2020年广东省梅州市九年级中考数学模拟试卷一模试题及答案解析

合集下载

广东省梅州市2020届中考数学仿真模拟试卷 (含解析)

广东省梅州市2020届中考数学仿真模拟试卷 (含解析)

广东省梅州市2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120112.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.已知点M与点N(2,5)关于x轴对称,那么点M的坐标为()A. (−2,5)B. (2,5)C. (−2,−5)D. (2,−5)4.一个多边形有5条边,则它的内角和是()A. 540°B. 720°C. 900°D. 1080°5.使式子√3x+2有意义的实数x的取值范围是()A. x≥0B. x>−23C. x≥−32D. x≥−236.若以△ABC各边中点为顶点的三角形的周长是18cm,则△ABC的周长是()A. 9cmB. 36cmC. 54cmD. 72cm7.抛物线y=(x+1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=x2+bx+c,则b、c的值为()A. b=6,c=7B. b=−6,c=−11C. b=6,c=11D. b=−6,c=118.不等式组{3x−1≥x+1x+4<4x−2的解集是()A. x>2B. x≥1C. 1≤x<2D. x≥−19.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A. 3√3−4B. 4√2−5C. 4−2√3D. 5−2√310.如图,抛物线y=ax2+bx+c与x轴交于点(−1,0),对称轴为x=1,则下列结论中正确的是()A. a>0B. 当x>1时,y随x的增大而增大C. c<0D. x=3是一元二次方程ax2+bx+c=0的一个根二、填空题(本大题共7小题,共28.0分)11.分解因式:2ax−4ay=______.12.若单项式5x4y和25x n y m是同类项,则m+n的值为______.13.若|a−3|+√b+2=0,则a+b=______.14.若x−2y=−3,则5−x+2y=______.15.如图,在△ABC中,按以下步骤作图:BC的长为半径作弧,两弧相交于M,N两点;①分别以B,C为圆心,以大于12②作直线MN交AB于点D,连结CD,若CD=AC,∠B=25°,则∠ACB的度数为________.16.如图,扇形的圆心角为120°,半径为6,将此扇形围成一个圆锥,则圆锥的底面半径为______.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:[(x+2y)(x−2y)−(x+4y)2]÷4y,其中x=1,y=4.四、解答题(本大题共7小题,共56.0分)19.“校园安全”受到全社会的广泛关注,“高远”中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下尚不完整的条形统计图,且知在抽样调查中“了解很少”的同学占抽样调查人数的50%,请你根据提供的信息解答下列问题:(1)接受问卷调查的学生共有多少名?(2)请补全条形统计图;(3)若“高远”中学共有1800名学生,请你估计该校学生对校园知识“基本了解”的有多少名?20.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.21. 已知方程组{5x +y =3ax +5y =4与方程组{x −2y =55x +by =1有相同的解,求a 、b 的值.22. 如图,⊙O 是△ABC 的外接圆,AC 是直径,弦BD =BA ,EB ⊥DC ,交DC 的延长线于点E .(1)求证:BE 是⊙O 的切线;(2)当sin∠BCE =34,AB =3时,求AD 的长.23. 某商店开学前用2000元购进一批学生书包,开学后发现供不应求,商店又购进第二批同样的书包,所购数量比第一批数量多了20个,但每个书包的进货价比第一批提高了20%,结果购进第二批书包用了3600元.(1)求第一批购进书包时每个书包的进货价是多少元?(2)若商店想销售第二批书包的利润至少为15%,则每个书包的售价至少定为多少元?(备注:×%)利润率=售价−进价进价24.如图,在平面直角坐标系中,短形ABCD的顶点B、C在x轴的正半轴上,AB=8,BC=6,(x>0)的图象经过点E,分别与AB、CD交于点对角线AC、BD相交于点E,反比例函数y=kxF,G.(1)若OC=8,求k的值;(2)连接EG,若BF−BE=2,求△CEG的面积.25.已知二次函数y=x2+(3−m)x−3m(其中0<m<3)的图象交x轴于AB两点,y轴于C点.(1)求点A、B、C的坐标(用m表示).(2)点P是其对称轴上的一点,当PB+PC的最小值等于3√2时,求抛物线的解析式.(3)在(2)的条件下过点A的直线l交抛物线另一个交点为Q,交y轴于D点,当Q为AD的中点时,求直线l的解析式.-------- 答案与解析 --------1.答案:C解析:本题主要考查了相反数的定义,a的相反数是−a.根据相反数的定义即可求解.解:−2011的相反数是2011.故选C.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选B.3.答案:D解析:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可.解:点N(2,5)关于x轴的对称点M的坐标是(2,−5).故选:D.4.答案:A解析:解:∵多边形有5条边,∴它的内角和=(5−2)×180°=540°,故选:A.根据多边形的内角和公式即可得到结论.本题考查了多边形的内角和外角,熟记多边形的内角和公式是解题的关键.5.答案:D解析:根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式有意义的条件,二次根式的被开方数是非负数.解:由题可得,3x+2≥0,x≥−2,3故选D6.答案:B解析:本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的关键.如图:根据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.解:如图:∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴BC=2DF,AB=2EF,AC=2DE;∴AB+BC+AC=2EF+2DF+2DE=2(EF+DF+DE)=2×18=36.故选B.7.答案:C解析:此题主要考查了二次函数图象与几何变换,关键是掌握“左加右减,上加下减”的平移规律.根据平移的规律求得解析式,化成一般式即可求得.解:∵抛物线y=(x+1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=(x+1+2)2+2,即y=x2+6x+11,∴b=6,c=11.故选C.8.答案:A解析:解:解不等式3x−1≥x+1,得:x≥1,解不等式x+4<4x−2,得:x>2,则不等式组的解集为x>2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:C解析:解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得:FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,∴∠DFC′=60°,∴∠DC′F=30°,∴FC′=FC=2DF,∵DF+CF=CD=3,∴DF+2DF=3,解得:DF=1,∴DC′=√3DF=√3,则C′A=3−√3,AG=√3(3−√3),设EB=x,∵∠B′GE=∠AGC′=∠DC′F=30°,∴GE=2x,则√3(3−√3)+3x=3,解得:x=2−√3,∴GE=4−2√3;故选:C.由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得出FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,求出∠DC′F=30°,得出FC′=FC=2DF,求出DF=1,DC′=√3DF=√3,则C′A=3−√3,AG=√3(3−√3),设EB=x,则GE=2x,得出方程,解方程即可.本题考查了翻折变换的性质、正方形的性质、勾股定理、含30°角的直角三角形的性质等知识;熟练掌握翻折变换和正方形的性质,根据题意得出方程是解决问题的关键.10.答案:D解析:解:A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(−1,0),对称轴是x=1,设另一交点为(x,0),−1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选D.根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.11.答案:2a(x−2y)解析:解:2ax−4ay=2a(x−2y).故答案为:2a(x−2y).直接找出公因式2a,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:5解析:解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.此题考查了同类项;同类项的定义所含字母相同;相同字母的指数相同即可求出答案.13.答案:1解析:解:由题意得,a−3=0,b+2=0,解得a=3,b=−2,所以,a+b=3+(−2)=1.故答案为:1.根据非负数的性质列式求出a、b的值,然后相加即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.答案:8解析:解:∵x−2y=−3,∴5−x+2y=5−(x−2y)=5−(−3)=8.故本题答案为8.将已知条件整体代入所求代数式即可.本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.15.答案:105°解析:本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.16.答案:2解析:解:设圆锥的底面半径为r,=4π,扇形的弧长为:120π×6180则2πr=4π,解得,r=2,故答案为:2.根据弧长公式求出扇形的弧长,根据圆锥的底面圆周长是扇形的弧长列式计算即可.本题考查的是圆锥的计算,掌握弧长公式、圆锥的底面圆周长是扇形的弧长是解题的关键.17.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,AB,∵AD=1.5+1=2.5=12∴OD=1AB=2.5,2∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:原式=(x2−4y2−x2−8xy−16y2)÷4y=(−8xy−20y2)÷4y=−2x−5y当x=1,y=4时,原式=−2−20=−22,故答案为−22.解析:本题考查整式的化简求值.先运用整混合运算法则化简整式,再把x、y值代入计算即可.19.答案:解:(1)接受问卷调查的学生共有30÷50%=60(名);(2)“不了解”的人数为60−(15+5+30)=10,补全条形图如下:=450(名),(3)1800×1560答:估计该校学生对校园知识“基本了解”的有450名.解析:(1)根据“了解人很少”的人数及其所占百分比可得总人数;(2)总人数减去其它类型的人数,求得“不了解”的人数即可补全条形图;(3)总人数乘以样本中“基本了解”人数所占比例即可.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.答案:证明:(1)∵AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD≌△ACE(SAS);(2)△BOC 是等腰三角形,理由如下:∵△ABD≌△ACE ,∴∠ABD =∠ACE ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABC −∠ABD =∠ACB −∠ACE ,∴∠OBC =∠OCB ,∴BO =CO ,∴△BOC 是等腰三角形.解析:(1)由“SAS ”可证△ABD≌△ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE ,由等腰三角形的性质可得∠ABC =∠ACB ,可求∠OBC =∠OCB ,可得BO =CO ,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.21.答案:解:由题意得出:方程组{5x +y =3x −2y =5的解与题中两方程组解相同,解得:{x =1y =−2, 将x =1,y =−2代入ax +5y =4,解得:a −10=4,∴a =14,将x =1,y =−2,代入5x +by =1,得5−2b =1,∴b =2.解析:根据题意得出方程组{5x +y =3x −2y =5的解与题中两方程组解相同,进而得出x ,y 的值代入另两个方程求出a ,b 的值即可.此题主要考查了二元一次方程的解,根据题意得出两方程的同解方程是解题关键.22.答案:解:(1)证明:连结OB ,OD ,在△ABO 和△DBO 中,{AB=BD BO=BO OA=OD,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB//ED,∵BE⊥ED,∴EB⊥BO,∴BE是⊙O的切线;(2)∵AC是直径,∴∠ABC=90°,∵∠OBA+∠OBC=∠EBC+∠OBC=90°,∴∠OBA=∠EBC,∴∠BAC=∠EBC,∵BE⊥DE,∴∠E=90°,∴∠BCE+∠EBC=∠BAC+∠ACB=90°,∵∠BAC=∠EBC,∴∠ACB=∠BCE,∵sin∠BCE=34,∴sin∠ACB=34,∵AB=3,∴AC=4,∵∠BDE=∠BAC,∴sin∠DBE=34,∵BD=AB=3,∴DE=94,∴BE=√BD2−DE2=3√74,∵∠CBE=∠BAC=∠BDC,∠E=∠E,∴△BDE∽△CBE,∴BECE =DEBE,∴CE=74,∴CD =12, ∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =√BD 2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设第一批购进书包的进货价是x 元,则第二批书包的进价是1.2x 元,2000x +20=36001.2x ,解得:x =50,经检验:x =50是原方程的解,答:第一批购进书包的进货价是50元;(2)设每个书包至少定价为y 元,得:y−50(1+20%)50×(1+20%)×100%≥15%,解得:y ≥69,答:设每个书包至少定价为69元.解析:(1)设第一批购进书包时每个书包的进货价是x 元,则第二批的进货价为(1+20%)x 元,根据题意,第二批所购数量比第一批数量多了20个,列方程求解;(2)设每个书包至少定价为y 元,根据题意得出不等式解答即可.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.答案:解:(1)∵矩形ABCD ,AB =8,BC =6,∴∠ABC =∠BCD =90°,∴AC =BD =10,∴BE =DE =12BD =5,AE =CE =12AC =5,∴AE =DE =CE =BE =5,作EH ⊥BC ,垂足为H ,∴BH =CH =12BC =3,∴EH =4,∵OC=8,∴OH=OC−CH=5,∴点E的坐标为(5,4),代入y=kx,得k=5×4=20;(2)∵BF−BE=2,BE=5,∴BF=7,设F(a,7),则E(a+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7a=4(a+3),解得a=4,∴F(4,7),∴k=28,∴反比例函数解析式为y=28x,当x=4+6=10时,y=2810=145,∴G(10,145),∴CG=145,作EM⊥DC,垂足为M,∵EH⊥BC,∴∠EHC=∠HCM=∠CME=90°,∴四边形EHCM是矩形,∴EM=CH=3,∴S△CEG=12CG×EM=12×145×3=215.解析:本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.(1)先利用矩形的性质求出点E的坐标(5,4),然后把E点坐标代入y=kx即可求得k的值;(2)因为BF−BE=2,BE=5,所以BF=7,设F(a,7),E(a+3,4),利用反比例函数图象上点的坐标得到7a=4(a+3),解得a=4,从而得到反比例函数解析式为y=28x,然后确定G点坐标,最后利用三角形面积公式计算△CEG的面积.25.答案:解:(1)方程x2+(3−m)x−3m=0,解得:x=−3或x=m,把x=0代入函数式得y=−3m,则A(−3,0),B(m,0),C(0,−3m);(2)∵点A 、B 都是抛物线与x 轴的交点,∴A 、B 两点关于抛物线的对称轴对称,∴PB +PC 的最小值即为PA +PC 的最小值=√32+(3m)2=3√1+m 2=3√2,解得:m =1,则抛物线解析式为y =x 2+2x −3;(3)∵点Q 为AD 的中点,∴Q 的横坐标为点A 横坐标的一半,即为−32,把x =−32代入函数解析式得:y =−154,即Q(−32,−154),设直线l 的解析式为y =kx +b(k ≠0),把A(−3,0),Q(−32,−154)代入得:{−3k +b =0−32k +b =−154, 解得:{k =−52b =−152, 则直线l 的解析式为y =−52x −152.解析:(1)令y =0,得到关于x 的方程,求出方程的解得到x 的值,确定出A 与B 坐标,令x =0求出y 的值,确定出C 坐标;(2)由抛物线对称性得到PB +PC 的最小值即为PC +AP =AC ,利用勾股定理求出m 的值,确定出抛物线解析式即可;(3)由Q 为AD 中点,得到Q 的横坐标为A 横坐标的一半,代入解析式求出Q 坐标,利用待定系数法求出直线AQ 解析式即可.此题属于二次函数综合题,涉及的知识有:二次函数与坐标轴的交点,待定系数法确定函数解析式,以及二次函数的性质,熟练掌握二次函数的性质是解本题的关键.。

广东省梅州市2020届九年级初中学业水平考试模拟数学试题

广东省梅州市2020届九年级初中学业水平考试模拟数学试题

2020年梅州市初中学业水平考试模拟试卷数学说明:1.本试卷共6页,满分120分.考试用时90分钟.2.答卷前,考生务必用黑色字迹签字笔或钢笔在答题卡填写学校、班级、准考证号、姓名和座号.用2B 铅笔在答题卡的“准考证号”栏相应位置填涂准考证号.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.4.非选择题必须用黑色宇迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应题目所选的选项涂黑1. 如图,数轴上两点A B ,表示的数互为相反数,则点B 表示的数是( )A .2020-B .12020C .2020D .12020-2. 2020年新春之际出现了罕见的新型冠状病毒疫情,面对突如其来的灾害,全国各族人民万众一心科学防治,全力抗击疫情.我市某县区的一个企业在复工复产后的第一个月,生产产品产值约为152.1万元人民币,152.1万元用科学记数法表示正确的是( )A .51.52110⨯元B .70.152110⨯元C .615.2110⨯元D .61.52110⨯元3. 如图所示图形是轴对称图形,其对称轴共有( )A .1条B .2条C .3条D .4条4. 成立的条件是( ) A .32x >B .32x ≥C .32x <D .32x ≤ 5. 某班学习小组的6名同学在一次数学测试中的成绩分别是:95,97,909585,74,,,则这组数据的众数是( ) A .90 B .95 C .97 D .856. 关于x 的一元二次方程230x x m ++=有两个实数根,则m 的取值范围是( ) A .94m ≥B .94m >C .94m <D .94m ≤ 7. 下列计算正确的是( )A .235x x x +=B .326x x x ⋅=C .()23539x x x ⋅= D .55x x x ÷= 8. 如图,将一块三角板叠放在直尺上,若121∠=,则2∠=( )A .69B .70C .71D .729. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有五雀、六燕,集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?译文:五只雀、 六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设每只雀、燕的重量各为x 两,y 两,以下列出的方程组正确的是( )A .561645x y x y y x +=+=+⎧⎨⎩B .651645?x y x y y x +=+=+⎧⎨⎩C .561654x y x y y x +=+=+⎧⎨⎩D .651654x y x y y x+=+=+⎧⎨⎩10. 如图,正方形ABCD 中,AC 和BD 是对角线,作//AE BD 交CD 延长线于点E ,连接EF 交AD 于点,O 则下列结论:①四边形ABDE 是平行四边形;:1:3DO BC =②;;EC =③AOEODCF S S=四边形④,正确的个数是( )A .1B .2C .3D .4二、填空题(本大题共7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上11. 分解因式:3222 a a b ab -+= .12. 若一个正多边形的每个内角为140,则这个正多边形的边数是 . 13. 已知23,a b -=求()2236a b a b -++-= . 14. 如图,正比例函数(0)y mx m =≠与反比例函数(0)ny n x=≠的图象交于,A B 两点,若点A 的坐标为3,22⎛-⎫⎪⎝⎭,则点B 的坐标为 .15. 如图,圆锥底面半径为,rcm 圆锥侧面展开图扇形的半径为25,3cm 扇形的圆心角为216,则r 的值为 cm .16. 如图,距离不远的两条电线杆高度均为3.2,m 在阳光照射下,第一条电线杆在平坦广场上的影长4.8,AB m =第二条电线杆离墙的距离3,CD m =且第二条电线杆的部分影子投射到墙心上,则投射在墙上的影子DE 长度为___ m .17.如图,在平面直角坐标系中,函数3y x =和y x =-的图象分别是直线1l 和2l ,过点()1,0作x 轴的垂线交1l 于点1A ···过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4,A ······依次进行下去,点2020A 的坐标为 .三、解答题(一)(本大题3小题;每小题6分,共18分)18.计算:()1120202304sin π-⎛⎫--+-+︒ ⎪⎝⎭.19.先化简,再求值:22241244x x x x x -⎛⎫+÷⎪+--⎝⎭,其中x =20.如图,已知BD 是矩形ABCD 的对角线.()1用直尺和圆规作线段BD 的垂直平分线,分别交AD BC 、于点E 和点F (保留作图痕迹,不写作法);()2连接,BE DF 、若48AB AD ==,,求四边形BEDF 的周长.四、解答题(二)(本大题3小题,每小题8分,共24分) .21.随着“和谐号”列车缓缓停靠在梅州西站,我市正式进入了高铁时代.与普通列车相比,“和谐号”列车时速更快,安全性更好.已知“梅州西—广州南”全程大约480千米,“和谐号”7315D 次列车平均每小时比普通列车多行驶40千米,其行驶时间是普通列车行驶时间的34(两列车中途停留时间均除外). ()1经查询,“和谐号”7315D 次列车从梅州西到广州南,中途合计停站时间为20分钟,求乘坐“和谐号”7315D 次列车从梅州西到广州南需要多长时间;()2据了解,梅州西站后期还会引进更快的“复兴号”高铁,届时跑完480千米的路程最多只需要2.5小时,请问“复兴号”高铁的速度每小时至少比“和谐号”列车快了多少千米?22.为践行习总书记提出的“绿水青山就是金山银山”生态环境保护重要思想,让绿水青山成为梅州人民幸福的靠山.我市某中学举办了“生态文明知识竞赛",赛后整理参赛学生成绩,将学生成绩分为,,,A B C D 四个等级,并绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:()1求参加比赛的学生共有多少名?并补全图1的条形统计图;()2在图2扇形统计图中,m 的值为______________,表示“D 等级”的扇形的圆心角为__________度; ()3学校决定从本次竞赛获得A 等级的学生中,选出2名去参加全市知识竞赛,已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.23. 如图,四边形ABCD 中,//,AD BC DE EC =,连接AE 并延长交BC 的延长线于点F ,连接BE ;()1求证:;AE EF =()2若BE AF ⊥,求证:.BC AB AD =-五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,AD 为O 的直径,B C 、为圆上的两点,//,OC AB 弦,BD AC 相交于点,E()1求证:BC CD =; ()2若13,CE EA ==,求O 的半径:()3如图2,在()2的条件下,过点C 作O 的切线,交AD 的延长线于点,P 过点P 作//PQ AC 交O 于F Q 、两点 (点F 在线段PQ 上),求PF 的长.25.如图,抛物线211433y x x =-++与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点,C 连接,,AC BC 点N 是第一象限内抛物线上的一个动点,点N 的横坐标为m ,过点N 作NM x ⊥轴,垂足为点M NM ,交BC 于点,P 过点N 作//NE AC 交x 轴于点E ,交BC 于点F .()1求,,A B C 三点的坐标;()2试探究在点N 运动过程中,是否存在这样的点,P 使得以点,,A C P 为顶点的三角形是等腰三角形,若存在,请求出此时点P 的坐标;若不存在,请说明理由;()3m 是点N 的横坐标,请用含m 的代数式表示线段PF 的长,并求出m 为何值时PF 有最大值.2020年梅州市初中学业水平考试 数学模拟试题参考答案及评分标准一、选择题二、填空题11.()2a ab -12.913.18 14.3,22⎛⎫- ⎪⎝⎭15.5 16.1.217.()101010103,3-三、解答题18.解:原式11422=-++12=-19. 解:原式()()()()()2242222x x x x x x -+=⨯+-+-2444x x x =-++ 24x =+当x =原式2(4=+34=+ 7=20.()1解:如图所示:EF ∴即为所求作的直线.()2EF 垂直平分,BD,,BE DE BF DF BEF DEF ∴==∠=∠, //,AD BC ,DEF BFE ∴∠=∠ ,BEF BFE ∴∠=∠ ,BE BF ∴=,BE DE DF BF ∴===设,BE DE x ==在Rt BAE 中,4,8,AB AE x ==- 可得:()22248x x +-=,5,x ∴=20,BE DE DF BF ∴+++= ∴四边形BEDF 的周长是20.(其他解法只要正确,相应给分)四、解答题(二) (本大题3小题,每小题8分,共24分)21. 解:()1设“和谐号”列车速度为x 千米/每小时,根据题意得: .4804803404x x =⋅- 解得:160,x =经检验,160x =是原方程的解. 又因为中间停留20分钟,所以所用时间为4802013160603+=小时. 答:从梅州西到广州南需要133小时.()2设“复兴号”高铁的速度每小时快y 千米,根据题意得:()2.5160480,y +≥解得:32y ≥.答:“复兴号”高铁的速度每小时至少快32千米. (若设“复兴号”列车每小时的速度求解正确,相应给分) 22. 解:()1根据题意得:315%20÷=(人),∴参赛学生共20人,则“B 等级”人数()203845-++=(人), 补全条形图如下:()2“C 等级”的百分比为8100%40%20⨯=即40,m=表示“D等级”的扇形圆心角为4 3607220︒⨯=︒所以答案是:4072,.()3列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则()42 63P==恰好是一男生和一女生答:恰好是一名男生和一名女生概率为23.(若用树状图答题,相应给分)23.证明:()1//,AD BC,DAE F ADE FCE∴∠=∠∠=∠,在ADE和FCE中,,, DAE F ADE FCE DE EC ∠=∠∠=∠=,(),ADE FCE AAS∴≌AE EF∴=.()2由()1得,,AD CF=,BE AF⊥90,BEA BEF ∴∠=∠=在BEA 和BEF 中,,90,,AE EF BEA BEF BE BE =∠=∠=︒=(),BEA BEF SAS ∴≌,AB BF BC CF ∴==+又,AD CF =,AB BC AD ∴=+BC AB AD ∴=-.五、解答题(三) (本大题2小题,每小题10分,共20分)24.()1证明:,OC OA =,OAC OCA ∴∠=∠//,OC AB,OCA CAB ∴∠=∠,OAC CAB ∴∠=∠BC CD ∴=.()2连接,DC1,3CE EA ==,4,AC ∴= BC CD =CDB CAD ∴∠=∠且,DCA DCA ∠=∠DCEACD ∴, DC AC CE DC∴= 241,DC AC CE ∴=⋅=⨯2DC ∴=. AD 是直径,90,DCA ∴∠=DA ∴==O ∴.()3如图,过O 作OH FQ ⊥于点H ,连接OF ,PC 是O 的切线,90PCO ∴∠=且90,DCA ∠=︒PCD ACO CAO ∴∠=∠=∠且,CPD CPA ∠=∠ DPCCPA ∴, 2142PD PC DC PC PA AC ∴==== 22,PC PD PC PA PD ∴==⋅,24,(PD PD PD ∴=+⋅PD ∴=PO ∴=// ,PQ AC,CAD APQ ∴∠=∠且90,PHO DCA ∠=∠=︒ ,PHO ACD ∴DC AC AD OH PH PO ∴==即2465OH PH === 105,,33PH OH ∴==3FH ∴==103PF PH FH -∴=-= 25. 解:()1当0y =时,有21140,33x x -++= 解得123,4x x =-=,所以()()3,0,4,0A B -当0x =时,有21144,33y x x =-++= 所以()0,4C . ()2存在.由()1易知,5AC ==, 直线BC 关系式为4,y x =-+设P 为(),4m m -+,04,m <<则①当PC AC =时,有()222445,m m +--+=⎡⎤⎣⎦解得12m m ==(不合,舍去),此时P 点为,422⎛⎫-+ ⎪ ⎪⎝⎭②当AP AC =时,有()()222345,m m ++-+=解得121,0m m ==(不合,舍去),此时P 点为()1,3③当AP PC =时,有()()()22224434,m m m m ⎡⎤⎣⎦+--+=++-+ 解得252m =(不合,舍去),综上所述,满足条件的点P 坐标为422⎛⎫-+⎪ ⎪⎝⎭和()1,3 ()3过点F 作FQ NP ⊥于点Q ,如图,则//FQ x 轴,由()1知OBC 是等腰直角三角形,45QFP OBC ∴∠=∠=,FQP ∴为等腰直角三角形2FQ QP PF ∴==,//,//NE AC QN CO ,,FNQ ACO ∴∠=∠又90FQN AOC ∠=∠=︒,,FQNAOC ∴ FQ QN AO OC∴= 即34FQ QN =443323QN FQ PF PF ==⋅=∴326NP QN QP PF PF PF ∴=+=+=7PF NP ∴=, 设211,433N m m m ⎛-++⎫ ⎪⎝⎭,04,m << 则(),4,P m m -+()221114443333NP m m m m m ⎛⎫∴ =-++--⎪⎝=-+⎭+,)2214273377PF m m m ⎫=-+=--+⎪⎝⎭∴ 207-<, PF ∴有最大值,2m ∴=时,PF 有最大值.。

2020-2021学年广东省梅州市中考数学模拟试题及答案解析

2020-2021学年广东省梅州市中考数学模拟试题及答案解析

最新广东省梅州市中考数学模拟试卷一、选择题(每小题3分,共21分)1.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.B.a3+a3=a6C.D.(m﹣n)2=m2﹣n23.如图,DE是△ABC的中位线,则△ADE与△ABC的面积之比是()A.1:1 B.1:2 C.1:3 D.1:44.已知一次函数y=kx+1,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.6.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度) 120 140 160 180 200户数 2 3 6 7 2则这20户家庭该月用电量的众数和中位数分别是()A.180,180 B.160,180 C.160,160 D.180,1607.已知关于x的方程有一个正的实数根,则k的取值范围是()A.k<0 B.k>0 C.k≤0 D.k≥0二、填空题(每小题3分,共24分)8.在函数y=中,自变量x的取值范围是.9.某市去年全年重点建设项目完成投资92600000000元,这个数用科学记数法表示为.10.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为.11.已知扇形半径为2cm,圆心角为90度,则此扇形的弧长是cm.12.化简的结果是.13.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.14.已知菱形ABCD中,对角线AC=16,BD=12,则此菱形的高等于.15.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是;当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示).三、解答题(本题有9小题,共75分)16.计算:(π﹣3)0+﹣2sin45°﹣()﹣1.17.已知a2﹣4a+1=0,求代数式(a+2)2﹣2(a+)(a﹣)的值.18.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).19.已知反比例函数y=图象与一次函数y=2x+k的图象有一个交点的纵坐标是4.(1)求反比例函数的解析式;(2)当0<x<时,求一次函数y的取值范围.20.如图,小红袋子中有4张除数字外完全相同的卡片,小明袋子中有3张除数字外完全相同的卡片,若先从小红袋子中抽出一张数字为a的卡片,再从小明袋子中抽出一张数字为b的卡片,两张卡片中的数字,记为(a,b).(1)请用树形图或列表法列出(a,b)的所有可能的结果;(2)求在(a,b)中,使方程ax2+bx+1=0没有实数根的概率.21.如图,AB是⊙O的直径,点D在⊙O上,OC∥AD交⊙O于E,点F在CD延长线上,且∠BOC+∠ADF=90°.(1)求证:;(2)求证:CD是⊙O的切线.22.甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x元,你认为选择哪家商场购买商品花钱较少?请说明理由.23.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)求证:△ABE∽△DCA;(2)求m与n的函数关系式,直接写出自变量n的取值范围;(3)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由.24.如图,已知二次函数的图象M经过A(﹣1,0),B(4,0),C(2,﹣6)三点.(1)求该二次函数的解析式;(2)点D(m,n)(﹣1<m<2)在图象M上,当△ACD的面积为时,求点D的坐标;(3)在(2)的条件下,设图象M的对称轴为l,点D关于l的对称点为E.能否在图象M和l上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形?若能,求出点P的坐标;若不能,请说明理由.参考答案与试题解析一、选择题(每小题3分,共21分)1.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选C.2.下列运算正确的是()A.B.a3+a3=a6C.D.(m﹣n)2=m2﹣n2【考点】负整数指数幂;算术平方根;合并同类项;完全平方公式.【分析】根据算术平方根,合并同类项,负整数指数幂的性质,乘法公式逐一判断.【解答】解:A、=2;B、a3+a3=2a3;C、3﹣2==;D、(m﹣n)2=m2﹣2mn+n2.故选C.3.如图,DE是△ABC的中位线,则△ADE与△ABC的面积之比是()A.1:1 B.1:2 C.1:3 D.1:4【考点】三角形中位线定理.【分析】由DE是△ABC的中位线,可证得DE∥BC,进而推得两个三角形相似,然后利用相似三角形的性质解答即可.【解答】解:∵DE是△ABC的中位线,∴△ADE∽△ABC,相似比为,面积比为.故选D.4.已知一次函数y=kx+1,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】一次函数图象与系数的关系.【分析】根据一次函数y=kx+1,y随x的增大而减小,得到k<0,把x=0代入求出y的值,知图象过(0,1),根据一次函数的性质得出函数的图象过一、二、四象限,即可得到答案.【解答】解:∵一次函数y=kx+1,y随x的增大而减小,∴k<0,∵当x=0时,y=1,∴y=kx+1过点(0,1),∴函数的图象过一、二、四象限,故选B.5.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.【考点】平行投影.【分析】可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,所以矩形木板在地面上形成的投影不可能是梯形.【解答】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;依物同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.6.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度) 120 140 160 180 200户数 2 3 6 7 2则这20户家庭该月用电量的众数和中位数分别是()A.180,180 B.160,180 C.160,160 D.180,160【考点】众数;中位数.【分析】根据众数和中位数的定义就可以解决.【解答】解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,160,那么由中位数的定义可知,这组数据的中位数是÷2=160.故选:D.7.已知关于x的方程有一个正的实数根,则k的取值范围是()A.k<0 B.k>0 C.k≤0 D.k≥0【考点】图象法求一元二次方程的近似根.【分析】首先由,可得:k=x3+x,然后由关于x的方程有一个正的实数根,可得k的取值范围.【解答】解:∵,∴k=x3+x,∵关于x的方程有一个正的实数根,∴x>0,∴k>0.故选B.二、填空题(每小题3分,共24分)8.在函数y=中,自变量x的取值范围是x≥1 .【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.9.某市去年全年重点建设项目完成投资92600000000元,这个数用科学记数法表示为9.26×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.科学记数法形式:a×10n,其中1≤a<10,n为正整数.【解答】解:将92600000000用科学记数法表示为9.26×1010.故答案为:9.26×1010.10.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为60°.【考点】圆周角定理.【分析】根据直径所对的圆周角是直角,得∠BCD=90°,然后由直角三角形的两个锐角互余、同弧所对的圆周角相等求得∠A=∠D=60°.【解答】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°.11.已知扇形半径为2cm,圆心角为90度,则此扇形的弧长是πcm.【考点】弧长的计算.【分析】把已知数据代入弧长的公式l=计算即可.【解答】解:l==π,故答案为:π.12.化简的结果是.【考点】分式的乘除法.【分析】根据分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,计算即可.【解答】解:=•(x﹣1)=•(x﹣1)=.故答案为:.13.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.【考点】互余两角三角函数的关系.【分析】根据所给的角的正弦值可得两条边的比,进而可得第三边长,tanB的值=∠B的对边与邻边之比.【解答】解:∵在Rt△ABC中,∠C=90°,sinA=,∴sinA==,设a为3k,则c为5k,根据勾股定理可得:b=4k,∴tanB==,故答案为:.14.已知菱形ABCD中,对角线AC=16,BD=12,则此菱形的高等于.【考点】菱形的性质.【分析】过D作DE⊥AB于E,根据菱形的性质得出AO=AC=8,DO=BD=6,AC⊥BD,根据勾股定理求出AD,根据三角形面积公式求出DE即可.【解答】解:过D作DE⊥AB于E,∵菱形ABCD中,对角线AC=16,BD=12,∴AO=AC=8,DO=BD=6,AC⊥BD,∴∠DOA=90°,由勾股定理得:AD===10,∵四边形ABCD是菱形,∴AB=AD=10,∴S菱形ABCD==AB×DE,×16×12=10×DE,∴DE=,故答案为:.15.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是3或4 ;当点B的横坐标为4n(n为正整数)时,m= 6n﹣3 (用含n 的代数式表示).【考点】点的坐标.【分析】根据题意画出图形,根据图形可得当点B的横坐标为8时,n=2时,此时△AOB所在的四边形内部(不包括边界)每一行的整点个数为4×2+1﹣2,共有3行,所以此时△AOB所在的四边形内部(不包括边界)的整点个数为(4×2+1﹣2)×3,因为四边形内部在AB上的点是3个,所以此时△AOB内部(不包括边界)的整点个数为m==9,据此规律即可得出点B的横坐标为4n(n为正整数)时,m的值.【解答】解:如图:当点B在(3,0)点或(4,0)点时,△AOB内部(不包括边界)的整点为(1,1)(1,2)(2,1),共三个点,所以当m=3时,点B的横坐标的所有可能值是3或4;当点B的横坐标为8时,n=2时,△AOB内部(不包括边界)的整点个数m==9,当点B的横坐标为12时,n=3时,△AOB内部(不包括边界)的整点个数m==15,所以当点B的横坐标为4n(n为正整数)时,m==6n﹣3;另解:网格点横向一共3行,竖向一共是4n﹣1列,所以在y轴和4n点形成的矩形内部一共有3(4n﹣1)个网格点,而这条连线为矩形的对角线,与3条横线有3个网格点相交,所以要减掉3点,总的来说就是矩形内部网格点减掉3点的一半,即为[3(4n﹣1)﹣3]÷2=6n﹣3.故答案为:3或4,6n﹣3.三、解答题(本题有9小题,共75分)16.计算:(π﹣3)0+﹣2sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据零指数幂、二次根式的化简、负整数指数幂的运算,得出各部分的最简值,继而合并可得出答案.【解答】解:原式=1+3﹣2×﹣8=2﹣7.17.已知a2﹣4a+1=0,求代数式(a+2)2﹣2(a+)(a﹣)的值.【考点】整式的混合运算—化简求值.【分析】已知a2﹣4a+1=0,则a2﹣4a=﹣1,然后化简所求的式子,代入即可求解.【解答】解:∵a2﹣4a+1=0∴a2﹣4a=﹣1=a2+4a+4﹣2(a2﹣2)=a2+4a+4﹣2a2+4=﹣a2+4a+8=﹣(a2﹣4a)+8=918.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是DE=DF(或CE ∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(不添加辅助线).【考点】全等三角形的判定.【分析】由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB 等);【解答】解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE(SAS).19.已知反比例函数y=图象与一次函数y=2x+k的图象有一个交点的纵坐标是4.(1)求反比例函数的解析式;(2)当0<x<时,求一次函数y的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据两个函数的图象的交点的纵坐标为4,分别求出横坐标,列出方程即可解决问题.(2)根据一次函数的增减性,由0<x<,可以确定y的范围.【解答】解:(1)∵一次函数与反比例函数交点纵坐标为4,∴将y=4代入y=得:4x=k﹣1,即x=,将y=4代入②得:2x+k=4,即x=,∴=,即k﹣1=2(4﹣k),解得:k=3.∴反比例解析式为y=.(2)由k=3,得到一次函数解析式为y=2x+3,∵k=2>0,∴y随x增大而增大,∵0<x<,∴3<y<4所以一次函数y的取值范围是3<y<4.20.如图,小红袋子中有4张除数字外完全相同的卡片,小明袋子中有3张除数字外完全相同的卡片,若先从小红袋子中抽出一张数字为a的卡片,再从小明袋子中抽出一张数字为b的卡片,两张卡片中的数字,记为(a,b).(1)请用树形图或列表法列出(a,b)的所有可能的结果;(2)求在(a,b)中,使方程ax2+bx+1=0没有实数根的概率.【考点】列表法与树状图法;根的判别式.【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,注意要不重不漏;(2)首先由若(a,b)使方程ax2+bx+1=0没有实数根,确定△=b2﹣4a<0,则可求得符合条件的个数,则可求得概率.【解答】解:(1)(a,b)所有可能的结果如表所示:ab1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)(2)若(a,b)使方程ax2+bx+1=0没有实数根,则△=b2﹣4a<0,符合要求的(a,b)共有9个,∴P(使方程ax2+bx+1=0没有实数根)=.21.如图,AB是⊙O的直径,点D在⊙O上,OC∥AD交⊙O于E,点F在CD延长线上,且∠BOC+∠ADF=90°.(1)求证:;(2)求证:CD是⊙O的切线.【考点】切线的判定;平行线的性质;等腰三角形的判定与性质.【分析】(1)证明弧相等可转化为证明弧所对的圆心角相等即证明∠BOC=∠COD即可;(2)由(1)可得∠BOC=∠OAD,∠OAD=∠ODA,再由已知条件证明∠ODF=90°即可.【解答】证明:(1)连接OD.∵AD∥OC,∴∠BOC=∠OAD,∠COD=∠ODA,∵OA=OD,∴∠OAD=∠ODA.∴∠BOC=∠COD,∴=;(2)由(1)∠BOC=∠OAD,∠OAD=∠ODA.∴∠BOC=∠ODA.∵∠BOC+∠ADF=90°.∴∠ODA+∠ADF=90°,即∠ODF=90°.∵OD是⊙O的半径,∴CD是⊙O的切线.22.甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x元,你认为选择哪家商场购买商品花钱较少?请说明理由.【考点】反比例函数的应用.【分析】(1)根据题意直接列出算式510﹣200即可;(2)根据商家的优惠率即可列出p与x之间的函数关系式,并能得出p随x的变化情况;(3)先设购买商品的总金额为x元,,得出甲商场需花x﹣100元,乙商场需花0.6x元,然后分三种情况列出不等式和方程即可;【解答】解:(1)根据题意得:510﹣200=310(元)答:顾客在甲商场购买了510元的商品,付款时应付310元.(2)p与x之间的函数关系式为p=,p随x的增大而减小;(3)设购买商品的总金额为x元,,则甲商场需花x﹣100元,乙商场需花0.6x元,由x﹣100>0.6x,得:250<x<400,乙商场花钱较少,由x﹣100<0.6x,得:200≤x<250,甲商场花钱较少,由x﹣100=0.6x,得:x=250,两家商场花钱一样多.23.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)求证:△ABE∽△DCA;(2)求m与n的函数关系式,直接写出自变量n的取值范围;(3)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;旋转的性质.【分析】(1)由图形得∠BAE=∠BAD+45°,由外角定理,得∠CDA=∠BAD+45°,可得∠BAE=∠CDA,根据∠B=∠C=45°,证明两个三角形相似;(2)由勾股定理,得CA=BA=,由(1)的相似三角形,利用相似比求m、n的关系式;(3)成立.利用旋转法将△ACE旋转到△ABH的位置,则∠HBD=∠HBA+∠ABD=45°+45°=90°,连接DH,证明△EAD≌△HAD,得DH=DE,在Rt△BDH中,利用勾股定理证明结论.【解答】(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,∴∠BAE=∠CDA,又∠B=∠C=45°,∴△ABE∽△DCA;(2)解:∵△ABE∽△DCA,∴由依题意可知CA=BA=,∴,∴m=自变量n的取值范围为1<n<2.(3)成立证明:如图,将△ACE绕点A顺时针旋转90°至△ABH的位置,则CE=HB,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在△EAD和△HAD中∵AE=AH,∠HAD=∠EAH﹣∠FAG=45°=∠EAD,AD=AD.∴△EAD≌△HAD,∴DH=DE又∠HBD=∠ABH+∠ABD=90°,∴BD2+HB2=DH2即BD2+CE2=DE2.24.如图,已知二次函数的图象M经过A(﹣1,0),B(4,0),C(2,﹣6)三点.(1)求该二次函数的解析式;(2)点D(m,n)(﹣1<m<2)在图象M上,当△ACD的面积为时,求点D的坐标;(3)在(2)的条件下,设图象M的对称轴为l,点D关于l的对称点为E.能否在图象M和l上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形?若能,求出点P的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线的解析式;(2)过D作DH垂直x轴于H,CG垂直x轴于G.则S△ACD=S△ADH+S四边形HDCG﹣S△ACG,进而求出D点坐标;(3)由D点坐标,可求得DE的长,当DE为边时,根据平行四边形的性质可得到PQ=DE=2,从而可求得P点坐标;当DE为对角线时,可知P点为抛物线的顶点,可求得P点坐标.【解答】解:(1)∵二次函数的图象M经过A(﹣1,0),B(4,0)两点,∴可设二次函数的解析式为y=a(x+1)(x﹣4).∵二次函数的图象M经过点C(2,﹣6),∴﹣6=a(2+1)(2﹣4),解得a=1.∴二次函数的解析式为y=(x+1)(x﹣4),即y=x2﹣3x﹣4;(2)如图1,过D作DH垂直x轴于H,CG垂直x轴于G.则S△ACD=S△ADH+S四边形HDCG﹣S△ACG,=|n|(m+1)+(|n|+6)(2﹣m)﹣(|﹣1|+2)×|﹣6|=|n|﹣3m﹣3∵点D(m,n)在图象M上,且﹣1<m<2,∴|n|=4+3m﹣m2,∵△ACD的面积为:,∴(4+3m﹣m2)﹣3m﹣3=即4m2﹣4m+1=0,解得m=.∴D(,﹣).(3)能.理由如下:∵y=x2﹣3x﹣4=(x﹣)2﹣,∴图象M的对称轴l为x=.∵点D关于l的对称点为E,∴E(,﹣),∴DE=﹣=2.当DE为平行四边形的一条边时,如图2:则PQ∥DE且PQ=DE=2.∴点P的横坐标为+2=或﹣2=﹣.∴点P的纵坐标为(﹣)2﹣=﹣.∴点P的坐标为(,﹣)或(﹣,﹣).当DE为平行四边形的一条对角线时,对角线PQ、DE互相平分,由于Q在抛物线对称轴上,对称轴l垂直平分DE,因此点P在对称轴与抛物线的交点上,即为抛物线顶点(,﹣).综上所述,存在点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形,点P的坐标为(,﹣)、(﹣,﹣)或(,﹣).2016年6月6日。

2020年梅州市中考数学模拟试题与答案

2020年梅州市中考数学模拟试题与答案

2020年梅州市中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1. 张敏同学在“百度”搜索引擎中输入“中国梦,我的梦”能搜索到与之相关的结果的条数约为67 100 000,这个数67 100 000用科学记数法可表示为()A.671×105B.6.71×106C.6.71×107D.0.671×1082. 下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a23. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.4.任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6 B.面朝上的点数是偶数C.面朝上的点数大于2 D.面朝上的点数小于25.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上一点,DE∥AB,∠ADE=42°,则∠B的大小为()A.42°B.45°C.48°D.58°6.如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1 B.C.2 D.7.已知:点A(2016,0)、B(0,2018),以AB为斜边在直线AB下方作等腰直角△ABC,则点C 的坐标为()A.(2,2 )B.(2,﹣2 )C.(﹣1,1 )D.(﹣1,﹣1 )8.已知2是关于x的方程x2﹣(5+m)x+5m=0的一个根,并且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC的周长为()A.9 B.12 C.9或12 D.6或12或159.下列4个点,不在反比例函数y=﹣图象上的是()A.(2,﹣3)B.(﹣3,2)C.(3,﹣2)D.( 3,2)10.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.411.如图,AB、AC为⊙O的切线,B、C是切点,延长OB到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO等于()A.70°B.64°C.62°D.51°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a﹣c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有_______ .A.①②④⑤B.②③⑤⑥C.①②③⑤D.①③④⑥二、填空题(本题共6小题,满分18分。

广东省梅州市2020版数学中考一模试卷(I)卷

广东省梅州市2020版数学中考一模试卷(I)卷

广东省梅州市2020版数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·临潭模拟) 的倒数是()A .B .C .D .2. (2分) (2017八上·南漳期末) 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A .B .C .D .3. (2分)用科学记数法表示5700000,正确的是A . 0.57×107B . 57×105C . 570×104D . 5.7×1064. (2分) (2020八下·皇姑期末) 若分式,则x的值是()A . x=1B . x=﹣1C . x=0D . x≠﹣15. (2分)(2019·娄底模拟) 下列运算正确的是()A . .x3•x3=xB . (ab3)2=ab6C . x8÷x4=x2D . (2x)3=8x36. (2分) (2019七下·江苏月考) 如图,直线a、b被直线c所截,a∥b,若∠1=40°,则∠2的度数()A . 100°B . 140°C . 80°D . 40°7. (2分)将8.5,8.0,8.3,6.0,8.2,8.0,9.0按去掉一个最高分和一个最低分计算平均分是()A . 8.0B . 8.2C . 8.3D . 8.58. (2分)一个圆柱体的体积是84立方厘米,底面积是21平方厘米,高是()厘米。

A . 3B . 4C . 105D . 639. (2分)下列语句中,正确的是()A . 三角形的外角大于它的内角B . 三角形的一个外角等于它的两个内角之和C . 三角形的一个内角小于和它不相邻的外角D . 三角形的外角和是360°10. (2分) (2019九下·象山月考) 已知(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,则y1 , y2 , y3的大小关系正确的是()A . y1<y2<y3B . y3<y2<y1C . y3<y1<y2D . y1<y3<y2二、填空题 (共8题;共10分)11. (1分)(2020·淮安模拟) 分解因式: ________.12. (1分)不等式组的整数解是________13. (1分)(2018·宜宾模拟) 某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是________元(结果用含m的代数式表示).14. (1分) (2019九下·武威月考) 用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是________ cm2.15. (1分) (2018九上·兴化月考) 将抛物线y=(x-3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为________.16. (1分) (2019八下·遂宁期中) 关于的方程有增根,则 ________.17. (2分)如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是________18. (2分) (2019九下·崇川月考) 如图,A,B,C三点在正方形网格线的交点处,将△ACB绕着点A逆时针旋转得到△AC′B′,若A,C,B′三点共线,则tan∠B′CB=________.三、解答题 (共9题;共50分)19. (2分)(2019·潮南模拟) 计算:20. (5分)(2017·全椒模拟) 先化简(﹣)÷ ,再从2、3中选取一个适当的数代入求值.21.(10分)(2018·山西) 祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据∠A的度数∠B的度数AB的长度38°28°234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).22. (10分)(2019·兰州) 2019年5月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强一国学知识挑战赛”总决赛拉开帷幕,小明晋级了总决赛.比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目。

2020广东省中考数学模拟试卷(一)(含答案和解析)

2020广东省中考数学模拟试卷(一)(含答案和解析)

2020广东省中考数学模拟试卷(一)说明:1. 全卷共4页,满分为120分,考试用时为90分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5. 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数(人) 1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D图象的一个交点坐标为(-1,2),则另一个交点的坐7.若正比例函数y=-2x与反比例函数y=kx标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x2y)3=x6y3D.(x+1)2=x2+19.如图,AB是☉O的弦,OC⊥AB交☉O于点C,点D是☉O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11. 因式分解:ab-7a= .12. 若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14. 若a-b=2,则代数式5+2a-2b 的值是 .15. 如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16. 观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18. 计算: (3-π)0-2cos 30°+|1-√3|+(12)-1.19 .先化简,再求值: x 2-1x 2-2x+1·1x+1-1x , 其中x=2.20. 小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22. 某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人) 频率优秀15 0.3良好及格不及格 5(1) 被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2) 被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3) 若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23. 如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1) 求点A ,B ,C 的坐标; (2) 求直线BD 的解析式;(3) 在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标; 若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1) 求证:AD 是☉O 的切线;(2) 若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3) 若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25. 如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值是多少?②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3,延长CG交AD于点H,若AG=6,GH=2 √2,求BC的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-1 16.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6. 答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC ,∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下:设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点.22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人). 23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4, ∴A 点坐标为(-1,0),B 点坐标为(4,0).当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D )=12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9,∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD ,又∵OA 是☉O 的半径,∴AD 是☉O 的切线.(2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°, ∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32, ∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3, ∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r ,在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10, ∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即MN 10=54154, ∴MN=√103,∴OH=43,MN=√103. 25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形.②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CG CE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2, ∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得√2a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a √103a , 解得a=3 √5,即BC=3 √5.。

【附5套中考模拟试卷】广东省梅州市2019-2020学年中考数学一模考试卷含解析

【附5套中考模拟试卷】广东省梅州市2019-2020学年中考数学一模考试卷含解析

广东省梅州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,已知BD 与CE 相交于点A ,ED ∥BC ,AB=8,AC=12,AD=6,那么AE 的长等于( )A .4B .9C .12D .162.若数a ,b 在数轴上的位置如图示,则( )A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >03.如图,△ABC 中,DE ∥BC ,13AD AB =,AE =2cm ,则AC 的长是( )A .2cmB .4cmC .6cmD .8cm4.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为( ) A 2B .2C .3D .45.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差6.某中学篮球队12名队员的年龄如下表: 年龄:(岁) 13 14 15 16 人数1542关于这12名队员的年龄,下列说法错误的是( ) A .众数是14岁 B .极差是3岁C .中位数是14.5岁D .平均数是14.8岁712233499100+++++L 的整数部分是( )A .3B .5C .9D .68.如图,⊙O 的半径为6,直径CD 过弦EF 的中点G ,若∠EOD =60°,则弦CF 的长等于( )A.6 B.63C.33D.99.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为()A.3×109B.3×108C.30×108D.0.3×101010.下列计算正确的是()A.2m+3n=5mn B.m2•m3=m6C.m8÷m6=m2D.(﹣m)3=m311.下列计算结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x3)212.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,D、E分别为△ABC的边BA、CA延长线上的点,且DE∥BC.如果35DEBC,CE=16,那么AE的长为_______14.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.15.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.16.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.17.国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m 2,将62800用科学记数法表示为_____.18.如图,矩形ABCD 中,AD=5,∠CAB=30°,点P 是线段AC 上的动点,点Q 是线段CD 上的动点,则AQ+QP 的最小值是___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题: (1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)20.(6分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB=BD ,反比例函数()0k y k x =≠在第一象限内的图象经过点D (m ,2)和AB 边上的点E (n ,23). (1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点F ,G ,求线段FG 的长.21.(6分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣3.22.(8分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B 的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:3 1.73≈,2 1.41≈)23.(8分)(1)如图1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角顶点在BC 边上,BP=1.①特殊情形:若MP过点A,NP过点D,则PAPD=.②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时ECFC的值.24.(10分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D 作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.25.(10分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).26.(12分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.27.(12分)计算:(﹣1)2018﹣93.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由于ED∥BC,可证得△ABC∽△ADE,根据相似三角形所得比例线段,即可求得AE的长.【详解】∵ED∥BC,∴△ABC∽△ADE,∴BADA=ACAE,∴BA DA =AC AE =86, 即AE=9; ∴AE=9. 故答案选B. 【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质. 2.D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系. 3.C 【解析】 【分析】由DE ∥BC 可得△ADE ∽△ABC ,再根据相似三角形的性质即可求得结果. 【详解】 ∵DE ∥BC ∴△ADE ∽△ABC ∴13AD AE AB AC == ∵2cm =AE ∴AC=6cm 故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.4.B【解析】【分析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.【详解】解:∵圆内接正六边形的边长是1,∴圆的半径为1.那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2.∴圆的内接正方形的边长是.故选B.【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.5.D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

【附5套中考模拟试卷】广东省梅州市2019-2020学年中考数学一模试卷含解析

【附5套中考模拟试卷】广东省梅州市2019-2020学年中考数学一模试卷含解析

广东省梅州市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.482.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度4.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.6.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a77.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变8.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a49.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=21010.下列图形中,既是中心对称图形又是轴对称图形的是( ) A.B.C.D.11.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线()A.x=1 B.x=49C.x=﹣1 D.x=﹣4912.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A.7 B.8 C.9 D.10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.14.正八边形的中心角为______度.15.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE的长为.16.尺规作图:过直线外一点作已知直线的平行线.已知:如图,直线l与直线l外一点P.求作:过点P与直线l平行的直线.作法如下:(1)在直线l上任取两点A、B,连接AP、BP;(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;(3)过点P、M作直线;(4)直线PM即为所求.请回答:PM平行于l的依据是_____.17.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.18.小明用一个半径为30cm 且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)在△ABC 中,∠A,∠B 都是锐角,且sinA=12,tanB=3,AB=10,求△ABC 的面积. 20.(6分)如图,已知点C 是以AB 为直径的⊙O 上一点,CH ⊥AB 于点H ,过点B 作⊙O 的切线交直线AC 于点D ,点E 为CH 的中点,连接AE 并延长交BD 于点F ,直线CF 交AB 的延长线于G . (1)求证:AE•FD=AF•EC ; (2)求证:FC=FB ;(3)若FB=FE=2,求⊙O 的半径r 的长.21.(6分)已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①若x =﹣1是方程①的一个根,求m 的值和方程①的另一根;对于任意实数m ,判断方程①的根的情况,并说明理由.22.(8分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表: 生产甲产品件数(件) 生产乙产品件数(件) 所用总时间(分钟) 10 10 350 3020850(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a 件(a 为正整数). ①用含a 的代数式表示小王四月份生产乙种产品的件数;②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a 的取值范围. 23.(8分)先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值.24.(10分)如图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.25.(10分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?26.(12分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80 85 90 95人数/人 4 2 10 4根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.27.(12分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC关于x轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】【详解】由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=12(AB+OE)•BE=12(10+6)×6=1.故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.2.D.故选D .考点:由实际问题抽象出二元一次方程组 3.C 【解析】 【分析】根据图像,结合行程问题的数量关系逐项分析可得出答案. 【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A 正确; 小明休息前爬山的平均速度为:28007040=(米/分),B 正确; 小明在上述过程中所走的路程为3800米,C 错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D 正确.故选C .考点:函数的图象、行程问题. 4.B 【解析】 【分析】根据轴对称图形的概念对各选项分析判断即可得出答案. 【详解】A .不是轴对称图形,故本选项错误;B .是轴对称图形,故本选项正确;C .不是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项错误. 故选B . 5.D 【解析】 【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案. 【详解】点(25)P -,关于y 轴对称的点的坐标为(25),,【点睛】本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.6.D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误,故选D.【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.7.D【解析】【分析】根据多边形的外角和等于360°,与边数无关即可解答.【详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.8.C【解析】【分析】【详解】解:A、a•a=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a﹣1=a4,正确,不合题意;本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂. 9.B 【解析】 【详解】设全组共有x 名同学,那么每名同学送出的图书是(x−1)本; 则总共送出的图书为x(x−1); 又知实际互赠了210本图书, 则x(x−1)=210. 故选:B. 10.C 【解析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误; B. 是轴对称图形,不是中心对称图形,故本选项错误; C. 既是中心对称图又是轴对称图形,故本选项正确; D. 是轴对称图形,不是中心对称图形,故本选项错误. 故选C. 11.D 【解析】 【分析】设A 点坐标为(a ,8a),则可求得B 点坐标,把两点坐标代入抛物线的解析式可得到关于a 和b 的方程组,可求得b 的值,则可求得二次函数的对称轴. 【详解】解:∵A 在反比例函数图象上,∴可设A 点坐标为(a ,8a). ∵A 、B 两点关于原点对称,∴B 点坐标为(﹣a ,﹣8a). 又∵A 、B 两点在二次函数图象上,∴代入二次函数解析式可得:228989a ab aa ab a ⎧+-=⎪⎪⎨⎪--=-⎪⎩,解得:389a b =⎧⎪⎨=⎪⎩或389a b =-⎧⎪⎨=⎪⎩,∴二次函数对称轴为直线x=﹣49.本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b 的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系. 12.C 【解析】 【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【详解】根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个, 故选C . 【点睛】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】 【分析】过点C 作CH ∥AB 交DE 的延长线于点H ,则1028DF t t ---==,证明DFG HCG ∆∆∽,可求出CH ,再证明ADE CHE ∆∆∽,由比例线段可求出t 的值. 【详解】如下图,过点C 作CH ∥AB 交DE 的延长线于点H , 则21028BD t AE t DF t t ---=,=,==,∵DF ∥CH , ∴DFG HCG ∆∆∽, ∴12DF FC HC GC ==,∴AD AE CH CE=,∴102162102t tt t-=--,解得t=1,t=253(舍去),故答案为:1.【点睛】本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键. 14.45°【解析】【分析】运用正n边形的中心角的计算公式360n︒计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为360458︒=︒,故答案为45°.【点睛】本题考查了正n边形中心角的计算.15.1或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=1,BC=4,∴,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=1,∴CB′=5-1=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得3x2 =,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=1.综上所述,BE的长为32或1.故答案为:32或1.16.两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【解析】【分析】利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.【详解】解:由作法得PM=AB,BM=PA,∴四边形ABMP为平行四边形,∴PM∥AB.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【点睛】本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.17.5.【解析】【详解】试题解析:过E 作EM ⊥AB 于M ,∵四边形ABCD 是正方形,∴AD=BC=CD=AB ,∴EM=AD ,BM=CE ,∵△ABE 的面积为8, ∴12×AB×EM=8, 解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:222243BC CE +=+考点:1.正方形的性质;2.三角形的面积;3.勾股定理.18.20【解析】【分析】先求出半径为30cm 且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得.【详解】24030180π⨯=40π. 设这个圆锥形纸帽的底面半径为r .根据题意,得40π=2πr ,解得r=20cm .故答案是:20.【点睛】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.253 2【解析】【分析】根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解.【详解】如图:由已知可得:∠A=30°,∠B=60°,∴△ABC为直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=1012⨯=5,AC=AB·cos30°=103⨯=53,∴S△ABC=125 AC?BC3 22=.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.20.(1)详见解析;(2)详见解析;(3)22.【解析】(1)由BD是⊙O的切线得出∠DBA=90°,推出CH∥BD,证△AEC∽△AFD,得出比例式即可.(2)证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF 即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出∠FCB=∠CAB 推出CG是⊙O切线,由切割线定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG 中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,从而由勾股定理求得AB=BG 的长,从而得到⊙O的半径r.21.(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根22.(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-34a ;② a≤1.【解析】【分析】(1)设生产一件甲种产品和每生产一件乙种产品分别需要x 分钟、y 分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解; (2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果; ②根据“小王四月份的工资不少于1500元”即可列出不等式.【详解】(1)设生产一件甲种产品需x 分钟,生产一件乙种产品需y 分钟,由题意得: 10103503020850x y x y +=⎧⎨+=⎩, 解这个方程组得:1520x y =⎧⎨=⎩, 答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,∴一小时生产甲产品4件,生产乙产品3件,所以小王四月份生产乙种产品的件数:3(25×8﹣4a )=600-3a 4; ②依题意:1.5a+2.8(600-3a 4)≥1500, 1680﹣0.6a≥1500,解得:a≤1.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.23.21x+;2.【解析】【分析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()2221 21112x xxx x x x---⋅++--=()21 211xxx x--++=21 x+2x≤的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.24.(1)作图见解析;(2)作图见解析;5π(平方单位).【解析】【分析】(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.【详解】解:(1)见图中△A′B′C′(2)见图中△A″B′C″扇形的面积()22901242053604S πππ=+=⋅=(平方单位). 【点睛】 本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.25.商人盈利的可能性大.【解析】试题分析:根据几何概率的定义,面积比即概率.图中A ,B ,C 所占的面积与总面积之比即为A ,B ,C 各自的概率,算出相应的可能性,乘以钱数,比较即可.试题解析:商人盈利的可能性大.商人收费:80×48×2=80(元),商人奖励:80×18×3+80×38×1=60(元),因为80>60,所以商人盈利的可能性大.26.(1)刘徽奖的人数为40人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)P (点在第二象限)29=. 【解析】【分析】(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;(2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.【详解】(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:故答案为40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.故答案为90、90;(3)列表法:∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限)29 .【点睛】本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.27.(1)详见解析;(2)详见解析.【解析】【详解】试题分析:(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案;试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;考点:作图-位似变换;作图-轴对称变换Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。

广东省梅州市2020年中考数学试卷(I)卷

广东省梅州市2020年中考数学试卷(I)卷

广东省梅州市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)为奖励大学生创业,我市为在开发区创业的每位大学生提供无息贷款145000元,这个数据用科学记数法表示为(精确到万元)()A . 1.45×105B . 1.5×105C . 1.4×105D . 1.5×1062. (2分)(2017·北海) 右图是由6个小正方体搭建而成的几何体,它的俯视图是()A .B .C .D .3. (2分)(2017·江都模拟) 下列运算正确的是()A . ﹣ =B . =﹣3C . a•a2=a2D . (2a3)2=4a64. (2分)桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是().A .B .C .D .5. (2分) (2017七下·郯城期中) 如图,∠1与∠2不是同旁内角的是()A .B .C .D .6. (2分) (2019八上·顺德期末) 某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A . 85和85B . 85.5和85C . 85和82.5D . 85.5和807. (2分)如图,下列说法正确的是()A . 图中共有5条线段B . 直线AB与直线AC是指同一条直线C . 射线AB与射线BA是指同一条射线D . 点O在直线AC上8. (2分) (2020八下·抚宁期中) 若点A(a+2,b-1)在第二象限,则点B(-a,b-1)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)(2019·通州模拟) 下列图形中,是中心对称图形的是()A .B .C .D .10. (2分)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 135°B . 180°C . 270°D . 315°11. (2分)一元一次不等式组的解集在数轴上表示为()A .B .C .D .12. (2分)分式方程的解为().A . 1B . 2C .D . 0二、填空题 (共6题;共6分)13. (1分) (2019八下·诸暨期末) 在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是________.14. (1分)如图,在▱ABCD中,AB=5,AC=6,当BD=________时,四边形ABCD是菱形.15. (1分) (2017九上·平舆期末) 在平面直角坐标系中,将抛物线y=x2﹣x﹣12向上(下)或左(右)平移m个单位,使平移后的抛物线恰巧经过原点,则|m|的最小值为________.16. (1分) (2016九上·姜堰期末) 已知x(x﹣3)=5,则代数式2x2﹣6x﹣5的值为________.17. (1分)(2018·吉林模拟) 如图,在 ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2 ,S△BQC=25cm2 ,则图中阴影部分的面积为________cm2 .18. (1分)(2012·湖州) 甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是 =0.6, =0.8,则运动员________的成绩比较稳定.三、解答题 (共8题;共57分)19. (5分)某文具店有单价为10元、15元和20元的三种文具盒出售,该商店统计了2014年3月份这三种文具盒的销售情况,并绘制统计图(不完整)如下:(1)这次调查中一共抽取了多少个文具盒?(2)求出图1中表示“15元”的扇形所占圆心角的度数;(3)在图2中把条形统计图补充完整.20. (5分) (2019七下·永寿期末) 如图,在某住房小区的建设中,为了提高业主的直居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建两条宽为b米的通道.问剩余草坪的面积是多少平方米?21. (5分)分别在直角坐标系中描出点(1)(0,0),(5,4),(3,0),(5,1)(5,﹣1),(3,0),(4,﹣2),(0,0);按描点的顺序连线.(2)(0,0),(10,8),(6,0),(10,2),(10,﹣2),(6,0),(8,﹣4),(0,0)按描点的顺序连线.(3)你得到两个怎样的图形?(4)两个图形有什么特点?(从形状和大小来回答)22. (5分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?23. (5分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).24. (7分) (2019九下·瑞安月考) 水果商贩小李上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元,小李购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)小李有甲、乙两家店铺,每售出一箱草莓或苹果,甲店分别获利14元和20元,乙店分别获利10元和15元;①若小李将购进的60箱水果分配给两家店铺各30箱,设分配给甲店草莓箱,请填写下表:草莓数量(箱)苹果数量(箱)合计(箱)甲店30乙店30小李希望在乙店获利不少于300元的前提下,使自己获取的总利润最大,问应该如何分配水果?最大的总利润是多少?________②若小李希望获得总利润为900元,他分配给甲店箱水果,其中草莓箱,已知,则________(写出一个即可).25. (15分)(2014·茂名) 如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.(1)证明:直线AB与⊙O相切;(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.26. (10分)(2020·贵港模拟) 如图,抛物线交x轴于点A,B交y轴于点C,直线经过点A,C.(1)求抛物线的解析式.(2)点P是抛物线上一动点,设点P的横坐标为m.①若点P在直线AV的下方,当的面积最大时,求m的值;②若是以AC为底的等腰三角形,请直接写出的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共57分)19-1、20-1、21-1、22-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。

广东省梅州市2020年中考数学一模试卷(I)卷

广东省梅州市2020年中考数学一模试卷(I)卷

广东省梅州市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)如图所示,根据有理数a、b、c在数轴上的位置,下列关系正确的是()A .B .C .D .2. (2分) (2016七上·夏津期末) 未来三年,我国将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿用科学记数法表示为()A . 0.845×104亿元B . 8.45×103亿元C . 8.45×104亿元D . 84.5×102亿元3. (2分)下列图形不是正方体的展开图的是()A .B .C .D .4. (2分)已知反比例函数的图象如图所示,则一元二次方程x2-(2k-1)x+k2-1根的情况是()A . 有两个不等实根B . 有两个相等实根C . 没有实根D . 无法确定5. (2分) (2017九上·慈溪期中) 如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A . πB . 10πC . 24+4πD . 24+5π6. (2分) (2017八下·鄂托克旗期末) 四边形ABCD是菱形,对角线AC , BD相交于点O ,DH⊥AB于H ,连接OH ,∠DHO=20°,则∠CAD的度数是. ()A . 25°B . 20°C . 30°D . 40°7. (2分) (2018八上·义乌期中) 如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A . 50°B . 51°C . 51.5°D . 52.5°8. (2分) (2019八上·温州期末) 如图,在等腰△OAB中,∠OAB=90°,点A在x轴正半轴上,点B在第一象限,以AB为斜边向右侧作等腰Rt△ABC,则直线OC的函数表达式为()A .B .C .D .二、填空题 (共6题;共6分)9. (1分)(2019·双柏模拟) 分解因式4ab﹣2a2﹣2b2=________.10. (1分)不等式组的解集是________.11. (1分)(2017·惠山模拟) 如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于________.12. (1分) (2016七上·乳山期末) 如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在D′处,若AB=3,AD=4,则S△CED′:S△CEA=________.13. (1分)已知扇形的圆心角为120°,所对的弧长为,则此扇形的面积是________.14. (1分) (2020八下·英德期末) 如图,和都是边长为3的等边三角形,点,,在同一条直线上,连接,则的长为________.三、解答题 (共10题;共78分)15. (5分) (2019七下·城固期末) 计算:[(a+2b)2-(a+2b)(a-2b)]÷4b.16. (5分) (2019九上·白云期末) 请你分析以下问题:某校亲子运动会中,小美一家三口参加“三人四足”比赛,需要小美、爸爸和妈妈排成一横排,求小美排在妈妈右侧身旁的概率.17. (5分)(2017·高邮模拟) 快走是大众常用的健身方式,手机中的“乐动力”可以计算行走的步数与消耗的相应能量,对比数据发现小明步行1200步与小红步行9000步消耗的能量相同,若每消耗1千卡能量小明行走的步数比小红多2步,求小红每消耗1千卡能量可以行走多少步?18. (5分)(2012·梧州) 如图,某校为搞好新校区的绿化,需要移植树木.该校九年级数学兴趣小组对某棵树木进行测量,此树木在移植时需要留出根部(即CD)1.3米.他们在距离树木5米的E点观测(即CE=5米),测量仪的高度EF=1.2米,测得树顶A的仰角∠BFA=40°,求此树的整体高度AD.(精确到0.1米)(参考数据:sin40°=0.6428,cos40°=0.7660,tan40°=0.8391)19. (5分)如图中,哪一条是轴对称图形?哪一些不是轴对称图形?如果是轴对称图形,请画出对称轴.20. (8分) (2019九上·无锡月考) 为了丰富学生校园文化生活,促进学生学习兴趣和能力的提高,我校在初一年级开始设置选修课程,共设立课程12门,下图为其中的四门课程(包括趣味数学、篮球队、戏剧社、合唱团)的参加人数统计图:(1)学校初一年级参加这四门课程的总人数是________人;(2)扇形统计图中“趣味数学”部分的圆心角是________度,并把条形统计图补充完整________;(3)学校原则上每一门课程组成一个班,但参加篮球队的学生实在太多,考虑场地因素则分成两个班,合唱团由于课程特征还是组成一个班,求这四门课程平均每班多少人?21. (15分) (2016九上·江岸期中) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?22. (10分)(2017·陵城模拟) 联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.(1)应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD= AB,求∠APB的度数.(2)探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.23. (10分)(2017·大连) 如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.24. (10分) (2018九上·天台月考) 在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB= ;(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;①把图形补充完整(无需写画法);②求的取值范围;(2)如图2,求BE+AE+DE的最小值.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共78分)15-1、16-1、17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、。

2020年梅州市中考数学模拟试卷解析版(6月)

2020年梅州市中考数学模拟试卷解析版(6月)
解:原式=﹣2x(m2﹣6m+9)=﹣2x(m﹣3)2.
故答案为:﹣2x(m﹣3)2.
14.(4分)在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是(3,﹣2).
解:若点P在第四象限,且点P到x轴的距离为2,到y轴的距离为3,则点的坐标为(3,﹣2),
A.4B.5C.6D.8
解:∵A、B是曲线y 上的点,经过A、B两点向x轴、y轴作垂线段,
∴S1+S阴影=S+S阴影=5,
又∵S阴影=1,
∴S1=S2=5﹣1=4,
∴S1+S2=8.பைடு நூலகம்
故选:D.
二.填空题(共7小题,满分28分,每小题4分)
11.(4分)实数81的平方根是±9.
解:实数81的平方根是:± ±9.
∴AB=AD=CD=BC=10,∠BAD=∠BCD=60°,
∴△ABD是等边三角形,
∴AE过点O,E为BD中点,则此时EO=5,
故AO的最小值为:AO=AE﹣EO=ABsin60° BD=5 5.
故答案为:5 5.
17.(4分)已知四个点的坐标分别为A(﹣4,2),B(﹣3,1),C(﹣1,1),D(﹣2,2),若抛物y=ax2与四边形ABCD的边没有交点,则a的取值范围为a>1或0<a 或a<0.
5.使二次根式 有意义的x的取值范围是( )
A. B. C.x≤3D.x≤﹣3
解:由题意得:3x+1≥0,
解得:x ,
故选:B.
6.在一只不透明的口袋中放入只有颜色不同的白球6个,黑球8个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为 ,则放入的黄球个数=( )
A.4B.5C.6D.7

广东省梅州市2019-2020学年中考数学模拟试题含解析

广东省梅州市2019-2020学年中考数学模拟试题含解析

广东省梅州市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形2.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=()A.20°B.35°C.15°D.45°3.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.310B.15C.12D.7104.下列命题是真命题的个数有()①菱形的对角线互相垂直;②平分弦的直径垂直于弦;③若点(5,﹣5)是反比例函数y=kx图象上的一点,则k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.A.1个B.2个C.3个D.4个5.如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.7.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹8.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查9.化简16的结果是()A.±4 B.4 C.2 D.±210.将(x+3)2﹣(x﹣1)2分解因式的结果是()A.4(2x+2)B.8x+8 C.8(x+1)D.4(x+1)11.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.A.3 B.4 C.5 D.612.在0,-2,5,14,-0.3中,负数的个数是().A.1 B.2 C.3 D.4 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan∠DBE的值是_____.14.当x=_________时,分式323xx-+的值为零.15.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.16.出售某种手工艺品,若每个获利x元,一天可售出(8)x-个,则当x=_________元,一天出售该种手工艺品的总利润y最大.17.点A(-2,1)在第_______象限.18.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.20.(6分)解方程21=122xx x---21.(6分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?22.(8分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:3≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)23.(8分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?24.(10分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?25.(10分)已知关于x的方程x2-(m+2)x+(2m-1)=0。

广东省梅州市2019-2020学年中考数学考前模拟卷(1)含解析

广东省梅州市2019-2020学年中考数学考前模拟卷(1)含解析

广东省梅州市2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作弧AC 、弧CB 、弧BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I 为对称轴的交点,如图2,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE=2π,将它沿等边△DEF 的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是( )A .18πB .27πC .452πD .45π2.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A .甲种方案所用铁丝最长B .乙种方案所用铁丝最长C .丙种方案所用铁丝最长D .三种方案所用铁丝一样长:学*科*网]3.下列分式是最简分式的是( ) A .223a a b B .23a a a - C .22a b a b ++ D .222a ab a b-- 4.在实数0,-π34中,最小的数是( )A .0B .-πC 3D .-45.数据3、6、7、1、7、2、9的中位数和众数分别是( )A .1和7B .1和9C .6和7D .6和9 6.实数213-的倒数是( ) A .52- B .52 C .35- D .357.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( )A .3,2B .3,4C .5,2D .5,48.下列图形中,是中心对称但不是轴对称图形的为( )A .B .C .D .9.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( ) A .a e a v v v = B .e b b =v v v C .1a e a =v v v D .11a b a b=v v v v 10.如图,在等腰直角△ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A .5B .35C .222D .2311.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .1812.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,已知,A (2,0),C (0,﹣1),若P 为线段OA 上一动点,则CP+13AP 的最小值为_____.14212273=_____.15.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为.16.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1=.17.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.18.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED =∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=,求AD的长.20.(6分)先化简,再求值:(m+2﹣52m-)•243mm--,其中m=﹣12.21.(6分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)22.(8分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.23.(8分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.24.(10分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)△ABC的面积等于_____;(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.25.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数26.(12分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?27.(12分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(3,1)在反比例函数k yx =的图象上.求反比例函数kyx=的表达式;在x轴的负半轴上存在一点P,使得S△AOP=12S△AOB,求点P的坐标;若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.。

梅州市2020年中考数学模拟试题及答案

梅州市2020年中考数学模拟试题及答案

梅州市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。

①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。

2020年广东省中考数学一模试卷(含答案解析)

2020年广东省中考数学一模试卷(含答案解析)

2020年广东省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−6的绝对值是()A. 6B. −6C. 16D. −162.下列选项中的图形,不属于中心对称图形的是()A. 等边三角形B. 正方形C. 正六边形D. 圆3.在建的北京新国际机场预计2025年旅客吞吐量将达到72 000 000人次.将72 000 000用科学记数法表示应为()A. 7.2×106B. 72×106C. 7.2×107D. 0.72×1084.方程3x2−7x−2=0的根的情况是()A. 方程没有实数根B. 方程有两个不相等的实数根C. 方程有两个相等的实数很D. 不确定5.下列运算正确的是()A. a2⋅a3=a6B. a3+a2=a5C. (a2)4=a8D. a3−a2=a6.一组数据:0、−1、−2、3、1、2、1.则这组数据的中位数是()A. 3B. 0C. 2D. 17.如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为().A. 50°;B. 60°;C. 70°;D. 80°.8.如图,AB是⊙O的直径,∠C=30°,则∠ABD等于()A. 30°B. 40°C. 50°D. 60°9.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AO等于()DOA. 2√53B. 13C. 23D. 1210.如图,等腰直角三角形ABC的斜边BC在直线m上.且BC=3cm,边长为1cm的正方形EFGD沿着BC方向从B点开始以1cm/s的速度向右运动,当G点和C点重合时即停止.若正方形和等腰直角三角形重合部分的面积为y(cm2),运动的时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B.C. D.二、填空题(本大题共7小题,共15.0分)11.分解因式:m2−25=______.12.十边形的内角和是________.13.已知等腰三角形的两条边长为1cm和3cm,则这个三角形的周长为______14.已知△ABC∽△DEF,且它们的面积之比为4:25,则它们对应中线的比为________.15.不等式组{x−1>03x−5≤2的解是______.16.如图,在矩形ABCD中,AB=4cm,AD=3cm.将矩形ABCD绕点D旋转,使点A落在对角线BD上,得矩形A′B′C′D,则B,B′两点之间的距离为________cm.17.如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为______.三、解答题(本大题共8小题,共75.0分)18.计算:|−3|+(√2−1)0−(13)−119.先化简,再求值:m2−4m+4m−1÷(3m−1−m−1),其中m=√3−2.20.如图,在Rt△ABC中,∠C=90°.作∠BAC的平分线AP交边BC于点D.(保留作图痕迹,不写作法);若∠BAC=28°,求∠ADB的度数.21.某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”“一般”“较强”“很强”四个层次,并绘制成如下两幅尚不完整的统计图根据以上信息,解答下列问题:(1)该校有1200名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有多少名?(2)请直接将条形统计图补充完整.22.如图,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等边三角形,E是AC的中点,连接BE并延长,交DC于点F.(1)求证:△ABE≌△CFE;(2)求证:四边形ABFD是平行四边形.23.如图,身高1.6米的小明为了测量学校旗杆AB的高度,在平地上C处测得旗杆高度顶端A的仰角为30°,沿CB方向前进3米到达D处,在D处测得旗杆顶端A的仰角为45°,求旗杆AB的高度(√3=1.7,√2=1.4)24.如图,已知AB//CD,AC与BD相交于点E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求CD的长25.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象交x轴于点A(−4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,−2),连接AE.(1)求二次函数的表达式;(2)若点D为第二象限内抛物线上的一个动点,求使△ADE面积最大时点D的坐标;(3)在抛物线的对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请求出所有P点的坐标;若不存在,请说明理由.【答案与解析】1.答案:A解析:解:|−6|=6,故选:A.根据负数的绝对值是它的相反数,可得负数的绝对值.本题考查了绝对值,负数的绝对值是它的相反数.2.答案:A解析:解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选:A.根据中心对称图形的概念求解.本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.答案:C解析:解:72 000 000=7.2×107,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:B解析:解:由根的判别式△=b2−4ac=(−7)2−4×3×(−2)=49+24=73>0,所以方程有两个不相等的实数根.故选:B.先计算判别式的值,然后根据判别式的意义判断方程根的情况.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.答案:C解析:此题主要考查了同底数幂的乘法运算以及幂的乘方运算和合并同类项,正确掌握运算法则是解题关键.直接利用同底数幂的乘法运算法则以及幂的乘方运算法则和合并同类项法则分别计算得出答案.解:A、a2⋅a3=a5,故此选项错误;B、a3+a2,a3和a2不是同类项,不能合并,故此选项错误;C、(a2)4=a8,故此选项正确;D、a3−a2,a3和a2不是同类项,不能合并,故此选项错误;故选C.6.答案:D解析:解:把这些数从小到大排列为:−2、−1、0、1、1、2、3,最中间的数是1,则这组数据的中位数是1;故选:D.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.答案:D解析:[分析]如下图,由平行线的性质可得∠3=∠2,结合∠1=2∠2,∠4=60°,∠1+∠4+∠3=180°即可求得∠1的度数.[详解]∵直尺相对的两边是平行的,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∵∠1+∠4+∠3=180°,∠4=60°,∠1+60∘=180∘,∴32∴∠1=80°.故选D.[点睛]本题是一道考查平行线的性质和平角定义的题目,对于“两直线平行,同位角相等”和“平角的度数为180°”的正确应用是解题的关键.8.答案:D解析:【试题解析】。

2020年广东省中考数学一模试卷 (含答案解析)

2020年广东省中考数学一模试卷 (含答案解析)

2020年广东省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120112.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.在平面直角坐标系中,点(3,−1)关于x轴对称的点的坐标为()A. (3,1)B. (−3,1)C. (1,−3)D. (−3,−1)4.一个多边形的内角和是1440°,求这个多边形的边数是()A. 7B. 8C. 9D. 105.若式子√4−3x在实数范围内有意义,则x的取值范围是()A. x>43B. x<43C. x≥43D. x≤436.如图,在△ABC中,点E、F分别为AB、AC的中点.若△ABC的周长为6,则△AEF的周长为()A. 12B. 3C. 4D. 不能确定7.将二次函数y=x2−4x−5向右平移1个单位,得到的二次函数为解析式为()A. y=x2−4x−6B. y=x2−4x−4C. y=x2−6xD. y=x2−6x−58.不等式组{x−2<03x<4x+3的解集为()A. −3<x<2B. −3<x<−2C. x<2D. x>−39.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.已知抛物线y=ax2+bx+c(a>0)的对称轴为x=−1,交x轴的一个交点为(x1,0),且0<x1<1,则下列结论正确的有几个()①b>0,c<0;②a−b+c>0;③b<a;④3a+c>0;⑤9a−3b+c>0A. 1个B. 3个C. 2个D. 4个二、填空题(本大题共7小题,共28.0分)11.分解因式:xy―x=_____________.12.若单项式2a x+1b与−3a3b y+4是同类项,则x y=______.13.若(a−√2)2+|b−1|=0,则1的值为______ .a+b14.若x−2y=−3,则5−x+2y=______.BC的长为半径作15.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB 的度数为______.16.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是______cm.17.如图,在平面直角坐标系中,已知点A(1,0)、B(1−t,0)、C(1+t,0)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是____.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:[(x+2y)2−(x+4y)(3x+y)]÷(2x),其中x=−2,y=1.2四、解答题(本大题共7小题,共56.0分)19.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?20. 如图,∠A =∠D =90°,AB =CD ,AC ,BD 相交于点E .求证:(1)△ABC ≌△DCB ;(2)△EBC 是等腰三角形.21. 若方程组{3x +y =93ax −4by =18与{4x −y =5ax +by =−1的解相同,求a ,b 的值.22. 如图,⊙O 是△ABC 的外接圆,AC 是直径,弦BD =BA ,EB ⊥DC ,交DC 的延长线于点E .(1)求证:BE 是⊙O 的切线;(2)当sin∠BCE=3,AB=3时,求AD的长.423.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?(m>0,x>0)图象上的两点,一次函数y=kx+ 24.如图,点A(2,n)和点D是反比例函数y=mx3(k≠0)的图象经过点A,与y轴交于点B,与x轴交于点C,过点D作DE⊥x轴,垂足为E,连接OA,OD.已知△OAB与△ODE的面积满足S△OAB:S△ODE=3:4.(1)S△OAB=______,m=______;(2)已知点P(6,0)在线段OE上,当∠PDE=∠CBO时,求点D的坐标.25.如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=−2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.-------- 答案与解析 --------1.答案:C解析:本题主要考查了相反数的定义,a的相反数是−a.根据相反数的定义即可求解.解:−2011的相反数是2011.故选C.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4,故选B.3.答案:A解析:本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:点P(3,−1)关于x轴对称的点的坐标是(3,1),故选A.4.答案:D解析:解:设这个多边形的边数是n,根据题意得,(n−2)⋅180°=1440°,解得n=10.故选:D.根据多边形的内角和公式(n−2)⋅180°列出方程,然后求解即可.本题考查了多边形的内角和公式,熟记公式并列出方程是解题的关键.5.答案:D解析:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.根据二次根式有意义的条件可得:4−3x≥0,再解即可.解:由题意得:4−3x≥0,解得:x≤43,故选D.6.答案:B解析:解:∵点E、F分别为AB、AC的中点.∴EF=12BC,EA=12BA,AF=12AC,∵△ABC的周长为6,即AB+AB+BC=6,∴△AEF的周长=AE+AF+EF=12(AB+AC+BC)=3,故选B.根据题意可得出EF=12BC,再根据三角形的周长公式可得出答案.本题考查了三角形的中位线定理,三角形的中位线等于第三边的一半.7.答案:C解析:此题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,解答此题可先将二次函数配成顶点式,写出顶点坐标,然后得到平移后的顶点坐标,从而可得到平移后的二次函数的解析式.解:y=x2−4x−5=(x−2)2−9,∴顶点坐标为(2,−9),向右平移一个单位后的顶点坐标为(3,−9),∴平移后的函数解析式为:y=(x−3)2−9=x2−6x+9−9=x2−6x.故选C.8.答案:A解析:解:解不等式x−2<0,得:x<2,解不等式3x<4x+3,得:x>−3,则不等式组的解集为−3<x<2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=13√3.故选:B.10.答案:B解析:本题考查了二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0,否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=−b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0,否则c<0;(4)b2−4ac由抛物线与x轴交点的个数确定:2个交点,b2−4ac>0;1个交点,b2−4ac=0;没有交点,b2−4ac<0.先充分挖掘图象所给出的信息,包括对称轴、开口方向、与坐标轴的交点、顶点位置等,然后根据二次函数图象的性质解题.解:如图所示:①∵开口向上,∴a>0,又∵对称轴在y轴左侧,∴−b2a<0,∴b>0,又∵图象与y轴交于负半轴,∴c<0,正确.②由图,当x=−1时,y<0,把x=−1代入解析式得:a−b+c<0,错误.③∵对称轴在x=−12左侧,∴−b2a <−12,∴ba>1,∴b>a,错误.④由图,x1x2>−3×1=−3;根据根与系数的关系,x1x2=c,a >−3,故3a+c>0,正确.于是ca⑤由图,当x=−3时,y>0,把x=−3代入解析式得:9a−3b+c>0,正确.所以其中正确的有①④⑤,故选B.11.答案:x(y−1)解析:[分析]直接提取公因式x,进而分解因式得出答案.[详解]解:xy―x=x(y−1)故答案为:x(y−1).[点睛]此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:18解析:解:单项式2a x+1b与−3a3b y+4是同类项,∴x+1=3,y+4=1,∴x=2,y=−3.∴x y=2−3=1.8故答案为:1.8依据同类项的相同字母指数相同列方程求解即可.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.答案:√2−1解析:解:由题意得,a−√2=0,b−1=0,解得a=√2,b=1,所以,1a+b =√2+1=√2−1.故答案为:√2−1.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.答案:8解析:解:∵x−2y=−3,∴5−x+2y=5−(x−2y)=5−(−3)=8.故本题答案为8.将已知条件整体代入所求代数式即可.本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.15.答案:105°解析:解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°−50°−25°=105°.故答案为:105°.利用线段垂直平分线的性质得出DC=BD,再利用三角形外角的性质以及三角形内角和定理得出即可.此题主要考查了基本作图以及线段垂直平分线的性质,得出∠A=∠CDA=50°是解题关键.16.答案:√3解析:连接OA,作OD⊥AB于点D,利用勾股定理即可求得AD的长,则AB的长可以求得,然后利用弧长公式即可求得弧长,即底面圆的周长,再利用圆的周长公式即可求得半径.本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.解:连接OA,BC,OB,作OD⊥AB于点D.∵圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),∴AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴∠ACB=60°,∴∠AOB=2∠ACB=120°,又∵OA=OB,∴∠OAD=30°,在直角△OAD中,OA=6,∠OAD=30°,则AD=3√3.则AB=2AD=6√3,=2√3π,则扇形的弧长是:60π×6√3180设底面圆的半径是r,则2πr=2√3π,解得:r=√3.故答案为:√3.17.答案:√13−1解析:本题考查点与圆的位置关系、坐标与图形性质等知识,由题意PA=AB=AC=t,连接AD交⊙D于P,此时PA的值最小.解:∵AB=AC=t,∠BPC=90°,∴PA=AB=AC=t,连接AD交⊙D于P,此时PA的值最小,PA最小值=√32+22−1=√13−1,∴t的最小值为√13−1.故答案为√13−1.18.答案:解:[(x+2y)2−(x+4y)(3x+y)]÷(2x)=[x2+4xy+4y2−(3x2+xy+12xy+4y2)]÷(2x)=(x2+4xy+4y2−3x2−xy−12xy−4y2)÷(2x)=(−2x2−9xy)÷(2x)=−x−92y,当x=−2,y=12时,原式=2−94=−14.解析:本题主要考查整式的混合运算及求代数式的值,解题的关键是掌握整式的混合运算顺序和运算法则.先根据整式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.19.答案:解:(1)调查人数为20÷10%=200(人),喜欢动画的比例为(1−46%−24%−10%)=20%,喜欢动画的人数为200×20%=40(人);(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).解析:此题考查了条形统计图与扇形统计图.注意掌握条形统计图与扇形统计图的有关知识是解此题的关键.(1)首先由喜欢新闻的有20人,占10%,求得总人数;然后由扇形统计图,求得喜爱动画的学生人数所占比例,继而求得喜爱动画的学生人数;(2)由(1)可将条形统计图补充完整;(3)直接利用样本估计总体的方法求解即可求得答案.20.答案: 解:(1)∵∠A =∠D =90°,∴在Rt △ABC 和Rt △DCB 中,{BC =CB AB =DC, ∴Rt △ABC≌Rt △DCB(HL).(2)∵Rt △ABC≌Rt △DCB ,∴∠ACB =∠DBC ,∴BE =CE ,∴△EBC 是等腰三角形.解析: 本题考查了全等三角形的判定与性质以及等腰三角形的判定,证明三角形全等是解题的关键.(1)由“HL ”可证Rt △ABC≌Rt △DCB ;(2)由全等三角形的性质可得∠ACB =∠DBC ,可得BE =CE ,可得结论.21.答案:解:把3x +y =9和4x −y =5联立,得:{3x +y =9①4x −y =5②①+②得:7x =14,则x =2,把x =2代入①得:y =3,则{x =2y =3, 把{x =2y =3代入{3ax −4by =18ax +by =−1中, 得到{a −2b =32a +3b =−1解得:{a =1b =−1.解析:此题主要考查了二元一次方程组的解,熟练掌握方程组的解法是解本题的关键.将第一个方程组第一个方程与第二个方程组第一个方程联立求出x 与y 的值,代入剩下的方程得到关于a 与b 的方程组,即可求出a 与b 的值.22.答案:解:(1)证明:连结OB ,OD ,在△ABO 和△DBO 中,{AB =BD BO =BO OA =OD,∴△ABO≌△DBO(SSS),∴∠DBO =∠ABO ,∵∠ABO =∠OAB =∠BDC ,∴∠DBO =∠BDC ,∴OB//ED ,∵BE ⊥ED ,∴EB ⊥BO ,∴BE 是⊙O 的切线;(2)∵AC 是直径,∴∠ABC =90°,∵∠OBA +∠OBC =∠EBC +∠OBC =90°,∴∠OBA =∠EBC ,∴∠BAC =∠EBC ,∵BE ⊥DE ,∴∠E =90°,∴∠BCE +∠EBC =∠BAC +∠ACB =90°,∵∠BAC =∠EBC ,∴∠ACB =∠BCE ,∵sin∠BCE =34,∴sin∠ACB =34,∵AB =3,∴AC =4,∵∠BDE =∠BAC ,∴sin∠DBE =34,∵BD =AB =3,∴DE =94, ∴BE =√BD 2−DE 2=3√74,∵∠CBE =∠BAC =∠BDC ,∠E =∠E ,∴△BDE∽△CBE ,∴BE CE =DE BE ,∴CE =74,∴CD =12,∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设A 种型号健身器材的单价为x 元/套,B 种型号健身器材的单价为1.5x 元/套, 根据题意,可得:7200x −54001.5x =10,解得:x =360,经检验x =360是原方程的根,1.5×360=540(元),因此,A ,B 两种健身器材的单价分别是360元,540元;(2)设购买A 种型号健身器材m 套,则购买B 种型号的健身器材(50−m)套,根据题意,可得:360m+540(50−m)≤21000,,解得:m≥3313因此,A种型号健身器材至少购买34套.解析:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B 种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x的分式方程,解之即可得出结论;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50−m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.答案:解:(1)3;8;(2)如图:由(1)知,反比例函数解析式是y=8.x∴2n=8,即n=4.故A(2,4),将其代入y=kx+3得到:2k+3=4..解得k=12x+3.∴直线AC的解析式是:y=12x+3=0,令y=0,则12∴x=−6,∴C(−6,0).∴OC =6.由(1)知,OB =3.设D(a,b),则DE =b ,PE =a −6.∵∠PDE =∠CBO ,∠COB =∠PED =90°,∴△CBO∽△PDE ,∴OB DE =OC PE ,即3b =6a−6 ①, 又ab =8 ②.联立①②,得{a =−2b =−4(舍去)或{a =8b =1. 故D (8,1).解析:本题考查了反比例函数综合题,需要掌握待定系数法确定函数关系式,函数图象上点的坐标特征,反比例函数系数k 的几何意义,三角形的面积公式,相似三角形的判定与性质等知识点,综合性较强.(1)由一次函数解析式求得点B 的坐标,易得OB 的长度,结合点A 的坐标和三角形面积公式求得S △OAB =3,所以S △ODE =4,由反比例函数系数k 的几何意义求得m 的值;(2)利用待定系数法确定直线AC 函数关系式,易得点C 的坐标;利用∠PDE =∠CBO ,∠COB =∠PED =90°判定△CBO∽△PDE ,根据该相似三角形的对应边成比例求得PE 、DE 的长度,易得点D 的坐标.解:(1)由一次函数y =kx +3知,B(0,3).又点A 的坐标是(2,n),∴S △OAB =12×3×2=3. ∵S △OAB :S △ODE =3:4.∴S △ODE =4.∵点D 是反比例函数y =m x (m >0,x >0)图象上的点, ∴12m =S △ODE =4,则m =8.故答案是:3;8;(2)见答案.25.答案:解:(1)由题意得:x=−b2a =−b2=−2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=−2,BC=6,∴B横坐标为−5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(−5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=−1,即y=−x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴QHBM =AQAB,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:AB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=−2代入直线AB解析式得:y=4,此时Q(−2,4),直线CQ解析式为y=x+6,令y=0,得到x=−6,即P(−6,0);当QH=3时,把x=−3代入直线AB解析式得:y=5,此时Q(−3,5),直线CQ解析式为y=12x+132,令y=0,得到x=−13,此时P(−13,0),综上,P的坐标为(−6,0)或(−13,0).解析:(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档