2015八年级数学上第二次月考试卷(含答案和解释)
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案) 一、选择题 1.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .322.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .63.下列图案属于轴对称图形的是( )A .B .C .D .4.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4-5.下列四个图标中,是轴对称图形的是( )A .B .C .D .6.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .47.下列四个图案中,不是轴对称图案的是( )A .B .C .D .8.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .129.计算2263y y x x÷的结果是( ) A .3318y xB .2y xC .2xyD .2xy 10.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A .﹣2 B .﹣1 C .0 D .2二、填空题11.如图,在平面直角坐标系中,长方形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 、y 轴的正半轴上:OA =3,OC =4,D 为OC 边的中点,E 是OA 边上的一个动点,当△BDE 的周长最小时,E 点坐标为_____.12.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.13.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.14.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.15.如果点P (m+1,m+3)在y 轴上,则m=_____.16.在311,2π,122-,0,0.454454445…,319中,无理数有______个. 17.计算222m m m+--的结果是___________ 18.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.19.一次函数32y x =-+的图象一定不经过第______象限.20.若函数y=kx +3的图象经过点(3,6),则k=_____.三、解答题21.如图1,在平面直角坐标系xOy 中,点A 的坐标是(0,2),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形(90ACP ︒∠=,点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合).(初步探究)(1)写出点B 的坐标________;(2)点C 在x 轴上移动过程中,作PD x ⊥轴,垂足为点D ,都有AOC CDP ∆∆≌,请在图2中画出当等腰直角AOP ∆的顶点P 在第四象限时的图形,并求证:AOC CDP ∆∆≌.(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.探究点P 在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;(4)直接写出2AP 的最小值为________.22.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.23.如图,在△ABC 中,AC=BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,当△PCD 的周长最小时,在图中画出点P 的位置,并求点P 的坐标.24.已知 2x k x+=,k 为正实数. (1)当k =3时,求x 224x +的值; (2)当k 10时,求x ﹣2x的值; (3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下.25.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x =2﹣23. 四、压轴题26.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).27.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.28.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积;(2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】2211+2,∴点A 2.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.2.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME与△AMN中,===AE ANEAM NAMAM AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵2AB ,∠BAC=45°,此时△ABE为等腰直角三角形,∴2,即BE2,∴BM+MN2.故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.3.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.4.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.5.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不合题意.故选:B .【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.B解析:B【解析】【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A.此图案是轴对称图形,不符合题意;B.此图案不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是轴对称图形,不符合题意;故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键. 9.D解析:D【解析】【分析】利用分式的除法法则,将分式的除法转化为乘法再约分即可.【详解】解:原式22362y x xyx y==.故选:D.【点睛】本题主要考查了分式的除法,熟练掌握分式的除法运算是解题的关键.10.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题11.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B 交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.12.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.13.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.14.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.15.﹣1.【解析】∵点P (m+1,m+3)在y 轴上,∴m +1=0,∴m=-1.故答案为:-1.解析:﹣1.【解析】∵点P (m+1,m+3)在y 轴上,∴m+1=0,∴m=-1.故答案为:-1.16.3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,,0.454454445…,为无理数,共3个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无解析:3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2π,0.4544544453个. 故答案为:3.【点睛】 本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.17.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母. 18.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.19.三【解析】【分析】根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y 轴的正半轴,解析:三【解析】【分析】根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y 轴的正半轴,k=-3<0,∴y 随x 的增大而减小,∴函数的图象经过第一、二、四象限,∴不经过第三象限.故答案为:三.【点睛】本题考查了一次函数的性质. 解题时可根据解析式中的k 、b 的值的正负作出草图,从而很容易判断函数经过(或不经过)那一象限.20.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),∴336k +=,解得:k=1.故答案为:1.三、解答题21.(1)()2,0B ;(2)证明见解析;(3)点P 在直线上运动;2y x =-;(4)8.【解析】【分析】(1)根据等腰三角形的性质即可求解;(2)根据题意作图,再根据等腰直角三角形的性质判定AOC CDP ∆∆≌;(3)根据题意去特殊点,再利用待定系数法即可求解;(4)当P在B点时,AP最小,故可求解.【详解】(1)∵点A的坐标是(0,2),△AOB为等腰直角三角形,∴AO=BO∴()2,0B(2)如图,∵ACP∆是等腰直角三角形,且90ACP∠=︒∴AC PC=∵PD BC⊥∴90PDC∠=︒∴90AOC PDC∠=∠=︒,90DPC PCD∠+∠=︒∵90ACP∠=︒∴90ACB PCD∠+∠=︒∴DPC ACB∠=∠在AOC∆和CDP∆中,,,.AOC PDCDPC ACBAC PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOC CDP AAS∆∆≌(3)点P在直线上运动;∵两点确定一条直线∴可以取两个特殊点当P在y轴上时,2OP OC OA===,∴()0,2P-当P在x轴上时,2OP OA==,∴()2,0P设所求函数关系式为y kx b=+;将()2,0和()0,2-代入,得20,2.k bb+=⎧⎨=-⎩220bk b=-⎧⎨+=⎩解得1,2.kb=⎧⎨=-⎩21bk=-⎧⎨=⎩所以所求的函数表达式为2y x=-;(4)如图,作AP⊥直线2y x=-,即P与B点重合,∴AP2=22+22=8.【点睛】此题主要考查一次函数的几何综合,解题的关键是熟知一次函数的性质。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案) 一、选择题 1.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴 2.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .5 3.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)4.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<325.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)6.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8 7.点(2,-3)关于原点对称的点的坐标是( ) A .(-2,3) B .(2,3) C .(-3,-2) D .(2,-3)8.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 9.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( )A .1B .2C .4D .无数 10.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等二、填空题11.17.85精确到十分位是_____.12.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.13.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.14.4的平方根是 .15.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .16.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________.17.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.18.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.19.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.20.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题21.甲、乙两车同时从A 地出发前往B 地,其中甲车选择有高架的路线,全程共50km ,乙车选择没有高架的路线,全程共44km .甲车行驶的平均速度比乙车行驶的平均速度每小时快20千米,乙车到达B 地花费的时间是甲车的1.2倍.问甲、乙两车行驶的平均速度分别是多少?22.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.23.如图,反比例函数k y x=与一次函数y=x+b 的图象,都经过点A (1,2)(1)试确定反比例函数和一次函数的解析式;(2)求一次函数图象与两坐标轴的交点坐标.24.已知一次函数y=kx+b的图象经过点A(—1,—5),且与正比例函数的图象相交于点B(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.25.在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.(1)当k=2时,求两条直线与x轴围成的△BDE的面积;(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的面积为233时.①求k的值;②若m=a+b,求m的取值范围.四、压轴题26.如图,在平面直角坐标系中,一次函数y x的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______.(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.28.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.30.如图,在平面直角坐标系中,直线AB 经过点A 332)和B 3,0),且与y 轴交于点D ,直线OC 与AB 交于点C ,且点C 3.(1)求直线AB 的解析式;(2)连接OA ,试判断△AOD 的形状;(3)动点P 从点C 出发沿线段CO 以每秒1个单位长度的速度向终点O 运动,运动时间为t秒,同时动点Q 从点O 出发沿y 轴的正半轴以相同的速度运动,当点Q 到达点D 时,P ,Q 同时停止运动.设PQ 与OA 交于点M ,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D. 【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 2.C解析:C【解析】 试题分析:A 31,故错误;B 2<﹣1,故错误;C .﹣12<2,故正确;52,故错误;故选C .【考点】估算无理数的大小.3.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】将Rt ABC∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.4.B解析:B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.6.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.7.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.8.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A中,例如42=,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.9.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.10.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.二、填空题11.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.13.3-【解析】【分析】作AH⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt△ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3-3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°, ∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.14.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.15.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 16.【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,k->,∴10k>;∴1k>.故答案为:1【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.17.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 18.【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,解析:【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故答案为:12.【点睛】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.19.【解析】【分析】由直线与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.20.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD 平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=12∠BAC , ∵∠BAC=120°, ∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】 本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质.三、解答题21.甲车行驶的平均速度为75/km h ,乙车行驶的平均速度为55/km h .【解析】【分析】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据“乙车到达B 地花费的时间是甲车的1.2倍”列方程求解即可.【详解】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据题意,得:50441.220x x⨯=+ 解得:x =55.经检验,x =55是所列方程的解.当x =55时,x +20=75.答:甲车行驶的平均速度为75km/h ,乙车行驶的平均速度为55km/h .【点睛】本题考查了分式方程的应用.找出相等关系是解答本题的关键.22.(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【解析】【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.23.(1)反比例函数的解析式为2yx=,一次函数的解析式为y=x+1.(2)(-1,0)与(1,0).【解析】【分析】(1)将点A(1,2)分别代入kyx=与y=x+b中,运用待定系数法即可确定出反比例解析式和一次函数解析式.(2)对于一次函数解析式,令x=0,求出对应y的值,得到一次函数与y轴交点的纵坐标,确定出一次函数与y轴的交点坐标;令y=0,求出对应x的值,得到一次函数与x轴交点的横坐标,确定出一次函数与x轴的交点坐标.【详解】解:(1)∵反比例函数kyx=与一次函数y=x+b的图象,都经过点A(1,2),∴将x=1,y=2代入反比例解析式得:k=1×2=2,将x=1,y=2代入一次函数解析式得:b=2-1=1,∴反比例函数的解析式为2yx=,一次函数的解析式为y=x+1.(2)对于一次函数y=x+1,令y=0,可得x=-1;令x=0,可得y=1.∴一次函数图象与两坐标轴的交点坐标为(-1,0)与(1,0).24.(1)a=1 (2)y=2x-3 (3)3【解析】【分析】(1)将点(2,a)代入正比例函数解析式求出a的值;(2)将(-1,-5)和(2,1)代入一次函数解析式求出k和b的值,从而得出函数解析式;(3)根据描点法画出函数图象.【详解】解:(1)∵正比例函数y=12x的图象过点(2,a)∴ a=1(2)∵一次函数y=kx+b的图象经过两点(-1,-5)(2,1)∴5 21k bk b-+=-⎧⎨+=⎩解得23 kb=⎧⎨=-⎩∴y=2x-3(3)函数图像如图【点睛】本题考查待定系数法求函数解析式;描点法画函数图象25.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0) 解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB ,∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2, 解得k =4.②∵直线y =4x +2交x 轴于D , ∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上, ∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上 ∴b =4a +2, ∴m =a +b =5a +2,15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为10【解析】 【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答. 【详解】(1)如图,C '的坐标为(3,-2), 故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H , 对于直线y =﹣3x+3,由x =0得y =3 ∴P (0,3), ∴OP =3 由y =0得x =1, ∴Q (1,0),OQ =1, ∵∠QPR =45° ∴∠PSQ =45°=∠QPS ∴PQ =SQ∴由(1)得SH =OQ ,QH =OP∴OH =OQ+QH =OQ+OP =3+1=4,SH =OQ =1 ∴S (4,1),设直线PR 为y =kx+b ,则341b k b =⎧⎨+=⎩ ,解得1k 2b 3⎧=-⎪⎨⎪=⎩∴直线PR 为y =﹣12x+3 由y =0得,x =6 ∴R (6,0). 【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 28.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】 【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果; (3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x+解出x 即可. 【详解】解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°, ∵CD ⊥AB , ∴∠BDC=90°, ∵BE 平分∠ABC , ∴∠ABE=∠CBE=34°, ∴∠BPD =90-34=56°; (2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x-)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°,∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x+)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC , 则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x-,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x+,∴902x -+902x --(454x+)=90°, 解得:x=36°; ②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y-,由①得:∠ABC+∠BCD=90°,∴902x -+[902x --(902y-)]=90,又y=454x +,解得:x=1807°; ③若CP=CE ,则∠EPC=∠PEC=y ,∠PCE=180-2y , 由①得:∠ABC+∠BCD=90°,∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合,综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系. 29.(1)①);②B ;(2)3s =;(3)59k ≤≤.【解析】 【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可. 【详解】 解:(1)①∵2a =,∴11b b ==-=',∴坐标为:),故答案为:);②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2, ∵()2,2满足2y =, ∴这个点是B , 故答案为:B ;(2)∵点C 的坐标为(2,2)--, ∴OC 的关系式为:()0y x x =≤, ∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩,∴点P 的限变点Q 的纵坐标满足的关系式为:。
北师大版八年级上册数学月考试卷含答案
北师大版八年级上册数学月考试卷含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( )A .5-313B .3C .313-5D .-35.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 32|1|0a b -++=,则2020()a b +=_________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x +=-,求k 的值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、B5、C6、C7、B8、D9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、82、-1或5或1 3 -3、14、10.56、8三、解答题(本大题共6小题,共72分)1、x=12、22x-,12-.3、(1)见解析;(2)k=84、略.5、(1)①132y x=-+;②四边形ABCD是菱形,理由略;(2)四边形ABCD能是正方形,理由略,m+n=32.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
北师大版八年级(上)数学第二次月考(12月)试卷(4)
北师大版八年级(上)数学第二次月考(12月)试卷(4)一.选择题(共6小题,满分12分,每小题2分)1.(2分)实数3的平方根是()A.B.C.D.92.(2分)用四舍五入法,865600精确到千位的近似值是()A.8.65×105B.8.66×105C.8.656×105D.8650003.(2分)如图,在△ABC中,PB=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③AB+AQ=2AR中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确4.(2分)已知一次函数y=2x+b,当x=3时,y=10,则该一次函数的表达式为()A.y=﹣x+13B.y=x+7C.y=2x+4D.y=2x﹣4 5.(2分)如图,平面直角坐标系内有一个Rt△ABC已知B(﹣2,0),C(2,0),直角顶点A在第一象限,且∠ABC=30°,D为BC边上一点,将△ACD沿AD翻折使点C落在AB边上的点E处,再将△BDE沿DE翻折使点B落在点F处,则点F的坐标为()A.(1﹣,3﹣3)B.(﹣1,3﹣3)C.(﹣1,﹣1)D.(1﹣,﹣1)6.(2分)一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1B.2C.3D.4二.填空题(共10小题,满分20分,每小题2分)7.(2分)在,3.14,0,0.101 001 000 1,中,无理数有个.8.(2分)比较大小:﹣﹣2;3.9.(2分)点与(﹣3,7)关于x轴对称,点与(﹣3,7)关于y轴对称,点(﹣3,7)与(﹣3,﹣2)之间的距离是.10.(2分)在平面直角坐标系中,将点P(﹣3,2)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为.11.(2分)如图:点(﹣2,3)在直线y=kx+b(k≠0)上,则不等式kx+b≥3关于x的解集是.12.(2分)如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CDEF.设若A(0,3),C(4,0),则BD2+BF2﹣BC2的最小值为.13.(2分)已知一次函数y=2x+b图象与正比例函数y=kx图象交于点(2,3)(k,b是常数),则关于x的方程2x=kx﹣b的解是.14.(2分)点(x1,y1),(x2,y2)在直线y=﹣x+b上,若x1<x2,则y1y2.15.(2分)如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,则AD的长为.16.(2分)在直角坐标系中,已知两点A、B的坐标分别是(0,−4)、(0,2),那么A与B两点之间的距离是(结果保留根号).三.解答题(共10小题,满分68分)17.(6分)(1)求等式中x的值:(x+1)3+27=0;(2)计算:.18.(4分)若2a﹣1与﹣a+2都是正数x的平方根,求a的值和这个正数的值.19.(6分)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=∠BAD,可求得EF、BE、FD之间的数量关系为.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【可借鉴第(1)问的解题经验】20.(6分)如图,在△ABC中,DE垂直平分BC,BD平分∠ABC.(1)若∠ADB=48°,求∠A的度数;(2)若AB=5cm,△ABC与△ABD的周长只差为8cm,且△ADB的面积为10cm2,求△ABC的面积.21.(6分)在平面直角坐标系中,已知点A,B,C的坐标分别为(﹣5,4),(﹣3,0),(0,2).(1)画出三角形ABC,直接写出三角形ABC的面积;(2)若将三角形ABC平移得到三角形A'B'C',三角形ABC中的任意一点P(a,b)经过平移后的对应点P'的坐标是(a+4,b﹣3),直接写出平移的方法;(3)若点D在直线AC下方且在x轴上,三角形ACD的面积为7,直接写出D点的坐标;(4)仅用无刻度直尺在AC边上画点E,使三角形ABE的面积为6(保留画图痕迹).22.(6分)已知直线y=kx+b经过点A(0,﹣3),且平行于直线y=﹣2x﹣1.(1)求这条直线y=kx+b的表达式;(2)如果这条直线y=kx+b经过点B(m,3)求点A与点B之间的距离.23.(8分)四名同学两两一队,从学校集合进行徒步活动,目的地是距学校10千米的前海公园.由于乙队一名同学迟到,因此甲队两名同学先出发.24分钟后,乙队两名同学出发.甲队出发后第30分钟,一名同学受伤,处理伤口,稍作休息后,甲队由一名同学骑单车载受伤的同学继续赶往目的地.若两队距学校的距离s(千米)与时间t(小时)之间的函数关系如图所示,请结合图象,解答下列问题:(1)甲队在队员受伤前的速度是千米/时,甲队骑上自行车后的速度为千米/时;(2)当t=时,甲乙两队第一次相遇;(3)当t≥1时,什么时候甲乙两队相距1千米?24.(8分)如图,已知△ABC,AB<BC,请用尺规作图的方法在BC上取一点P,使得P A+PC =BC(保留作图痕迹,不写作法)25.(8分)如图,在△ABC中,∠BAC=90°,AB=6cm,BC=10cm,点D在线段AC上,且CD=2cm,动点P从距A点10cm的E点出发,以每秒2cm的速度沿射线EA的方向运动了t秒.(1)AD的长为;(2)写出用含有t的代数式表示AP,并写出自变量的取值范围;(3)直接写出多少秒时,△PBC为等腰三角形.26.(10分)在平面直角坐标系xOy中,函数y=2x的图象与函数y=﹣kx+3的图象交于点A(1,m).(1)求k的值;(2)过点A作x轴的平行线l,直线y=2x+b与直线l交于点B,与函数y=﹣kx+3的图象交于点C,与x轴交于点D.当点BD=2BC时,求b的值.。
八年级上册数学月考试卷一【含答案】
八年级上册数学月考试卷一【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 26cmB. 28cmC. 30cmD. 32cm2. 下列哪个数是无理数?A. √9B. √16C. √3D. √13. 已知函数f(x) = 2x + 3,那么f(-1)的值为多少?A. 1B. 2C. 3D. 44. 一个等腰三角形的底边长为10cm,腰长为13cm,那么这个三角形的周长为多少cm?A. 32cmB. 36cmC. 40cmD. 44cm5. 下列哪个数是素数?A. 21B. 29C. 35D. 39二、判断题(每题1分,共5分)1. 两个等边三角形的面积一定相等。
()2. 任何数乘以0都等于0。
()3. 两个负数相乘的结果是正数。
()4. 一个数的平方根只有一个。
()5. 两条平行线之间的距离是相等的。
()三、填空题(每题1分,共5分)1. 一个正方形的边长为5cm,那么它的面积是______cm²。
2. 若一个数的平方是64,那么这个数是______或______。
3. 两个数相加,交换加数的位置,和______。
4. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的高是______cm。
5. 下列各数中,最大的数是______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 解释什么是无理数。
3. 如何计算一个三角形的面积?4. 简述等差数列的定义。
5. 解释什么是因式分解。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是6cm,求这个长方形的周长和面积。
2. 已知一个等腰三角形的底边长为12cm,腰长为15cm,求这个三角形的面积。
3. 解方程:2x 5 = 3。
4. 计算下列各式的值:√36 + √25 √16。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.在平面直角坐标系中,下列各点位于第四象限的点是( ) A .(2,3)- B .()4,5- C .(1,0) D .(8,1)-- 2.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为( )A .21B .22或27C .27D .21或273.计算021( 3.14)()2π--+=( )A .5B .-3C .54D .14-4.在下列分解因式的过程中,分解因式正确的是( ) A .-xz +yz =-z(x +y) B .3a 2b -2ab 2+ab =ab(3a -2b) C .6xy 2-8y 3=2y 2(3x -4y) D .x 2+3x -4=(x +2)(x -2)+3x 5.64的立方根是( ) A .4B .±4C .8D .±86.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.A .6B .5C .4D .37.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)8.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( ) A .总体B .个体C .样本D .样本容量9.函数111y k x b =+与222y k x b =+的部分自变量和对应函数值如下: x -4 -3 -2 -1 y-1-2-3-4x -4 -3 -2 -1 y-9-6-3当12y y >时,自变量x 的取值范围是( ) A .2x >-B .2x <-C .1x >-D .1x <-10.下列调查中,调查方式最适合普查(全面调查)的是( ) A .对全国初中学生视力情况的调查 B .对2019年央视春节联欢晚会收视率的调查 C .对一批飞机零部件的合格情况的调查 D .对我市居民节水意识的调查二、填空题11.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.12.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______.13.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____. 14.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.15.4的算术平方根是 .16.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________. 17.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.18.已知直角三角形的两边长分别为3、4.则第三边长为________. 19.一次函数y =2x -4的图像与x 轴的交点坐标为_______.20.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.三、解答题21.A ,B 两地相距200千米,甲车从A 地出发匀速行驶到B 地,乙车从B 地出发匀速行驶到A 地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x 小时(0≤x ≤5),甲、乙两车离A 地的距离分别为y 1,y 2千米,y 1,y 2与x 之间的函数关系图象如图1所示.根据图象解答下列问题: (1)求y 1,y 2与x 的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A 地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s 千米,在图2的直角坐标系中,已经画出了s 与x 之间的部分函数图象.①图中点P 的坐标为(1,m ),则m = ;②求s 与x 的函数关系式,并在图2中补全整个过程中s 与x 之间的函数图象.22.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求ADAB的值.23.如图,AO BO ⊥,DO EO ⊥,AO BO =,DO EO =. 求证:AE BD =.24.如图,在平面直角坐标系中,长方形OABC 的顶点,A B 的坐标分别为()6,0A ,()6,4B ,D 是BC 的中点,动点P 从O 点出发,以每秒1个单位长度的速度,沿着O A B D →→→运动,设点P 运动的时间为t 秒(013t <<).(1)点D 的坐标是______;(2)当点P 在AB 上运动时,点P 的坐标是______(用t 表示);(3)求POD 的面积S 与t 之间的函数表达式,并写出对应自变量t 的取值范围. 25.如图,已知直角三角形ABC 中,ABC ∠为直角,12AB =、16BC =,三角形ACD 为等腰三角形,其中503AD DC ==,且//AB CD ,E 为AC 中点,连接ED 、BE 、BD ,则三角形BDE 的面积为___________.四、压轴题26.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b dy +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点.(1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.27.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2互补. (1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,∠BEF 与∠EFD 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH ⊥EG ,求证:PF ∥GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK =∠HPK ,作PQ 平分∠EPK ,求∠HPQ 的度数.28.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DBBC的值.29.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE . (1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.30.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解. 【详解】解:A.(2,-3)在第四象限,故本选项正确; B.(-4,5)在第二象限,故本选项错误; C.(1,0)在x 轴正半轴上,故本选项错误; D.(-8,-1)在第三象限,故本选项错误. 故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.2.C解析:C 【解析】 【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析. 【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在; 当腰取11,则底边为5,则三角形的周长=11+11+5=27. 故选C . 【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.3.A解析:A 【解析】 【分析】根据0指数幂和负整数幂定义进行计算即可. 【详解】021( 3.14)()1452π--+=+=故选:A 【点睛】考核知识点:幂的运算.理解0指数幂和负整数幂定义是关键.4.C解析:C 【解析】 【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】-xz +yz =-z(x-y),故此选项错误;3a 2b -2ab 2+ab =ab(3a -2b+1),故此选项错误; 6xy 2-8y 3=2y 2(3x -4y)故此选项正确;x 2+3x -4=(x +2)(x -2)+3x ,此选项没把一个多项式转化成几个整式积的形式,此选项错误. 故选:C . 【点睛】因式分解的意义.5.A解析:A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A 考点:立方根.6.D解析:D 【解析】 【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度. 【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =,∴由勾股定理得,10AB cm ===.由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm , 在Rt △BDE 中,由勾股定理得, DE 2+BE 2=BD 2 即CD 2+42=(8-CD)2, 解得:CD=3cm . 故选:D . 【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE 是直角三角形,并计算(或用CD 表示)它的三边是解决此题的关键.7.B解析:B 【解析】 【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案. 【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =, ∴360x +=,即2x =-, ∴点坐标为(-2,0), 故选B. 【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.8.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.9.B解析:B【解析】【分析】根据表格可确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表格可得y1=k2x+b1中y随x的增大而减小,y2=k2x+b2中y随x的增大而增大.且两个函数的交点坐标是(-2,-3).则当x<-2时,y1>y2.故选:B.【点睛】本题考查了函数的性质,正确确定增减性以及两函数交点坐标是关键.10.C解析:C【解析】【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题11.x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2解析:x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.12.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m -和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.13.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:【点睛】本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.14.【解析】【分析】由题意,可知点A 坐标为(1,),点B 坐标为(2,0),由直线与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解解析:231b -<<-【解析】【分析】由题意,可知点A 坐标为(1,3),点B 坐标为(2,0),由直线y x b =+与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解:如图,过点A 作AE ⊥x 轴,.∵△ABC 是等边三角形,且边长为2, ∴OB=OA=2,OE=1, ∴22213AE -=∴点A 为(13B 为(2,0);当直线y x b =+经过点A (13ABC 边界只有一个交点,则13b +=31b =,∴点D 的坐标为(31);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:231b -<<; 故答案为:231b -<<.【点睛】本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论. 15.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.16.22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键. 17.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x值即可.【详解】解:四边形ABCD是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x ∴====-=故答案为:6【点睛】本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 18.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用. 19.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.20.68°【解析】【分析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC 的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠解析:68°【解析】【分析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠B=28°,∴∠ADC=∠B+∠BAD=28°+28°=56°,∵AD=AC,∴∠C=∠ADC=56°,∴∠CAD=180°-∠ADC-∠C=180°-56°-56°=68°,故答案为:68°.【点睛】此题考查了等腰三角形的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.三、解答题21.(1)y 1=50x ﹣50,y 2=﹣40x +200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米;(3)①160;②当1≤x ≤259时,s =250﹣90x ;当259<x ≤5时,s =90x ﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P 表达的意义可求m 的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y 1=kx+b ,∴02005k b k b =+⎧⎨=+⎩解得:5050k b =⎧⎨=-⎩∴甲的函数表达式为:y 1=50x ﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y 2=mx+200,∴0=5m+200∴m =﹣40,∴乙的函数表达式为:y 2=﹣40x+200,(2)由题意可得:505040200y x y x =-⎧⎨=-+⎩解得:2598009x y ⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米. (3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m=200﹣40×1=160,故答案为160;②当1≤x≤259时,s=200﹣40×1﹣(40+50)(x﹣1)=250﹣90x;当259<x≤5时,s=90x﹣250;图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键.22.(1)详见解析;(241;(33【解析】【分析】(1)证∠EAC=∠DAB.利用SAS证△ACE≌△ABD可得;(2)连接BD,证1302FEA AED∠=∠=,证△ACE≌△ABD可得30FEA BDA∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE垂直于AC,且CE=AC,连接AE,则90,45ACE CAE∠=∠=,利用勾股定理得AE2AB=,3AB,根据(1)思路得3AB.【详解】(1) 证明:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,即∠EAC=∠DAB.在△ACE与△ABD中,AD AEEAC BABAC AB=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△ABD(SAS),∴BD CE=;(2)连接BD因为AD AE=,60DAE BAC∠=∠=,所以ADE∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以222AB AC AC +因为AB AC =所以AE 2=又因为45CAB ∠=所以90ABE ∠=所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以3AB所以33AD AB AB ==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.23.见解析【解析】【分析】利用SAS 证出△AOE ≌△BOD ,然后根据全等三角形的性质即可得出结论.【详解】解:∵AO BO ⊥,DO EO ⊥,∴∠DOE =∠AOB =90°∴∠DOE +∠AOD =∠AOB +∠AOD∴∠AOE=∠BOD在△AOE 和△BOD 中AO BO AOE BOD EO DO =⎧⎪∠=∠⎨⎪=⎩∴△AOE ≌△BOD (SAS )∴AE BD =【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等是解决此题的关键.24.(1)(3,4);(2)(6,t -6)(3)()()()20632161022621013t t S t t t t ⎧<≤⎪⎪=-+<≤⎨⎪-<<⎪⎩【解析】【分析】(1)根据长方形的性质和A 、B 的坐标,即可求出OA=BC=6,OC=AB=4,再根据中点的定义即可求出点D 的坐标;(2)画出图形,易知:点P 的横坐标为6,然后根据路程=速度×时间,即可求出点P 的运动路程,从而求出AP 的长,即可得出点P 的坐标;(3)分别求出点P 到达A 、B 、D 三点所需时间,然后根据点P 运动到OA 、AB 、BD 分类讨论,并写出t 对应的取值范围,然后画出图形,利用面积公式即可求出各种情况下S 与t 之间的函数表达式.【详解】解:(1)∵长方形OABC 的顶点,A B 的坐标分别为()6,0A ,()6,4B ,∴OA=BC=6,OC=AB=4,BA ⊥x 轴,BC ⊥y 轴∵D 是BC 的中点,∴CD=BD=12BC=3 ∴点D 的坐标为(3,4)故答案为:(3,4);(2)当点P 在AB 上运动时,如下图所示易知:点P 的横坐标为6,∵动点P 从O 点出发,以每秒1个单位长度的速度,时间为t∴点P 运动的路程OA +AP=t∴AP=t -6∴点P 的坐标为(6,t -6)故答案为:(6,t -6);(3)根据点P 的速度可知:点P 到达A 点所需时间为OA ÷1=6s点P 到达B 点所需时间为(OA+AB )÷1=10s点P 到达D 点所需时间为(OA+AB+BD )÷1=13s①当点P 在OA 上运动时,此时06t <≤,过点D 作DE ⊥x 轴于E∴DE=4∵动点P 从O 点出发,以每秒1个单位长度的速度,∴OP=t∴122S OP DE t =•=;②当点P 在AB 上运动时,此时610t <≤,由(2)知AP=t -6∴BP=AB -AP=10-t∴OCD OAP BDP OABC S S S S S =---△△△长方形=111222OA AB OC CD OA AP BD BP •-•-•-• =()()111644366310222t t ⨯-⨯⨯-⨯⨯--⨯⨯- =3212t -+; ③当点P 在BD 上运动时,此时1013t <<,∵动点P 从O 点出发,以每秒1个单位长度的速度,时间为t∴点P 运动的路程OA +AB +BP=t∴BP=t -OA -AB=t -10∴DP=BD -BP=13-t12S OC DP =• =()14132t ⨯- =262t - 综上所述:()()()20632161022621013t t S t t t t ⎧<≤⎪⎪=-+<≤⎨⎪-<<⎪⎩【点睛】此题考查的是平面直角坐标系与长方形中的动点问题,掌握行程问题公式:路程=速度×时间、数形结合的数学思想和分类讨论的数学思想是解决此题的关键.25.563【解析】【分析】过E 点分别作EG ⊥BC ,FH ⊥DC ,垂足分别为G ,H ,分别求出EG 、EH 的长,利用BDE ABC BEC EDC S S S S ∆∆∆∆=--求解即可.【详解】过E 点分别作EG ⊥BC ,FH ⊥DC ,垂足分别为G ,H ,如图所示,∵△ABC 是直角三角形,AB=12,BC=16,∴222AC AB BC =+,即2222121620AC AB BC +=+=, ∵点C 为斜边AC 的中点,∴BE=CE=12AC=120102⨯= ∴CG=1116822BC =⨯=, 在Rt △EGC 中,22221086EC CG --=,∵AB ∥CD ,∠ABC=90° ∴∠DCB=90° ∵ EG ⊥BC ,FH ⊥DC ,∴∠EGC=∠DCB=∠EHC=90°∴四边形EGCH 为矩形,∴EH=GC=6,∴BDE ABC BEC EDC S S S S ∆∆∆∆=--=111222BC CD BC EG EH DC -- =150115016166823223⨯⨯-⨯⨯-⨯⨯, =563. 【点睛】本题主要考查了勾股定理以及等腰三角形的性质,正确作出辅助线是解题的关键.四、压轴题26.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)【解析】【分析】(1)根据融合点的定义3a c x +=,3b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.【详解】解:(1)x =-17233a c ++==,y =54333b d ++==, 故点C 是点A 、B 的融合点; (2)①由题意得:x =433a c t ++=,y =2533b d t ++=,则3-4t x =, 则()23-452-13x y x +==; ②令x =0,y =-1;令y =0,x =12,图象如下:③当∠THD =90°时,∵点E (t ,2t +5),点T (t ,2t−1),点D (4,0),且点T (x ,y )是点D ,E 的融合点.∴t =13(t +4), ∴t =2,∴点E (2,9);当∠TDH =90°时,∵点E (t ,2t +5),点T (4,7),点D (4,0),且点T (x ,y )是点D ,E 的融合点.∴4=13(4+t ) ∴t =8, ∴点E (8,21);当∠HTD =90°时,由于EH 与x 轴不平行,故∠HTD 不可能为90°;故点E 的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.27.(1)AB ∥CD ,理由见解析;(2)证明见解析;(3)45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,所以易证AB ∥CD ;(2)利用(1)中平行线的性质推知∠BEF+∠EFD=180°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG ⊥PF ,故结合已知条件GH ⊥EG ,易证PF ∥GH ; (3)利用三角形外角定理、三角形内角和定理求得90902KPG PKG HPK ︒︒∠=-∠=-∠;然后由邻补角的定义、角平分线的定义推知1452QPK EPK HPK ︒∠=∠=+∠;最后根据图形中的角与角间的和差关系求得∠HPQ =45°.【详解】(1)AB ∥CD ,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF ,∠2=∠CFE ,∴∠AEF +∠CFE =180°,∴AB ∥CD ;(2)由(1)知,AB ∥CD ,∴∠BEF +∠EFD =180°.又∵∠BEF 与∠EFD 的角平分线交于点P , ∴1()902FEP EFP BEF EFD ︒∠+∠=∠+∠= ∴∠EPF =90°,即EG ⊥PF .∵GH ⊥EG ,∴PF ∥GH ;(3)∵∠PHK =∠HPK ,∴∠PKG =2∠HPK .又∵GH ⊥EG ,∴∠KPG =90°﹣∠PKG =90°﹣2∠HPK ,∴∠EPK =180°﹣∠KPG =90°+2∠HPK .∵PQ 平分∠EPK , ∴1452QPK EPK HPK ︒∠=∠=+∠, ∴∠HPQ =∠QPK ﹣∠HPK =45°.答:∠HPQ 的度数为45°.【点睛】 本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.28.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =,∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.29.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS∴∆≅∆,CBE CAD∴∠=∠,同理可得:30CAM∠=︒150CBE CAD∴∠=∠=︒30CBO∴∠=︒,∵30BAM∠=︒,903060BOA∴∠=︒-︒=︒.综上,当动点D在直线AM上时,AOB∠是定值,60AOB∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.30.90︒,45︒;20︒,30︒;2aγβ+=,2aγβ-=.【解析】【分析】(1)①如图①知1112EMC BMC∠=∠,1112C MF C MC∠=∠得()1112EMF BMC C MC∠=∠+∠可求出解.②由图②知111111,22EBA ABC C BF C BC∠=∠∠=∠得()1112EBF ABC C BC∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB∠=∠∠=∠,可推出11()BMC EMF EMF C MB∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.。
华东师大版八年级数学上册月考试卷【含答案】
华东师大版八年级数学上册月考试卷【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.计算1273-=___________. 3.4的平方根是 .4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、C6、D7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-23、±2.4、10.5、36、20三、解答题(本大题共6小题,共72分)1、4x =2、x 2-,32-. 3、(1)-3x +2<-3y +2,理由见解析;(2)a <34、E (4,8) D (0,5)5、24°.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
安徽省灵璧中学八年级第二次月考数学试卷(含答案)
八年级数学上册第二次月考试卷一、填空题(30分)1.已知2x-y=4,则1-8x+4y= 。
2.若mx 3m-3n -ny m+2n =1是关于x,y 的二元一次方程组,则m n 。
3.若一个二元一次方程组的解是,请写出一个符合要求的二元一次方程组。
4.已知()2563640x yx x y +-+--=,则()2x y+=。
5.为了鼓励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖,其单价为别为4元、5元、6元;购买这些钢笔需要花60元,经过协商,每种钢笔调价下降了1元,结果只花了48元,那么甲种钢笔可能购买( )A 、11支B 、9支C 、7支D 、5支6.已知直线①()23m x y --=和②3x y -=与直线③22x y -=相交于一点,则m 的值是( )A 、1B 、4C 、3D 、-37.在解方程组 时,甲同学因看错了b 符号,从而求得解为乙同学因看错了c 符号,从而求得解为 ; 则a b c ++的值应为( )A 、2B 、3 7 8.当m = 时,方程组9.某学生在n 次考试中,其考试成绩满足条件:如果最后一次考试得97分,则平均分为90分,如果最后一次考试得73分,则平均分为87分,则n 。
10.某商品售价a 元,利润为成本的20%,若把利润提高到30%,售价应提高________元。
二、选择题(24分)11 ) A . B 12.在平面直角坐标系中,点m(-3,2)关于x 轴对称的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限13.已知单项式2a x+5b 3x 与-4a 7×b 2-4y 的和仍是单项式,则x,y 的值为( ) A. B C. D.14.a 、b 的值为( ) A 、 B.x=3y=2 ax-by=13cx-y=4x=3 y=2 x=5 y=1 CD学校______________________姓名_______________________班级_______________________考号___________________________ —————————密————————————————封———————————————————线——————————————————CD15.如图,在△ABC中∠B=300,BC的垂直平分线交AB于E,垂足为D,若ED=5,则CE 的长为()A.10B.8C.5D.2.516.如果关于x,y的方程组3x+2y=14的一个解,那么m的值是()A.1B.-1C.2D.-217.6年前,A的年龄是B的3倍,现在A的年龄是B的2倍,A现在年龄是()A.12B.18C.24D.3018.甲、乙两去地相距360千米,一轮船往返甲,乙两地之间,顺流用18小时,逆流用24小时,如果设船在静水中的速度为x千米/小时,水流速度为 2.5千米/小时,那么x的值为_____________.A.12B.18C.17.5D.19三、解答题(66分)19.解下列方程组(1) (2(3) -12-16(4) ( -3)0+││20、已知a+b=9,a-b=1,求2(a2-b2)-ab的值21、已知2p+3q=3p+q+5=4,证明(p+2)(q-3)=2pq+322.(1a,小数部分为b,求a 2-b 2的值(2│b+2│=0,求a-b 的平方根23、顺安旅行社组织200人到怀集合德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,到两地旅游的人数各是多少人?24我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中,美两国人均淡水资源占有量之和为13800m 3,问中,美两国人均淡水资源占有量各位多少(单位:m 3)?校______________________姓名_______________________班级_______________________考号___________________________ ———密————————————————封———————————————————线——————————————————八年级数学第二次月考参考答案一、填空题。
江苏省徐州市八年级(上)第二次月考数学试卷(含答案)
江苏省徐州市八年级(上)第二次月考数学试卷(含答案)一、选择题1.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .2.若分式12xx -+的值为0,则x 的值为( ) A .1B .2-C .1-D .2 3.在平面直角坐标系中,点P (﹣3,2)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1 B .x=-1 C .x=3 D .x=-3 5.已知等腰三角形的两边长分别为3和4,则它的周长为( ) A .10B .11C .10或11D .76.以下关于多边形内角和与外角和的表述,错误的是( ) A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是2倍D .如果一个多边形的每个内角是120︒,那么它是十边形.7.如图,在放假期间,某学校对其校内的教学楼(图中的点A ),图书馆(图中的点B )和宿含楼(图中的点C )进行装修,装修工人需要放置一批装修物资,使得装修物资到点A ,点B 和点C 的距离相等,则装修物资应该放置在( )A .AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处 C .在A ∠、B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处8.如果m 是任意实数,则点()P m 4m 1-+,一定不在 A .第一象限B .第二象限C .第三象限D .第四象限9.2x -x 的取值范围( )A .x≥2B .x≤2C .x >2D .x <210.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm二、填空题11.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值, x … ﹣2 ﹣1 0 … y…m2n…则m +n 的值为_____.12.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.13.如图,已知一次函数()0y ax b a =+≠和()0y kx k =≠的图象交于点P ,则二元一次方程组220y ax by kx --=⎧⎨--=⎩的解是 _______.14.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。
八年级数学上册月考试卷含答案人教版
八年级数学上册月考试卷含答案人教版一 .单项选择题(共 12 题;共 36 分)1.正十边形的每一个内角的度数为()A. B. C. D.班级 : 2.已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.93.以下命题①两个图形全等 ,它们的形状同样;②两个图形全等,它们的大小同样;③ 面积相等的姓名:两个图形全等;④ 周长相等的两个图形全等.此中正确的个数为()A.1 个B.2 个C.3 个D.4 个考号:4.将一副直角三角板按以下图的地点搁置,使含 30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是() .A.45 °B.60 °C.75 °D.85 °5.如图 ,AB∥ CD,∠ 1=45 °,∠ 3=80 °,则∠ 2 的度数为()A.30 °B.35C.40°D.45°6.已知等腰△ABC的周长为18 cm,BC= 8 cm,若△ ABC与△A′ B′全等C′,则△ A′ B′的腰C′长等于 ().A.8 cmB.2 cm 或 8 cmC.5 cmD.8 cm 或 5 cm7.已知以下图中的两个三角形全等,则∠α度数是()A.72 °B.60C.58°D.50°8.已知如图 ,△ OAD≌△ OBC,且∠ O=70°,∠C=25°,则∠ OAD=()A.95 °B.85C.75°D.65°9.如图 ,点 D,E 在△ ABC的边 BC上 ,△ABD≌△ ACE,此中 B,C 为对应极点 ,D,E 为对应极点 ,以下结论必定建立的是()A. AC=CDB. BE=CD∠CADE=.∠ AED D∠.BAE=∠CAD10.以下图 ,在△ABC中 ,AB=8,AC=6,AD是△ ABC的中线 ,则△ ABD 与△ ADC的周长之差为(A.14°B.1C.2D.711.已知等腰三角形一腰上的中线将它的周长分红9cm 和 12cm 两部分 ,则等腰三角形的底边长为A. 9cmB. 5cmC. 6cm 或 5cmD. 5cm 或 9cm12.以下图 ,在△ ABC中 ,已知点分别是的中点 ,且=4,则的值是()A. 1B. 1.5C. 2D. 2.5二 .填空题(共 8 题;共 24 分)13.如图 ,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形 ,这样做的依据是________________.14.如图 ,∠ 1,∠2,∠ 3 的大小关系为________.15.如图 ,在一个正方形被分红三十六个面积均为 1 的小正方形 ,点 A 与点 B 在两个格点上 ,问在格点上能否存在一个点C,使△ ABC的面积为 2,这样的点有 ________个 .16.已知:如图 ,AB=CD,BC=DA,E,F是 AC上两点 ,且 AE=CF,DE=BF,则图中有 ________对三角形全等.17.如图 ,作一个角等于已知角,其尺规作图的原理是________18.如图 ,在△ ABC 中 ,∠ ABC=50°,∠ ACB=80°,BP 均分∠ ABC,CP均分∠ ACB,则∠ BPC 的大小是 ____度.19.如图 ,B 处在 A 处南偏西 50°方向 ,C 处在 A 处的南偏东20°方向 ,C 处在 B 处的北偏东80°方向∠ACB=________.20.如图 ,和分别是的内角均分线和外角均分线,是的角均分线是的角均分线 ,是的角均分线,是的角均分线,若,则________三.解答题(共 6 题;共 60 分)21.如图 ,已知:在△ AFD 和△CEB中 ,点 A,E,F,C在同向来线上 ,AE=CF,∠ B=∠ D,AD∥ BC.求证:AD=BC.22.以下图 ,BD.CE是△ ABC的高 ,且 BD=CE.求证:△ABC是等腰三角形.23.如图 ,△ ABE 和△ BCD都是等边三角形,且每个角是60°,那么线段 AD 与 EC有何数目关系?请说明原因.26. 如图 ,在△ ABC中,∠ ACB=90°,AC=BC,BD⊥ CE,AE⊥ CE,垂足分别为 D.E,猜想图段之间的关系 ,并说明原因.24.已知:如图 ,在正方形 ABCD中 ,AE⊥BF,垂足为 P,AE与 CD交于点 E,?BF与 AD 交于点 F,求证: AE=BF.25. 如图 ,A,E,F,C在一条直线上 ,AE= CF,过 E,F 分别作 DE⊥ AC,BF⊥ AC,若 AB= CD,试证明 BD 均分 EF.故答案为: B.【剖析】能够完整重合的两个图形叫做全等形.重申能够完整重合,对选择项进行考证可得答案.4.【答案】 C答案分析部分【考点】三角形内角和定理,三角形的外角性质【分析】【解答】解:如图,一.单项选择题1.【答案】 D【考点】多边形内角与外角【分析】【解答】解:方法一:;方法二:.故答案为: D.【剖析】方法一:依据内角和公式180°×(n-2)求出内角和 ,再求每个内角的度数;方法二:依据外角和为 360°,求出每个外角的度数,而每个外角与它相邻的内角是互补的,则可求出内角.2.【答案】 D【考点】多边形内角与外角【分析】【解答】解:∵正多边形的一个外角等于 40°且外角和为 360°, ∴这个正多边形的边数为: 360°÷40=9°. 故答案为: D.【剖析】依据任何多边形的外角和都为360°以及一个外角的度数,进而可得这个正多边形的边数. 3.【答案】 B【考点】全等图形【分析】【解答】①两个图形全等,它们的形状同样,正确;②两个图形全等,它们的大小同样,正确;③面积相等的两个图形全等,错误;④周长相等的两个图形全等,错误.因此只有 2 个正确 ,∵∠ A=45°,∠ D=30°,∠ ACB=90°,∴∠ ABC=∠ DBE=45°,∴∠ α=∠ D+∠ DBE=30°+45°=75°,故答案为 :C.【剖析】依据三角形内角和得∠ ABC=45°,由对顶角相等得∠ DBE=45°,再依据三角形的一个外角等于它不相邻的两个内角和 ,由此即可得出答案 .5.【答案】 B【考点】平行线的性质 ,三角形的外角性质【分析】【解答】解:如图,∵AB∥ CD,∠ 1=45°,∴∠ 4=∠ 1=45°,∵∠ 3=80°,∴∠ 2=∠ 3-∠4=80°-45 °=35°,故答案为: B.【剖析】依据二直线平行内错角相等得出∠4=∠ 1=45°,依据三角形的外角性质,∠ 2=∠ 3-∠4 即可算出答案 .6.【答案】 D【考点】全等三角形的性质,等腰三角形的性质【分析】【解答】解:分为两种状况:当BC 是底时 ,△ ABC的腰长是5cm,∵△ ABC与△ A′B′全C等′ ,∴△ A′B′的C腰′长也是5cm ;当 BC是腰时 ,腰长就是8cm,且均能组成三角形,∵△ A′B′与C△′ ABC全等 ,∴△ A′B′的C腰′长也等于8cm,即△ A′B′的C腰′长为 8cm 或 5cm,故答案为: D【剖析】△ABC与△ A′B′全C等′,等腰三角形两边相等,分类议论 ,当 BC为底 ,腰都可组成等腰三角形算出腰长7.【答案】 D【考点】全等三角形的性质【分析】【解答】全等三角形对应边相等 ,对应角相等 ,由图可知 ,角α是 a 边和 c 边的夹角 ,其在左图对应的角是度数为 50°的角 ,即α=50°.故答案为: D【剖析】察看图形,利用全等三角形的性质:对应角相等,注意找对应边所对的角是对应角.8.【答案】 B【考点】全等三角形的性质【分析】【解答】解:∵△ OAD≌△ OBC, ∴∠ D=∠ C=25°,∵∠ O=70°,∴∠ OAD=180°﹣ 25°﹣70°=85°,故答案为: B.【剖析】依据全等三角形的性质可得∠ D=∠ C=25°,再利用三角形内角和定理可得∠ OAD 的度数.9.【答案】 A【考点】等式的性质 ,全等三角形的性质【分析】【解答】∵△ ABD≌△ ACE,∴∠ ADB=∠ AEC,∠BAD=∠CAE,BD=CD,∴180°-∠ADB=180°-∠AEC,∠ BAD+∠ DAE=∠CAE+∠ DAE,BD+DE=CE+DE,即∠ ADE=∠AED,∠ BAE=∠ CAD,BE=CD,应选项建立 ,故不切合题意;没法证明 AC=CD,故 A 切合题意 ,故答案为: A.【剖析】依据全等三角形的性质得出∠ADB=∠ AEC,∠ BAD=∠ CAE,BD=CD,依据等式的性质能够180 °-∠ ADB=180°-∠ AEC,∠ BAD+∠ DAE=∠ CAE+∠ DAE,BD+DE=CE+DE,即∠ADE=∠ AED,∠ BAE=∠ CAD,BE=CD,进而得出答案 .10.【答案】 C【考点】三角形的角均分线.中线和高【分析】【解答】∵如图 ,在△ ABC中 ,AD 是△ABC 的中线 ,∴BD=CD.∵△ ABD 的周长 =AB+AD+BD,△ ADC的周长=AC+AD+CD=AC+AD+BD, ∴△ ABD 与△ ADC的周长之差为: AB-AC=8-6=2.故答案为: C.【剖析】依据三角形中线的定义可得BD=CD,则△ABD 的周长 =AB+AD+BD,△ ADC 的周长=AC+AD+CD=AC+AD+BD,则△ ABD 与△ ADC的周长之差可求解.11.【答案】 D【考点】三角形的角均分线.中线和高 ,等腰三角形的性质【分析】【解答】依据题意画出图形,以下图 ,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD 是腰上的中线 ,∴ AD=DC=x,①若 AB+AD的长为 12,则 2x+x=12,解得 x=4,则 x+y=9,即 4+y=9, y=5,因此等腰三角形的底边为5;②若 AB+AD的长为 9,则 2x+x=9,解得 x=3,则 x+y=12,即 3+y=12,解y=9,因此等腰三角形的底边为9;故答案为: D.【剖析】依据等腰三角形的性质和中线定义,分类议论即可.12.【答案】 A【考点】三角形的角均分线.中线和高【分析】【解答】∵点 D 是 BC 的中点 ,∴B D=CD,∴S△△△× 4=2,ABD=S ACD=S ABC=同理 ,S△BDE=S△ABE=S△ABD=× 2=1,S△CDE=S△ACE=S△ACD=× 2=1,∴S△BCE=S△BDE+S△CDE=1+1=2,∵F是 CE的中点 ,=S= ×2=1.∴S△BEF△BCE故答案为: A【剖析】依据中线定义和三角形的面积公式,求出三角形BEF的值 .二.填空题13.【答案】三角形的稳固性【考点】三角形的稳固性【分析】【解答】解:加上EF 后,原图形中拥有△ AEF了,故这类做法依据的是三角形的稳固性.故答案为:三角形的稳固性.【剖析】依据三角形的稳固性即可求解.14.【答案】∠1>∠ 2>∠ 3【考点】三角形的外角性质【分析】【解答】如图 ,∵依据三角形外角性质得:∠2>∠ 3,∠ 1>∠ 4,又∵∠ 2=∠4,∴∠ 1>∠ 2>∠ 3.【剖析】依据三角形外角性质得:∠2>∠ 3,∠ 1>∠ 4,,依据对顶角相等得出∠2=∠4,故∠ 1>∠∠3.15.【答案】 5【考点】三角形的面积【分析】【解答】要使得△ ABC的面积为2,即 S=ah,则使得 a=2.h=2 或许 a=4.b=1 即可 ,在图示方中出 C 点即可 .图中标出的 5 个点均为切合题意的点【剖析】依据三角形ABC的面积 =底高=2和均在格点上可知,底 =2 时 ,高 =2;底 =4 时 ,高反之亦然 .16.【答案】 3【考点】全等三角形的判断与性质【分析】【解答】∵ AB=CD,BC=DA,AC=AC,∴△ ADC≌△ CBA,∴∠ DAE=∠BCF,又∵ AE=CF,AD=BC,∴△ ADE≌△ CBF,同理△ EDC≌△ CBF.故有 3 对三角形全等.故填 3.【剖析】依据 SSS,可证得△ ADC≌△ CBA,利用全等三角形的性质 ,可得出∠ DAE=∠ BCF,再利用 SA 证得△ ADE≌△ CBF,同理可证△ EDC≌△ CBF,便可得出答案 .17.【答案】 SSS【考点】三角形全等的判断【分析】【解答】依据作图过程可知 ,OC=O′C′,OD=O′D′,CD=C′D【剖析】此题运用平行线的性质可知∠DBA=∠ EAB=,由于∠ DBC=,因此可知∠ ABC=∴利用的是三边对应成比率 ,两三角形全等 ,用三角形内角和为,可得∠ ACB的度数 .即作图原理是 SSS20.【答案】故答案为 :SSS【考点】角的均分线 ,三角形的外角性质【剖析】依据作图的过程 ,可知 OC=O′C′,OD=O′D′,CD=C′D,利用的是三边对应成比率,两三角形全等,可得出答案 .【分析】【解答】解:如图18.【答案】 115【考点】三角形的角均分线.中线和高【分析】【解答】BP 均分∠ ABC,CP均分∠A CB,故答案为 115.【剖析】直接依据角均分线均分对应角,三角形内角和为180 度进行计算 .19.【答案】 80°【考点】平行线的性质 ,三角形内角和定理【分析】【解答】解:以下图:由题意得 ,∠ EAB=50°,∠EAC=20°,则∠ BAC=70°,∵BD∥AE,∴∠ DBA=∠ EAB=50°,又∵∠ DBC=80°,∴∠ ABC=30°,∴∠ ACB=180°﹣ 70°﹣ 30°=80°.故答案为: 80°.∵BA1和 CA1分别是 ABC的内角均分线和外角均分线∴∠ABC=2∠ 1,∠ ACD=2∠2∵∠ ACD=2∠ 2=∠ A+2∠1,∠ 2=∠ A1+∠ 1∴2(∠ A1+∠ 1) =∠ A+2∠ 1∴∠ A1=∠A如图 ,抽象图形∵BA2和 CA2分别是 ABC的内角均分线和外角均分线∴∠A1BC=2∠3,∠ A1CD=2∠ 4∵∠ A1CD=2∠ 4=∠ A1+2∠ 3,∠ 4=∠A2+∠3∴2(∠ A2+∠ 3) =∠ A1+2∠3∴∠ A2=∠ A1=α同理可证:∠ A3=∠ A2=α,∠ A4=α∠ A n=∴∠ A2018=故答案为:【剖析】利用角均分线的性质及三角形的外角的性质,找寻规律 ,得出∠ A1= ∠ A,∠ A2= ∠ A1 ,∠A3= ∠ A2∠ A n=,即可求解 .三.解答题21.【答案】解:证明:∵ AD∥ BC,∴∠ A=∠ C,∵AE=CF,∴AE+EF=CF+EF,即 AF=CE,∵在△ ADF 和△CBE中,∴△ ADF≌△ CBE( AAS),∴AD=BC【考点】全等三角形的判断与性质【分析】【剖析】由题意用角角边易证△ADF≌△ CBE求解.22.【答案】证明:∵ BD,CE是△ABC的高 ,∴∠ CEB=∠ BDC=90°,在 Rt△ BCE和 Rt△ CBD中 ,∵,∴Rt△ BCE≌ Rt△ CBD(HL) ,∴∠ ABC=∠ ACB,∴△ ABC是等腰三角形【考点】全等三角形的判断与性质,等腰三角形的判断【分析】【剖析】依据垂直的定义得出∠CEB=∠BDC=90°,而后利用HL 判断出 Rt△BCE≌ Rt△CBD,根据全等三角形对应角相等得出∠ ABC=∠ ACB,依占有两个角相等的三角形是等腰三角形得出结论 . 23.【答案】解: AD=EC.证明以下:∵△ ABC 和△ BCD都是等边三角形 ,每个角是60°∴AB=EB,DB=BC,∠ ABE=∠ DBC=60°,∴∠ ABE+∠EBC=∠ DBC+∠ EBC即∠ ABD=∠EBC在△ABD 和△ EBC中AB=EB∠ ABD=∠EBC DB=BC∴△ ABD≌△ EBC( SAS)∴AD=EC【考点】全等三角形的判断与性质,等腰三角形的性质【分析】【剖析】 AD=EC.原因以下:依据等边三角形的性质得出 AB=EB,DB=BC,∠ ABE=∠ DBC=依据等式的性质得出∠ ABD=∠EBC,而后利用 SAS判断出△ABD≌△ EBC,依据全等三角形对应边相等AD=EC.24.【答案】证明:∵正方形ABCD∴∠ BAF=∠ D=90°∵ AE⊥ BF∴∠ APB=90°∴∠ ABF+∠ BAP=90°∵∠ BAP+∠ DAE=90°∴∠ ABF=∠ DAE∵ AB=AD∴△ ABF≌△ ADE∴ AE=BF【考点】全等三角形的判断与性质,正方形的性质【分析】【剖析】利用正方形的性质及垂直的定义,∠ BAF=∠D,∠ ABF=∠DAE,再依据全等三角形的定定理可证得△ ABF≌△ ADE,而后依据全等三角形的性质可解答.25【. 答案】证明∵ DE⊥AC,BF⊥ AC,∴∠ DEG=∠ BFE=90°.∵ AE= CF,AE+ EF= CF+ EF.即 AF= C 在 Rt△ ABF 和 Rt△ CDE中,AB=CD,AF=CF,∴Rt△ ABF≌ Rt△CDE( HL) ,∴ BF=DE.在△BFG 和△ DEG中∠ BFG=∠ DEG,∠ BGF=∠DGE,BF=DE∴△ BFG≌△ DEG( AAS) ,∴ FG= EG,即 BD 均分 EF【考点】直角三角形全等的判断,全等三角形的判断与性质【分析】【剖析】依据等式的性质,由 AE= CF,得出 AF= CE.而后利用HL 判断出 Rt△ ABF≌ Rt△ CDE,依据全等三角形对应边相等得出BF= DE.而后再利用AAS 判断出△ BFG≌△ DEG,依据全等三角形对应边相等得出FG= EG,即 BD 均分 EF.26【.答案】解: DE+AE=DB∵∠ ACB=90°,BD⊥ CE∴∠ ACE+∠ ECB=90°,∠ ECB+∠CBD=90°∴∠ ACE=∠CBD 又∵ AE⊥ CE∴∠ AEC=90°在 Rt△ AEC和 Rt△ CDB中∠A EC=∠ CDB=90°,∠ ACE=∠ CBD AC=BC∴ Rt△AEC≌Rt△CDB∴AE=CD,EC=DB又∵DE+DC=EC∴DE+AE=DB.【考点】全等三角形的判断与性质【分析】【剖析】依据垂直的定义证明∠AEC=∠ CDB,利用同角的余角相等,可证得∠ ACE=∠ CBD,再根据 AAS 证明是△ AEC≌△ CDB,可得出 AE=CD.EC=DB,便可证得结论.。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大 2.以下关于多边形内角和与外角和的表述,错误的是( )A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是2倍D .如果一个多边形的每个内角是120 ,那么它是十边形.3.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 4.下列说法正确的是( )A .(﹣3)2的平方根是3B .16=±4C .1的平方根是1D .4的算术平方根是2 5.在下列黑体大写英文字母中,不是轴对称图形的是( ) A . B . C . D .6.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D 的长度为( )A .12cmB .1cmC .2cmD .32cm 7.下列电视台的台标中,是轴对称图形的是( )A .B .C .D .8.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( )A .总体B .个体C .样本D .样本容量 9.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm 10.若253x +在实数范围内有意义,则x 的取值范围是( ) A .x >﹣52B .x >﹣52且x ≠0C .x ≥﹣52D .x ≥﹣52且x ≠0 二、填空题11.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB∠的度数.12.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是313b -a =____.13.如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若1BD =,则AC 的长是__________.14.已知一次函数1y kx =+的图像经过点(1,0)P -,则k =________.15.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.16.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.17.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.18.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,3),点B 的坐标为(2,-1),点C 在同一坐标平面中,且△ABC 是以AB 为底的等腰三角形,若点C 的坐标是(x ,y ),则x 、y 之间的关系为y =______(用含有x 的代数式表示).19.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.20.一次函数y =2x -4的图像与x 轴的交点坐标为_______.三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m =___________,n =_____________;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?22.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形.23.如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由.(2)求四边形ABCD 的面积.24.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.25.如图,有一个长方形花园,对角线AC 是一条小路,现要在AD 边上找一个位置建报亭H ,使报亭H 到小路两端点A 、C 的距离相等.(1)用尺规作图的方法,在图中找出报亭H 的位置(不写作法,但需保留作图痕迹,交代作图结果)(2)如果AD =80m ,CD =40m ,求报亭H 到小路端点A 的距离.四、压轴题26.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.27.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.28.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D 是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE 的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).29.如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D ,使△ACD 为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由30.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.2.D解析:D【解析】【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解.【详解】A.四边形的内角和为360°,外角和也为360°,A 选项正确;B.根据四边形的内角和为360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为62180720()-⨯︒=︒,外角和为360°,C 选项正确;D.假设是n 边形,(2)180120n n-⨯︒=︒解得610n =≠,D 选项错误.【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键. 3.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B4,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.5.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.D解析:D【解析】【分析】先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=12AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【详解】∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=5cm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故选:D.【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.7.A解析:A【解析】【详解】B,C,D不是轴对称图形,A是轴对称图形.故选A.8.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.9.C解析:C【解析】【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.10.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x的取值范围.【详解】解:由题意得,2x+5≥0,解得x≥﹣52,故选:C.【点睛】a0a 时有意义,正确理解二次根式有意义的条件是解题的关键.二、填空题11.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.12.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知c =,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解】解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.13.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答案为.解析:【解析】解:90B ∠=︒,30A ∠=︒,∴60ACB ∠=︒.又∵DE 垂直平分AC ,∴CD AD =,30ACD A DCB ∠=∠=︒=∠.∵1BD =,∴2CD AD ==,∴3AB =,30A ∠=︒,12BC AC =.由勾股定理可得AC =故答案为 14.1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵一次函数y=kx+1的图象经过点P (-1,0),∴0=-k+1,解得k=1.故答案为1.【解析:1【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵一次函数y=kx+1的图象经过点P (-1,0),∴0=-k+1,解得k=1.故答案为1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.16.−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y 、y 的值都大于0的x 的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x 轴上方的图象的y 值大于0进行解答.【详解】如图所示,x>−1时,y 1>0,当x<2时,y 2>0,∴使y 1、y 2的值都大于0的x 的取值范围是:−1<x<2.故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的y 值大于017.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】解析:1≤m ≤32 【解析】【分析】根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.【详解】当0y =时,3x m =, ∴03x m=, 当03x =时,33m=,1m =,当02x=时,32m =,32m =, m 的取值范围为:1≤m ≤32 故答案为:1≤m ≤32【点睛】 本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围求得m 的取值范围是解题的关键.18.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式即可.【详解】解:设的中点为,过作的解析:1548x + 【解析】【分析】设AB 的中点为D ,过D 作AB 的垂直平分线EF ,通过待定系数法求出直线AB 的函数表达式,根据EF AB ⊥可以得到直线EF 的k 值,再求出AB 中点坐标,用待定系数法求出直线EF 的函数表达式即可.【详解】解:设AB 的中点为D ,过D 作AB 的垂直平分线EF∵A(1,3),B(2,-1)设直线AB 的解析式为11y k x b =+,把点A 和B 代入得:321k b k b +=⎧⎨+=-⎩解得:1147k b =-⎧⎨=⎩∴47y x =-+∵D 为AB 中点,即D (122+,312-) ∴D (32,1) 设直线EF 的解析式为22y k x b =+∵EF AB ⊥∴121k k =- ∴ 214k = ∴把点D 和2k 代入22y k x b =+可得:213142b =⨯+ ∴258b =∴1548y x =+ ∴点C(x ,y )在直线1548y x =+上 故答案为1548x + 【点睛】 本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.19.8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF⊥BC 于点F ,作解析:8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=12AB•PC=12BC•AF=12×5CP=12×6×4得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 20.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40% 100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°,∴∠ABE+∠BAF=90°.∵∠ABC=90°,∴∠ABE+∠EBC=90°,∴∠BAF=∠EBC.在ΔABF和ΔBCE中,∵∠AFB=∠BEC,AF=BE,∠BAF=∠EBC,∴ΔABF≌ΔBCE.(2)∵∠ABC=90°,∴∠ABD+∠DBC=90°.∵∠BED=90°,∴∠DBE+∠BDE=90°.∵BD分∠ABE,∴∠ABD=∠DBE,∴∠DBC=∠BDE,∴BC=CD,即ΔBCD是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF≌ΔBCE.23.(1)∠D是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【详解】(1)∠D是直角.理由如下:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理得AC2=202+152=625.又∵CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.(2)四边形ABCD的面积=12AD•DC+12AB•BC=12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.24.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】 (1)把3x =-代入243y x =-, 得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴, ∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭,477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,22345OC ∴=+=14145PQ OC ∴== 77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.25.(1)详见解析;(2)报亭到小路端点A 的距离50m .【解析】【分析】(1)作AC 的垂直平分线交AD 与点H ,进而得出答案;(2)利用勾股定理以及线段垂直平分线的性质得出即可.【详解】(1)如图所示:H 点即为所求;(2)根据作图可知:A H =H C ,设AH =xm ,则DH =(80﹣x )m ,HC =xm ,在Rt △DHC 中,222DH CD HC +=,∴222(80)40x x +=﹣, 解得:x =50,答:报亭到小路端点A 的距离50m .【点睛】本题主要考查了应用设计与作图以及勾股定理和线段垂直平分线的性质和作法等知识,得出A H =H C ,进而利用勾股定理得出是解题关键. 四、压轴题26.(1)①6;②5或﹣3;(2)直线AC的表达式为:y=﹣x+3或y=x+1;(3)m的取值范围为﹣3≤m≤﹣或2m≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3求出正方形AGCH的边长为3,分两种情况求出直线AC的表达式即可;(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=12DE=1,EF=DF=DE=2,得出OF OD①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2);得出m的取值范围为﹣3≤m≤﹣或2﹣≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣≤m≤1;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF OD分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2)或(2,2);∴m的取值范围为﹣3≤m≤﹣2m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22)或(﹣,2);∴m的取值范围为2m≤3或﹣1≤m≤﹣综上所述,m的取值范围为﹣3≤m≤﹣2m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.27.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.28.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形,【解析】【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠==∵ABC ∆是等边三角形,点D 是BC 的中点∴AD ⊥BC∴90ADC ∠︒=∵60BDF ADE ∠∠︒==∴30ADF EDC ∠∠︒==在ADF ∆与EDC ∆中AFD ECDDF CDADF EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()ADF EDC ASA∆∆≌∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F ∵ABC∆是等边三角形∴AB=BC,60B BAC BCA∠∠∠︒===∵DF∥AC∴BFD BAC BDF BCA∠∠∠∠=,=∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴BF=BD∴AF=DC∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵∠ADC是ABD∆的外角∴60ADC B FAD FAD∠∠∠︒∠=+=+∵60ADC ADE CDE CDE ∠∠∠︒∠=+=+∴∠FAD=∠CDE在AFD∆与DCE∆中AFD DCEAF CDFAD EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()AFD DCE ASA∆∆≌∴AD=DE;(3)如下图,ADE∆是等边三角形.证明:∵BC CD =∴AC CD =∵CE 平分ACD ∠∴CE 垂直平分AD∴AE =DE∵60ADE ∠=︒∴ADE ∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.29.(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E 的位置见解析,E (43-,0);②D 点的坐标为(-1,3)或(45,125) 【解析】【分析】(1)先利用一次函数图象上点的坐标特点求得点A 、B 的坐标;然后把B 点坐标代入y=−2x +b 求出b 的值,确定此函数解析式,然后再求C 点坐标;(2)①根据轴对称—最短路径问题画出点E 的位置,由待定系数法确定直线DB 1的解析式为y=−3x−4,易得点E 的坐标;②分两种情况:当点D 在AB 上时,当点D 在BC 上时.当点D 在AB 上时,由等腰直角三角形的性质求得D 点的坐标为(−1,3);当点D 在BC 上时,设AD 交y 轴于点F ,证△AOF 与△BOC 全等,得OF=2,点F 的坐标为(0,2),求得直线AD 的解析式为122y x =+,与y=−2x +4组成方程组,求得交点D 的坐标为(45,125). 【详解】 (1)在y=x +4中,令x =0,得y=4,令y =0,得x=-4,∴A(-4,0) ,B(0,4)把B(0,4)代入y=-2x+b ,得b =4,∴直线BC 为:y=-2x+4在y=-2x +4中,。
2023-2024学年安徽省六安市金安区汇文中学八年级(上)第二次月考数学试卷+答案解析
2023-2024学年安徽省六安市金安区汇文中学八年级(上)第二次月考数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在平面直角坐标系中,若点A的坐标是,则点A所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.函数中,自变量x的取值范围是()A. B. C. D.3.下列四个图形中,画出的边AB上的高的是()A. B.C. D.4.下面是雨伞在开合过程中某时刻的截面图,伞骨,点D、E分别是AB,AC的中点,DM、EM是连接弹簧和伞骨的支架,且,则判定“≌”的依据是()A.角边角B.角角边C.边边边D.边边角5.已知等腰三角形一腰上的中线将它的周长分成6cm和12cm两部分,则等腰三角形的腰长为()A.4cm或8cmB.4cmC.8cmD.2cm或10cm6.下列选项中,可以用来说明命题“若,则”是假命题的反例是()A.,B.,C.,D.,7.如图,在中,AD为高,AE平分,,,则的度数为()A.B.C.D.8.下列图中,表示一次函数与正比例函数其中a、b为常数,且的大致图象,其中表示正确的是()A. B.C. D.9.2023年5月21日,“锦绣太原激情太马”2023太原马拉松赛成功举行,万名选手沿汾河岸畔同场竞技,畅跑魅力并州.如图是甲、乙两人从起点出发一段时间内路程与时间的关系,则下列说法正确的是()A.在这段时间内,甲的平均速度为B.在这段时间内,乙的平均速度为C.在这段时间内,甲休息了D.出发时两人相遇10.如图所示,已知和都是等边三角形,且ABD三点在同一直线上.则下列结论:①;②;③;④BH平分;⑤其中正确的有()A.2个B.3个C.4个D.5个二、填空题:本题共4小题,每小题5分,共20分。
11.当时,一次函数的最小值为,则______.12.如图,直线与x轴、y轴分别交于A、B两点,点C是第二象限内一点,为等腰直角三角形且,则直线BC的解析式为______.13.如图,在中,,,,,则______.14.如图,在中,CE平分,BD平分,CE,BD相交于点O,点F是BE上一点,且满足若,,则______.若,,,则______.三、解答题:本题共9小题,共90分。
最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)
最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)时间:100分钟满分:120分学校:__________姓名:__________班级:__________考号:__________一、选择题1.下列图形中,不是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形.2. 在下列实数中,无理数是( )A. 0B. 14C. 5D. 6【答案】C【解析】试题分析:有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.因此,选项A、B、D的0、14、6都是有理数,选项C5C.3.在平面直角坐标系中,点M(﹣2,1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B∵点P的横坐标为负,纵坐标为正,∴该点在第二象限.故选B.4.下列四组线段中,可以构成直角三角形的是()A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,6【答案】C【解析】【分析】根据勾股定理的逆定理逐项判断即可.【详解】A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、42+52≠62,不能构成直角三角形,故不符合题意.故选:C.【点睛】本题考查勾股定理的逆定理,如果三角形的三边长为a,b,c,有下面关系:a2+b2=c2,那么这个三角形是直角三角形.5.当x=2时,函数112y x=+的值是()A. 3B. 2C. 1D. 0 【答案】B【解析】【分析】把x=2代入函数关系式进行计算即可得解.【详解】x=2时,y=12×2+1=1+1=2.故选B.【点睛】本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.6.到△ABC的三条边距离相等的点是△ABC的().A. 三条中线的交点B. 三条边的垂直平分线的交点C. 三条高的交点D. 三条角平分线的交点【解析】【分析】根据角平分线的性质求解即可.【详解】到△ABC 的三条边距离相等的点是△ABC 的三条角平分线的交点故答案为:D .【点睛】本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键. 7.等腰三角形的周长为80,腰长为 x ,底边长为y ,y 是x 的函数,则 x 的取值范围是( )A. x>0B. 020x <<C. 040x <<D. 2040x <<【答案】D【解析】【分析】根据已知列方程,化为函数关系式,再根据三角形三边的关系确定x 的取值范围即可.【详解】∵2x+y=80,∴y=80-2x ,∵y >0,∴80-2x >0,即x <40,∵两边之和大于第三边,∴2x >y ,即2x >80-2x,解得x >20,综上可得20<x <40,故选D.【点睛】本题考查了等腰三角形的性质及三角形三边关系,运用方程的思想列出关系式、根据三角形三边关系求得x 的取值范围是解答本题的关键.8.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A. 3B. 4C. 5D. 6【答案】A【解析】正确理解函数图象横纵坐标表示的意义.解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y 在AB段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是×2×3=3.故选A.理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二、填空题9.18的立方根是__.【答案】1 2【解析】试题分析:根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a 的一个立方根:∵31128⎛⎫=⎪⎝⎭,∴18的立方根是12.10.用四舍五入法把9.456精确到百分位,得到的近似值是.【答案】9.46【解析】试题分析:把千分位上的数字6进行四舍五入即可.解:9.456≈9.46(精确到百分位).故答案为9.46.考点:近似数与有效数字.11. 等腰三角形一个底角是30°,则它的顶角是__________.【答案】120°【解析】本题主要考查“等腰三角形的两底角相等”与“三角形的内角和定理”等腰三角形一个底角是30°,则它的另一个底角也是30°,则它的顶角是180°-30°-30°=120°12.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.【答案】20【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.13.已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.x【答案】2【解析】【分析】直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键. 14.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).【答案】>【解析】【分析】分别把点A (-1,y 1),点B (-2,y 2)的坐标代入函数y =3x ,求出点y 1,y 2的值,并比较出其大小即可.【详解】∵点A (-1,y 1),点B (-2,y 2)是函数y =3x 的图象上的点,∴y 1=-3,y 2=-6,∵-3>-6,∴y 1>y 2.15.一次函数1y x =+与3y ax =+的图象交于点P ,且点P 的横坐标为1,则关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是______. 【答案】12x y =⎧⎨=⎩【解析】【分析】把1x =代入1y x =+,得2y =,得出两直线的交点坐标为(1,2),从而得到方程组的解.【详解】解:把1x =代入1y x =+,得2y =,则函数1y x =+和3y ax =+的图象交于点(1,2)P ,即x=1,y=2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是1,2.x y =⎧⎨=⎩故答案为12x y =⎧⎨=⎩【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.如图,在△ABC 中,∠BAC =90°,AB =5,AC =12,点D 是BC 的中点,将△ABD 沿AD翻折得到△AED,连接BE,CE.则CE=___________。
人教版八年级上册数学《月考》试卷含答案
人教版八年级上册数学《月考》试卷含答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+16.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB ∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.31π+B.32C.2342π+D.231π+二、填空题(本大题共6小题,每小题3分,共18分)1273________.2.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是__________.3.分解因式6xy2-9x2y-y3 = _____________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,∠1+∠2+∠3+∠4=______度.6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解分式方程 (1)21324x x x -+-=0 (2)13222x x x-+=--2.(1)已知x 35y 352x 2-5xy +2y 2的值. (2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221,y =223.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、B5、C6、A7、C8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、a ≤2.3、-y(3x -y)24、8.5、2806、7三、解答题(本大题共6小题,共72分)1、(1)x=﹣1;(2)x=23.2、(1)42,(2)13-3、(1)12,32-;(2)略.4、(1)家与图书馆之间路程为4000m ,小玲步行速度为100m/s ;(2)自变量x 的范围为0≤x ≤403;(3)两人相遇时间为第8分钟.5、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。
八年级数学上册单项式乘以多项式同步训练(含解析)
单项式乘以多项式·一.选择题;;1.(2015•黔东南州)下列运算正确的是();A.(a﹣b)2=a2﹣b2B.3ab﹣ab=2ab C.a(a2﹣a)=a2 D.2.(2015春•岱岳区期末)如果长方体的长为3a﹣4,宽为2a,高为a,则它的体积是()A.3a2﹣4a B.a2C.6a3﹣8a2D.6a2﹣8a3.(2015秋•重庆校级月考)化简x(2x﹣1)﹣x2(2﹣x)的结果是()A.﹣x3﹣x B.x3﹣x C.﹣x2﹣1 D.x3﹣14.(2015秋•遂宁校级月考)若三角形的底边为2m+1,高为2m,则此三角形的面积为()A.4m2+2m B.4m2+1 C.2m2+m D.2m2+m5.(2014春•南海区校级期中)下列计算正确的是();;A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c6.(2013秋•鲤城区校级期末)三个连续的奇数,若中间一个为a,则它们的积为()A.a3﹣4a B.a3﹣6a C.4a3﹣a D.4a3﹣6a7.(2013秋•合浦县期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1 D.1二.填空题;;8.(2015春•南长区期中)计算(﹣a4)(6a3﹣12a2+9a)= ,十边形的内角和是.9.(2014春•胶南市校级月考)= .10.(2013秋•万载县校级月考)若(x2+ax+1)•(﹣ax3)的展开式中,不含有x4项,则3a ﹣1的值为.11.(2013春•富阳市校级期中)一个多项式与的积为x5y2﹣3x4y3﹣x3y4z,那么这个多项式为.12.(2013秋•江油市校级月考)通过计算图中所示的几何图形的面积,可表示的代数恒等式是.13.(2011秋•淅川县期中)已知ab2=﹣3,则﹣ab(a2b5﹣ab3﹣b)= .三.解答题14.(2014秋•陇西县期末)(1)计算:()2÷(﹣)2(2)计算:(x2y﹣xy2﹣y3)(﹣4xy2).15.若(a m+b)•2a3b4=2a7b4+2a3b n(a≠0,a≠1,b≠0,b≠1).求m+n的值.16.若(1+x4y a)•(﹣x b y)2=x16y4+x2b•y2,求ab的值.17.(2015春•芦溪县期中)某同学在计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,那么正确的计算结果是多少?人教版八年级数学上册《14.1.4.2单项式乘以多项式》同步训练习题(教师版)一.选择题1.(2015•黔东南州)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.3ab﹣ab=2ab C.a(a2﹣a)=a2 D.考点:单项式乘多项式;立方根;合并同类项;完全平方公式.分析:根据完全平方公式,合并同类项,单项式乘多项式,立方根的法则进行解答.解答:解:A、应为(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、3ab﹣ab=2ab,正确;C、应为a(a2﹣a)=a3﹣a2,故本选项错误;D、应为=2,故本选项错误.故选:B.点评:本题考查了完全平方公式,合并同类项,单项式乘多项式,立方根,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.2.(2015春•岱岳区期末)如果长方体的长为3a﹣4,宽为2a,高为a,则它的体积是()A.3a2﹣4a B.a2C.6a3﹣8a2D.6a2﹣8a考点:单项式乘多项式;单项式乘单项式.分析:直接利用单项式乘以多项式运算法则以及长方体体积公式得出即可.解答:解:由题意可得:它的体积是:(3a﹣4)×2a×a=6a3﹣8a2.故选:C.点评:此题主要考查了单项式乘以多项式,正确把握运算法则是解题关键.3.(2015秋•重庆校级月考)化简x(2x﹣1)﹣x2(2﹣x)的结果是()A.﹣x3﹣x B.x3﹣x C.﹣x2﹣1 D.x3﹣1考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘多项式法则计算,去括号合并即可得到结果.解答:解:原式=2x2﹣x﹣2x2+x3=x3﹣x,故选B.点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.4.(2015秋•遂宁校级月考)若三角形的底边为2m+1,高为2m,则此三角形的面积为()A.4m2+2m B.4m2+1 C.2m2+m D.2m2+m考点:单项式乘多项式.分析:直接利用三角形面积公式结合单项式乘以多项式运算法则求出即可.解答:解:∵三角形的底边为2m+1,高为2m,∴此三角形的面积为:×2m×(2m+1)=2m2+m.故选:C.点评:此题主要考查了单项式乘以多项式以及三角形面积求法,正确掌握三角形面积求法是解题关键.5.(2014春•南海区校级期中)下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c考点:单项式乘多项式.分析:根据单项式乘以多项式法则,对各选项计算后利用排除法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.6.(2013秋•鲤城区校级期末)三个连续的奇数,若中间一个为a,则它们的积为()A.a3﹣4a B.a3﹣6a C.4a3﹣a D.4a3﹣6a考点:单项式乘多项式.分析:三个连续的奇数,若中间一个为a,则另外两个是a﹣2,a+2,求积即可.解答:解:三个连续的奇数,若中间一个为a,则另外两个是a﹣2,a+2.则a(a﹣2)(a+2)=a3﹣4a.故选A.点评:本题考查了整式的乘法,理解三个连续奇数的关系是关键.7.(2013秋•合浦县期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1 D.1考点:单项式乘多项式.分析:先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.解答:解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选A.点评:本题考查的是单项式乘多项式,熟知单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加是解答此题的关键.二.填空题8.(2015春•南长区期中)计算(﹣a4)(6a3﹣12a2+9a)= ﹣4a7+8a6﹣6a5,十边形的内角和是1440°.考点:单项式乘多项式;多边形内角与外角.分析:前项根据单项式乘多项式计算,后一项根据多边形的内角和公式计算即可.解答:解:(﹣a4)(6a3﹣12a2+9a)=﹣4a7+8a6﹣6a5;十边形的内角和=(10﹣2)×180°=1440°;故答案为:﹣4a7+8a6﹣6a5;1440°点评:此题考查单项式和多项式的乘法以及多边形的内角和,关键是根据法则和公式计算.9.(2014春•胶南市校级月考)= ﹣a2b3+a2b2﹣ab2.考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:=﹣a2b3+a2b2﹣ab2.故答案为:﹣a2b3+a2b2﹣ab2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.10.(2013秋•万载县校级月考)若(x2+ax+1)•(﹣ax3)的展开式中,不含有x4项,则3a ﹣1的值为0 .考点:单项式乘多项式.分析:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.先依据法则运算,展开式后,因为不含x4项,所以x4项的系数为0,再求a的值.解答:解:(x2+ax+1)(﹣ax3)=﹣ax5﹣a2x4﹣ax3,展开式中不含x4项,则a2=0,∴a=0.∴3a﹣1=1﹣1=0,故答案是:0.点评:本题考查了单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.11.(2013春•富阳市校级期中)一个多项式与的积为x5y2﹣3x4y3﹣x3y4z,那么这个多项式为﹣2x2+6xy+2y2z .考点:单项式乘多项式.专题:计算题.分析:根据题意列出关系式,利用多项式除单项式法则计算即可得到结果.解答:解:根据题意得:(x5y2﹣3x4y3﹣x3y4z)÷(﹣x3y2)=﹣2x2+6xy+2y2z.故答案为:﹣2x2+6xy+2y2z点评:此题考查了单项式乘多项式,根据题意列出正确的算式是解本题的关键.12.(2013秋•江油市校级月考)通过计算图中所示的几何图形的面积,可表示的代数恒等式是2a(a+b)=2a2+2ab .考点:单项式乘多项式.分析:本题所给的图中,四个小图形的面积与大图形的面积相等,据此列出代数式即可解答.解答:解:由题意可知2a(a+b)=2a2+2ab.故答案为:2a(a+b)=2a2+2ab.点评:本题考查了单项式与多项式相乘,用不同方法表示面积是解题的关键.13.(2011秋•淅川县期中)已知ab2=﹣3,则﹣ab(a2b5﹣ab3﹣b)= 33 .考点:单项式乘多项式;代数式求值.专题:整体思想.分析:对所给的式子变形提取公因式b,使其中出现ab2的因式,然后利用整体代入法计算.解答:解:﹣ab(a2b5﹣ab3﹣b),=﹣ab2(a2b4﹣ab2﹣1),当ab2=﹣3时,原式=﹣(﹣3)[(﹣3)2﹣(﹣3)﹣1]=33;故填:33.点评:本题考查了提公因式法分解因式,提取公因式b出现已知条件的形式比较关键,灵活运用此法则,可简便运算.三.解答题14.(2014秋•陇西县期末)(1)计算:()2÷(﹣)2(2)计算:(x2y﹣xy2﹣y3)(﹣4xy2).考点:单项式乘多项式;分式的乘除法.分析:(1)先算乘方,再把除法转化成乘法,最后约分即可;(2)根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(1)()2÷(﹣)2=×=;(2)(x2y﹣xy2﹣y3)(﹣4xy2)=﹣3x3y3+2x2y4+xy5;点评:此题考查了单项式乘多项式和分式的乘除法,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.若(a m+b)•2a3b4=2a7b4+2a3b n(a≠0,a≠1,b≠0,b≠1).求m+n的值.考点:单项式乘多项式.分析:利用单项式与多项式相乘的运算法则求解即可.解答:解:∵(a m+b)•2a3b4=2a7b4+2a3b n,∴2a3+m b4+2a3b5=2a7b4+2a3b n,∴3+m=7,n=5,解得m=4,n=5,∴m+n=4+5=9.点评:本题主要考查了单项式与多项式相乘的运算法则,解题的关键是熟记单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.16.若(1+x4y a)•(﹣x b y)2=x16y4+x2b•y2,求ab的值.考点:单项式乘多项式.分析:先利用单项式与多项式相乘的运算法则计算,再利用对应的项求解即可.解答:解:∵(1+x4y a)•(﹣x b y)2=x16y4+x2b•y2,∴x2b y2+x4+2b y a+2=x16y4+x2b•y2,∴x4+2b y a+2=x16y4,可得4+2b=16,a+2=4,解得b=6,a=2,∴ab=2×6=12.点评:本题主要考查了单项式乘多项式,解题的关键是找准对应项.17.(2015春•芦溪县期中)某同学在计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,那么正确的计算结果是多少?考点:单项式乘多项式.分析:根据题意首先求出多项式,进而利用单项式乘以多项式运算法则求出即可.解答:解:∵计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,∴这个多项式为:a2+2a﹣1+2a=a2+4a﹣1,∴正确的计算结果是:﹣2a(a2+4a﹣1)=﹣2a3﹣8a2+2a.点评:此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015八年级数学上第二次月考试卷(含答案和解释)2014-2015学年江苏省淮安市洪泽县新区中学八年级(上)第二次月考数学试卷一、精心选一选(每题3分,计30分) 1.4的平方根是() A. 8 B. 2 C.±2 D.± 2.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是() A. 1个 B. 2个 C. 3个 D. 4个 3.在平面直角坐标系中,点M (�2,3)在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列实数中,是无理数的为()A. 0.1001 B. C. D. 5.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是() A. B. C. D. 6.直角三角形的一直角边长是12,斜边长是15,则另一直角边是() A. 8 B. 9 C. 10 D. 11 7.下列哪一个点在直线y=2x�3上()A.(�2,3) B.(3,2) C.(2,1) D.(�3,2) 8.一次函数y=x+3的图象不经过的象限是() A.第一象限 B.第二象限 C.第三象限 D.第四象限 9.已知正比例函数y=(3k�1)x.若y随x的增大而减小,则k的取值范围是() A. k<0 B. k >0 C. k< D. k> 1 0.已知等腰三角形的两条边长分别为2和4,则它的周长为() A. 8 B. 10 C. 6 D. 10或8 二、细心填一填(每小题3分,计24分) 11.点A(�2,4)关于y轴对称的点的坐标是. 12.直线y=x+1与x轴交点的坐标为,与y轴交点的坐标为. 13.如图,已知B、E、F、C在同一直线上,BF=CE,AF=DE,则添加条件,可以判断△ABF≌△DCE. 14.电影院的5排6号用(5、6)表示,那么7排8号可用表示. 15.等腰三角形一个内角的大小为50°,则其顶角的大小为. 16.若点A(�2,3)先向右平移3个单位,在向下平移1个单位,得到的点的坐标为. 17.如图,在RT△ABC中,∠A=90°,BD平分∠ABC交AC于D,S△BDC=4,BC=8,则AD= . 18.如图,已知∠B=45°,AB=4cm,点P为∠ABC的边BC上一动点,则当BP= cm时,△BAP为直角三角形.三、解答题(共8小题,满分66分) 19.(1)计算�+()0;(2)求式中的x 值(x�1)3=27. 20.一次函数y=kx+4的图象经过点(�3,�2),则(1)求这个函数表达式;(2)判断(�5,3)是否在此函数的图象上. 21.如图,已知Rt△ABC中,∠C=90°.沿DE 折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长. 22.如图,在△ABC中,∠BAC=90°,AB=15,AC=20,AD⊥BC,垂足为D.(1)求BC的长;(2)求AD的长. 23.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数. 24.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于x轴对称的图形△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)回答下列问题:①△A2B2C2中顶点B2坐标为.②若P(a,b)为△AB C边上一点,则按照(1)中①、②作图,点P对应的点P2的坐标为. 25.已知一次函数y1=2x�2和y2=�4x+4.(1)同一坐标系中,画出这两个一次函数的图象;(2)求出两个函数图象和y轴围成的三角形的面积;(3)根据图象,写出使y1>y2时x的取值范围. 26.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.2014-2015学年江苏省淮安市洪泽县新区中学八年级(上)第二次月考数学试卷参考答案与试题解析一、精心选一选(每题3分,计30分) 1.4的平方根是() A. 8 B. 2 C.±2 D.±考点:平方根.分析:由(±2)2=4,根据平方根的定义即可得到4的平方根.解答:解:∵(±2)2=4,∴4的平方根是±2.故选C.点评:本题考查了非负数的平方根的定义:若x2=a,则x叫a的平方根,相对比较简单,但是同样也很容易出错. 2.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个 B. 2个 C. 3个 D. 4个考点:中心对称图形;轴对称图形.专题:图表型.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:(1),(3),(4)是轴对称图形,也是中心对称图形.(2)是轴对称图形,不是中心对称图形.故选:C.点评:掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.在平面直角坐标系中,点M(�2,3)在() A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:点的坐标.专题:计算题.分析:横坐标小于0,纵坐标大于0,则这点在第二象限.解答:解:∵�2<0,3>0,∴(�2,3)在第二象限,故选B.点评:本题考查了点的坐标,个象限内坐标的符号:第一象限:+,+;第二象限:�,+;第三象限:�,�;第四象限:+,�;是基础知识要熟练掌握. 4.下列实数中,是无理数的为() A. 0.1001 B. C. D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是有限小数,是有理数,选项错误; B、是无理数,选项正确; C、 =�2,是有理数,选项错误; D、 =4,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 5.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A. B. C. D.考点:一次函数的应用;一次函数的图象.分析:随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.解答:解:设蜡烛点燃后剩下h厘米时,燃烧了t小时,则h与t的关系是为h=20�5t,是一次函数图象,即t越大,h越小,符合此条件的只有D.故选D.点评:本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象. 6.直角三角形的一直角边长是12,斜边长是15,则另一直角边是()A. 8 B. 9 C. 10 D. 11考点:勾股定理.分析:根据勾股定理,直接代入即可求得结果.解答:解:∵直角三角形斜边的长是15,一条直角边长为12,∴另一条直角边的长是 =9.故选B.点评:考查了勾股定理的运用,比较简单. 7.下列哪一个点在直线y=2x�3上()A.(�2,3) B.(3,2) C.(2,1) D.(�3,2)考点:一次函数图象上点的坐标特征.分析:把各点分别代入一次函数y=2x�3,通过等式左右两边是否相等来判断点是否在函数图象上.解答:解:把各点分别代入一次函数y=2x�3,得 A、2×(�2)�3=�7≠3,原式不成立; B、2×3�3=3≠2,原式不成立;C、2×2�3=1,原式成立;D、2×(�3)�3=�9≠2原式不成立.故选C.点评:此题比较简单,只要把四个选项一一代入检验即可. 8.一次函数y=x+3的图象不经过的象限是() A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:一次函数的性质.分析:根据k,b的符号判断一次函数y=x+3的图象所经过的象限.解答:解:由题意,得:k>0,b>0,故直线经过第一、二、三象限.即不经过第四象限.故选D.点评:能够根据k,b的符号正确判断直线所经过的象限. 9.已知正比例函数y=(3k�1)x.若y随x的增大而减小,则k的取值范围是() A. k<0 B. k>0 C. k< D. k>考点:一次函数图象与系数的关系.分析:根据正比例函数图象与系数的关系列出关于k的不等式3k�1<0,然后解不等式即可.解答:解:∵正比例函数 y=(3k�1)x中,y的值随自变量x的值增大而减小,∴3k�1<0,解得k<.故选C.点评:本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过第一、三象限,y随x的增大而增大;k<0时,直线必经过第二、四象限,y随x的增大而减小. 10.已知等腰三角形的两条边长分别为2和4,则它的周长为() A. 8 B. 10 C. 6 D. 10或8考点:等腰三角形的性质;三角形三边关系.分析:根据2和4可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.解答:解:当2为腰时,三边为2,2,4,由三角形三边关系定理可知,不能构成三角形,当4为腰时,三边为4,4,2,符合三角形三边关系定理,周长为:4+4+2=10.故选B.点评:本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据2,4,分别作为腰,由三边关系定理,分类讨论.二、细心填一填(每小题3分,计24分) 11.点A(�2,4)关于y轴对称的点的坐标是(2,4).考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.解答:解:点A(�2,4)关于y轴对称的点的坐标是(2,4),故答案为:(2,4).点评:此题主要考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 12.直线y=x+1与x轴交点的坐标为(�1,0),与y轴交点的坐标为(0,1).考点:一次函数图象上点的坐标特征.专题:函数思想.分析:x轴上的点,纵坐标为0,将其代入y=x+1,解出x的值即可;y轴上的点,横坐标为0,将其代入y=x+1,解出y的值即可.解答:解:①当y=0时,0=x+1,解得x=�1;故直线y=x+1与x轴交点的坐标为(�1,0);②当x=0时,y=0+1=1;故直线y=x+1与y轴交点的坐标为(0,1);故答案是:(�1,0);(0,1).点评:本题考查了一次函数图象上点的坐标特征.解题时,需熟记:x轴上的点,纵坐标为0;y轴上的点,横坐标为0. 13.如图,已知B、E、F、C在同一直线上,BF=CE,AF=DE,则添加条件AB=DC(或∠AFB=∠DEC),可以判断△ABF≌△DCE.考点:全等三角形的判定.专题:开放型.分析:已知两组边对应相等,可再加第三组边相等或已知两组边的夹角相等都可以.解答:解:由条件可再添加AB=DC,在△ABF和△DCE中,,∴△ABF≌△DCE(SSS),也可添加∠AFB=∠DEC,在△ABF和△DCE 中,,∴△ABF≌△DCE(SAS),故答案为:AB=DC(或∠AFB=∠DEC).点评:本题主要考查全等三角形的判定,掌握全等三角形的判定方法,即SSS、SAS、ASA、AAS和HL是解题的关键. 14.电影院的5排6号用(5、6)表示,那么7排8号可用(7、8)表示.考点:坐标确定位置.分析:由题意可把“排”作为横坐标,“号”作为纵坐标,即可确定7排8号的表示形式.解答:解:根据题意,把电影院座位建立一个直角坐标系,“排”作为横坐标,“号”作为纵坐标,∵5排6号用(5、6)表示,∴7排8号即横坐标为7,纵坐标为8,即可用(7、8)表示.故答案填:(7、8).点评:本题考查了坐标点的确定,要灵活掌握. 15.等腰三角形一个内角的大小为50°,则其顶角的大小为50°或80°.考点:等腰三角形的性质.分析:可知有两种情况(顶角是50°和底角是50°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解答:解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°�50°�50°=80°,∴这个等腰三角形的顶角为50°和80°.故答案为:50°和80°.点评:本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论是解答此题的关键. 16.若点A(�2,3)先向右平移3个单位,在向下平移1个单位,得到的点的坐标为(1,2).考点:坐标与图形变化-平移.分析:让点A的横坐标加3,纵坐标减1即可得到平移后的坐标.解答:解:平移后点的横坐标为�2+3=1,纵坐标为3�1=2,∴平移后点的坐标为(1,2).故答案填:(1,2).点评:用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减. 17.如图,在RT△ABC中,∠A=90°,BD平分∠ABC交AC于D,S△BDC=4,BC=8,则AD= 1 .考点:角平分线的性质.分析:过D点作BC边上的高DE,由已知S△BDC=4,BC=8,可求DE,再利用角平分线性质证明AD=DE即可.解答:解:过D点作DE⊥BC,垂足为E,由S△BDC=4得×BC×DE=4 解得DE=1 ∵BD平分∠ABC交AC于D,∴AD=DE=1.故填1.点评:本题考查了角平分线的性质及三角形面积公式的灵活运用.正确作出辅助线是解答本题的关键. 18.如图,已知∠B=45°,AB=4cm,点P为∠ABC的边BC上一动点,则当BP= 或4 cm时,△BAP为直角三角形.考点:等腰直角三角形.专题:分类讨论.分析:分BP为直角边或斜边来讨论,借助勾股定理逐一解析,即可解决问题.解答:解:若BP为三角形的直角边,则AB为该三角形的斜边;∵∠B=45°,∴∠BAP=90°�45°=45°,∴A P=BP(设为λ);由勾股定理得:AB2=AP2+BP2=2λ2,而AB=4,∴λ= ,故答案为;若BP为斜边,则∠BAP=90°;∵∠B=45°,∴∠APB=90°�45°=45°,∴∠B=∠APB,∴AP=AB=4;由勾股定理得: BP2=AB2+AP2=32,∴BP=4 (cm).故答案为4 .点评:该题主要考查了等腰三角形的判定、勾股定理等几何知识点的应用问题;借助分类讨论,灵活运用勾股定理等几何知识点来分析、判断、推理活解答是解题的关键.三、解答题(共8小题,满分66分) 19.(1)计算�+()0;(2)求式中的x值(x�1)3=27.考点:实数的运算;立方根.专题:计算题.分析:(1)原式利用二次根式的性质,立方根定义,以及零指数幂法则计算即可得到结果;(2)方程利用立方根定义开立方即可求出解.解答:解:(1)原式=|�2|�3+1=2�3+1=0;(2)开立方得:x�1=3,解得:x=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 20.一次函数y=kx+4的图象经过点(�3,�2),则( 1)求这个函数表达式;(2)判断(�5,3)是否在此函数的图象上.考点:待定系数法求一次函数解析式;一次函数图象上点的坐标特征.专题:待定系数法.分析:一次函数y=kx+4的图象经过点(�3,�2),则把点的坐标代入解析式就得到函数的解析式.解答:解:(1)把(�3,�2)代入解析式得�3k+4=�2,解得:k=2,∴解析式为:y=2x+4;(2)把(�5,3)代入解析式,不满足函数解析式,因而点不在此函数的图象上.点评:本题主要考查了函数图象与函数解析式的关系,函数图象上的点满足函数解析式,满足函数解析式的点一定在函数的图象上. 21.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.考点:翻折变换(折叠问题);勾股定理.分析:(1)利用翻折变换的性质得出DE垂直平分AB,进而得出∠1=∠2=∠A即可得出答案;(2)利用勾股定理得出CE的长,即可得出CD的长.解答:解:(1)∵折叠使点A与点B重合,折痕为DE.∴DE垂直平分AB.∴AE=BE,∴∠A=∠2,又∵DE⊥AB,∠C=90°,DE=CE,∴∠1=∠2,∴∠1=∠2=∠A.由∠A+∠1+∠2=90°,解得:∠A=30°;(2)设CE=x,则AE=BE=8�x.在Rt△BCE中,由勾股定理得: BC2+CE 2=BE2.即 62+x2=(8�x)2,解得:x= ,即CE= .点评:此题主要考查了翻折变换的性质以及勾股定理,根据已知熟练应用勾股定理得出是解题关键. 22.如图,在△ABC中,∠BAC=90°,AB=15,AC=20,AD⊥BC,垂足为D.(1)求BC的长;(2)求AD的长.考点:勾股定理.分析:(1)根据勾股定理求得BC的长;(2)根据直角三角形的面积公式求得AD的长.解答:解:(1)∵∠BAC=90°,AB=15,AC=20,∴BC= =25.(2)根据直角三角形的面积公式,得 AD= =12.点评:注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边. 23.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC 边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.考点:全等三角形的判定与性质;三角形的外角性质.专题:证明题.分析:①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.解答:①证明:在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵△ABE≌△CBD,∴∠AEB=∠BDC,∵∠AEB为△AEC的外角,∴∠AEB=∠ACB+∠CAE=30°+45°=75°,则∠BDC=75°.点评:此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键. 24.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于x轴对称的图形△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)回答下列问题:①△A2B2C2中顶点B2坐标为(1,�1).②若P(a,b)为△ABC边上一点,则按照(1)中①、②作图,点P对应的点P2的坐标为(a+7,b).考点:作图-轴对称变换;作图-平移变换.分析:(1)①根据关于x轴对称的性质画出△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)①根据点B2在坐标系中的位置得出其坐标;②按照(1)中①、②作图,点P对应的点P2的坐标.解答:解:(1)①、②如图所示:(2)①由图可知,B2(1,�1);②根据(1)中①、②作图可知P2(a+7,�b).点评:本题考查的是作图�轴对称变换,熟知轴对称的性质是解答此题的关键. 25.已知一次函数y1=2x�2和y2=�4x+4.(1)同一坐标系中,画出这两个一次函数的图象;(2)求出两个函数图象和y轴围成的三角形的面积;(3)根据图象,写出使y1>y2时x的取值范围.考点:一次函数的图象;一次函数图象上点的坐标特征;一次函数与一元一次不等式.分析:(1)利用两点法作出一次函数的图象即可;(2)首先求得直线与坐标轴的交点坐标,然后求其与坐标轴围成的三角形的面积;(3)根据图象直接确定自变量的取值范围即可.解答:解:(1)图象为:(2)∵y1=2x�2与x、y轴分别交于点A(1,0)和B(0,�2) y2=�4x+4与x、y轴分别交于点A (1,0)和C(0,4)…(5 分)∴围成△ABC的边BC=6,BC边上的高AO=1 ∴S△ABC= BC•OA= ×6×1=3;(3)当x>1时,y1>y2.点评:本题考查了一次函数的图象,作一次函数的图象时,可以利用两点法作图. 26.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.考点:作图―应用与设计作图.菁优网版权所有专题:作图题.分析:(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:(1)如图甲所示:(2)如图乙所示:点评:此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.。