(完整word版)计量经济学复习笔记
计量经济学复习笔记要点
计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
计量经济学知识点(超全版)
1 .经济变量:经济变量是用来描述经济因素数量水平的指标。
(3分)2. 解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的因”。
1 分)3. 被解释变量:是作为研究对象的变量。
(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。
(2分)4. 内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。
(1分)5. 外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。
(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定。
(1分)6•滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。
(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。
(2分)&控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。
(1分)9•计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。
(1分)10 .函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。
(3分)11 .相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。
(3分)12 .最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。
(3分)13 .高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯—马尔可夫定理。
(完整word版)计量经济学重点知识归纳整理(word文档良心出品)
1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。
普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。
2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。
从此意义看,加权最小二乘法也称为广义最小二乘法。
3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。
4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。
5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。
6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。
7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。
(完整word版)《计量经济学》复习重点及答案
各位同学:请大家按照这个复习重点进行认真复习,考试时请大家带上计算器,平时成绩占30%,期末占70%。
考试题型:一、名词解释题(每小题4分,共20分)计量经济学:一门由经济学、统计学和数学结合而成的交叉学科. 经济学提供理论基础,统计学提供资料依据,数学提供研究方法总体回归函数:被解释变量的均值同一个或者多个解释变量之间的关系样本回归函数:是总体回归函数的近似OLS 估计量 :以残差平方和最小的原则对回归模型中的系数进行估计的方法。
普通最小二乘法估计量OLS 估计量可以由观测值计算OLS 估计量是点估计量一旦从样本数据取得OLS 估计值,就可以画出样本回归线BLUE 估计量、BLUE :最优线性无偏估计量, 其估计量是无偏估计量,且在所有的无偏估计量中其方差最小。
拟合优度、衡量了解释变量能解释的离差占被解释变量的百分比。
拟合优度R 2(被解释部分在总平方和(SST)中所占的比例)虚拟变量陷阱、 带有截距项的回归模型,如果有m 个定性变量,只能引入m-1个虚拟变量。
如果引入了m 个,就将陷入虚拟变量陷阱。
既模型中存在完全共线性,使得模型无法估计方差分析模型、解释变量仅包含定性变量或虚拟变量的模型。
协方差分析模型、回归模型中的解释变量有些是定性的有些是定量的。
多重共线性 多重共线性是指解释变量之间存在完全的线性关系或近似的线性关系.分为完全多重共线性和不完全多重共线性ˆˆ)X |E(Y ˆ) )X |E(Y ( ˆˆˆ :SRF 2211i 21i 21的估计量。
是的估计量;是的估计量;是其中相对于ββββββββi i ii Y X X Y +=+=∑∑==222ˆi i y y TSS ESS R自相关: 随机误差项当期值和滞后期相关。
在古典线性回归模型中,我们假定随机扰动项序列的各项之间,如果这一假定不满足,则称之为自相关。
即用符号表示为:自相关常见于时间序列数据。
异方差、 是指模型误差项的方差随着变量的改变而不同随机误差项:模型中没有包含的所有因素的代表例:Y — 消费支出 X —收入、— —参数 u —随机误差项 显著性检验 :显著性检验时利用样本结果,来证实一个零假设的真伪的一种检验程序。
计量经济学知识点(超全版)
1.经济变量:经济变量是用来描述经济因素数量水平的指标。
〔3分〕2.解释变量:是用来解释作为研究对象的变量〔即因变量〕为什么变动、如何变动的变量。
〔2分〕它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。
〔1分〕3.被解释变量:是作为研究对象的变量。
〔1分〕它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。
〔2分〕4.内生变量:是由模型系统内部因素所决定的变量,〔2分〕表现为具有一定概率分布的随机变量,是模型求解的结果。
〔1分〕5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。
〔2分〕它影响模型中的内生变量,其数值在模型求解之前就已经确定。
〔1分〕6.滞后变量:是滞后内生变量和滞后外生变量的合称,〔1分〕前期的内生变量称为滞后内生变量;〔1分〕前期的外生变量称为滞后外生变量。
〔1分〕7.前定变量:通常将外生变量和滞后变量合称为前定变量,〔1分〕即是在模型求解以前已经确定或需要确定的变量。
〔2分〕8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,〔2分〕它一般属于外生变量。
〔1分〕9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,〔2分〕是以数学形式对客观经济现象所作的描述和概括。
〔1分〕10.函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。
〔3分〕11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。
〔3分〕12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。
〔3分〕13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最正确线性无偏估计量,这一结论即是高斯-马尔可夫定理。
计量经济学复习笔记(注释)
计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究主体是经济现象及其发展变化的规律。
2、运用计量分析研究步骤:模型设定——确定变量和数学关系式估计参数——分析变量间具体的数量关系模型检验——检验所得结论的可靠性模型应用——做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。
被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。
内生变量:其数值由模型所决定的变量,是模型求解的结果。
外生变量:其数值由模型意外决定的变量。
外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。
前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。
前定变量:前定内生变量和外生变量的总称。
数据:时间序列数据:按照时间先后排列的统计数据。
截面数据:发生在同一时间截面上的调查数据。
面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E(^β)=β 随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3 线性回归模型模型(假设)——估计参数——检验——拟合优度——预测1、模型(线性)(1)关于参数的线性 模型就变量而言是线性的;模型就参数而言是线性的。
Y i =β1+β2lnX i +u i线性影响 随机影响Y i =E (Y i |X i )+u i E (Y i |X i )=f(X i )=β1+β2lnX i引入随机扰动项,(3)古典假设A 零均值假定 E (u i |X i )=0B 同方差假定 Var(u i |X i )=E(u i 2)=σ2C 无自相关假定 Cov(u i ,u j )=0D 随机扰动项与解释变量不相关假定 Cov(u i ,X i )=0E 正态性假定u i ~N(0,σ2)F 无多重共线性假定Rank(X)=k2、估计在古典假设下,经典框架,可以使用OLS方法:OLS 寻找min ∑e i2 ^β1ols = (Y 均值)-^β2(X 均值)^β2ols = ∑x i y i /∑x i 23、性质OLS 回归线性质(数值性质)(1)回归线通过样本均值 (X 均值,Y 均值)(2)估计值^Y i 的均值等于实际值Y i 的均值(3)剩余项e i 的均值为0(4)被解释变量估计值^Y i 与剩余项e i 不相关 Cov(^Y i ,e i )=0(5)解释变量X i 与剩余项e i 不相关 Cov(e i ,X i )=0在古典假设下,OLS 的统计性质是BLUE 统计 最佳线性无偏估计4、检验(1)Z 检验Ho:β2=0 原假设 验证β2是否显著不为0标准化: Z=(^β2-β2)/SE (^β2)~N (0,1) 在方差已知,样本充分大用Z 检验拒绝域在两侧,跟临界值判断,是否β2显著不为0(2)t 检验——回归系数的假设性检验方差未知,用方差估计量代替 ^σ2=∑e i 2/(n-k) 重点记忆t =(^β2-β2)/^SE (^β2)~t (n-2)拒绝域:|t|>=t 2/a (n-2)拒绝,认为对应解释变量对被解释变量有显著影响。
计量经济学基础知识梳理(超全)
2.自然对数
近似计算的作用: 定义y对x的弹性(elasticity)为
y x %y x y %x
换言之,y对x的弹性就是当x增加1%时y的百分数变化。
若y是x的线性函数:y 0 1x ,则这个弹性是
y x
x y
1
x y
1
0
x
1x
它明显取决于x的取值(弹性并非沿着需求曲线保持不变)。
在经验研究工作中还经常出现使用对数函数的其他可 能性。假定y>0,且
logy 0 1x 则 logy 1x ,从而 100 logy 100 1x。
由此可知,当y和x有上述方程所示关系时,
%y 100 1x
例: 对数工资方程
假设小时工资与受教育年数有如下关系:
logwage 2.78 0.094edu
y 0 1 x;dy dx 1 2 x1 2
y 0 1logx;dy dx 1 x y exp0 1x;dy dx 1 exp0 1x
4.微分学
当y是多元函数时,偏导数的概念便很重要。假定y=f
(x1,x2),此时便有两个偏导数,一个关于x1,另一个关
于 x1的x2普。通y对导x1数的。偏类导似数的记,为yxy1就,是就固是定把xx12时看方做程常对数x时2的方导程数对。
的最大值出现在x*=8/4=2处,并且这个最大值是6+8×2-
2×(2)2=14。
y 16
14
12
10
8
6
4
2
0
x
0
1
2
3
4
1.二次函数
对方程式 y 0 1x 2x2
2 0 意味着x对y的边际效应递减,这从图中清晰可
计量经济学重点内容笔记讲
一、基本概念:估计量与估计值所谓估计量就是指估计总体参数地一种方法•在该方法下,给定一个样本,我们可以获得一个具体地估计结果,该结果就是所谓地估计值•例如,基于一个样本容量为N地样本,其中为第i次观测值,我们用样本均值来作为对总体均值地估计.在这里,就属于估计量,由于其取值随着样本地变化而变化,因此它是随机地.现在假设我们持有A、B两个样本:与,则基于这两个样本,可以计算出:文档来自于网络搜索分别是估计量可能地取值,它们就是估计值•既然估计量是随机变量,那么它一定服从某种分布,由于估计量与抽样相联系,因此我们把估计量所服从地分布称为抽样分布.有关统计学地一些基本知识请参见本讲附录一一.文档来自于网络搜索笔记:观测值是随机变量地一个可能地取值.我们用样本均值来估计总体均值,实际上就是用来估计.在数理统计中,这被称为矩估计,因为被称为样本(一阶)矩,而被称为总体(一阶)矩.矩估计其要点可以归结为,符号与符号E相对应. 我们再来看看矩估计思想地一个应用.为了估计随机变量地方差E[- E()]2(也即总体方差),在矩估计法下,则方差估计量将是:.应该注意到,这个方差估计量是有偏估计,而才是方差地无偏估计.如果样本容量很大,这两个估计量相差无几,事实上两者都是方差地一致估计量.这个例子暗示,矩估计并不一定会获得一个无偏地估计量,但将获得一个一致地估计量.关于估计量无偏性与一致性地基本含义见附录1文档来自于网络搜索二、高斯-马尔科夫假定对于模型:,贝叽相应地OLS估计量就是:在一些重要地假定下,OLS估计量表现出良好地性质.我们把这些假定称为高斯-马尔科夫假定.•假定一:真实模型是:.有三种情况属于对该假定地违背:(1)遗漏了相关地解释变量或者增加了无关地解释变量;(2)y与x间地关系是非线性地;(3)并不是常数.文档来自于网络搜索笔记:1、遗漏了地解释变量将进入误差项,从而这很可能导致误差项不在满足下面所列举地一些假定;如果真实模型是非线性地,但我们却用一条直线来近似它,显然这是南辕北辙;如果参数并不是常数,然而我们却基于特定样本用一些常数去近似它们,这显然也不合理地.文档来自于网络搜索2、经济学理论或许很少直接认为y与x地关系是线性地,y与x具有非线性关系可能更符合现实.然而把模型建立成非线性形式常常会付出代价,因为非线性模型其待估计地参数可能更多,从而导致自由度地耗费,带来估计精度地下降.另外,从数学上讲,利用泰勒展开,我们也常常可以用一个线性模型去近似非线性模型.文档来自于网络搜索•假定二:对解释变量地N次观测即被预先固定下来,即不会随着样本地变化而发生变化,是一个非随机列向量.显然,如果解释变量含有随机地测量误差,那么该假定被违背.还存其他地违背该假定地情况.文档来自于网络搜索笔记:1、被假定不会随着样本地变化而发生变化,但这并不意味着在一个给定地样本中.事实上,在含有一个截距与一个解释变量地简单线性回归模型中,将意味着OLS 估计量失去意义,见高斯-马尔科夫假定六.文档来自于网络搜索2、被假定为非随机并不是一个标准假定,然而在该假定下数学处理要简单得多,而且OLS基本地涵义也并未丧失.是随机地情况更一般化,此时,高斯- 马尔科夫假定二被更改为:对任意与,与不相关,此即所谓地解释变量具有严格外生性.显然,当非随机时,与必定不相关•事实上,假定二其最终目地在于保证与不相关.文档来自于网络搜索3、在建立模型时,我们总是希望误差项是由一些不重要、没有任何信息价值地成分所构成.如果与相关,这意味着误差项还具有一定地信息价值,因此在某种程度上可以认为,我们预先建立地模型是不完备地.应该注意到,如果模型遗漏了解释变量,而这些被遗漏地解释变量又与已存在地解释变量是相关地,那么这将导致误差项与已存在地解释变量是相关地.文档来自于网络搜索4、为了理解非随机性地假定,我们考虑如下一个例子.我们试图考察受教育年限(x)对收入(y)地影响.假定我们预先知道总体中有1%地人口接受了22 年地学校教育;有3%地人口接受了19年地学校教育;有10%地人口接受了16 年地学校教育….现在,我们进行一个样本容量为1000地抽样调查.为了使样本尽量反映总体地情况,我们要求样本中有10人接受了22年地教育;有30人接受了19年地教育;有100人接受了16年地教育.这种抽样技术被称为分层随机抽样(Stratified random sample .在抽样中,设定前10次观测对象是那些接受了22年地教育地人,接下来是那些接受了19年教育地人….在这种方法下我们可以获得多个样本,但被预先固定下来,即它不会随着样本地变化而发生变化.文档来自于网络搜索•假定三:误差项期望值为0,即.笔记:1、当随机时,标准假定是:根据迭代期望定律有:,因此,如果成立,必定有:.另外,根据迭代期望定律也有:而•故有:因此,在是随机地情况下,假定二、三可以修正为一个假定:2、所谓迭代期望定律是指:如果信息集,则有.无条件期望所对应地信息集是空集,因此按照迭代期望定律必有:•本讲义第十讲对该定律进行了更为详细地介绍.文档来自于网络搜索3 、回忆第一讲,对模型,在OLS法下我们一定能保证:(1)残差均值为零;(2)残差与x样本不相关.我们希望残差是对误差地良好近似,但如果假定二、三不成立,即,误差项期望值不为零,误差项与解释变量相关,显然此时残差并不是对误差项地良好近似.由于,,因此,如果残差并不是对误差项地良好近似,那么参数地OLS估计量就不是对真实参数良好地近似.由此看来,为保证OLS估计量具有良好地性质,假定二、三地成立非常重要.文档来自于网络搜索4 、当假定成立时,必有;,进而(在这里对各随机变量未加注脚标,这是因为无论脚标是什么,相关等式都成立.现在我们来利用所谓地矩估计思想.误差项观测不到,故我们不得不把残差当做是对误差地观测.于是按照矩估计思想有:;,而这两个式子正是OLS估计法中地两个正规方程,由正规方程就可以得到参数地OLS估计量.由此看来,当假定成立时,OLS估计不过是矩估计地特例.如果知道了这一点,我们就会很快地记住OLS估计量公式:当时,.用样本协方差与样本方差代替总体协方差与总体方差,则有:.我们以后在学习工具变量估计法时,将再次体会到矩估计思想地重要性.文档来自于网络搜索可以发现,矩估计仅仅涉到了x与同期不相关地假定,从这个意义上讲,这个条件过于强了,但只有在这个条件下OLS估计量地无偏性才能保证成立,这可参见更高级地教科书.文档来自于网络搜索•假定四:,即所谓地同方差假定.笔记:1、在是随机地情况下,该假定修订为:2、如果误差项是异方差地,那么N个误差项将具有N个不同地分布.如果把残差近似为对误差地观测,则此时每一个分布下只有一次观测,显然仅凭一次观测我们很难对随机变量地分布性质进行统计分析.文档来自于网络搜索•假定五:,即所谓地序列不相关假定.笔记:1、在是随机地情况下,该假定修订为:2、如果误差项序列相关,这表明误差项还含有系统性地、可资利用地信息.但如果我们已建立地线性模型是完备地,那么假定误差项序列不相关就显得相当自然了.文档来自于网络搜索•假定六:,在多元回归中,该假定演变为地逆存在,即矩阵列向量线性无关.笔记:1、假定六是最基本地,因为违背该假定则OLS估计量地相关公式就失去了意义•但假定六在实践中最不值得担心,因为当该假定被违背时,计量软件将立即告诉我们此时无法进行计算.文档来自于网络搜索2、在模型含有截距地情况下,矩阵列向量线性无关这个条件要强于各解释变量线性无关这个条件.高斯-马尔科夫假定二、三、四、五都可以被归结为对误差项性质地假定,而假定一部分可以认为是对误差项性质地假定.假定六是关于参数可识别地假定.结合OLS地代数性质,我们是不是可以直接感觉到假定一、二、三地重要性?但不幸地是,初级计量经济学经常把重心放在了假定四、五上了.文档来自于网络搜索怎么让我们相信假定一至五是成立地呢?首先我们应尽量利用经济学理论来判断相关假定地合理性,其次我们可以进行一系列计量经济检验.应该注意到,假定一至五基本上都涉及到对误差项分布性质地假定,因此计量经济检验可以说就是检验误差项地分布性质.不过困难之处在于,误差项不可观测.但如果高斯-马尔科夫假定成立,残差将是对误差地良好近似,于是,我们可以通过分析残差地性质来间接推断误差项地分布性质.文档来自于网络搜索三、高斯-马尔科夫定理当高斯-马尔科夫假定成立时,在所有线性无偏估计量中,OLS估计量方差最小,即OLS估计量是最有效地.换句话说,当高斯-马尔科夫假定成立时,O LS估计量是最优线性无偏估计量(Best linear unbiased estimator, BLUE),此即高斯-马尔科夫定理.文档来自于网络搜索笔记:1、对一个估计量,我们希望它具有什么样地性质?(1)简单实用.随着计量软件地发展,这一点可能不那么重要了;(2)不同地人利用不同地样本得到不同地估计结果,但我们希望平均来看,估计结果将是准确地,此即估计量地无偏性;(3)不同地人利用不同地样本得到不同地估计结果,但我们希望这些结果差异不要太大,事实上差异越小越好,即估计量地方差越小越好,此即估计量地有效性;(4)如果把总体全部展示在我们面前,则我们希望所利用地估计量能够得到真实地参数值,此即估计量地一致性.显然一致性是一个合理地估计量应该满足地最低要求.如果把事情地真相都告诉你了,你却依据一估计方法得到错误地结果,那么这个估计方法一定是一个垃圾!文档来自于网络搜索2、我们很希望一个无偏估计量也是有效地.下面一个调侃计量经济学家地笑话或许有助于我们理解这一点.三个计量经济学家去森林中打猎.一个计量经济学家一枪击到一头野猪前面五米处,一个计量经济学家一枪击到这头野猪后面五米处,第三个计量经济学家高兴得跳起来喊道,“击中了!击中了!我们平均击中了!” .文档来自于网络搜索3、一个估计量可能是有偏地、无效地,但如果满足一致性,它也是有用地.因为当我们手中地样本容量确实很大时,那么基于这个一致估计量地估计结果应该是对真实参数良好地近似.我们在前面地笔记中曾提到,如果假定二、三不成立,则残差并不是对误差项地良好近似,进而参数地OLS估计量就不是对真实参数良好地近似•由此看来假定二、三地成立对于保证OLS估计量地一致性非常重要.文档来自于网络搜索(一)OLS估计量是线性估计量所谓OLS估计量是线性估计量,是指它能够被表示为地线性函数.例如:在这里我们定义.应该注意到,在假定二下,k i是非随机地.练习:把表示成地线性函数:,其中.笔记:可以从数学上验证:另外一种简单地验证方式是:(1)假定被解释变量与解释变量都是x,那么回归直线地斜率将为1,截距将为0,即有:文档来自于网络搜索(2)假定被解释变量取值恒为1,那么回归直线地斜率将为0,截距将为1,即有:(二)OLS估计量具有无偏性:;证明:注意到;,再利用高斯-马尔科夫假定三:,于是有:.笔记:1 、在是随机地情况下,我们需证:2、我们在证明无偏性实际上应用了高斯-马尔科夫假定一、二、三. 练习:证明(三)在所有线性无偏估计量中,OLS估计量方差最小1、OLS估计量地方差利用高斯-马尔科夫假定五:与高斯-马尔科夫假定四:有:.注意到:因此有:笔记:1、,当N趋于无穷大时,样本方差收敛于总体方差,故当N趋于无穷大时,趋于0.由于,因此,当N趋于无穷大时,在概率上收敛于,即是地一致估计量.你能够表明是地一致估计量吗?文档来自于网络搜索2我们得到上述方差公式时实际上利用了高斯-马尔科夫假定一、二、四、五.当上述假定不成立时,上述公式无意义.文档来自于网络搜索练习:(1)证明在高斯-马尔科夫假定下:(2)证明在高斯-马尔科夫假定下:2、OLS估计量地有效性任意一种线性估计量都可表示为,当时,该估计量即为地OLS估计量.现在我们将证明:在所有无偏地地线性估计量中,OLS估计量具有最小地方差.文档来自于网络搜索“在所有无偏地地线性估计量中”是一个前提条件.我们地任务是,在给定前提下(约束条件),证明OLS估计量所对应地权数使方差(目标函数)取最小值.文档来自于网络搜索首先分析前提条件:线性估计量地表达是为了保证地无偏性,那么下面地等式应该恒成立:因此,.其次分析方差表示:在高斯-马尔科夫假定四、五下,有:■最后,形成数学问题:常数只影响目标函数值但不影响地选择,因此在求解上述优化问题时可以省去. 对上述极值问题,其拉格朗日函数是:相应地一阶条件是:把(3group)中各式相加并利用(4)有:把(3group)中第i式两边同时乘以后再各式相加,然后利用(5),有:由(6)、(7)有:于是我们已知道这个权数正是地OLS估计量所对应地权数,故问题得证.练习:证明在所有地线性无偏估计量中OLS估计量其方差是最小地.笔记:线性性质不过是OLS估计量在假定一下所具有地代数性质,无偏性与有效性才是高斯-马尔科夫定理所强调地•高斯-马尔科夫定理为OLS地广泛应用提供了理论依据.当然问题是,该定理涉及到如此众多地假定,这些假定同时成立实属罕见!从而这涉及到两个问题:(1)如何检验这些假定?(2)如果一些假定并不成立,那么OLS估计量具有什么性质?此时我们应该采取何种估计方法?本讲义后续章节将讨论这些问题.文档来自于网络搜索在附录二中,本讲义提供了很多教科书对高斯-马尔科夫地另外一种证明形式四、补充知识点(一)估计误差地方差模型中地误差项其方差经常未知而有待估计.可以证明,在高斯-马尔科夫假定下,对误差项地一个无偏估计是:为简单计,考虑一元线性回归模型地情况,此时k=1.我们需要证明.证明:在高斯马尔科夫假定下,有:因此,,故.注意到:而因此有:故:因此,笔记:1、实际上是残差地样本方差[在含截距地简单线性回归模型中,残差地自由度是N-2].误差是观测不到地,但我们能利用样本得到残差.直观来看,我们可以利用残差地样本方差来作为对误差方差地估计.上述证明结果表明,这个估计还是无偏地.文档来自于网络搜索2、在第一讲谈到自由度调整时,我们曾经举个一例:当计算样本方差时如果注意自由度调整,我们将得到一个对总体方差地无偏估计.文档来自于网络搜索3、只有残差是对误差地良好近似时,基于残差地样本方差来估计误差地方差才是合理地.因此,高斯-马尔科夫假定非常重要地.例如,如果违背假定四,即误差项是异方差地,那么我们利用一个不会随着i地变化而变化地数(会随着i地变化而变化吗?)去估计一系列随i而变化地参数(误差项方差随i地变化而变化),显然这是不合理地.文档来自于网络搜索应该注意,尽管在高斯-马尔科夫假定下是对地无偏估计,然而并不是对地无偏估计,不过可以证明是对地一致估计.被称为“回归地标准误”(standard error of regression,SER .文档来自于网络搜索笔记:1、为什么在高斯-马尔科夫假定下是对地无偏估计,但并不能由此推出是对地无偏估计?从数学上可以表明,当是非线性函数时,由不能推出•事实上由利用Jen sen不等式有:文档来自于网络搜索,而所谓Jen sen不等式是指:,g是凸函数(凸向原点);,g是凹函数(凹向原点)•2、另外还可以证明是对地一致估计,即:.概率极限运算具有如下性质:由上述性质,则•按照定义,是标准差,是非负地,故有:,即,如果是对地一致估计,则是对地一致估计,反之亦然.文档来自于网络搜索(二)基于样本回归直线地预测假定真实模型是:,模型满足高斯-马尔科夫假定.利用OLS法得到:•现在我们获得一次新地观测,然而此次观测只获得X地取值X f,现在我们考虑基于样本回归直线来预测y f和E(y f).文档来自于网络搜索1、预测y f以作为对y f地预测.则预测误差是:.显然E(ei)=0 ;笔记:1、地随机性来源于.与是不相关地,因此与无关.2、根据上述表达式可知,当时,预测误差方差最小.直觉是什么呢?以工资对教育水平回归为例.首先你基于一个样本得到估计结果,该样本主要由具有初中和高中学教育水平地人构成.想一想,如果利用已有地回归结果去预测一位博士地收入,预测精度会高吗?如果利用已有地回归结果去预测一位小学可能都未读完地人地收入,预测精度会高吗?文档来自于网络搜索2、预测E(y f)以作为对E(y f)地预测.此时预测误差是:显然,E(62)=0.比较可知,尽管既是y f地无偏预测也是E(y f)地无偏预测,但它更适合作为对E(y f) 地预测.直觉上,由于y f是随机地而E(y f)是非随机地,因此对y f地预测应该难于对E(y f)地预测,即对y f地预测精度应该低于对E(y f)地预测精度上述两种预测都属于点预测.还有一种预测被称为区间预测,参见第三讲附录附录一:通过例子学习统计学知识(一)期望值、均值、估计量、估计值在座各位所形成地班级是一个总体,总体地平均身高()等于各位同学身高之和除以总人数.我打算利用样本平均身高来估计总体参数.现在我将从在座各位中随机抽取N 位同学以形成一个样本容量为N地样本.记为第i次被抽取同学地身高.在第i次抽取具体实施之前,是一个随机变量,而各位同学地身高都是该随机变量可能地取值.由于班级中地每位同学都等可能地被抽到,因此,这个随机变量地期望值()就是总体地平均身高().我将进行N次抽取,当N次抽取都未具体实施时,那么由所构成地样本是随机样本,而相应地样本均值也是随机地,即,作为地估计量,它是随机地•在N次抽取都已经具体实施之后,我获得了一个特定地样本,该样本均值是非随机地,它实际上就是随机变量地一个可能取值,即所谓地估计值.文档来自于网络搜索(二)无偏性、一致性事实上我可以获得无限多个样本容量等于N地特定地样本,因此相应会有无限多地样本均值.如果这些样本均值地再平均等于总体均值,这就意味着样本均值是总体均值地一个无偏估计量[成立吗?请证明].应该注意到,利用特定地样本计算出一个样本均值,该样本均值恰好等于是不太可能地.但如果样本均值是总体均值地无偏估计,那么平均来看,样本均值等于总体均值[对谁平均?].文档来自于网络搜索对于随机样本,如果样本容量越大,那么利用样本情况来反映总体情况就会越准确.如果样本容量为无穷大,那么该样本应该包含了在座地各位,因此,关于总体地任何信息都会被样本所包含.故从直觉上看,随着N地增加,估计量地方差应该会越来越小;当N趋于无穷时,等于地概率应该趋于1[请对这些结论进行严格地数学证明].如果当N趋于无穷时,等于地概率趋于1,则就是地一致估计量[回忆一下,数理统计中哪一个定理表明了样本均值是总体均值地地一致估计]. 文档来自于网络搜索附录二:证明高斯-马尔科夫定理地其他方式(一)无偏性再利用高斯-马尔科夫假定三:,贝即是地无偏估计量.(二)最小方差性1关于方差在高斯-马尔科夫假定五:及其假定四:下,2、证明方差最小我们已知道OLS估计量是线性无偏估计量,即,.假设是用其他估计方法得到地线性无偏估计量,设.因此,.当然,也是成立地.令,贝U必有:现在来求地方差:在高斯-马尔科夫假定五与假定四下,有:而故,.当时等号成立.注意,恰好是OLS估计量地方差.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
计量经济学复习笔记
第一章统计概念1.什么是计量经济学计量经济学是对经济的测度,利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学。
2.计量经济学的方法论(计量经济分析步骤)(1)建立理论假说。
(2)收集数据。
(3)假定数学模型。
(4)设立统计或计量模型。
(5)估计经济模型参数(6)核查模型的适用性:模型设定检验。
(7)检验源自模型的假定(8)利用模型进行预测4.数据类型(1)时间序列数据:按时间跨度获得的数据。
特征是一般变量如 Y t、X t下标为t。
(2)截面数据:同一时点上的一个或多个变量的数据集合。
如:各地区2002年人口普查数据。
(3)合并数据:既包括时间序列数据有包括截面数据。
例:20年间10个国家的失业数据。
20年失业数据是时间序列,10个国家又是截面数据。
(4)面板数据:同一个横截面的单位的跨期调查数据。
例:对相同的家庭数量在几个时间间隔内进行的财务状况调查。
5.理解回归关系回归关系是一种统计上的相关关系,并不意味着自变量和因变量之间存在着因果关系。
第二章线性回归的基本思想1.回归分析的含义: 回归分析是反映的自变量和因变量之间的统计关系,回归分析是在自变量给定条件下的因变量的变化,是一种条件回归分析E(Y i|X i)=B1+B2X i2.随机误差项的性质(为什么要引入随机误差项)(1)随机误差项代表着未纳入模型变量对因变量的影响(2)即使模型包括了影响因变量的所有因素,模型也有不可避免的随机性。
(3)μ还代表着度量误差(4)模型设定应该尽可能简单,只要不遗漏重要变量,把因变量的次要影响因素归于随机项 μ 。
(奥卡姆剃刀原则)3.参数估计方法———普通最小二乘法的基本思想 选择参数使得残差平方和最小——Min ∑e i 2=Min ∑(Y i −Yi ̌)2=Min ∑(Y i −b 1−b 2X i )^24.根据Ols 法得出参数 b 1 b 2 称为最小二乘估计量,最小二乘估计量的性质: (1)Ols 方法获得样本回归直线过样本均值点(X ,Y ) (2)残差的均值总为0,(3)残差项与解释变量的乘积求和为0,即残差项与解释变量不相关。
计量经济学笔记
第一张:绪论一、计量经济学:是以经济理论为基础,以数理统计方法和计算机技术为工具,根据实际观测的统计数据,对经济现象、经济关系及规律进行定量分析的一门科学。
是经济理论和经济统计学的结合,并运用数学的和统计的方法对经济学理论所确定的一般规律给予具体的和数量上的表示。
是数学方法、统计方法和经济分析的综合。
二、计量经济学模型,模型是对现实的描述和模拟:1、经济数学模型应用数学方法描述经济活动。
主要区分数理经济模型和计量经济模型。
2、数理经济模型揭示经济活动中各种因素之间的理论关系,用确定性的数学方程加以描述。
如:生产函数Q = f(T技术、K资本、L劳动) 即3、计量经济学模型揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。
如:三、计量经济学的内容体系:1、广义计量经济学是利用经济理论、数学以及统计学定量研究经济现象的经济计量方法的统称,包括回归分析法、投入产出分析法、时间序列分析法等。
2、狭义计量经济学,以揭示经济现象中的因果关系为目的,在数学上主要用回归分析法。
四、建模步骤:(一)、理论模型的设计,主要包含三部分工作:1、选择变量2、确定数量之间的数学关系3、拟定模型中待估计参数的数值范围1、在单方程模型中,变量分为被解释变量(处于单方程左端)和解释变量(处于单方程右端)。
2、内生变量(模型本身确定,属于因变量)和外生变量(模型之外确定的,不受模型内部因素的影响,是已知的值,属于自变量,分为可控政策变量(政府支出、利率、货币供应量等)和不可控政策变量(气候、自然灾害、农业收成、汇率等))。
3、工具变量(政策变量)和目标变量(内生变量)(二)、样本数据收集,常用的样本数据有三类:1、时间序列数据2、截面数据3、虚变量数据。
样本数据的质量:完整性、准确性、可比性和一致性。
1、时间序列数据:是一批按照时间先后排列的统计数据,一般又统计部门提供。
即同一空间、不同时间。
2、截面数据:是一批发生在同一时间截面上的调查数据。
(完整版)计量经济学重点知识归纳整理
1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。
普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。
2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。
从此意义看,加权最小二乘法也称为广义最小二乘法。
3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。
4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。
5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。
6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。
7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。
计量经济学复习知识要点
第一章导论第一节计量经济学的涵义和性质计量经济学是以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技师,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。
计量经济学是经济学的一个重要分支,以揭示经济活动中客观存在的数量关系的理论与方法为主要内容,其核心是建立计量经济学模型。
第二节计量经济学的内容体系及与其他学科的关系一、计量经济学与经济学、统计学、数理统计学学科间的关系计量经济学是经济理论、统计学和数学的综合。
经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。
统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。
数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。
计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程。
因此计量经济学是经济理论、统计学和数学三者的统一。
二、计量经济学的内容体系1、按范围分为广义计量经济学和狭义计量经济学。
2、按研究内容分为理论计量经济学和应用计量经济学。
理论计量经济学的核心内容是参数估计和模型检验。
应用计量经济学的核心内容是模型设定和模型应用。
第三节基本概念(4、5、7、8了解即可)1.经济变量:经济变量是用来描述经济因素数量水平的指标。
2.解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。
3.被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。
它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。
4.内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。
计量经济学重点知识整理
计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法必须明确:方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务2注意:计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论——计量经济研究的基础数据:对所研究对象经济行为观测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估计、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济问题4区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据●经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论基础区别:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型出发,研究模型参数的估计和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是根据其它经济理论,应用计量经济方法将这些理论数量化。
4、计量经济学为什么是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。
1、经济理论所作的陈述或假说大多数是定性性质的,计量经济学对大多数经济理论赋予经验内容。
(财务知识)计量经济学读书笔记最全版
(财务知识)计量经济学读书笔记最全版(财务知识)计量经济学读书笔记计量经济学读书笔记第壹部分基础内容一、计量经济学和相关学科的关系二、古典假设下计量经济学的建模过程1.依据经济理论建立模型2.抽样数据收集3.参数估计4.模型检验(1)经济意义检验(包括参数符号、参数大小等)(2)统计意义检验(拟合优度检验、模型显著性检验、参数显著性检验)(3)计量经济学检验(异方差检验、自相关检验、多重共线性检验)(4)模型预测性检验(超样本特性检验)5.模型的应用(结构分析、经济预测、政策评价、检验和发展经济理论)三、几个重要的“变量”1.解释变量和被解释变量2.内生变量和外生变量3.滞后变量和前定变量4.控制变量四、回归中的四个重要概念1.总体回归模型(PopulationRegressionModel,PRM)--代表了总体变量间的真实关系。
2.总体回归函数(PopulationRegressionFunction,PRF)--代表了总体变量间的依存规律。
3.样本回归函数(SampleRegressionFunction,SRF)--代表了样本显示的变量关系。
4.样本回归模型(SampleRegressionModel,SRM)---代表了样本显示的变量依存规律。
总体回归模型和样本回归模型的主要区别是:①描述的对象不同。
总体回归模型描述总体中变量y和x的相互关系,而样本回归模型描述所关的样本中变量y和x的相互关系。
②建立模型的依据不同。
总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。
③模型性质不同。
总体回归模型不是随机模型,而样本回归模型是壹个随机模型,它随样本的改变而改变。
总体回归模型和样本回归模型的联系是:样本回归模型是总体回归模型的壹个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
五、随机误差项的内容1.模型中被忽略的影响因素的影响2.模型关系设定不准确的影响3.变量的测量误差影响4.随机因素影响六、壹元线性回归模型的基本假定(古典假定)①零均值②同方差③无自相关性④解释变量和随机扰动项不相关⑤随机扰动项服从正态分布⑥解释变量之间不相关(多重共线性)(属于多元线性回归假定)七、OLS估计式特性(BestLinearUnbiasedEstimators)线性性(Linear,指参数估计量和分别为观测值和随机误差项的线性函数或线性组合)无偏性(Unbiased,指参数估计量和的均值分别等于总体参数值和)最小方差性(Best,有效性,指在所有的线性、无偏估计量中,最小二乘估计量和的方差最小)第二部分计量经济检验在古典线性回归模型中,应用最小二乘法估计的估计量具有BLUE 的特性,可是当模型不是线性模型和不满足古典假设的时候,最小二乘法估计的估计量不再有BLUE的特性。
计量经济学知识点汇总
计量经济学知识点汇总1. 计量经济学概念
- 定义和作用
- 理论基础和研究方法
2. 数据处理
- 数据收集和探索性分析
- 异常值处理和缺失值处理
- 数据转换和规范化
3. 回归分析
- 简单线性回归
- 多元线性回归
- 回归假设和诊断
4. 时间序列分析
- 平稳性和单位根检验
- 自相关和偏自相关
- ARIMA模型和Box-Jenkins方法
5. 面板数据分析
- 固定效应模型和随机效应模型
- hausman检验
- 动态面板数据模型
6. 内生性和工具变量
- 内生性问题及其检验
- 工具变量法
- 两阶段最小二乘法
7. 离散选择模型
- 二项Logit/Probit模型
- 多项Logit/Probit模型
- 计数数据模型
8. 模型评估和选择
- 模型适合度检验
- 信息准则
- 交叉验证和预测评估
9. 计量经济学软件应用
- R/Python/Stata/EViews等软件使用 - 数据导入和清洗
- 模型构建和结果解释
10. 实证研究案例分析
- 经典文献阅读和评析
- 实证研究设计和实施
- 结果分析和政策建议
以上是计量经济学的主要知识点汇总,每个知识点都包含了相关的理论基础、模型方法和实践应用,可根据具体需求进行深入学习和研究。
(完整word版)计量经济学知识点总结
(1)经济变量之间具有共同变化趋势(2)模型中包含滞后变量(3)利用截面数据建立模型也可能出现多重共线性(4)样本数据自身的原因
完全多重共线性的后果?
(1)参数的估计值不确定(2)参数估计值的方差无限大
不完全多重共线性下产生得到后果?
(1)参数估计值的方差与协方差增大(2)对参数区间估计时,置信区间趋于变大
异方差性的补救措施?
(1)对模型变换(2)加权最小二乘法(3)模型的的对数变换
自相关:指总体回归模型的随机误差项ui之间存在的相关关系
自相关产生的原因?
(1)经济系统的惯性(2)经济活动的滞后效应(3)数据处理造成的相关(4)蛛网现象(5)模型设定偏误
自相关的后果?
(1)一阶自回归形式的性质:自协方差均不为零。
可决系数 =1-
修正的决定系数 及其作用。
解答: (2分)其作用有:(1)用自由度调整后,可以消除拟合优度评价中解释变量多少对决定系数计算的影响;(2分)(2)对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低,但不能用原来未调整的决定系数来比较(1分)。
多重共线性:指解释变量之间存在精确或近似的线性关系
(4)数据转换(5)获取补充数据或新数据(6)选择有偏估计量
异方差性:其他假设均不变,但模型中随机误差项 的方差Var( )= (i=1,2..n)
则 具有异方差性
异方差性产生的原因?
(1)模型设定误差(2)测量误差的变化(3)截面数据中总体名单的差异
异方差性产生的后果?
(1)对参数估计式统计特性的影响:参数的OLS估计仍然具有无偏性。参数OLS估计式得到方差不再是最小的
(4)随机扰动项ui与解释变量Xi不想管
(完整word版)计量经济学知识点总结
(完整word版)计量经济学知识点总结第一章:1计量经济学研究方法:模型设定,估计参数,模型检验,模型应用2.计量经济模型检验方式:①经济意义:模型与经济理论是否相符②统计推断:参数估计值是否抽样的偶然结果③计量经济学:是否复合基本假定④预测:模型结果与实际杜比3.计量经济学中应用的数据类型:①时间序列数据(同空不同时)②截面数据(同时不同空)③混合数据(面板数据)④虚拟变量数据(学历,季节,气候,性别)第二章:1.相关关系的类型:①变量数量:简单相关/多重相关(复相关)②表现形式:线性相关(散布图接近一条直线)/非线性相关(散布图接近一条直线)③变化的方向:正相关(变量同方向变化,同增同减)/负相关(变量反方向变化,一增一减不相关)2.引入随机扰动项的原因:①未知影响因素的代表(理论的模糊性)②无法取得数据的已知影响因素的代表(数据欠缺)③众多细小影响因素综合代表(非系统性影响)④模型可能存在设定误差(变量,函数形式设定)⑤模型中变量可能存在观测误差(变量数据不符合实际)⑥变量可能有内在随机性(人类经济行为的内在随机性)3.OLS回归线数学性质:①剩余项的均值为零②OLS回归线通过样本均值③估计值的均值等于实际观测值的均值④被解释变量估计值与剩余项不相关⑤解释变量与剩余项不相关4.OLS估计量”尽可能接近”原则:无偏性,有效性,一致性5.OLS估计式的统计性质/优秀品质:线性特征,无偏性特征,最小方差性特征第三章:1.偏回归系数:控制其他解释变量不变的条件下,第j个解释变量的单位变动对被解释变量平均值的影响,即对Y平均值直接或净的影响2.多元线性回归中的基本假定:①零均值②同方差③无自相关④随机扰动项与解释变量不相关⑤无多重共线性⑥正态性…一元中有123463. OLS回归线数学性质:同第二章34. OLS估计式的统计性质:线性特征,无偏性特征,最小方差性特征5.为什么用修正可决系数不用可决系数?可决系数只涉及变差没有考虑自由度,如果用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比困难第四章:1.多重共线性背景:①经济变量之间具有共同变化趋势②模型中包含滞后变量③利用截面数据建立模型可出现..④样本数据自身原因2.后果:A完全①参数估计值不确定②csgj值方差无限大B不完全①csgj量方差随贡献程度的增加而增加②对cs区间估计时,置信区间区域变大③假设检验用以出现错误判断④可造成可决系数较高,但对各cs 估计的回归系数符号相反,得出错误结论3.检验:A简单相关系数检验法:COR 解释变量.大于0.8,就严重B方差膨胀因子法:因子越大越严重;≥10,严重C直观判断法:增加或剔除一个解释变量x,估计值y发生较大变化,则存在;定性分析,重要x标准误差较大并没通过显著性检验时,则存在;x回归系数所带正负号与定性分析结果违背,则存在;x相关矩阵中,x之间相关系数较大,则存在D逐步回归检验法:将变量逐个引入模型,每引入一个x,都进行F检验,t检验,当原来引入的x由于后面引入的x不显著是,将其剔除.以确保每次引入新的解释变量之前方程种植包含显著变量.4.补救措施:①剔除变量法②增大样本容量③变换模型形式:自相关④利用非样本先验信息⑤截面数据与时序数据并用:异方差⑥变量变换第五章:1.异方差产生原因:①模型中省略了某些重要的解释变量②模型设定误差③数据测量误差④截面数据中总体各单位的差异2.后果:A参数估计统计特性:参数估计的无偏性仍然成立;参数估计方差不再是最小B参数显著性检验:t统计量进行参数检验失去意义C 预测影响:将无效3检验:A图示①相关图形分析data x y,看散点图,quick→graph→x,y→OK→scatter diagram→OK,可以看到x,y散点图②残差图形分析data x y,sort x;ls y c x;再回归结果的子菜单点resid,可以看残差分析图Bgoldfeld-quanadt:data x y;sort x;smpl 1 n1;ls y c x(RSS1);smpl n2 n;ls y c x(RSS2);计算F*=RSS2/RSS1,取α=0.05,查F分布表,得F0.05((n-c)/2,(n-c)/2),将F值与此对比.若F*>F(0.05),拒绝原假设,存在异方差Cwhite:data x y;ls y c x;在回归结果的子菜单中点击view-residual test-white heteroskedasticity,可以看到辅助回归模型的估计结果D arch;E:glejser:data x y;ls y c x;genr E1=resid;genr E2=abs(E1);genr XH=X^h;ls E2 c xh;依次根据XH的T值判断E2与XH之间是否存在异方差4.补救措施:A模型变换法:genr y1=y/根号x^h; genr x2=1/根号x^h ; genr x3=x/根号x^h;ls y1 x2 x3;B加权最小二乘法wls:权数:w1t=1/xt;w2t=1/xt^2;w3t=1/根号xt.电脑操作:genr w1=1/x;genr w2=1/(x^2);genr w3=1/sqr(x);ls (w=w1t) y c x;ls (w2=w2t) y c x;ls (w3=w3t) y c x. 第六章:1.自相关产生原因:①经济系统的惯性②经济活动的滞后效应③数据处理造成的相关④蛛网现象⑤模型设定偏误2.表现形式:自相关性质可以用自相关系数符号判断.即ρ<0为负相关, ρ>0为正相关.当|ρ|接近1时,表示相关的程度很高.自相关形式:见公式.3.后果:见公式.4.检验:A图示检验:data x y;ls y c x;再回归模型的子菜单点击resids,可以看到模型残差分布图;genr e=resid;data e e(-1);view-graph-scatter-simple scatter.B.DW检验:data x y;ls y c x;根据回归结果得出DW值,然后判断是否自相关.(正相关0~dl,无法判断dl~du,正相关du~2~4-du,无法判断4-du~4-dl,负相关4-dl~4).5.补救:A广义差分法:data x y;ls y c x;根据DW求ρ尖>(ρ尖=1-DW/2);smpl 2 n;genr yi=y-ρ尖*y(-1); genr xi=x-ρ尖*x(-1);ls y1 c x1;运用DW检验判断是否消除了自相关B:Cochrane orcutt迭代法:data x y;la y c x ar(1);运用DW检验判断C其他方法:①一阶差分法:data x y;ls y c x;smpl 2 n;genr y1=y-y(-1); genr x1=x-x(-1);ls y1 c x1; 运用DW检验判断②德宾两步法:data x y;smpl 2 n;ls y c y(-1)根据输出结果看y(-1)前系数,求出ρ尖; genr yi=y-ρ尖*y(-1); genr xi=x-ρ尖*x(-1);ls y1 c x1;运用DW检验判断第七章:1.虚拟变量0和1选取原则:0基期,比较的基础,参照物;1报告期:被比较类型2.虚拟变量数量的设置规则:①若定性因素具有m≥2个相互排斥属性,当回归模型有截距项时,只能引入m-1个变量②当回归模型无截距项时,引入m个变量3.虚拟解释变量的回归:加法截距:①解释变量只有一个分为两种相互排斥类型的定性变量而无定量变量②解释变量包含一个定量变量和一个分为两种类型的定性变量③解释变量包含一个定量变量和一个两种以上类型的定性变量④解释变量包含一个定量变量和两个定性变量.乘法斜率:①截距不变情形②结局斜率均发生变化③分段回归分析描述的精度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究主体是经济现象及其发展变化的规律。
2、运用计量分析研究步骤:模型设定——确定变量和数学关系式估计参数——分析变量间具体的数量关系模型检验——检验所得结论的可靠性模型应用——做经济分析和经济预测3、模型变量:解释变量:表示被解释变量变动原因的变量,也称自变量,回归元。
被解释变量:表示分析研究的对象,变动结果的变量,也成应变量。
内生变量:其数值由模型所决定的变量,是模型求解的结果。
外生变量:其数值由模型意外决定的变量。
外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。
前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。
前定变量:前定内生变量和外生变量的总称。
数据:时间序列数据:按照时间先后排列的统计数据。
截面数据:发生在同一时间截面上的调查数据。
面板数据:虚拟变量数据:表征政策,条件等,一般取0或1.4、估计评价统计性质的标准无偏:E(^β)=β 随机变量,变量的函数?有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比CH2 CH3 线性回归模型模型(假设)——估计参数——检验——拟合优度——预测1、模型(线性)(1)关于参数的线性模型就变量而言是线性的;模型就参数而言是线性的。
Y i=β1+β2lnX i+u i线性影响随机影响Y i=E(Y i|X i)+u i E(Y i|X i)=f(X i)=β1+β2lnX i引入随机扰动项,(3)古典假设A零均值假定 E(u i|X i)=0B同方差假定 Var(u i|X i)=E(u i2)=σ2C无自相关假定 Cov(u i,u j)=0D 随机扰动项与解释变量不相关假定 Cov(u i ,X i )=0E 正态性假定u i ~N(0,σ2)F 无多重共线性假定Rank(X)=k2、估计在古典假设下,经典框架,可以使用OLS方法:OLS 寻找min ∑e i 2^β1ols = (Y 均值)-^β2(X 均值)^β2ols = ∑x i y i /∑x i 23、性质OLS 回归线性质(数值性质)(1)回归线通过样本均值 (X 均值,Y 均值)(2)估计值^Y i 的均值等于实际值Y i 的均值(3)剩余项e i 的均值为0(4)被解释变量估计值^Y i 与剩余项e i 不相关 Cov(^Y i ,e i )=0(5)解释变量X i 与剩余项e i 不相关 Cov(e i ,X i )=0在古典假设下,OLS 的统计性质是BLUE 统计 最佳线性无偏估计4、检验(1)Z 检验Ho:β2=0 原假设 验证β2是否显著不为0标准化: Z=(^β2-β2)/SE (^β2)~N (0,1) 在方差已知,样本充分大用Z 检验拒绝域在两侧,跟临界值判断,是否β2显著不为0(2)t 检验——回归系数的假设性检验方差未知,用方差估计量代替 ^σ2=∑e i 2/(n-k) 重点记忆t =(^β2-β2)/^SE (^β2)~t (n-2)拒绝域:|t|>=t 2/a (n-2)拒绝,认为对应解释变量对被解释变量有显著影响。
P 值是尚不能拒绝原假设的最大显著水平。
(所以P 越小,显著性越好)P 值>a 不拒绝 P 值<a 拒绝(3)F 检验——回归方程显著性检验,检验整个模型原假设Ho:β2=β3=β4=0 (多元,依次写下去)F=[ESS/(k-1)]/[RSS/(n-k)]~F (k-1,n-k )统计量F 服从自由度为k-1和n-k 的F 分布F> F a (k-1,n-k ) (说明F 越大越好)拒绝:说明回归方程显著,即列入模型的各个解释变量联合起来对被解释变量有显著影响一元回归下,F 与t 检验一致,且 F=t 25、拟合优度检验(1)可决系数(判定系数)R 2=ESS/TSS=1-RSS/TSS特点: 非负统计量,取值[0,1],样本观测值的函数,随机变量对其解释:R 2=0.95,表示拟合优度比较高,变量95%的变化可以用此模型解释,只有5%不准确(2)修正的可决系数 adjusted R 2=1-(1- R 2)(n-1)/(n-k)adjusted R 2取值[0,1] 计算出负值时,规定为0k=1时,adjusted R 2= R 2(3)F 与可决系数F=[(n-k)/(k-1)]*[ R 2/ (1-R 2)]adjusted R2,R2,F 都是随机变量联系:a都是显著性检验的方法b构成统计量都是用TSS=ESS+RSSc二者等价,伴随可决系数和修正可决系数增加,F统计量不断增加R2 =0时,F=0;R2=1时,F趋近无穷;区别:a F有明确分布,R2没有b F检验可在某显著水平下得出结论,可决系数是模糊判断6、预测平均值预测和个别值预测A预测不仅存在抽样波动引起的误差,还要受随机扰动项的影响。
个别值预测比平均值预测的方差大。
个别值预测区间也大于平均值预测区间。
B 对平均值和个别值预测区间都不是常数。
X f趋近X均值,预测精度增加,预测区间最窄C 预测区间和样本容量N有关,样本容量越大,预测误差方差越小,预测区间越窄。
样本容量趋于无穷个别值的预测误差只决定于随机扰动项的方差。
CH4多重共线性后果/原因——如何检验——如何修正1、后果/原因(1)完全/不完全多重共线X3=X1+2X2完全多重共线参数无法估计非满秩矩阵不可逆X3=X1+X2+u 不完全多重共线性(2)无多重共线性模型无多重共线性,解释变量间不存在完全或不完全的线性关系X是满秩矩阵可逆Rank(X)=k Rank(X’X)=k 从而X’X可逆(X’X)-1存在(3)多重共线原因经济变量之间具有共同变化趋势模型中包含滞后变量使用截面数据建立模型样本数据自身原因(4)后果存在多重共线性时,OLS估计式仍然是BLUE(最佳线性无偏估计)不影响无偏性(无偏性是重复抽样的特性)不影响有效性(是样本现象,与无多重共线性相比方差扩大,但采用OLS估计后,方差仍最小)不影响一致性2、检验(1)两两相关系数(充分条件)两两相关可以推出多重共线性反过来不一定系数比较高,则可认为存在着较严重的多重共线性(2)直观判断(综合判断法)参数联合显著性很高(通过F检验)但个别重要解释变量存在异常,t不显著,或者β为负,与经济意义违背。
F检验通过, t不通过,因为方差扩大了 F是由RSS计算得出的(3)方差扩大因子VIF j=1/(1-R j2) 方差与VIF正相关 VIF>10 严重多重共线R j2是多个解释变量辅助回归确定多重可决系数(4)逐步回归(也是修正方法)不会有计算,但要了解过程针对多重共线性,没有什么特别好的修正方法,建模前要事先考虑,如果出现重要解释变量的多重共线性,可以考虑扩大样本容量CH5 异方差原因、后果——检验——修正(WLS)异方差:被解释变量观测值的分散程度是随解释变量的变化而变化的。
Var(u i|X i)=E(u i2)=σi2=σ2f(X i)1、原因后果(1)产生原因A 模型设定误差B 测量误差的变化C 截面数据中总体各单位的差异异方差性在截面数据中比在时间序列数据中可能更常出现,因为同一时点不同对象的差异,一般来说会大于同一对象不同时间的差异。
(2)后果A 参数的OLS估计仍然具有无偏性(无偏性仅依赖零均值假定,解释变量的非随机性)B 参数OLS估计式的方差不再是最小的,影响有效性(方差会被低估,从而夸大t统计量,t,F检验失效,区间预测会受影响,不显著的也有可能变显著)C 不满足有效性,则也会影响一致性2、检验(要知道判断时原假设和备择假设;检验命题统计量;辅助回归函数形式;适用条件)原假设:同方差备择假设:异方差(1)图示:简单易操作,但判断比较粗糙(2)GQ:Goldfeld-Quanadt戈德菲尔德-夸特检验A 大样本,除同方差假定不成立,其余假定要满足B 对解释变量大小排序C 去除中间C个观测值(样本的1/5-1/4),分成两个部分D构造F统计量,两个部分残差平方和服从卡方分布,则F=两部分残差平方和相除(大的除以小的)~F((n-c)/2-k,(n-c)/2-k)F>临界值,拒绝原假设,则认为存在异方差E 可判断是否存在异方差,不能确定是哪个变量引起(3)WhiteA 大样本,丧失较多自由度B 做残差对常数项、解释变量、解释变量平方及其交叉乘积等所构成的辅助回归^e i2C 计算统计量nR2,n为样本容量,R2为辅助回归的可决系数D 统计量服从卡方分布nR2>卡方a(df) 拒绝原假设,表明模型存在异方差E 不仅能够检验异方差,还能判断是哪个变量引起的异方差(4)ArchA 用于大样本,只对时间序列检验B 做OLS估计,求残差,并计算残差平方序列e t2,e t-12….做辅助回归e t2~e t-12…e t-p2C 计算辅助回归可决系数R2,统计量(n-p) R2p是ARCH过程的阶数D 统计量服从卡方分布(统计量就是”Obs*R-squared”所显示的数值)(n-p) R2>卡方a(p) 拒绝原假设,表明模型存在异方差E 能判断是否存在异方差,但不能诊断是哪一个变量引起的(5)Glejser可以忽略。
要求大样本3、修正(1)对模型变换,取对数,但不能消除,只能减轻后果(2)WLS (不考计算,主要掌握思想)使残差平方和最小,在存在异方差时,方差越小的应约重视,确定回归线作用越大,反之同理。
在拟合时应对较小的残差平方给予较大的权数,对较大的残差平方给予较小的权数。
通常可取w=1/σi2 将权数与残差平方相乘后再求和变换模型后剩余项u = u i/根号下f(X i) 已是同方差 Var(u)= σi2/f(X i)= σ2CH6 自相关原因/后果——检验(DW是唯一方法)——修正(从广义差分出发)自相关:(序列相关)总体回归模型的随机误差项u i之间存在的相关关系。
Cov(u i,u j)不为0自相关形式: u t=pu t-1+v t (-1<p<1) 一阶线性自相关1、原因(从时间序列出发考虑)经济系统的惯性经济活动滞后效应数据处理造成的相关蛛网现象(某种商品的供给量受前一期价格影响而表现出的规律性)模型设定偏误(虚假自相关,可以改变模型而消除)2、后果(1)违背古典假定,继续适用OLS估计参数,会产生严重后果,和异方差情形类似(2)影响有效性,一致性;但不会影响无偏性。