩⎪⎨⎪⎧f (1)<0,f (2)>0,∴⎩⎪⎨⎪⎧m -2≤0,2+m ≥0,∴-2≤m ≤2. 10.(2013·河南安阳中学高二期末)f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )[答案] A[解析] 令F (x )=xf (x ),(x >0),则F ′(x )=xf ′(x )+f (x )≤0,∴F (x )在(0,+∞)上为减函数,∵0<a <b ,∴F (a )>f (b ),即af (a )>bf (b ),与选项不符; 由于xf ′(x )+f (x )≤0且x >0,f (x )≥0,∴f ′(x )≤-f (x )x≤0,∴f (x )在(0,+∞)上为减函数,∵0<a <b ,∴f (a )>f (b ), ∴bf (a )>af (b ),结合选项知选A.11.(2014·天门市调研)已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )[答案] D[解析] 由导函数图象可知,当x <0时,函数f (x )递减,排除A ,B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.12.(2013·泰安一中高二段测)已知函数f (x )的导函数的图象如图所示,若△ABC 为锐角三角形,则一定成立的是( )A .f (sin A )>f (cosB ) B .f (sin A )<f (cos B )C .f (sin A )>f (sin B )D .f (cos A )<f (cos B )[答案] A[解析] 由导函数图象可知,x >0时,f ′(x )>0,即f (x )单调递增,又△ABC 为锐角三角形,则A +B >π2,即π2>A >π2-B >0,故sin A >sin(π2-B )>0,即sin A >cos B >0,故f (sin A )> f (cos B ),选A.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2013·华池一中高二期中)已知f (x )=x 3+3x 2+a (a 为常数),在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.[答案] 57[解析] f ′(x )=3x 2+6x =3x (x +2),当x ∈[-3,-2)和x ∈(0,3]时,f ′(x )>0,f (x )单调递增,当x ∈(-2,0)时,f ′(x )<0,f (x )单调递减,∴极大值为f (-2)=a +4,极小值为f (0)=a ,又f (-3)=a ,f (3)=54+a ,由条件知a =3,∴最大值为f (3)=54+3=57.14.(2014·湖北重点中学高二期中联考)已知函数f (x )=13ax 3+12ax 2-2ax +2a +1的图象经过四个象限,则实数a 的取值范围是________.[答案] (-65,-316)[解析] f ′(x )=ax 2+ax -2a =a (x -1)(x +2), 由f (x )的图象经过四个象限知,若a >0,则⎩⎪⎨⎪⎧ f (-2)>0,f (1)<0,此时无解;若a <0,则⎩⎪⎨⎪⎧f (-2)<0,f (1)>0, ∴-65<a <-316,综上知,-65<a <-316.15.(2014·泉州实验中学期中)已知函数f (x )=x 3-3x ,若过点A (1,m )(m ≠-2)可作曲线y =f (x )的三条切线,则实数m 的取值范围为________.[答案] (-3,-2)[解析] f ′(x )=3x 2-3,设切点为P (x 0,y 0),则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),∵切线经过点A (1,m ),∴m -(x 30-3x 0)=(3x 20-3)(1-x 0),∴m =-2x 30+3x 20-3,m ′=-6x 20+6x 0,∴当0<x 0<1时,此函数单调递增,当x 0<0或x 0>1时,此函数单调递减,当x 0=0时,m =-3,当x 0=1时,m =-2,∴当-3<m <-2时,直线y =m 与函数y =-2x 30+3x 20-3的图象有三个不同交点,从而x 0有三个不同实数根,故过点A (1,m )可作三条不同切线,∴m 的取值范围是(-3,-2).16.如图阴影部分是由曲线y =1x、y 2=x 与直线x =2、y =0围成,则其面积为______.[答案] 23+ln2[解析] 由⎩⎪⎨⎪⎧y 2=x ,y =1x ,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x 得交点B ⎝⎛⎭⎫2,12. 故所求面积S =⎠⎛01x d x +⎠⎛121xd x=23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f (x )的定义域为(0,2), f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),∴当x ∈(0,2)时,f ′(x )>0,当x ∈(2,2)时,f ′(x )<0,所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)(2014·韶关市曲江一中月考)已知函数f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2.(1)求函数f (x )的解析式;(2)求函数f (x )的单调区间和极大值;(3)证明:对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立. [解析] (1)∵f (x )是R 上的奇函数, ∴f (-x )=-f (x ),即-ax 3-cx +d =-ax 3-cx -d ,∴d =-d , ∴d =0(或由f (0)=0得d =0). ∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c , 又当x =1时,f (x )取得极值-2,∴⎩⎪⎨⎪⎧ f (1)=-2,f ′(1)=0,即⎩⎪⎨⎪⎧ a +c =-2,3a +c =0,解得⎩⎪⎨⎪⎧a =1,c =-3. ∴f (x )=x 3-3x .(2)f ′(x )=3x 2-3=3(x +1)(x -1),令f ′(x )=0,得x =±1, 当-1<x <1时,f ′(x )<0,函数f (x )单调递减; 当x <-1或x >1时,f ′(x )>0,函数f (x )单调递增;∴函数f (x )的递增区间是(-∞,-1)和(1,+∞);递减区间为(-1,1). 因此,f (x )在x =-1处取得极大值,且极大值为f (-1)=2.(3)由(2)知,函数f (x )在区间[-1,1]上单调递减,且f (x )在区间[-1,1]上的最大值为M =f (-1)=2.最小值为m =f (1)=-2.∴对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<M -m =4成立.即对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立.19.(本题满分12分)(2014·北京海淀期中)已知函数f (x )=x 2-2(a +1)x +2a ln x (a >0). (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求f (x )的单调区间;(3)若f (x )≤0在区间[1,e]上恒成立,求实数a 的取值范围. [解析] (1)∵a =1,∴f (x )=x 2-4x +2ln x , ∴f ′(x )=2x 2-4x +2x(x >0),f (1)=-3,f ′(1)=0, 所以切线方程为y =-3.(2)f ′(x )=2x 2-2(a +1)x +2a x =2(x -1)(x -a )x (x >0),令f ′(x )=0得x 1=a ,x 2=1,当0<a <1时,在x ∈(0,a )或x ∈(1,+∞)时,f ′(x )>0,在x ∈(a,1)时,f ′(x )<0,∴f (x )的单调递增区间为(0,a )和(1,+∞),单调递减区间为(a,1);当a =1时,f ′(x )=2(x -1)2x ≥0,∴f (x )的单调增区间为(0,+∞);当a >1时,在x ∈(0,1)或x ∈(a ,+∞)时,f ′(x )>0,在x ∈(1,a )时,f ′(x )<0,∴f (x )的单调增区间为(0,1)和(a ,+∞),单调递减区间为(1,a ).(3)由(2)可知,f (x )在区间[1,e]上只可能有极小值点,∴f (x )在区间[1,e]上的最大值必在区间端点取到,∴f (1)=1-2(a +1)≤0且f (e)=e 2-2(a +1)e +2a ≤0,解得a ≥e 2-2e2e -2.20.设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围. [解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立. 所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0. 所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.21.(本题满分12分)(2014·荆州中学、龙泉中学、宜昌一中、襄阳四中期中联考)已知函数f (x )=ln x +a x +1,a 为常数.(1)若a =92,求函数f (x )在[1,e ]上的值域;(e 为自然对数的底数,e ≈2.72)(2)若函数g (x )=f (x )+x 在[1,2]上为单调减函数,求实数a 的取值范围. [解析] (1)由题意f ′(x )=1x -a(x +1)2,当a =92时,f ′(x )=1x -92(x +1)2=(x -2)(2x -1)2x (x +1)2.∵x ∈[1,e ],∴f (x )在[1,2)上为减函数,[2,e ]上为增函数, 又f (2)=ln2+32,f (1)=94,f (e )=1+92e +2,比较可得f (1)>f (e ),∴f (x )的值域为[ln2+32,94].(2)由题意得g ′(x )=1x -a(x +1)2+1≤0在x ∈[1,2]上恒成立,∴a ≥(x +1)2x +(x +1)2=x 2+3x +1x +3恒成立,设h (x )=x 2+3x +1x+3(1≤x ≤2),∴当1≤x ≤2时,h ′(x )=2x +3-1x 2>0恒成立,∴h (x )max =h (2)=272,∴a ≥272, 即实数a 的取值范围是[272,+∞).22.(本题满分14分)(2014·北京海淀期中)如图,已知点A (11,0),直线x =t (-1<t <11)与函数y =x +1的图象交于点P ,与x 轴交于点H ,记△APH 的面积为f (t ).(1)求函数f (t )的解析式; (2)求函数f (t )的最大值.[解析] (1)由已知AH =11-t ,PH =t +1,所以△APH 的面积为f (t )=12(11-t )t +1,(-1<t <11).(2)解法1:f ′(t )=3(3-t )4t +1,由f ′(t )=0得t =3,函数f (t )与f ′(t )在定义域上的情况如下表:所以当t =解法2.由f (t )=12(11-t )t +1=12(11-t )2(t +1),-1<t <11,设g (t )=(11-t )2(t +1),-1<t <11,则g ′(t )=-2(11-t )(t +1)+(11-t )2=(t -11)(t -11+2t +2)=3(t -3)(t -11). g (t )与g ′(t )在定义域上的情况见下表:所以当t =3所以当t =3时,函数f (t )取得最大值12g (3)=8.一、选择题1.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1[答案] A[解析] y ′=2x +a ,∴y ′|x =0=(2x +a )|x =0=a =1, 将(0,b )代入切线方程得b =1.2.(2014·浙江杜桥中学期中)已知函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a =( )A .2B .3C .4D .5[答案] D[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是方程f ′(x )=0的实数根,∴a =5. 3.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值,最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16[答案] A[解析] ∵y ′=6x 2-6x -12=0,得x =-1(舍去)或x =2,故函数y =f (x )=2x 3-3x 2-12x +5在[0,3]上的最值可能是x 取0,2,3时的函数值,而f (0)=5,f (2)=-15,f (3)=-4,故最大值为5,最小值为-15,故选A.4.⎠⎛241xd x 等于( ) A .-2ln2B .2ln2C .-ln2D .ln2[答案] D[解析] 因为(ln x )′=1x ,所以 ⎠⎛241xd x =ln x |42=ln4-ln2=ln2.5.(2013·吉林白山一中高二期末)已知定义在R 上的函数f (x )的导函数f ′(x )的大致图象如图所示,则下列结论一定正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e)C .f (c )>f (b )>f (a )D .f (c )>f (e)>f (d )[答案] C[解析] 由图可知f ′(x )在(-∞,c )和(e ,+∞)上取正值,在(c ,e)上取负值,故f (x )在(-∞,c )和(e ,+∞)上单调递增,在(c ,e)上单调递减,∵a <b <c ,∴f (a )<f (b )<f (c ),故选C.6.已知函数f (x )=4x +3sin x ,x ∈(-1,1),如果f (1-a )+f (1-a 2)<0成立,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(-∞,-2)∪(1,+∞) [答案] B[解析] ∵f (x )=4x +3sin x ,x ∈(-1,1), ∴f ′(x )=4+3cos x >0在x ∈(-1,1)上恒成立,∴f (x )在(-1,1)上是增函数,又f (x )=4x +3sin x ,x ∈(-1,1)是奇函数,∴不等式f (1-a )+f (1-a 2)<0可化为f (1-a )<f (a 2-1),从而可知,a 须满足⎩⎪⎨⎪⎧-1<1-a <1,-1<a 2-1<1,1-a <a 2-1.解得1<a < 2.7.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一个直角坐标系中,不可能正确的是( )[答案] D[解析] A 中,当f (x )为二次函数时,f ′(x )为一次函数,由单调性和导数值的符号关系知A 可以是正确的,同理B 、C 都可以是正确的,但D 中f (x )的单调性为增、减、增,故f ′(x )的值应为正负正,因此D 一定是错误的.8.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )[答案] D[解析] 由f (x )的图象知,f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴在(0,+∞)上f ′(x )≤0,在(-∞,0)上f ′(x )≥0,故选D.9.如果1N 能拉长弹簧1cm ,为了将弹簧拉长6cm ,所耗费的功为( ) A .0.18J B .0.26J C .0.12J D .0.28J[答案] A[解析] 设F (x )=kx ,当F (x )=1时,x =0.01m ,则k =100,∴W =∫0.060100x d x =50x 2|0.06=0.18.10.(2014·甘肃省金昌市二中、临夏中学期中)已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[答案] B[解析] 由题可知g (x )=ln x -1x ,∵g (1)=-1<0,g (2)=ln2-12=ln2-ln e>0,∴选B.11.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确[答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7) =64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.12.(2014·浙江省五校联考)已知函数f (x )=13x 3+12mx 2+m +n 2x 的两个极值点分别为x 1、x 2,且0<x 1<1<x 2,点P (m ,n )表示的平面区域内存在点(x 0,y 0)满足y 0=log a (x 0+4),则实数a 的取值范围是( )A .(0,12)∪(1,3)B .(0,1)∪(1,3)C .(12,1)∪(1,3]D .(0,1)∪[3,+∞)[答案] B[解析] f ′(x )=x 2+mx +m +n2,由条件知,方程f ′(x )=0的两实根为x 1、x 2且0<x 1<1<x 2,∴⎩⎪⎨⎪⎧f ′(0)>0,f ′(1)<0,∴⎩⎨⎧m +n2>0,1+m +m +n2<0,∴⎩⎪⎨⎪⎧m +n >0,3m +n <-2, 由⎩⎪⎨⎪⎧ m +n =0,3m +n =-2,得⎩⎪⎨⎪⎧ m =-1,n =1,∴⎩⎪⎨⎪⎧x 0<-1,y 0>1.由y 0=log a (x 0+4)知,当a >1时,1<y 0<log a 3,∴1<a <3;当0<a <1时,y 0=log a (x 0+4)>log a 3,由于y 0>1,log a 3<0,∴对∀a ∈(0,1),此式都成立,从而0<a <1,综上知0<a <1或1<a <3,故选B.二、填空题13.(2014·杭州七校联考)若函数f (x )=x 3-3bx +b 在区间(0,1)内有极值,则实数b 的取值范围是________.[答案] (0,1)[解析] f ′(x )=3x 2-3b ,∵f (x )在(0,1)内有极值, ∴f ′(x )=0在(0,1)内有解,∴0<b <1.14.(2013·泰州二中高二期中)函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =________.[答案] 5[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是f ′(x )=0的根,即f ′(-3)=0, ∴27-6a +3=0,∴a =5.15.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和是__________________. [答案] 2n +1-2[解析] ∵y =x n (1-x ),∴y ′=(x n )′(1-x )+(1-x )′·x n =n ·x n -1(1-x )-x n .f ′(2)=-n ·2n -1-2n =(-n -2)·2n -1.在点x =2处点的纵坐标为y =-2n . ∴切线方程为y +2n =(-n -2)·2n -1(x -2).令x =0得,y =(n +1)·2n , ∴a n =(n +1)·2n ,∴数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为2(2n-1)2-1=2n +1-2.16.(2014·哈六中期中)已知函数f (x +2)是偶函数,x >2时f ′(x )>0恒成立(其中f ′(x )是函数f (x )的导函数),且f (4)=0,则不等式(x +2)f (x +3)<0的解集为________.[答案] (-∞,-3)∪(-2,1)[解析] ∵函数y =f (x +2)是偶函数,∴其图象关于y 轴对称,∵y =f (x +2)的图象向右平移两个单位得到y =f (x )的图象,∴函数y =f (x )的图象关于直线x =2对称,∵x >2时,f ′(x )>0,∴f (x )在(2,+∞)上单调递增,在(-∞,2)上单调递减,又f (4)=0,∴f (0)=0,∴0<x <4时,f (x )<0,x <0或x >4时,f (x )>0,由(x +2)f (x +3)<0得⎩⎪⎨⎪⎧x +2<0,f (x +3)>0,(1)或⎩⎪⎨⎪⎧x +2>0,f (x +3)<0.(2) 由(1)得⎩⎪⎨⎪⎧x <-2,x +3<0或x +3>4,∴x <-3;由(2)得⎩⎪⎨⎪⎧x >-2,0<x +3<4.∴-2<x <1,综上知,不等式的解集为(-∞,-3)∪(-2,1) 三、解答题17.(2013·四川达州诊断)已知函数f (x )=x 3+ax 2-3bx +c (b >0),且g (x )=f (x )-2是奇函数.(1)求a 、c 的值;(2)若函数f (x )有三个零点,求b 的取值范围. [解析] (1)∵g (x )=f (x )-2是奇函数, ∴g (-x )=-g (x )对x ∈R 成立, ∴f (-x )-2=-f (x )+2对x ∈R 成立, ∴ax 2+c -2=0对x ∈R 成立, ∴a =0且c =2.(2)由(1)知f (x )=x 3-3bx +2(b >0), ∴f ′(x )=3x 2-3b =3(x -b )(x +b ), 令f ′(x )=0得x =±b ,依题意有⎩⎨⎧f (-b )>0,f (b )<0,∴b >1,故正数b 的取值范围是(1,+∞).18.在曲线y =x 3(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴围成图形的面积为112,试求过切点A 的切线方程.[解析] 设切点A (x 0,x 30),切线斜率k =y ′|x =x 0=3x 20.∴切线的方程为y -x 30=3x 20(x -x 0).令y =0,得x =2x 03.依题意S =∫x 00x 3d x -12×(x 0-2x 03)·x 3=14x 40-16x 40=112x 40=112, ∵x 0≥0,∴x 0=1.∴切线方程为y -1=3(x -1),即3x -y -2=0.19.(2014·福建安溪一中、养正中学联考)已知函数f (x )=x 3+ax 2+bx +5,若曲线f (x )在点(1,f (1))处的切线斜率为3,且x =23时,y =f (x )有极值.(1)求函数f (x )的解析式;(2)求函数f (x )在[-4,1]上的最大值和最小值. [解析] f ′(x )=3x 2+2ax +b ,(1)由题意得,⎩⎪⎨⎪⎧f ′(23)=3×(23)2+2a ×23+b =0,f ′(1)=3×12+2a ×1+b =3.解得⎩⎪⎨⎪⎧a =2,b =-4.经检验得x =23时,y =f (x )有极小值,所以f (x )=x 3+2x 2-4x +5.(2)由(1)知,f ′(x )=3x 2+4x -4=(x +2)(3x -2). 令f ′(x )=0,得x 1=-2,x 2=23,f ′(x ),f (x )的值随x 的变化情况如下表: ∵f (23)=9527,f (-2)=13,f (-4)=-11,f (1)=4,∴f (x )在[-4,1]上的最大值为13,最小值为-11.20.(2013·海淀区高二期中)已知函数f (x )=a 23x 3-2ax 2+bx ,其中a 、b ∈R ,且曲线y =f (x )在点(0,f (0))处的切线斜率为3.(1)求b 的值;(2)若函数f (x )在x =1处取得极大值,求a 的值.[解析](1)f′(x)=a2x2-4ax+b,由题意f′(0)=b=3.(2)∵函数f(x)在x=1处取得极大值,∴f′(1)=a2-4a+3=0,解得a=1或a=3.①当a=1时,f′(x)=x2-4x+3=(x-1)(x-3),x、f′(x)、f(x)的变化情况如下表:②当a=3时,f′(x)=9x2-12x+3=3(3x-1)(x-1),x、f′(x)、f(x)的变化情况如下表:综上所述,若函数f(x)在x=1处取得极大值,a的值为1.21.(2013·武汉实验中学高二期末)已知曲线f(x)=ax2+2在x=1处的切线与直线2x-y +1=0平行.(1)求f(x)的解析式;(2)求由曲线y=f(x)与y=3x、x=0、x=1、x=2所围成的平面图形的面积.[解析](1)由已知得:f′(1)=2,求得a=1,∴f(x)=x2+2.(2)由题意知阴影部分的面积是: S =⎠⎛01(x 2+2-3x )d x +⎠⎛12(3x -x 2-2)d x=(13x 3+2x -32x 2)|10+(32x 2-13x 3-2x )|21=1. 22.(2013·福州文博中学高二期末)设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g (1x)的大小关系;(3)求a 的取值范围,使得g (a )-g (x )<1a 对任意x >0成立.[解析] (1)由题设知g (x )=ln x +1x ,∴g ′(x )=x -1x2,令g ′(x )=0,得x =1.当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调递减区间.当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调递增区间,因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g (1x)=-ln x +x ,设h (x )=g (x )-g (1x )=2ln x -x +1x ,则h ′(x )=-(x -1)2x 2.当x =1时,h (1)=0,即g (x )=g (1x).当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此,h (x )在(0,+∞)内单调递减. 当0<x <1时,h (x )>h (1)=0,即g (x )>g (1x),当x >1时,h (x )<h (1)=0,即g (x )<g (1x).(3)由(1)知g (x )的最小值为1,所以g (a )-g (x )<1a 对任意x >0成立⇔g (a )-1<1a ,即ln a <1,从而得0<a <e ,即a 的取值范围为(0,e).。

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案)

2014-2015学年上学期高一期中测试数学试题(含答案) 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的)1.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B . 1y x =+C .21y x =-+D . 2x y -=2.在同一坐标系中,表示函数log a y x =与y x a =+的图象正确的是( )A B C D3.若1log 12a<,则a 的取值范围是( ) A .1(0,)(1,)2+∞ B .1(,1)2 C .(1,)+∞ D .1(,1)(1,)2+∞4.已知函数f(x)为定义在R 上的奇函数,当x≥0时, ()22xf x x m =++ (m 为常数),则(1)f -的值为( )A .-3B .-1C .1D .35.设全集U =R ,{}|0P x f x x ==∈R (),,{}|0Q x g x x ==∈R (),,{}|0S x x x ϕ==∈R (),,则方程22f x x x ϕ=()+g ()()的解集为( )A . P Q SB .P QC .P Q S ()D . P Q S u (C )5.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( )A .c b a <<B .c a b <<C .a c b <<D .b c a <<6.设}3 2, ,21 ,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值为( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1- 7.已知函数)(x f 是奇函数,当0>x 时,)1 ,0( )(≠>=a a a x f x,且3)4(log 5.0-=f ,则a的值为( )A .3B .3C .9D .238.已知函数⎪⎩⎪⎨⎧>-≤=-)1( )23(log )1( 2)(2x x x x f x ,若4)(=a f ,则实数=a ( ) A .2-或6 B .2-或310 C .2-或2 D .2或3109.方程21231=⎪⎭⎫ ⎝⎛--x x 的解所在的区间为( )A .) 1 ,0 (B .) 2 ,1 (C .) 3 ,2 (D .) 4 ,3 (10.已知函数bx ax y +=2和xb a y =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能 是( )11.已知函数)3(log 221a ax x y +-=在区间) ,2[∞+上是减函数,则a 的取值范围是( )A .)4 ,(-∞B .]4 ,4[-C .]4 ,4(-D .]4 ,(-∞12.若在直角坐标平面内B A ,两点满足条件:①点B A ,都在函数)(x f y =的图象上;②点B A ,关于原点对称,则称B A ,为函数)(x f y =的一个“黄金点对”.那么函数=)(x f ⎪⎩⎪⎨⎧>≤-+)0( 1)0( 222x x x x x 的“黄金点对”的个数是( )A .0个B .1个C .2个D .3个 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共20分.13.已知集合}06|{2=--=x x x M ,}01|{=+=ax x N ,且M N ⊆,则由a 的取值组成的集合是 .14.若x x f =)(log 5,则=-)9log 2(log 255f .15.已知定义在R 上的偶函数)(x f 满足0)1(=-f ,并且)(x f 在)0 ,(-∞上为增函数.若0)( <a f a ,则实数a 的取值范围是 .16.已知函数()x f 的定义域是}0|{≠∈=x R x D ,对任意D x x ∈21 ,都有:=⋅)(21x x f)()(21x f x f +,且当1>x 时,()0>x f .给出结论:①()x f 是偶函数;②()x f 在()∞+ ,0上是减函数.则正确结论的序号是 .三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析没有明显有问题的段落需要删除,只需修改格式错误和语言表达不清的地方。

XXX2014-2015学年第一学期期中考试高一数学试题第Ⅰ卷选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1、已知集合$S=\{x|x+1\geq2\}$,$T=\{-2,-1,0,1,2\}$,则$S\cap T=$()A。

$\{2\}$。

B。

$\{1,2\}$。

C。

$\{0,1,2\}$。

D。

$\{-1,0,1,2\}$解题思路】:题目给出了集合$S$和$T$,需要先求出它们的具体表达内容,再求它们的交集。

$S$是一次函数不等式的解,$S=\{x|x\geq1\}$;$S\cap T=\{1,2\}$,故选B。

2、用阴影部分表示集合$C\cup A\cup B$,正确的是()解题思路】:题目给出了四个图形,需要判断哪个图形表示$C\cup A\cup B$。

利用XXX求解,A中阴影部分表示$C\cup(A\cup B)$,B中阴影部分表示$(C\cup A)\cap B$,C中阴影部分表示$A\cap B$,D中阴影部分表示$C\cup A\cup B$,故选D。

3、函数$y=\log_{\frac{1}{2}}(x-1)$的定义域是()A。

$(1,+\infty)$。

B。

$[1,+\infty)$。

C。

$(0,+\infty)$。

D。

$[0,+\infty)$解题思路】:题目给出了函数$y=\log_{\frac{1}{2}}(x-1)$,需要求出它的定义域。

由$\log_{\frac{1}{2}}(x-1)>0$得$x-1>0$,即$x>1$,故选A。

4、下列函数中,在其定义域内既是奇函数又是减函数的是()A。

$y=-|x|$。

B。

$y=x$。

C。

$y=|x|$。

辽宁省沈阳二中2014-2015学年高一上学期期中考试数学试题 Word版含答案

辽宁省沈阳二中2014-2015学年高一上学期期中考试数学试题 Word版含答案

沈阳二中2014——2015学年度上学期期中考试高一(17届)数学试题命题人:高一数学组 审校人:高一数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷 (60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x -1>0},B ={y |y =2x },则A ∩B =( )A .{x |x >1}B .{x |x >0}C .{x |x <-1}D .∅ 2.下列各组函数中,表示同一函数的是( )A .y =1,y =x 0B .y =lgx 2,y =2lgxC .y =|x|,y =(x )2D .y =x ,y =33x3.已知x ,y 为正实数,则( )A. 2lg x +lg y=2lg x +2lg y B. 2lg(x +y )=2lg x ·2lg y C. 2lg x ·lg y=2lg x +2lg y D. 2lg(xy )=2lg x ·2lg y4.函数y =的定义域是( )A .[1,+∞)B .(0,+∞)C .[0,1]D .(0,1]5.函数y =x 2与函数y =|lg x |的图象的交点个数为( )A .0B .1C .2D .36.函数f (x )=ln(x +1)-2x的零点所在的大致区间是( )A .(0,1)B .(1,2)C .(2,e)D .(3,4)7.a 、b 是两条异面直线,A 是不在a 、b 上的点,则下列结论成立的是( )A. 过A 有且只有一个平面平行于a 、bB. 过A 至少有一个平面平行于a 、bC. 过A 有无数个平面平行于a 、bD. 过A 且平行a 、b 的平面可能不存在8.幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( )A .)2(21x x f +>2)()(21x f x f + B .)2(21x x f +<2)()(21x f x f + C .)2(21x x f +=2)()(21x f x f + D .无法确定9.已知函数f (x )是奇函数,当x >0时,f (x )=ln x ,则f (f (1e2))的值为( )A.1ln 2B .-1ln2C .-ln 2D .ln 210.f (x ),g (x )分别是R 上的奇函数、偶函数,且f (x )-g (x )=e x ,则有( )A .f (2)<f (3)<g (0)B .g (0)<f (3)<f (2)C .f (2)<g (0)<f (3)D .g (0)<f (2)<f (3)11.定义在R 上的函数R x x fx f ∈-且对于任意的反函数为),()(1,都有=-+-=+---)4()1(,3)()(11x f x f x f x f 则( )A .0B .-2C .2D .42-x12.设定义域为R 的函数()()()⎪⎩⎪⎨⎧=≠+=--11121x ax x f x ,若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则a 的取值范围是( )A .(0,1)B .(0,32) C .(1,2) D .(1,32)∪(32,2)第Ⅱ卷 (90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.1324lg 293-14.若幂函数y =(m 2-3m +3)x 21m m --的图象不过原点,则实数m 的值是________. 15.知a =23.0,b =3.0log 2,c =20.3,则a ,b ,c 三个数的大小关系是________ (按从小到大的顺序排列).__________)ln()(),0(21)(.1622的取值范围是则轴对称的点,的图像上存在关于a y a x x x g x e x x f x ++=<-+=三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(满分10分)已知集合A={x|18≤2x+1≤16},B={x|m+1≤x≤3m-1}.(1)求集合A;(2)若B⊆A,求实数m的取值范围.18.(满分12分)如图,在三棱锥S ABC-中,D、E、F分别是棱AC、BC、SC上的点,且2CD DA=,2CE ES=,2CF FB=,G是AB的中点.求证:SG∥平面DEF19.(满分12分)已知函数f(x)=log a(ax-x)(a>0,a≠1为常数).(1)求函数f(x)的定义域;(2)若a=2,x∈[1,9],求函数f(x)的值域.20.(满分12分)已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)的零点;(2)若f(x)有零点,求a的取值范围.21.已知函数9()log (91)x f x kx =++(k ∈R )是偶函数. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x b =+没有交点,求b 的取值范围; (3)设()94()log 33x h x a a =⋅-,若函数()f x 与()h x 的图象有且只有一个公共点,求实数a 的取值范围.22.已知12()|31|,()|39|(0),x x f x f x a a x R =-=⋅->∈,且112212(),()()()(),()()f x f x f x f x f x f x f x ≤⎧=⎨>⎩ (1)当a =1时,求()f x 的解析式;(2)在(1)的条件下,若方程0)(=-m x f 有4个不等的实根,求实数m 的范围;(3)当29a ≤<时,设2()()f x f x = 所对应的自变量取值区间的长度为l (闭区间[m ,n ]的长度定义为m n -),试求l 的最大值.沈阳二中2014——2015学年度上学期期中考试高一( 17 届)数学答案1.A. 2 .D 3.D. 4.D 5.B 6.B 7.D 8.A 9.C . 10.D 11. A 12. D 13.1214.1 15.b <a <c 16.),(e ∞- 17. (1)A ={x |18≤2x +1≤16},有2-3≤2x +1≤24,于是-3≤x +1≤4,-4≤x ≤3,则A ={x |-4≤x ≤3}. -----------5 (2)若B =∅,即m +1>3m -1,即m <1时,满足题意,----------------------7 若B ≠∅,即m +1≤3m -1,即m ≥1时, ⎩⎨⎧m +1≥-43m -1≤3得-5≤m ≤43,即1≤m ≤43,综上,实数m 的取值范围为(-∞,43].-------------------------------1018.略 ------------------------12 19.解:(1)ax -x >0⇒x (a x -1)>0,∵x >0,∴a x -1>0,∵a >0,∴x >1a.∴x >1a 2,所以定义域为(1a2,+∞).----------------------------------6(2)a =2时,f (x )=log 2(2x -x ),令2x -x =t 则t =2x -x =2(x -14)2 18---------------------------------8因为x ∈[1,9],所以t ∈[1,15],----------------------------------10所以log 21≤log 2(2x -x )≤log 215,即0≤f (x )≤log 215所以函数f (x )的值域为[0,log 215].--------------------------1220.解:(1)当a =1时,f (x )=2·4x -2x -1.令f (x )=0,即2·(2x )2-2x -1=0,解得2x =1或2x =-12(舍去).∴x =0,∴函数f (x )的零点为x =0. --------------------------4 (2)解法一:若f (x )有零点,则方程2a ·4x -2x -1=0有解----------------6 于是2a =2x +14x=(12)x +(14)x ----------------------------------------------------------10∵(12)x >0,∴2a >14-14=0,即 a >0.------------------------------12解法二:令t =2x ,∵x ∈R ,∴t >0,则方程2at 2-t -1=0在(0,+∞)上有解. ------------------------6 ①当a =0时,方程为t +1=0,即t =-1<0,此时方程在(0,+∞)无解.-----------------------------------------8 ②当a ≠0时,令g (t )=2at 2-t -1,若方程g (t )=0在(0,+∞)上有一解,则ag (0)<0,即-a <0,解得a >0. 若方程g (t )=0在(0,+∞)上有两解,则⎩⎪⎨⎪⎧ag 0>0,Δ=1+8a ≥0,14a >0,无解-------------------------------------------10 综上所述,所求实数a 的范围是(0,+∞). --------------------------1221.(1) 因为()y f x =为偶函数,所以,()()x f x f x ∀∈-=-R , 即 99log (91)log (91)x x kx kx -+-=++对于x ∀∈R 恒成立.于是9999912log (91)log (91)log log (91)9xx x x xkx x -+=+-+=-+=-恒成立, 而x 不恒为零,所以12k =-. ------------------------------------4(2) 由题意知方程911log (91)22x x x b +-=+即方程9log (91)x x b +-=无解.令9()log (91)x g x x =+-,则函数()y g x =的图象与直线y b =无交点.因为99911()log log 199xx x g x ⎛⎫+==+ ⎪⎝⎭()g x 在(),-∞+∞上是单调减函数. 因为1119x +>,所以91()log 109x g x ⎛⎫=+> ⎪⎝⎭.所以b 的取值范围是(],0.-∞---------------8(3) 由题意知方程143333x x x a a +=⋅-有且只有一个实数根.令30x t =>,则关于t 的方程24(1)10a t at ---=(记为(*))有且只有一个正根.-----------10若a =1,则34t =-,不合, 舍去;若1a ≠,则方程(*)的两根异号或有两相等正跟.由304a ∆=⇒=或-3;但3142a t =⇒=-,不合,舍去;而132a t =-⇒=;方程(*)的两根异号()()110 1.a a ⇔-⋅-<⇔> 综上所述,实数a 的取值范围是{3}(1,)-+∞. -------------------------------------------------------------------1222.解: (1)当1a =时,2()|39|x f x =-.故⎪⎩⎪⎨⎧<-≥-=0,310,13)(1x x x f x x ⎪⎩⎪⎨⎧<-≥-=2,392,93)(2x x x f xx易知当5log 3=x 时)()(21x f x f =所以⎪⎪⎩⎪⎪⎨⎧<-<≤-<≤-≥-=0,315log 0,1325log ,392,93)(33x x x x x f x x xx -------------------------------------3(2)m x f =)(,可画出=y )(x f 和m y =的图像,由数形结合可知,当)1,0(∈m 时方程0)(=-m x f 有4个不等的实根 -----6 (3)当39log x a≥时,因为390x a ⋅-≥,310x ->, 所以由21()()(39)(31)(1)380x x x f x f x a a -=⋅---=--≤,解得38log 1x a ≤-, 从而当3398log log 1x a a ≤≤-时,2()()f x f x = 当390log x a≤<时,因为390x a ⋅-<,310x -≥,所以由21()()(93)(31)10(1)30x x x f x f x a a -=-⋅--=-+≤,解得310log 1x a ≥+, 从而当33109log log 1x a a≤<+时,2()()f x f x = 当0x <时,因为21()()(93)(13)8(1)30x x x f x f x a a -=-⋅--=-->, 从而2()()f x f x = 一定不成立 综上得,当且仅当33108[log ,log ]11x a a ∈+-时,2()()f x f x =, 故33381042log log log [(1)]1151l a a a =-=+-+- 从而当2a =时,l 取得最大值为312log 5-------------------------------12。

0242 高一数学-2014-2015学年高一上学期第一次教学调研数学试题

0242 高一数学-2014-2015学年高一上学期第一次教学调研数学试题

2014-2015学年高一上学期第一次教学调研数学一、填空题:本大题共14小题,每小题3分,共42分.请把答案填写在相应位置上.1.若全集U={0,1,2,3,4},集合A={0,1,3},B={0,2,3,4}, 则)(B A C U ⋂= ▲ 。

2.若集合A={}12<<-x x ,B={}20<<x x ,则=⋃B A ▲ 。

3的定义域为 ▲ ;4.已知集合{}045|2<+-∈=x x Z x M ,{}4,3,2,1=N 则N M =___▲_____5.某班共有40人,其中18人喜爱篮球运动,20人喜爱乒乓球运动,12人对这两项运 动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 ▲ 。

6.若关于x 的一元二次方程041)12(2=-+-x m mx 有两个不相等的实数根, 则m 的取值范围是 ▲ 。

7.已知集合{}{},,21a x x B x x A <=<<=且A ≠⊂B ,则实数a 的取值范围为▲ 。

8.已知54)1(2-+=-x x x f ,则9.已知不等式012>-+bx ax 的解是43<<x ,则a = ▲ ,b = ▲ 。

10.已知集合{}12>-≤=x x x A 或,()1,32+-=a a B ,若R B A =⋃,则a 的范围是 ▲ 。

11.已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为_____ ▲___12.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是__▲___。

13.若f(x)R 上的单调函数,则实数a 的取值范围为 ▲ .14.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .二、解答题(本大题6小题,共58分。

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度(上)期末数学九年级质量检测试题(满分:120分; 时间 90分钟)一、选择题(每小题3分,共30分)1、已知135=a b ,则b a ba +-的值是( )A 、32B 、23C 、49D 、942、关于x 的一元二次方程22(1)10a x x a --+-=的一个根是0,则a 的值为( ) A 、1或-1. B 、-1 C 、1 D 、123、已知x -1x =3,则4-12x 2+32x 的值为( ) A 、1 B 、32 C 、52 D 、724、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′在直线y=34x 上,则点B 与其对应点B ′间的距离为( ) A 、94B 、3C 、4D 、55、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是( ) A 、S 1>S 2>S 3 B 、 S 3>S 2>S 1C 、S 2>S 3>S 1D 、S 1>S 3>S 26、如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴 上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以 A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形 是等腰三角形的概率是( )A 、34B 、13C 、23D 、127、在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为(A 、16mB 、18mC 、20mD 、22m8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2则S 1+S2的值为( )A 、16 B 、17 C 、18 D 、199、如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 与点D 、F,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A 、32B 、33C 、4D 、34第4题图第5题图10、已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的存在情况是()A、没有实数根B、有两个相等的实数根C、有两个不相等的实数根D、无法确定二、填空题(每小题3分,共24分)11、如图,点D,E分别在AB,AC上且∠ABC=∠AED,若DE=4cm,AE=5cm, BC=8cm,则AB的长为 .12、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1+x2-x1·x2=1-a,则a= .13、如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.14、一水塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼 _____尾.15、在平面直角坐标系中,已知A(6,3),B(6,0)两点,以坐标原点为位似中心,位似比为3∶1,把线段AB缩小后得到线段A′B′,则A′B′的长度为 .16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.17、在锐角三角形ABC中,已知∠A,∠B满足2sin2A⎛-⎝⎭+tan B|=0,则∠C=______.18、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .三、解答题(本题共八小题,共66分)19、(本题6分)作出如下图所示的三种视图.G第16题图E第18题图第19题第13题图20、(本题6分)已知()()0622222=-+-+b ab a ,求:22b a +的值。

【全程复习方略】2014-2015学年高中数学 第一章 统计案例单元质量评估 新人教A版选修1-2

【全程复习方略】2014-2015学年高中数学 第一章 统计案例单元质量评估 新人教A版选修1-2

"【全程复习方略】2014-2015学年高中数学第一章统计案例单元质量评估新人教A版选修1-2 "一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.散点图在回归分析过程中的作用是( )A.查找个体个数B.比较个体数据的大小关系C.探究个体分类D.粗略判断变量的相关关系【解析】选D.散点图对相关关系的判断是粗略的,在一定程度上存在着误差.2.下列关于线性回归的说法,不正确的是( )A.变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫散点图C.线性回归方程最能代表观测值x,y之间的关系D.任何一组观测值都能得到具有代表意义的线性回归方程【解析】选D.根据相关关系及散点图等概念知A,B,C均正确.3.(2014·广州高二检测)若身高与体重有关系,则下列选项中可以用来分析此关系的是( )A.残差B.回归分析C.等高条形图D.独立性检验【解析】选B.身高与体重的关系是相关关系,因此可用回归分析来确定其具体的数值关系,而残差分析是用来分析模型拟合效果的,等高条形图和独立性检验是用来判断两个分类变量是否有关的量.4.(2014·泰安高二检测)下列说法正确的个数是( )(1)将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变(2)设有一个回归方程=3-5x,变量增加一个单位时y平均增加5个单位(3)在一个2×2列联表中,由计算得K2=13.079,则在犯错误的概率不超过0.1的前提下认为两个变量有关系A.0B.1C.2D.3【解析】选C.(1)方差反映一组数据的波动大小,将一组数据中的每个数据加上或减去同一常数后,方差恒不变,(1)正确.(2)变量x增加一个单位时,y平均减少5个单位,故(2)错.(3)对照临界值表可得在犯错误的概率不超过0.001的前提下认为两个变量有关系,即在犯错误的概率不超过0.1的前提下认为两个变量有关系是正确的,故(3)正确.5.(2014·永州高二检测)已知x,y的值如表所示,若y与x呈线性相关且回归直线方程为y=x+,则a=( )A.4B.5C.6D.7【解析】选A.由题意可得=×(4+6+8)=6,=(5+a+6),由于回归直线y=x+过点(,),故×(5+a+6)=×6+,解得a=4.【变式训练】已知x与y之间的一组数据如表所示,则y与x的线性回归方程=x+必过点( )A.(2,2)B.C.D.(1,2)【解题指南】回归直线过样本点的中心(,).【解析】选C.由表中数据可计算=(0+1+2+3)=,=(1+3+5+7)=4.因为回归直线过样本中心点(,),所以回归直线过点.6.(2014·铜陵高二检测)如果某地财政收入x(亿元)与支出y(亿元)满足线性回归方程y=bx+a+e(单位:亿元),其中b=0.8,a=2,|e|≤0.5.如果今年该地区的财政收入为10亿元,则年支出预计不会超过( ) A.9亿元 B.9.5亿元 C.10亿元 D.10.5亿元【解题指南】将所给数据代入y=bx+a+e,利用|e|≤0.5,即可求得结论.【解析】选D.由y=0.8x+2+e知当x=10时,y=0.8x+2+e=10+e,因为|e|≤0.5,所以-0.5≤e≤0.5,所以9.5≤y≤10.5,所以今年支出预计不会超过10.5亿元.7.(2014·江西高考)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A.成绩B.视力C.智商D.阅读量【解题指南】根据独立性检验公式分别求出相应的K2,数据大的与性别有关联的可能性大.【解析】选D.()222152852(6221410)K ,2032163620321636⨯-⨯⨯-⨯==⨯⨯⨯⨯⨯⨯()22225211252(4201612)K ,2032163620321636⨯-⨯⨯-⨯==⨯⨯⨯⨯⨯⨯222352(824128)52(128)K ,2032163620321636⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯222452(143062)52(686)K .2032163620321636⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯分析判断K 42最大,所以选D.8.根据如图所示的列联表得到如下四个判断:①在犯错误的概率不超过0.001的前提下认为患肝病与嗜酒有关;②在犯错误的概率不超过0.01的前提下认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为0.001%;④没有证据显示患肝病与嗜酒有关.其中正确命题的个数为( ) A.1B.2C.3D.4【解析】选B.由K 2=得K 2的观测值k ≈56.632>10.828>6.635,①②均正确,故选B.9.下面是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图可以看出( )A.性别与喜欢理科无关B.女生中喜欢理科的百分比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的百分比为60%【解析】选C.由条形图可知,女生中喜欢理科的百分比约为1-0.8=0.2=20%,男生中喜欢理科的百分比约为1-0.4=0.6=60%,因此男生比女生喜欢理科的可能性大些.10.(2014·太原高二检测)变量x,y具有线性相关关系,当x取值为16,14,12,8时,通过观测得到y的观测值分别为11,9,8,5,若在实际问题中,y最大取值是10,则x的最大值不能超过( )A.14B.15C.16D.17【解析】选B.根据题意y与x呈正相关关系,由最小二乘法或计算器求得回归系数=-0.857,=0.729,所以线性回归方程为=0.729x-0.857,当=10时得x≈15.11.两个分类变量X和Y可能的取值分别为{x1,x2}和{y1,y2},其样本频数满足a=10,b=21,c+d=35,若认为X 与Y有关系的犯错误的概率不超过0.1,则c的值可能等于( )A.4B.5C.6D.7【解题指南】根据条件可知2.706≤k<3.841.再由K2的公式进行估算可得c值.【解析】选B.若认为X和Y有关系的犯错误的概率不超过0.1,则K2的观测值k所在的范围为2.706≤k<3.841,根据计算公式K2=,其中n=a+b+c+d,及a=10,b=21,c+d=35可估算出c的值,选B.12.有人收集了春节期间平均气温x与某取暖商品销售额y的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间线性回归方程=x+的系数=-2.4,则预测平均气温为-8℃时该商品销售额为( )A.34.6万元B.35.6万元C.36.6万元D.37.6万元【解题指南】先求出横坐标和纵坐标的平均数,写出样本中心点,根据所给的的值,写出线性回归方程,把样本中心点代入求出的值,再代入数值进行预测.【解析】选A.==-4,==25,所以这组数据的样本中心点是(-4,25).因为=-2.4,把样本中心点代入线性回归方程得=15.4,所以线性回归方程是=-2.4x+15.4.当x=-8时,y=34.6.故选A.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知方程=0.85x-82.71是根据女大学生的身高预报体重的回归方程,其中x的单位是cm,y的单位是kg,那么针对某个体(160,53)的随机误差是.【解析】因为回归方程为=0.85x-82.71,所以当x=160时,=0.85×160-82.71=53.29,所以针对某个体(160,53)的随机误差是53-53.29=-0.29.答案:-0.2914.为了均衡教育资源,加大对偏远地区的教育投入,调查了某地若干户家庭的年收入x(单位:万元)和年教育支出y(单位:万元),调查显示年收入x与年教育支出y具有线性相关关系,并由调查数据得到y对x的线性回归方程:=0.15x-0.2.由线性回归方程可知,家庭年收入每增加1万元,年教育支出平均增加万元.【解析】因为线性回归方程=0.15x-0.2,y=0.15(x+1)-0.2,所以1y-=0.15(x+1)-0.2-0.15x+0.2=0.15.所以1答案:0.1515.下表是关于男女生喜欢武打剧的调查表:则列联表中A= ,B= ,C= ,D= .【解题指南】依据列联表中数据的关系,进行加减运算即可.【解析】A=105-39=66,B=100-39=61,C=66+34=100,D=105+95=200.答案:66 61 100 200【互动探究】在本题中条件不变的情况下,在犯错误的概率不超过多少时认为性别与喜欢武打剧有关? 【解析】由表中数据可计算得k=≈14.617>10.828.因P(K2≥10.828)=0.001,所以在犯错误的概率不超过0.001的前提下认为性别与喜欢武打剧有关.16.(2014·三明高二检测)某考察团对中国10个城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)调查,y与x具有相关关系,回归方程为=0.66x+1.562,若A城市居民人均消费水平为7.765(千元),估计该城市人均消费额占人均工资收入的百分比约为.【解析】因为y与x具有线性相关关系,满足回归方程=0.66x+1.562,A城市居民人均消费水平为y=7.765,所以可以估计该城市的职工人均工资水平x满足7.765=0.66x+1.562,所以x≈9.4,所以该城市人均消费额占人均工资收入的百分比约为×100%≈83%.答案:83%三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1月至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率.(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程,并预报当温差为9℃时的种子发芽数.【解题指南】(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,满足条件的事件包括的基本事件有6种,根据等可能事件的概率得出结果.(2)根据所给的数据,先得出x,y的平均数,即得出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程并进行预报.【解析】(1)设抽到不相邻的两组数据为事件A,从5组数据中选取2组数据共有10种情况:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中数据为12月份的日期数,每种情况都是等可能出现的,事件A包括的基本事件有6种,所以P(A)=,所以选取的2组数据恰好是不相邻2天数据的概率是.(2)由数据,求得=12,=27,由公式,求得=,=-=-3,所以y关于x的线性回归方程为=x-3.由此可以预报当温差为9℃时的种子发芽数为19或20颗.18.(12分)一项关于A、B两国失业情况的抽样调查结果如下:1512个A国人中有130人曾经被解雇过,其余人未曾被解雇过;而2900个B国人中有87人曾经被解雇过,其余人未曾被解雇过.(1)根据以上数据,建立一个2×2列联表.(2)根据表中数据,你能得到什么结论?【解析】(1)列联表如下:(2)K2的观测值k=≈66.595>10.828,P(K2≥10.828)≈0.001,故在犯错误的概率不超过0.001的前提下认为是否解雇与国家有关.19.(12分)(2013·吉林高二检测)调查某桑场采桑员桑毛虫皮炎发病情况结果如下表:利用2×2列联表的独立性检验估计“患桑毛虫皮炎病与采桑”是否有关?认为两者有关系会犯错误的概率是多少?K2=【解析】由题意知,a=18,b=12,c=5,d=78,所以a+b=30,c+d=83,a+c=23,b+d=90,n=113.所以K2==≈39.6>10.828.所以患桑毛虫皮炎病与采桑有关系.认为两者有关系会犯错误的概率是0.1%.【变式训练】巴西医生马廷思收集各种犯有贪污、受贿罪的官员和廉洁官员寿命的调查资料:500名贪官中有348人的寿命小于平均寿命,152人的寿命大于或等于平均寿命;590名廉洁官员中有93人的寿命小于平均寿命,497人的寿命大于或等于平均寿命.这里,平均寿命是指“当地人均寿命”.试分析官员在经济上是否清廉与他们寿命的长短之间是否有关系?【解析】根据题意列2×2列联表:由公式计算K2的观测值:k=≈325.635.因为325.635>10.828,所以在犯错误的概率不超过0.001的前提下认为官员在经济上是否清廉与他们的寿命长短有密切关系.20.(12分)想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?(2)若年龄相差5岁,则身高有多大差异?(年龄在3~16岁之间)(3)如果身高相差20cm,其年龄相差多少?【解析】(1)散点图如图所示.由散点图可知样本点落在一条直线附近.设年龄x(岁)与身高y(cm)之间的回归直线方程是=x+,由公式计算得=≈6.314,=-≈72.003,所以=6.314x+72.003.(2)若年龄相差5岁,则预报变量变化6.314×5=31.57.(3)如果身高相差20cm,年龄相差Δx=≈3.168≈3(岁).21.(12分)某运动员训练次数与训练成绩之间的数据关系如下:(1)在图1坐标系中作出散点图.(2)求出回归方程.(3)在图2中作出残差图.(4)计算相关指数R2.(5)试预测该运动员训练47次及55次的成绩.【解析】(1)作出运动员训练次数x与成绩y的散点图,如图所示,由散点图可知,它们之间具有相关关系.(2)列表计算如图所示:所以==≈1.0415,=-=-0.00302,所以回归直线方程为=1.0415x-0.00302.(3)残差分析:下面的表格列出了运动员训练次数和成绩的原始数据以及相应的残差数据.作残差图,如图所示,由图可知,残差点比较均匀地分布在水平带状区域内,说明选择的模型比较合适.(4)计算相关指数R 2=1-82i i i 182ii 1y y y y ==--∑∑()()=0.9855.(5)作出预报:由上述分析可知, 回归直线方程=1.0415x-0.00302.将x=47和x=55分别代入该方程可得=49,=57,故预测该运动员训练47次和55次的成绩分别为49和57. 22.(12分)某地区不同身高的未成年男性的体重平均值如表:(1)试建立y 与x 之间的回归方程.(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于平均值的0.8倍为偏瘦,则这个地区一名身高为175cm、体重为82kg的在校男生的体重是否正常?【解析】(1)根据表格中的数据画出散点图,如图所示.从图可以看出,样本点分布在某条指数型函数曲线y=c1的周围,于是令z=lny,得到x与z的数据如表:根据上表中的数据作出散点图,如图所示.由表中数据可计算得z与x之间的回归方程为=0.693+0.020x,则有=e0.693+0.020x.(2)当x=175时,预测平均体重为=e0.693+0.020×175≈66.22,因为66.22×1.2≈79.46<82,所以这名男生偏胖.。

2014-2015学年上学期期中考试高二数学试卷

2014-2015学年上学期期中考试高二数学试卷

2014-2015学年上学期期中考试高二数学试卷一.选择题(共12小题,每题5分,共60分.答案必须填涂在答题卡上)1.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为( ).A.40 B.30C.20 D.122.计算机执行下面的程序段后,输出的结果是().A.4,-2 B.4,1C.1,4 D.-2,43. 线性回归方程ˆy bx a=+表示的直线必经过的一个定点是().A.(,y)x B.(,0)xC.(0,y)D.(0,0)4.如图所示的程序框图输出的结果为().A.1 B.2C.4 D.85.设,x y满足约束条件12x yy xy+≤⎧⎪≤⎨⎪≥-⎩,则3z x y=+的最大值为()A.5 B. 3C. 7D. -86.对一个样本容量为100的数据分组,各组的频数如下:估计小于29的数据大约占总体的 ( ). A .42% B .58% C .40% D .16% 7.下列各数中,最小的数是 ( ) A .75 B .(6)210 C .(2)111111 D .(9)85 8. 10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有 ( ). A .a>b>c B .b>c>a C .c>a>b D .c>b>a 9.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 ( ). A.13 B.12 C.23 D.34 10.用秦九韶算法计算当x =0.4时,多项式f(x)=3x6+4x5+6x3+7x2+1的值时,需要做乘法运算的次数是( ) A .6 B .5 C .4 D .3 11.一个游戏转盘上有四种颜色:红、黄、蓝、黑,并且它们所占面积的比为6∶2∶1∶4,则指针停在红色或蓝色的区域的概率为 ( ). A.613 B.713 C.413 D.1013 12.命题:“∀x ∈R,220x x -+≥”的否定是( ) A.∃x ∈R,220x x -+≥ B.∀x ∈R,220x x -+≥ C.∃x ∈R,220x x -+< D.∀x ∈R,220x x -+< 座位号:_________ 二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.有324,243,270三个数,则它们的最大公约数是________. 14.则年降水量在[200,300](mm)范围内的概率是 15.某中学高三年级从甲、乙两个班级中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为答题座位16.已知命题:p:(3)(1)0x x-+>,命题q:22210(0)x x m m-+->>,若命题p是命题q的充分不必要条件,则实数m的范围是____________.三.解答题:(本题共6个小题,共70分,每题均要求写出解答过程)17. (10分)分别用辗转相除法和更相减损术求282与470的最大公约数.18.(12分)写出下列命题的否定,并判断其真假:(1)p:不论m取何实数,方程x2+mx-1=0必有实数根;(2)p:有些三角形的三条边相等;(3)p:菱形的对角线互相垂直;(4)p:存在一个实数x,使得3x <0.19.(12分)某校从高二年级学生中随机抽取60名学生,将其会考的政治成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到如下频率分布直方图.(Ⅰ)求图中a的值(Ⅱ)根据频率分布直方图,估计该校高二年级学生政治成绩的平均分;20.(12分)某次运动会甲、乙两名射击运动员的成绩如下:甲:9.48.77.58.410.110.510.77.27.810.8乙:9.18.77.19.89.78.510.19.210.1 9.1(1)用茎叶图表示甲、乙两人的成绩;(2)根据茎叶图分析甲、乙两人的成绩;(3)分别计算两个样本的平均数x和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.21.设变量,x y满足约束条件25020x yx yx+-≤⎧⎪--≤⎨⎪≥⎩,求目标函数231z x y=++的最大值。

辽宁省七校2024-2025学年高二上学期期初考试数学试卷(含答案)

辽宁省七校2024-2025学年高二上学期期初考试数学试卷(含答案)

数学试题考试时间:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分,在题目给出的四个选项中,只有一项符合题目要求)1.已知复数是纯虚数,则实数( )A.B.C.0D.12.)A.B.C.D.3.设为空间中两条不同直线,为空间中两个不同平面,下列命题中正确的为()A.若上有两个点到平面的距离相等,则B.若是异面直线,,则C.若不垂直于,则必不垂直于D.若,则“”是“”的既不充分也不必要条件4.已知函数的部分图象如图所示,且,则( )A. B.C. D.5.如图,在正四面体中,点是线段上靠近点的四等分点,则异面直线与所成角的余弦值为()()()1i 1i z λ=++-λ=2-1-3π6π,m n αβ、m αm ∥αm n 、,m m α⊂∥,,n n ββ⊂∥αα∥βm ,n αα⊂m n,m n αβ⊥⊂m ∥n αβ⊥()()sin (0,0,0π)f x A x A ωϕωϕ=+>>……()01f =()π2sin 3f x x ⎛⎫=+⎪⎝⎭()π2sin 23f x x ⎛⎫=- ⎪⎝⎭()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭ABCD E AD D EC BDC. D.6.下列命题正确的是()A.若,且则B.若,则不共线C.若是平面内不共线的向量,且存在实数使得,则三点共线D.若,则在上的投影向量为7.已知,则的值为( )A.B. C. D.8.在中,是边上一定点,满足,且对于边上任一点,恒有,则为( )A.等腰三角形B.钝角三角形C.直角三角形D.锐角三角形二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知复数,下列结论正确的有()A.若,则B.若,则C.若复数满足,则在复平面对应的点是D.若是关于的方程的一个根,则10.设函数向左平移个单位长度得到函数,已知在上有且只有5个零点,则下列结论正确的是( )A.的图象关于直线对称B.的取值范围是()()21,2,,1a b m =-= a b ⊥ m =,a b λλ∀∈≠R ,a b,OB OC y OA yOC yOB OC +=+,,A B C ()()1,1,1,2a b =-= b a 11,22⎛⎫- ⎪⎝⎭()4π3π25cos2cos ,cos 2,0,,,2π522αααβαβ⎛⎫⎛⎫+=+=∈∈ ⎪ ⎪⎝⎭⎝⎭cos β45-4412544125-45ABC V 0P AB 023P B AB =AB P 00PB PC P B P C ⋅⋅…ABC V 12,z z 12z z =2212z z =120z z ->12z z >2Z 25i5i 2iZ =+-2Z ()1,7-143i z =-+x ()20,x px q p q ++=∈R 8p =()sin (0)g x x ωω=>π5ω()f x ()f x []0,2π()f x π2x =ω1229,510⎡⎫⎪⎢⎣⎭C.在上单调递增D.在上,方程的根有3个,方程的根有3个11.化学中经常碰到正八面体结构(正八面体是每个面都是正三角形的八面体),如六氟化硫(化学式)、金刚石等的分子结构.将正方体六个面的中心连线可得到一个正八面体(如图1),已知正八面体的(如图2)棱长为4,则( )A.正八面体的外接球体积为B.正八面体的内切球表面积为C.若点为棱上的动点,则的最小值为D.若点为棱上的动点,则三棱锥三、填空题(本题共3小题,每小题5分,共15分)12.,则__________.13.在中,为的外心,若,则的值为__________.14.在中,角的对边分别为,则的取值范围为__________.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.如图,在底面是矩形的四棱锥中,平面是的中点.()f x π0,10⎛⎫⎪⎝⎭()0,2π()1f x =()1f x =-6SF E ABCD F --E ABCD F --64π3E ABCD F --32π3P EB AP CP +Q AF E QBC -()tan π2α+=()()()()sin 3πcos 5πsin cos παααα-+-=--+ABC V π,3A O =ABC V 2AO AB AO AC ⋅=⋅= AB AC ⋅ ABC V ,,A B C ,,a b c ()sin cos cos π,sin 3B C B C B b c C +⎫+==⎪⎭2a c +P ABCD -PA ⊥,ABCD E PD(1)求证:平面;(2)求证:平面平面.16.已知向量(1)求函数的单调递增区间和最小正周期;(2)若当时,关于的不等式有解,求实数的取值范围.17.已知的内角的对边分别为,满足.(1)求角;(2)若的外接圆的面积为,求的面积.18.如图,在四棱锥中,平面.(1)求证:平面;(2)若,求与平面成角的正弦值;(3)设点为的中点,过点的平面与棱交于点,且平面,求的值.19.若函数满足:对任意,则称为“函数”.(1)判断是不是函数(直接写出结论);(2)已在函数是函数,且当时,.求在的解析式;(3)在(2)的条件下,时,关于的方程(为常数)有解,求该方程所有解的和.PB ∥EAC PDC ⊥PAD ()()πsin ,1,1,sin ,3a x b x f x a b ⎛⎫⎛⎫==-=⋅ ⎪⎪⎝⎭⎝⎭ ()f x π0,4x ⎡⎤∈⎢⎥⎣⎦x ()21f x m -…m ABC V ,,A B C ,,a b c 1b cc a b a+=--A ABC V 7π,sin sin 3B C A +=ABC V P ABCD -PC ⊥,ABCD AB ∥,DC DC AC ⊥DC ⊥PAC 1PC AB AC ===PB PAC E AB ,C E PB F PA ∥CEF PFPB()f x ()3π3π,22x f x f x f x ⎛⎫⎛⎫∈=-=+⎪ ⎪⎝⎭⎝⎭R ()f x M ()()124π2sin ,tan 323f x x f x x ⎛⎫=+= ⎪⎝⎭M ()f x M 3π0,4x ⎡⎤∈⎢⎥⎣⎦()sin f x x =()f x 3π,3π2⎡⎤⎢⎥⎣⎦[]0,6πx ∈x ()f x a =a s高二联考数学试卷参考答案及评分标准一、单选题1-8.BDBC ACBB二、多选题9.CD10.BC11.BCD三、填空题12.313.219.四、解答题15.(13分)解:(1)连接交于点,连接.四边形是矩形,是的中点.又为的中点,.平面平面平面(2)面面.是矩形,.而平面平面又平面平面平面.16.(15分)(1)因为所以函数的最小正周期;因为函数的单调增区间为,所以,解得,所以函数的单调增区间为;(2)不等式有解,即;BD AC G EG ABCD G ∴BD E PD PB EG ∴∥EG ⊂ ,EAC PB ⊄,EAC PB ∴∥EACPA ⊥ ,ABCD CD ⊂,ABCD PA CD ∴⊥ABCD AD CD ∴⊥,,PA AD A PA AD ⋂=⊂,PAD CD ∴⊥PAD CD ⊂ .PDC ∴PDC ⊥PAD ()π1πsin sin sin sin 323f x a b x x x x x ⎛⎫⎛⎫=⋅=+-=+=+ ⎪ ⎪⎝⎭⎝⎭ ()f x 2πT =sin y x =ππ2π,2π,22k k k ⎡⎤-++∈⎢⎥⎣⎦Z πππ2π2π,232k x k k -+≤+≤+∈Z 5ππ2π2π,66k x k k -+≤≤+∈Z ()f x 5ππ2π,2π,66k k k ⎡⎤-++∈⎢⎥⎣⎦Z ()21f x m -≤min 1()2m f x +≥因为,所以,又,故当,即时,取得最小值,且最小值为所以17.(15分)(1)解:(1)因为,所以,所以,即,由余弦定理可得:,所以,因为,所以;(2)因为的外接圆的面积为,设的外接圆半径为,即,解得由正弦定理得,因为,由正弦定理得,由(1)知,所以,得,则,所以的面积为18.(17分)π0,4x ⎡⎤∈⎢⎥⎣⎦ππ7π3312x ≤+≤7π5ππsin sin sin 12123=>ππ33x +=0x =()f x ()0f =1m ≥-1b cc a b a+=--()()()()b b a c c a c a b a -+-=--222b ab c ac bc ac ab a -+-=--+222b c a bc +-=2222cos b c a bc A +-=1cos 2A =()0,πA ∈π3A =ABC V 7π3ABC V r 27ππ3r =r =2,2sin 2sin a r a r A A ====sin sin B C A +=5b c +==222b c a bc +-=2()73b c bc +-=325718bc =-=6bc =ABC V 11bcsinA 622ABC S ==⨯=V(1)因为平面平面,所以,又平面,所以平面(2)平面平面,为所求中,中,.(3)因为平面,平面平面,平面,所以,因为点为的中点,所以点为的中点,所以.19.(17分)(1)是函数,证明如下:因为,又,,所以,故是函数,是函数,证明如下:因为,,所以,故是函数.PC ⊥,ABCD CD ⊂ABCD PC CD ⊥,,,DC AC AC PC C AC PC ⊥⋂=⊂PAC DC ⊥PACCD ∥,AB DC ⊥PACAB ∴⊥PAC APB ∴∠Rt PAC V 1,PC AC PA ==∴=Rt PAB ∴V PB =sin APB ∴∠=PA ∥CEF PAB ⋂CEF EF =PA ⊂PAB PA ∥EF E AB F PB 12PF PB =()14πsin 32f x x ⎛⎫=+ ⎪⎝⎭M ()14π4sin cos 323f x x x ⎛⎫=+=⎪⎝⎭13π43π44cos cos 2πcos 23233f x x x x ⎛⎫⎛⎫⎛⎫-=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13π43π44cos cos 2πcos 23233f x x x x ⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1113π3π22f x f x f x ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭()14πsin 32f x x ⎛⎫=+⎪⎝⎭M ()22tan3f x x =M 2323222tan tan tan tan 232333f x x x x x πππ⎛⎫⎛⎫⎛⎫-=-==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23π23π22tan tan πtan 23233f x x x x ⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2223π3π22f x f x f x ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭()22tan 3f x x =M(2)因为,所以函数的周期为,又,所以函数关于直线对称,因为时,所以,当,即时,当,即时,,又时,,所以,综上,在上的解析式为;(3)由(2)知,当时,,所以,得到又函数的周期为,所时,的图像如图,由图知,当时,有5个解,其和为,当时,有8个解,由对称知,其和为,()3π2f x f x ⎛⎫=+⎪⎝⎭()f x 3π2T =()3π2f x f x ⎛⎫=-⎪⎝⎭()f x 3π4x =3π,3π2x ⎡⎤∈⎢⎥⎣⎦3π3π0,22x ⎡⎤-∈⎢⎥⎣⎦3π3π0,24x ⎡⎤-∈⎢⎥⎣⎦3π9π,24x ⎡⎤∈⎢⎥⎣⎦()3π3πsincos ,22f x f x x x ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭3π3π3π,242x ⎡⎤-∈⎢⎥⎣⎦9π,3π4x ⎡⎤∈⎢⎥⎣⎦()()3π3π3π3π222f x f x f x f x ⎡⎤⎛⎫⎛⎫=-=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦9π,3π4x ⎡⎤∈⎢⎥⎣⎦3π3π0,4x ⎡⎤-∈⎢⎥⎣⎦()()()3π3π3π3πsin 3πsin 222f x f x f x f x x x ⎡⎤⎛⎫⎛⎫=-=--=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()f x 3π,3π2⎡⎤⎢⎥⎣⎦()3π9πcos ,,249πsin ,,3π4x x f x x x ⎧⎡⎤∈⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩3π3π,42x ⎡⎤∈⎢⎥⎣⎦3π3π0,24x ⎡⎤-∈⎢⎥⎣⎦()3π3πsin cos 22f x f x x x ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭()3πsin ,0,43π3πcos ,,42x x f x x x ⎧⎡⎤∈⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪-∈⎢⎥⎪⎣⎦⎩3π2T =[]0,6πx ∈()f x 0a =()f x a =3π9π3π6π15π22S =+++=0a <<()f x a =3π9π15π21π24π2222S =+++=当时,有12个解,由对称知,其和为,时,有16个解,由对称知,其和为,当时,有8个解,由对称知,其和为,综上,方程所有解的和.a =()f x a =3π3π9π9π15π15π21π21π36π42424242S =+++++++=1a <<()f x a =π2π4π5π7π8π10π11π48πS =+++++++=1a =()f x a =π5π7π11ππ2π4π5π24π2222S =+++++++=15π,024π,036π,48π124π,1a a S a a a =⎧⎪⎪<<⎪⎪⎪==⎨⎪⎪⎪<<⎪⎪=⎩。

辽宁沈阳二中2014-2015学年高一上学期期末考试 数学试题

辽宁沈阳二中2014-2015学年高一上学期期末考试 数学试题

辽宁沈阳二中2014-2015学年高一上学期期末考试 数学试题说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题卡上,主观题答在答题纸的相应位置上第Ⅰ卷 (满分60分)一、选择题(每题5分,共40分) 1. 设集合3.022},032|{=≤-=m x x x P ,则下列关系中正确的是A .P m ⊆B .P m ∉C .P m ∈}{D .}{m ≠⊂P2 .函数y=的定义域是( )A .(1,2]B .(1,2)C .(2,)+∞D .(,2)-∞3. 已知空间两条不同的直线,m n 和两个不同的平面,αβ,则下列命题正确..的是( ) A .若//,m n αα⊂,则//m n B .若,m m n αβ=⊥,则n α⊥C .若//,//m n αα,则//m nD .若//,,m m n αβαβ⊂=,则//m n4 .下列函数中,在区间(0,+∞)上为增函数的是( ).A .y =ln(x +2)B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x5. 在空间直角坐标系中,以点(4,1,9)A ,)6,1,10(-B ,(,4,3)C x 为顶点的ABC ∆是以BC 为底边的等腰三角形,则实数x 的值为( )A .2-B .2C .6D .2或66 . 已知函数1()lg 2xf x x ⎛⎫=- ⎪⎝⎭有两个零点12,x x ,则有( )A .120x x <B .121x x =C .121x x >D .1201x x <<7 .设,A B 是x 轴上的两点,点P 的横坐标为2,且PA PB =,若直线PA 的方程为10x y -+=,则直线PB 的方程是( )A .50x y +-=B .210x y --=C .240y x --=D .270x y +-=8 .曲线1(22)y x =-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( )A .53(,]124 B .5(,)12+∞ C .13(,)34 D .53(,)(,)124-∞+∞9.已知一个几何体的三视图如图所示, 则这个几何体的体积是( )A .233B .236C .113D .10310.三棱锥P ABC -三条侧棱两两垂直,三个侧面面积分别为222,则该三棱锥的外接球表面积为( ) A. 4π B. 6π C. 8π D.10π11. 已知函数()()21,02,41,0x x f x x x g x x x x ⎧+>⎪=--=⎨⎪+≤⎩若方程()0g f x a -=⎡⎤⎣⎦的实数根的个数有4个,则a 的取值范围( )A. 51,4⎡⎫⎪⎢⎣⎭B. [)1,+∞C. ()1,+∞D.5,14⎛⎤- ⎥⎝⎦12.已知042422=---+y x y x ,求3332+++x y x 的最大值_______________A .2B .417 C .529 D .13413第Ⅱ卷 (满分90分)二.填空题:(本大题共4小题,每小题5分,共20分)13. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f ,则)5(f 的值为___________________ 14.已知圆C :()()253222=-+-y x ,点)7,1(-P ,过点P 作圆的切线,则该切线的一般式方程为________________15. 已知函数2()3f x x ax a =++-,若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值范围_________________________16. 已知函数()x x f 31log =的定义域为[]b a ,,值域为[]t ,0,用含t 的表达式表示a b -的最大值为()t M ,最小值为()t N ,若设()()()t N t M t g -=,则当21<≤t 时,()()[]1+⋅t g t g 的取值范围是_______________三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.[10分]若02x ≤≤,求函数124325x x y -=-∙+的最大值和最小值.18.[12分]求过点()1,2-A ,圆心在直线x y 2-=上,且与直线01=-+y x 相切的圆的方程.19.[12分]如图:,C D 是以AB为直径的圆上两点,2AB AD ==AC BC =,F是AB 上一点,且13AF AB =,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD上,已知CE =.(1)求证:平面BCE ; (2)求证://AD 平面CEF ; (3)求三棱锥A CFD -的体积.20. [12分] 已知点A(-3,0),B(3,0),动点P 满足|PA|=2|PB|.(1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线1l :x +y +3=0上,直线2l 经过点Q 且与曲线C 只有一个公共点M ,求|QM|的最小值.21.[12分]已知函数()1log 1amxf x x -=-是奇函数()01a a <≠且 (1)求m 的值(2)判断()f x 在区间()1,+∞上的单调性并加以证明(3)当1,a>(x ∈时,()f x 的值域是()1,+∞,求a 的值22. [12分]已知函数()mf x x x=+(m 为正的常数),它在(0,)+∞内的单调变化是:在内递减,在)+∞内递增.其第一象限内的图象形如一个“对号”.请使用这一.....性质完成下面的问题.......... (1)若函数()2ag x x x=+在(0,1]内为减函数,求正数a 的取值范围; (2)若圆22:2210C x y x y +--+=与直线:l y kx =相交于P 、Q 两点,点(0,)M b 且MP MQ ⊥.求当[1,)b ∈+∞时,k 的取值范围.BB沈阳二中2014—2015学年度上学期期末考试高一(17届)数学答案一、选择题(每题5分,共60分)DBDAD DAADB AB二、填空题(每题5分,共20分)(13). 11 , (14) 3x-4y+31=0 ,(15) [-7,2] , (16) [)6,72三、解答题17. 解:原式可变形为1244325xx y -=∙-∙+, (2分)即()()212325022x x y x =∙-∙+≤≤ (4分) 令2xt =,则问题转化为()2135142y t t t =-+≤≤ (6分)将函数配方有()()21131422y t x =-+≤≤ (8分)根据二次函数的区间及最值可知:当3t =,即23x=时,函数取得最小值,最小值为12. (10分) 当1t =,即0x =时,函数取得最大值,最大值为52. (12分)18.解:设圆心为()a a 2,-,圆的方程为 ()()2222r a y a x =++- (2分)则()()⎪⎩⎪⎨⎧=--=+-+-r a a r a a 212212222 (6分)解得1=a ,2=r (10分)因此,所求得圆的方程为()()22122=++-y x (12分) 19. (1)证明:依题意:⊥AD BD⊥CE 平面ABD ∴⊥CE ADBD E CE = ∴⊥AD 平面BCE . ………………4分(2)证明:BCE Rt ∆中,2=CE ,6=BC ∴2=BEABD Rt ∆中,32=AB ,3=AD ∴3=BD .∴32==BD BE BA BF . ∴EF AD // AD 在平面CEF 外,EF 在平面CEF 内,∴//AD 平面CEF . ………………8分(3)解:由(2)知EF AD //,⊥AD ED ,且1=-=BE BD ED ∴F 到AD 的距离等于E 到AD 的距离为1. 231321=⋅⋅=∆FAD S . ⊥CE 平面ABD ∴662233131=⋅⋅=⋅⋅==∆--CE S V V FAD AFD C CFD A . ………………12分 20. :(1)设点P 的坐标为(x ,y ),则x +2+y 2=2x -2+y 2,化得可得(x -5)2+y 2=16即为所求.-------------------4分 (2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图.由题意知直线l 2是此圆的切线,连接CQ , 则|QM |=|CQ |2-|CM |2=|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42,此时|QM |的最小值为32-16=4.----------12分 21. (1)()f x 是奇函数()()f x f x ∴-=-在其定义域内恒成立,即11log log 11aa mx mxx x +-=----()22211111m x x m m m ∴-=-∴=-=∴=-或舍去-----------4分(2)由(1)得()()1log 011a x f x a a x +=>≠-且 设()1,1x t x x +=-任取()1212,1,,x x x x ∈+∞<且 ()()()211212121221111(1)(1)x x x x t x t x x x x x -++∴-=-=---- ()()1212121,1,x x x x t x t x >><∴>即12121111x x x x ++>-- 所以当1a >时,()()12121211log log 11aa x x f x f x x x ++>>--即函数为减函数 所以当01a <<时,()()12121211log log 11aa x x f x f x x x ++<<--即函数为增函数------8分 (3)当1a >时,()1log 1ax f x x +=-在(上位减函数,要使()f x在(上值域是()1,+∞,即1log 11a x x +>-,可得11x a x +>-。

辽宁省实验中学分校2014-2015学年高二上学期期中考试数学试题

辽宁省实验中学分校2014-2015学年高二上学期期中考试数学试题

辽宁省实验中学分校2014-2015学年高二上学期期中考试数学试题第Ⅰ卷一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.命题“x ∃∈R ,2210x x -+<”的否定是( )A .x ∃∈R ,221x x -+≥0B .x ∃∈R ,2210x x -+> C .x ∀∈R ,221x x -+≥0 D .x ∀∈R ,2210x x -+< 2.“0,0>>b a ”是“方程122=+by ax 表示椭圆”的 ( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 3.若0,>>>dc b a ,则下列不等式成立的是( )A .bd ac >B .db c a < C .c b da +>+ D .cb d a ->-4.在数列{}n a 中,12a =,1221n n a a +-=,则101a 的值为( ) A . 52 B .51 C .50 D .495.()()()10222221221211+++++++++++= S 的值是( )A .11211- B .13211- C .13212- D .11213-6.设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为( )A .5-B .4-C . 3-D .2-7.下列说法中正确的是 ( ) A.平面内与两个定点的距离和等于正的常数的点的轨迹叫做椭圆 B. 不等式0>-b ax 的解集为),1(+∞的充要条件是 :b a =C. “若 220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0,则220a b +≠” D. 一个命题的否命题为真,则它的逆命题一定为真8.已知焦点在x 轴上的椭圆的离心率为它的长轴长等于圆222150x y x +--=的半径,则椭圆的标准方程是( )A C .9.已知等比数列的公比为2,若前4项之和等于1,则前8项之和等于( ) A.15 B.17 C. 19 D.2110. 等差数列{}n a 的公差0d <,且2212014a a =,若数列{}n a 的前n 项和n S 最大,0m S = 则m n -的值为( )A .1007B .1006C . 1005D . 100411.已知,,a b c 为互不相等的正数,且222ac bc +=,则下列关系中可能成立的是( )A .a b c >>B .b c a >>C . a c b >>D .b a c>>12.已知函数()(2)(3),()22x f x m x m x m g x =-++=-,若对一切实数,()x f x 与()g x 至少有一个为负数,则实数m 的取值范围( )A . (4,1)--B .(4,0)-C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分。

高二数学上学期期初试卷(含解析)-人教版高二全册数学试题

高二数学上学期期初试卷(含解析)-人教版高二全册数学试题

某某省某某市泾县中学2014-2015学年高二上学期期初数学试卷一、选择题(本大题共11小题,每小题5分,满分55分.每小题4个选项中,只有1个选项符合题目要求)1.(5分)集合A={x|2≤x<5},B={x|3x﹣7≥8﹣2x}则(∁R A)∩B等于()A.∅B.{x|x<2} C.{x|x≥5}D.{x|2≤x<5}2.(5分)已知f(x)=x3+2x,则f(a)+f(﹣a)的值是()A.0 B.﹣1 C.1 D.23.(5分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.三棱柱D.三棱锥4.(5分)已知函数,那么f(ln2)的值是()A.0 B.1 C.ln(ln2)D.25.(5分)已知y=f(x)是奇函数,当x<0时,f(x)=x2+ax,且f(3)=6,则a的值为()A.5 B.1 C.﹣1 D.﹣36.(5分)设a>b,则下列不等式成立的是()A.>B.log2a>log2b C.<D.2a>2b7.(5分)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β8.(5分)已知等比数列{a n}的通项公式为a n=3n+2(n∈N*),则该数列的公比是()A.B.9 C.D.39.(5分)已知cos(π﹣α)=﹣,则cos2α=()A.B.﹣C.D.﹣10.(5分)若实数x,y满足不等式组,则y﹣x的最大值为()A.1 B.0 C.﹣1 D.﹣311.(5分)在以下关于向量的命题中,不正确的是()A.若向量a=(x,y),向量b=(﹣y,x),(xy≠0),则a⊥bB.平行四边形ABCD是菱形的充要条件是()()=0C.点G是△ABC的重心,则++=D.△ABC中,和的夹角等于180°﹣A二、填空题(本大题共4小题,每小题5分,满分20分,把答案填在题中的横线上.)12.(5分)已知△ABC的三个内角A,B,C所对的边分别是a, b,c,且A=30°,B=45°,a=2,则b=.13.(5分)不等式ax2+bx+2>0的解集为(﹣,),则a+b等于.14.(5分)设f(x)=cos2x+sinxcosx+2,x∈[﹣,],则f(x)的值域为.15.(5分)某体育场一角的看台的座位是这样排列的:从第二排起每一排都比前一排多出相同的座位数.现在数得该看台的第6排有25个座位,则该看台前11排的座位总数是.三、解答题(共6题,计75分)16.(12分)已知等差数列{a n}(n∈N+)}满足a1=2,a3=6(1)求该数列的公差d和通项公式a n;(2)设S n为数列{a n}的前n项和,若S n≥2n+12,求n的取值X围.17.(12分)设函数的最大值为M,最小正周期为T.(Ⅰ)求M、T;(Ⅱ)若有10个互不相等的正数x i满足f(x i)=M,且x i<10π(i=1,2,…,10),求x1+x2+…+x10的值.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C﹣PB﹣D的大小.19.(12分)函数f(x)=是偶函数.(1)试确定a的值,及此时的函数解析式;(2)证明函数f(x)在区间(﹣∞,0)上是减函数;(3)当x∈[﹣2,0]时,求函数f(x)=的值域.20.(13分)已知函数f(x)=kx+b的图象与x,y轴分别相交于点A、B,(分别是与x,y轴正半轴同方向的单位向量),函数g(x)=x2﹣x﹣6.(1)求k,b的值;(2)当x满足f(x)>g(x)时,求函数的最小值.21.(14分)已知圆C经过坐标原点,且与直线x﹣y+2=0相切,切点为A(2,4).(1)求圆C的方程;(2)若斜率为﹣1的直线l与圆C相交于不同的两点M,N,求的取值X围..某某省某某市泾县中学2014-2015学年高二上学期期初数学试卷参考答案与试题解析一、选择题(本大题共11小题,每小题5分,满分55分.每小题4个选项中,只有1个选项符合题目要求)1.(5分)集合A={x|2≤x<5},B={x|3x﹣7≥8﹣2x}则(∁R A)∩B等于()A.∅B.{x|x<2} C.{x|x≥5}D.{x|2≤x<5}考点:交、并、补集的混合运算;全集及其运算.专题:计算题.分析:先求集合A的补集,再化简集合B,根据两个集合交集的定义求解.解答:解:∵A={x|2≤x<5},∴C R A={x|x<2或x≥5}∵B={x|3x﹣7≥8﹣2x},∴B={x|x≥3}∴(C R A)∩B={x|x≥5},故选C.点评:本题属于以不等式为依托,求集合的交集的基础题,也是2015届高考常会考的题型.2.(5分)已知f(x)=x3+2x,则f(a)+f(﹣a)的值是()A.0 B.﹣1 C.1 D.2考点:函数奇偶性的性质.专题:计算题.分析:本题是一个求值题,观察发现,它是一个奇函数,由此知f(a)+f(﹣a)是一个常数,于是本题解法明了,直接代入求解即可.解答:解:由已知f(a)+f(﹣a)=a3+2a+(﹣a)3+2(﹣a)=0.则f(a)+f(﹣a)的值是0.故选A.点评:本题考查函数奇偶性的运用,直接将自变量代入,消去解析式中的奇函数部分.属于基础题.3.(5分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.三棱柱D.三棱锥考点:由三视图还原实物图.专题:空间位置关系与距离.分析:由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.解答:解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱,故选:C点评:用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.4.(5分)已知函数,那么f(ln2)的值是()A.0 B.1 C.ln(ln2)D.2考点:函数的值;对数的运算性质.专题:计算题.分析:先判断ln2<1,代入f(x)=e x﹣1,利用进行化简求值.解答:解:∵ln2<1,∴f(ln2)=e ln2﹣1=2﹣1=1,故选B.点评:本题考查了分段函数求值问题,主要是判断出自变量的X围,再代入对应的关系式进行求解.5.(5分)已知y=f(x)是奇函数,当x<0时,f(x)=x2+ax,且f(3)=6,则a的值为()A.5 B.1 C.﹣1 D.﹣3考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:推出f(﹣3)的值代入函数表达式可得a.解答:解:∵y=f(x)是奇函数,且f(3)=6,∴f(﹣3)=﹣6,∴9﹣3a=﹣6.解得a=5.故选A.点评:考查了奇函数的性质,属于基础题.6.(5分)设a>b,则下列不等式成立的是()A.>B.log2a>log2b C.<D.2a>2b考点:命题的真假判断与应用.专题:函数的性质及应用.分析:通过反例判断A的正误;对数函数的定义域判断B的正误;反例判断C的正误;指数函数的单调性判断D的正误;解答:解:对于A,不妨a=1,b=﹣2,可得<,>不正确,所以A不正确;对于B,对数函数的定义域是正实数,显然a>b,log2a,log2b,不一定有意义,所以B不正确.对于C,例如a=1,b=﹣2,显然<不正确,所以C不正确.对于D,因为指数函数y=2x是增函数,a>b,所以2a>2b,所以D正确.故选:D.点评:本题考查指数函数,对数函数的单调性对数的含义,反例证明问题的方法,考查命题真假的判断.7.(5分)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:本题考查的知识点是直线与平面之间的位置关系,逐一分析四个答案中的结论,发现A,B,D中由条件均可能得到l∥β,即A,B,D三个答案均错误,只有C满足平面平行的性质,分析后不难得出答案.解答:解:若l⊥α,α⊥β,则l⊂β或l∥β,故A错误;若l∥α,α∥β,则l⊂β或l∥β,故B错误;若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故C正确;若l∥α,α⊥β,则l⊥β或l∥β,故D错误;故选C点评:判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a⊂α,b⊄α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄α,a⊄,a∥α⇒a∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.8.(5分)已知等比数列{a n}的通项公式为a n=3n+2(n∈N*),则该数列的公比是()A.B.9 C.D.3考点:等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列的通项公式求解.解答:解:∵等比数列{a n}的通项公式为a n=3n+2(n∈N*),∴该数列的公比q===3.故选:D.点评:本题考查等比数列的通项公式的求法,是基础题,解题时要认真审题.9.(5分)已知cos(π﹣α)=﹣,则cos2α=()A.B.﹣C.D.﹣考点:二倍角的余弦;诱导公式的作用.专题:计算题.分析:利用诱导公式化简已知等式求出cosα的值,将所求式子利用二倍角的余弦函数公式化简后,把cosα的值代入即可求出值.解答:解:∵cos(π﹣α)=﹣cosα=﹣,∴cosα=,则cos2α=2cos2α﹣1=2×()2﹣1=﹣.故选D点评:此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)若实数x,y满足不等式组,则y﹣x的最大值为()A.1 B.0 C.﹣1 D.﹣3考点:简单线性规划.专题:不等式的解法及应用.分析:本题主要考查线性规划的基本知识,先画出约束条件的可行域,再利用目标函数的几何意义,分析后易得目标函数z=y﹣x的最大值.解答:解:约束条件的可行域如下图示:由,可得,A(1,1),要求目标函数z=y﹣x的最大值,就是z=y﹣x经过A(1,1)时目标函数的截距最大,最大值为:0.故选:B.点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.11.(5分)在以下关于向量的命题中,不正确的是()A.若向量a=(x,y),向量b=(﹣y,x),(xy≠0),则a⊥bB.平行四边形ABCD是菱形的充要条件是()()=0C.点G是△ABC的重心,则++=D.△ABC中,和的夹角等于180°﹣A考点:三角形五心.专题:综合题.分析:A:直接根据向量垂直的条件即可得;B:要证明ABCD是菱形的充要条件是对角线.()()=0,即证明:即可;C:先判断点G是△ABC的重心,则++=命题是否成立,结合向量的运算法则和几何意义,设G是△ABC的重心,由重心的性质得,得出命题不成立.D:根据向量夹角的定义可知其正确性.解答:解:A:∵,∴,故正确;B:若ABCD是菱形,则:则()()=0;反之,若()()=0则即平行四边形的两邻边相等,则四边形为菱形.故正确;C:如图:设G是△ABC的重心,则G是△AB C的三边中线的交点,∴,又﹣2 =﹣(+),∴.∴C不成立.D:根据向量夹角的定义可知:△ABC中,和的夹角等于180°﹣A.故正确.故选C.点评:本题考查向量运算的法则和几何意义,三角形重心的性质,充分条件、必要条件的判断.二、填空题(本大题共4小题,每小题5分,满分20分,把答案填在题中的横线上.)12.(5分)已知△ABC的三个内角A,B,C所对的边分别是a,b,c,且A=30°,B=45°,a=2,则b=2.考点:正弦定理.专题:计算题;压轴题;解三角形.分析:利用正弦定理=即可求得答案.解答:解:△ABC中,∵A=30°,B=45°,a=2,∴由正弦定理=得:=,∴b=2×=2.故答案为:2.点评:本题考查正弦定理的应用,属于基础题.13.(5分)不等式ax2+bx+2>0的解集为(﹣,),则a+b等于﹣14.考点:一元二次不等式的解法.专题:不等式.分析:通过不等式解集转化为对应方程的根,然后根据韦达定理求出方程中的参数a,b,即可求出a+b解答:解:∵不等式ax2+bx+2>0的解集为(﹣,)∴﹣,为方程ax2+bx+2=0的两个根∴根据韦达定理:﹣+=﹣①﹣×=②由①②解得:∴a+b=﹣14故答案为﹣14点评:本题考查一元二次不等式解集的定义,实际上是考查一元二次不等式解集与所对应一元二次方程根的关系,属于中档题14.(5分)设f(x)=cos2x+sinxcosx+2,x∈[﹣,],则f(x)的值域为[2,2].考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的定义域和值域.专题:计算题.分析:把函数f(x)的解析式利用二倍角的正弦、余弦函数公式化简,整理后,再根据特殊角的三角函数值及两角和与差的余弦函数公式化为一个角的余弦函数,根据x的X围,求出这个角的X围,利用余弦函数的图象与性质得到余弦函数的值域,进而得到函数f(x)的值域.解答:解:f(x)=cos2x+sinxcosx+2=(1+cos2x)+sin2x+2=(cos2x+sin2x)+2=cos(2x﹣)+2,∵x∈[﹣,],∴2x﹣∈[﹣,],∴﹣≤cos(2x﹣)≤1,则f(x)的值域为[2,2].故答案为:[2,2]点评:此题考查了二倍角的正弦、余弦函数公式,两角和与差的余弦函数公式,以及余弦函数的定义域和值域,其中利用三角函数的恒等变形把函数解析式化为一个角的三角函数是解此类题的关键.15.(5分)某体育场一角的看台的座位是这样排列的:从第二排起每一排都比前一排多出相同的座位数.现在数得该看台的第6排有25个座位,则该看台前11排的座位总数是275.考点:数列的应用.专题:综合题.分析:设a1=x,则a2=x+d,a3=x+2d,a4=x+3d,a5=x+4d,a6=x+5d=25,…,a11=x+10d,故S11=(a1+a11)=(x+x+10d)=11(x+5d),由此能求出结果.解答:解:设a1=x,则a2=x+d,a3=x+2d,a4=x+3d,a5=x+4d,a6=x+5d=25,…a11=x+10d,∴S11=(a1+a11)=(x+x+10d)=11(x+5d)=11×25=275.故答案为:275.点评:本题考查数列有实际问题中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是2015届高考的重点.解题时要认真审题,仔细解答.三、解答题(共6题,计75分)16.(12分)已知等差数列{a n}(n∈N+)}满足a1=2,a3=6(1)求该数列的公差d和通项公式a n;(2)设S n为数列{a n}的前n项和,若S n≥2n+12,求n的取值X围.考点:数列的求和;等差数列的性质.专题:等差数列与等比数列.分析:(1)由等差数列的概念及通项公式可得该数列的公差d和通项公式a n;(2)由等差数列的求和公式可得S n==n(n+1)=n2+n,依题意S n≥2n+12,即可求得n的取值X围.解答:解:(1)由题意得d==2,a n=a1+(n﹣1)d=2n,n∈N*.(2)S n==n(n+1)=n2+n,由S n≥2n+12,解得n≥4或n≤﹣3(舍去),所以n≥4且n∈N*.点评:本题考查等差数列的性质及等差数列的求和公式的应用,属于基础题.17.(12分)设函数的最大值为M,最小正周期为T.(Ⅰ)求M、T;(Ⅱ)若有10个互不相等的正数x i满足f(x i)=M,且x i<10π(i=1,2,…,10),求x1+x2+…+x10的值.考点:三角函数的最值.专题:计算题.分析:利用辅助角公式对函数化简可得,(Ⅰ)由M=2,利用周期公式可求T=(Ⅱ)由f(x i)=2,可得,从而可得,结合0<x i<10π可求解答:解:∵(4分)(Ⅰ)∵M=2∴T=(6分)(Ⅱ)∵f(x i)=2,即∴,∴(9分)又0<x i<10π,∴k=0,1,…,9(11分)∴=(12分)点评:本题主要考查了辅助角公式在三角函数化简中的应用,及由三角函数值求解角,属于三角函数的综合试题.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C﹣PB﹣D的大小.考点:直线与平面垂直的判定;直线与平面平行的判定;与二面角有关的立体几何综合题.专题:证明题;综合题;转化思想.分析:法一:(1)连接AC,AC交BD于O,连接EO要证明PA∥平面EDB,只需证明直线PA 平行平面EDB内的直线EO;(2)要证明PB⊥平面EFD,只需证明PB垂直平面EFD内的两条相交直线DE、EF,即可;(3)必须说明∠EFD是二面角C﹣PB﹣D的平面角,然后求二面角C﹣PB﹣D的大小.法二:如图所示建立空间直角坐标系,D为坐标原点,设DC=a.(1)连接AC,AC交BD于G,连接EG,求出,即可证明PA∥平面EDB;(2)证明EF⊥PB,,即可证明PB⊥平面EFD;(3)求出,利用,求二面角C﹣PB﹣D的大小.解答:解:方法一:(1)证明:连接AC,AC交BD于O,连接EO.∵底面ABCD是正方形,∴点O是AC的中点在△PAC中,EO是中位线,∴PA∥EO而EO⊂平面EDB且PA⊄平面EDB,所以,PA∥平面EDB(2)证明:∵PD⊥底面ABCD且DC⊂底面ABCD,∴PD⊥DC∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,∴DE⊥PC.①同样由PD⊥底面ABCD,得PD⊥BC.∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB又E F⊥PB且DE∩EF=E,所以PB⊥平面EFD.(3)解:由(2)知,PB⊥DF,故∠EFD是二面角C﹣PB﹣D的平面角.由(2)知,DE⊥EF,PD⊥DB.设正方形ABCD的边长为a,则,.在Rt△PDB中,.在Rt△EFD中,,∴.所以,二面角C﹣PB﹣D的大小为.方法二:如图所示建立空间直角坐标系,D为坐标原点,设DC=a.(1)证明:连接AC,AC交BD于G,连接EG.依题意得.∵底面ABCD是正方形,∴G是此正方形的中心,故点G的坐标为且.∴,这表明PA∥EG.而EG⊂平面EDB且PA⊄平面EDB,∴PA∥平面EDB.(2)证明;依题意得B(a,a,0),.又,故.∴PB⊥DE.由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD.(3)解:设点F的坐标为(x0,y0,z0),,则(x0,y0,z0﹣a)=λ(a,a,﹣a).从而x0=λa,y0=λa,z0=(1﹣λ)a.所以.由条件EF⊥PB知,,即,解得∴点F的坐标为,且,∴即PB⊥FD,故∠EFD是二面角C﹣PB﹣D的平面角.∵,且,,∴.∴.所以,二面角C﹣PB﹣D的大小为.点评:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.19.(12分)函数f(x)=是偶函数.(1)试确定a的值,及此时的函数解析式;(2)证明函数f(x)在区间(﹣∞,0)上是减函数;(3)当x∈[﹣2,0]时,求函数f(x)=的值域.考点:幂函数图象及其与指数的关系;幂函数的性质.专题:函数的性质及应用.分析:(1)根据f(x)是偶函数,f(﹣x)=f(x),求出a=0;(2)用定义证明f(x)在(﹣∞,0)上是减函数;(3)由(2)得,根据f(x)在[﹣2,0]的单调性,求出f(x)在[﹣2,0]上的值域.解答:解:(1)∵f(x)是偶函数,∴f(﹣x)=f(x),即=,∴x2+ax﹣3=x2﹣ax﹣3;∴a=0,∴f(x)=;(2)证明:任取x1、x2∈(﹣∞,0),且x1<x2;∴==;∵x1<x2<0,∴x1+x2<0,x1﹣x2<0,∴(x1+x2)(x1﹣x2)>0,∴>1,即f(x1)>f(x2);∴f(x)在(﹣∞,0)上是减函数;(3)由(2)知,f(x)在(﹣∞,0)上是减函数;∴当x∈[﹣2,0]时,f(﹣2)==2,f(0)=;∴函数f(x)在[﹣2,0]上的值域是[,2].点评:本题考查了函数的奇偶性的应用,单调性的证明,以及利用函数的单调性求函数值域的问题,是综合题.20.(13分)已知函数f(x)=kx+b的图象与x,y轴分别相交于点A、B,(分别是与x,y轴正半轴同方向的单位向量),函数g(x)=x2﹣x﹣6.(1)求k,b的值;(2)当x满足f(x)>g(x)时,求函数的最小值.考点:基本不等式在最值问题中的应用;直线的斜率.专题:计算题.分析:(1)观察题设条件,可先求出f(x)=kx+b的图象与x,y轴交点A、B的坐标,表示出向量AB的坐标,即可与=(2,2)建立相关的方程,解方程求出k,b的值.(2)由f(x)>g(x)解出x的取值X围,再对化简,因其形式中出现了积为定值的形式,故可以用基本不等式求最值,此时注意验证等号成立的条件.解答:解:(1)由已知得A(,0),B(0,b),则={,b},于是=2,b=2、∴k=1,b=2.(2)由f(x)>g(x),得x+2>x2﹣x﹣6,即(x+2)(x﹣4)<0,得﹣2<x<4,由==x+2+﹣5由于x+2>0,则≥﹣3,其中等号当且仅当x+2=1,即x=﹣1时成立∴的最小值是﹣3.点评:本题考查向量的相等的条件及用基本不等式求最值,用基本不等式求最值时要注意验证等号成立的条件与相关因子的符号.21.(14分)已知圆C经过坐标原点,且与直线x﹣y+2=0相切,切点为A(2,4).(1)求圆C的方程;(2)若斜率为﹣1的直线l与圆C相交于不同的两点M,N,求的取值X围..考点:平面向量数量积的坐标表示、模、夹角;直线与圆相交的性质;直线与圆的位置关系.专题:计算题.分析:(1)解法一:求出直线AC的方程,再求出线段OA的垂直平分线方程,联立方程组求出圆心C的坐标,可得圆的半径,从而写出C的方程.解法二:设圆C的方程为(x﹣a)2+(y﹣b)2=r2,根据点A和点O在圆上,圆心到切线的距离等于半径建立方程组,求出a、b、r的值从而求出C的方程.(2)解:设直线l的方程为y=x+m,M(x1,y1),N(x2,y2),把直线方程代入圆的方程利用根与系数的关系求出x1+x2和x1•x2的值,代入的解析式化简为(m﹣6)2.再根据圆心到直线的距离小于半径求出m的X围,即可得到(m﹣6)2的距离.解答:(1)解法一:圆的圆心为C,依题意得直线AC的斜率K AC=﹣1,∴直线AC的方程为y﹣4=﹣(x﹣2),即x+y﹣6=0.∵直线OA的斜率K OA==2,∴线段OA的垂直平分线为y﹣2=(x﹣1),即x+2y﹣5=0.解方程组得圆心C的坐标为(7,﹣1).∴圆C的半径为r=|AC|==5,∴圆C的方程为(x﹣7)2+(y+1)2=50.解法二:设圆C的方程为(x﹣a)2+(y﹣b)2=r2,依题意得,解得,∴圆的方程为:(x﹣7)2+(y+1)2=50.(2)解:设直线l的方程为y=﹣x+m,M(x1,y1),N(x2,y2).由消去y得 2x2﹣(2m+16)x+m2+2m=0.∴x1+x2=m+8,.∴=(x1﹣2)(x2﹣2)+(y1﹣4)(y2﹣4)=(x1﹣2)(x2﹣2)+(﹣x1+m﹣4)(﹣x2+m﹣4)=2x1•x2﹣(m﹣2)(x1+x2)+(m﹣4)2+4=m2+2﹣(m﹣2)(m+8)+(m﹣4)2+4=m2﹣12m+36=(m﹣6)2.∵直线l与圆C相交于不同两点,∴<5,解得﹣4<m<16.∴0≤(m﹣6)2<100,∴的取值X围是[0,100).点评:本题主要考查两个向量数量积公式的应用,直线和圆的位置关系的应用,属于中档题.。

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。

辽宁省沈阳铁路实验中学2014-2015学年高二上学期第二次月考数学(理)试题

辽宁省沈阳铁路实验中学2014-2015学年高二上学期第二次月考数学(理)试题

辽宁省沈阳铁路实验中学2014-2015学年高二上学期第二次月考数学(理)试题时间:100分钟 总分:120分第Ⅰ卷 (60分)一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“0||,2≥+∈∀x x R x ”的否定是( )A .0||,2<+∈∀x x R x B. 0||,2≤+∈∀x x R x C. 0||,2000<+∈∃x x R x D. 0||,2000≥+∈∃x x R x 2.设,,a b c R ∈,且a b >,则 ( )A .ac bc >B .11a b< C .22a b > D .33a b > 3.若数列}{n a 的通项公式是(1)(32)nn a n =-⋅-,则1210a a a ++⋅⋅⋅+= ( )A .15B .12C .-12D .-154.已知椭圆过点3(,4)5P -和点4(,3)5Q --,则此椭圆的标准方程是( ) A.y 225+x 2=1 B.x 225+y 2=1或x 2+y 225=1 C.x 225+y 2=1 D .以上均不正确 5.有下列四个命题:①“若xy =1,则x 、y 互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题;③若“A ∪B =B ,则A ⊇B ”的逆否命题.其中的真命题有( )个。

A .0 B .1 C .2 D .36.若双曲线12222=-by a x 的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A .5B . 5C . 2D .27.已知命题2:,0p x R x x ∀∈+>“”,命题:q a c b d a b c d +>+>>“是且的充分不必要条件”,则下列结论正确的是( ) A .命题“q p ∧”是真命题B. 命题“()P q ⌝∧”是真命题C. 命题“()p q ∧⌝”是真命题D. 命题“p q ∨”是假命题8.已知抛物线)0(22>=p px y 与双曲线12222=-by a x 有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x 轴,则双曲线的离心率为 ( )A .5+12 B .3+1 C .2+1 D .22+129.已知2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的3倍,则a 的值是( )A .23B .13C . 14D .1510.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为()ABCD 11.“1λ≤”是数列“2*2()n a n n n N λ=-∈为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件12.过椭圆)0(1:2222>>=+b a by a x C 的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若,2131<<k 则椭圆离心率的取值范围是( ) A .)49,41( B .)1,32( C .)32,21( D .)21,0(第Ⅱ卷 (60分)二、填空题:本大题共2小题,每小题4分,共8分.把答案填在答题纸中对应横线上.13.已知(1,1)P 是直线l 被椭圆22143x y +=所截得的线段的中点,则直线l 的方程为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省沈阳铁路实验中学2014-2015学年 高二上学期期初检测数学试题第I 卷(选择题)一、选择题1.某学校有高中学生900人,其中高一有400人,高二300人,高三200人,采用分层抽样的方法抽取一个容量为45的样本,那么高一、高二、高三各年级抽取的学生人数为 A . 25、15、5 B . 20、15、10 C . 30、10、5 D .15、15、152.已知向量a ()()4,3,1,2==-b ,若向量k +a b 与-a b 垂直,则k 的值为 A .323 B .7 C .115- D .233-3.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从袋中任取两球,两球颜色不同..的概率为 A. 415 B. 13 C. 25 D. 11154.等差数列{a n }的前n 项和为S n ,若等于则642,10,2S S S == A. 12B. 18C. 24D. 425.在△ABC 中,a=3,b=5,sinA=13,则sinB 等于 A . 15 B. 59D. 16.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B , 且7453n n A n B n +=+,则使得n nab 为整数的正整数n 的个数是 A .2B .3C .4D .57.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论错误..的是 A.0d < B.70a =C.95S S >D.6S 和7S 均为n S 的最大值8.已知tanα,tanβ是方程240x ++=两根,且α,β)2,2(ππ-∈,则α+β等于A.π-32B.π-32或3πC. 3π-或π32D.3π9.ABC ∆的内角C B A ,,所对的边c b a ,,满足()422=-+c b a ,且C=60°,则ab 的值为 A .34 B .348- C . 1 D .3210.在ABC ∆中,点P 是AB 上一点,且2133CPCA CB =+, Q 是BC 中点,AQ 与 CP 交点为M ,又CP t CM =,则t 的值为A .21B .32C .54 D .4311.若cos 2πsin 4αα=⎛⎫- ⎪⎝⎭cos sin αα+的值为A.B.12-C.1212.设O 点在ABC ∆内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为 A. 2B.32C. 3D. 53第II 卷(非选择题)二、填空题13.执行如图所示的程序框图,如果输入a=1,b=2, 则输出的a 的值为 .14.已知sin 2cos αα=,则tan()4πα+的值等于________________________.15.若函数f(x)=Asin(2x +φ)(A>0,-2π<φ<2π)的部分图象如图所示,则f(0)=________.16.若向量,a b 满足1,2a b ==,且a 与b 的夹角为3π,则2a b+= .三、解答题17.已知:sinα=35,cos(α+β)=-45,0<α<2π,π<α+β<32π,求cosβ的值.18.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如下图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一的学生达标的概率(3)为了分析学生的体能与身高,体重等方面的关系,必须再从样本中按分层抽样方法抽出50人作进一步分析,则体能在[120,130)的这段应抽多少人?19(1(2.20.已知ABC ∆的内角A ,满足(1)求A 的取值范围; (2)求函数()(sin cos )sin cos f A A A A A λ=++的最小值.21.已知等差数列}{n a 的前n 项和为||,21,533,n n n a b S a S ===数列,求数列}{n b 的前n 项和n T22.数列{}n a 满足143n n a a n ++=-()n N +∈。

(Ⅰ)若{}n a 是等差数列,求其通项公式;(Ⅱ)若{}n a 满足12a =, n S 为{}n a 的前n 项和,求21n S +参考答案3.D 【解析】试题分析:令红球、白球、黑球分别为12123,,,,,A B B C C C ,则从袋中任取两球有()()12,,,A B A B ,()()()123,,,,,A C A C A C ,()()()()11121312,,,,,,,B C B C B C B B ,()()()212223,,,,,B C B C B C ,()()()121323,,,,,C C C C C C 共15种取法,其中两球颜色相同有()12,B B ,()()()121323,,,,,C C C C C C 共4种取法,由古典概型及对立事件的概率公式可得41111515p =-=. 考点:古典概型.7.C【解析】试题分析:因为{}n a 是等差数列,所以5665600S S S S a <⇒->⇒>,6770S S a =⇒=,所以B 正确;78800S S a d >⇒<⇒<,所以A 正确,D 也正确,而C 中956789788952()20,S S a a a a a a a S S -=+++=+=<∴<,所以C 不正确.考点:本题考查等差数列的基本运算与性质,容易题.点评:等差数列是一类比较特殊也比较重要的数列,要充分利用等差数列的性质解决问题,可以简化运算.【解析】先根据向量关系2133CP CA CB=+得即P是AB的一个1AP AB3=三等分点,利用平面几何知识,过点Q作PC的平行线交AB于D,利用三角形的中位线定理得到PC=4PM,结合向量条件即可求得t值.解:∵2133 CP CA CB =+∴11 CP CA C A CB33-=-+∴1AP AB3=即P是AB的一个三等分点,过点Q作PC的平行线交AB于D,∵Q是BC中点,∴QD=12PC,且D是PB的中点,从而QD=2PM,∴PC=4PM,∴CM=3CP 4,又CM tCP =,则t=34故选D . 11.C【解析】cos 2cos )πsin 4αααα==+=⎛⎫- ⎪⎝⎭ 1sin cos 2αα∴+=. 12.C【解析】如图,设D ,E 分别是AC ,BC 边的中点,则2(1)2()4(2)OA OC OD OB OC OE+=+=由(1)(2)得,232(2)0OA OB OC OD OE ++=+=,即OD OE 与共线, 且332||2||,322AEC ABC AOC AOC S S OD OE S S ∆∆∆∆⨯=∴=∴==, 故选C 。

13.9【解析】当a=1,b=2时, a=1+2=3<8, 当a=3,b=2时, a=3+2=5<8, 当a=5,b=2时, a=5+2=7<8, 当a=7,b=2时, a=7+2=9>8,输出a 的值为9. 14.3- 【解析】试题分析:由题知sin tan 2cos ααα==,tantan 1tan 4tan 341tan 1tan tan 4παπααπαα++⎛⎫+===- ⎪-⎝⎭-. 考点:两角差的正切公式,同角间基本关系式. 15.-1【解析】由图象可知A =2,f 3π⎛⎫⎪⎝⎭=2,即f 3π⎛⎫ ⎪⎝⎭=2sin 23πϕ⎛⎫⨯+ ⎪⎝⎭=2,所以sin 23πϕ⎛⎫+ ⎪⎝⎭=1,即23π+φ=2π+2k π,k ∈Z ,所以φ=-6π+2k π,k ∈Z.因为-2π<φ<2π,所以当k =0时,φ=-6π,所以f(x)=2sin 26x π⎛⎫- ⎪⎝⎭,即f(0)=2sin 6π⎛⎫-⎪⎝⎭=2×12⎛⎫- ⎪⎝⎭=-1.16.【解析】试题分析:21244124122a b +=+⨯⨯⨯+=,223a b ∴+=. 考点:向量基本运算.17.1- 【解析】试题分析:现根据同角三角函数关系式求cos α和()sin αβ+的值,将cos β转化为()cos αβα+-⎡⎤⎣⎦,根据余弦两角和差公式即可求出。

试题解析:.解因为3sin ,052παα=<<,所以4cos 5α===.因为43cos(),52παβπαβ+=-<+<,所以3sin()5αβ+===-.所以4433cos cos[()]cos()cos sin()sin 15555βαβααβααβα⎛⎫⎛⎫=+-=+++=-⨯+-⨯=- ⎪ ⎪⎝⎭⎝⎭. 考点:1同角三角函数关系式;2余弦的两角和差公式;3转化思想。

18.解:(1)第二小组频率为:08.0391517424=+++++样本容量为:15008.012= (2)88.039151742391517=++++++++(3)3915174215+++++×150×15050=15【解析】略19.解:(12分5分 (2)由(17分 …………8分()f x ∴的增区间为…………10分20.(1(2)当1λ>-时,min y λ=,试题分析:(1A 的范围,但要注意A 角是三角形内的角;(2)利用换元法令sincos A A t +=,以下问题转化为二次函数动轴定区间问题解决,注意讨论对称轴相对于区间的位置情况.试题解析:(1),,所, (0,)Aπ∈,(2)设sin cos A A t +=对称轴t λ=-,又当1λ-<,即1λ>-时,min y λ=,综上所述:当1λ>-时,min y λ=, 考点:二倍角的余弦公式,一元二次不等式的解法,二次函数动轴定区间问题,换元法,分类讨论思想,化归思想.21.解:⎩⎨⎧-==⇒⎩⎨⎧=+==+=2921335211313d a d a S d a a ——————2分 ⎪⎩⎪⎨⎧-=-=⇒210211nn S n a n n ——————————4分当210,051n n S T a b a n n n n n n -==⇒=>≤≤时,————————6分当25102)(,062555+-=-=-=⇒-=<≥-n n S S S S S T a b a n n n n n n n 时,———10分 综上:⎪⎩⎪⎨⎧≥+-≤≤-=)6(2510)51(1022n n n n n n T n ————————12分 22.(I )由题意得143n n a a n ++=-…① 2141n n a a n +++=+…②.②-①得24n n a a +-=,∵{n a }是等差数列,设公差为d ,∴d=2, ∵121a a += ∴111a a d ++=,∴ 112a =-,∴522n a n =- (Ⅱ)∵12,a =121a a +=,∴21a =-又∵24n n a a +-=,∴数列的奇数项与偶数项分别成等差数列,公差均为4 ∴2142n a n -=-,245n a n =-211321242()()n n n S a a a a a a ++=+++++++=(1)(1)(1)24(1)422n n n n n n +-+⨯+⨯+⨯-+⨯=242n n ++。

相关文档
最新文档