8.5分式方程(4)030
2021分式方程人教版数学八年级上册教案
2021分式方程人教版数学八年级上册教案分式是形如A / B的式子,其中A、B是整式,B中含有字母。
分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。
以下是小编整理的分式方程人教版数学八年级上册教案,欢迎大家借鉴与参考!15.3分式方程教案【教学目标】知识目标1.理解分式方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原因,并掌握分式方程的验根方法.能力目标经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.情感目标在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.【教学重难点】重点:解分式方程的基本思路和解法.难点:理解解分式方程时可能无解的原因.【教学过程】一、创设情境,导入新课问题:一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?分析:设江水的流速为v km/h,则轮船顺流航行的速度为(30+v) km/h,逆流航行的速度为(30-v) km/h,顺流航行90 km所用的时间为小时,逆流航行60 km所用的时间为小时.可列方程=.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.二、探究新知1.教师提出下列问题让学生探究:(1)方程=与以前所学的整式方程有何不同?(2)什么叫分式方程?(3)如何解分式方程=呢?怎样检验所求未知数的值是原方程的解?(4)你能结合上述探究活动归纳出解分式方程的基本思路和做法吗?(学生思考、讨论后在全班交流)2.根据学生探究结果进行归纳:(1)分式方程的定义(板书):分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程练习:判断下列各式哪个是分式方程.(1)x+y=5; (2)=;(3); (4)=0在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.(2)解分式方程=的基本思路是:将分式方程化为整式方程.具体做法是:“去分母”,即方程两边同乘最简公分母.这也是解分式方程的一般思路和做法.3.仿照上面解分式方程的做法,尝试解分式方程=,并检验所得的解,你发现了什么?与你的同伴交流.4.思考:上面两个分式方程中,为什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解却不是②的解呢?学生分组讨论产生上述结果的原因,并互相交流.5.归纳:(1)增根:将分式方程变为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.(2)解分式方程必须进行检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.三、巩固练习1.在下列方程中:①=8+;②=x;③=;④x-=0.是分式方程的有( )A.①和②B.②和③C.③和④D.④和①2.解分式方程:(1)=;(2)=.四、课堂小结1.通过本节课的学习,你有哪些收获?2.在本节课的学习过程中,你有什么体会?与同伴交流.引导学生总结得出:解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化为整式方程.(2)解这个整式方程.(3)把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解时,必须舍去.五、布置作业课本152页练习.第2课时【教学目标】知识目标会分析题意找出相等关系,并能列出分式方程解决实际问题.ok3w_ads("s002");《分式及分式方程》同步练习1.在某市举行的大型商业演出活动中,对团体购买门票思想优惠,决定在原定票价的基础上每张降价80 元,这样按原定票价需花6000 元购买的门票张数,现在只花费了 4800 元,求每张门票的原定价格?24.为丰富校园文化生活,某校举办了成语大赛.学校准备购买一批成语词典奖励获奖学生.购买时,商家给每本词典打了九折,用2880 元钱购买的成语词典,打折后购买的数量比打折前多10 本.求打折前每本笔记本的售价是多少元?2.“六•一”儿童节前,某玩具商店根据市场调查,用2500 元购进一批儿童玩具,上市后很快脱销,接着又用4500 元购进第二批这种玩具,所购数量是第一批数量的 1.5 倍,但每套进价多了 10 元.(1)求第一批玩具每套的进价是多少元?(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?15.3分式方程的应用:精选练习11.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.。
北师大版数学八年级下册5.4《分式方程》(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要按比例分配或者求解某个未知数的问题?”(如购物打折、行程问题等)这个问题与我们将要学习的分式方程密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式方程的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分式的方程,其特点是方程中至少有一个未知数出现在分母中。分式方程在解决实际问题时具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。比如,某商店进行打折活动,原价与折后价之间的关系可以表示为一个分式方程。通过求解这个方程,我们可以找出折后价。
五、教学反思
今天我们在课堂上学习了分式方程,整体来看,学生们对于这个新知识的接受程度还是不错的。但在教学过程中,我也发现了一些问题,值得我们共同反思。
首先,我发现有些学生在理解分式方程的定义时,还是有些困难。他们对于分母不能为零的条件理解不够深入,导致在后续解题过程中出现了一些不必要的错误。针对这个问题,我考虑在今后的教学中,可以多举一些生活中的实例,让学生更直观地理解分式方程的含义,从而加深他们对这个知识点的理解。
-分式方程的应用:掌握分式方程在实际问题中的建模过程,以及如何运用分式方程解决具体问题。
-例题解析:通过典型例题的讲解,强化学生对分式方程求解步骤的理解。
举例:重点讲解如何将分式方程$\frac{2}{x-3} = \frac{1}{x+2}$转化为整式方程,并求解得到$x$的值。
8.5 分式方程
8.5 分式方程Ⅰ.核心知识点扫描1. 分母中含有未知数的方程叫做分式方程2.如果由变形后的方程求得的根不适合原方程,那么这种根叫做原方程的增根.3.解分式方程的一般步骤:(1)去分母,化分式方程为整式方程;(2)解这个整式方程;(3)验根;(4)写出答案.4.列分式方程解决实际问题步骤是:审、设、列、解、检、答.Ⅱ.知识点全面突破知识点1 分式方程的概念(重点)分母中含有未知数的方程叫分式方程,如1121x -=-,55633x x+=,1232633x x+=--等都是分式方程.分式方程和整式方程的区别在于分母中是否含有未知数.【例】下列关于x 的方程是分式方程的是( )A .23356x x ++-=B .137x x -=- C. 23332x x x += D .341x x =- 解:D 点拨:分式方程有两个重要特征:一是方程含有分母;二是分母中含有未知数.知识点2 解分式方程 (重难点) 解分式方程的基本思想是把分式方程转化为整式方程.解分式方程的一般步骤是:(1)去分母,化分式方程为整式方程,即在分式方程的两边都乘方程中各分式的最简公分母,约去分母,化为整式方程。
(2)解这个整式方程,得出整式方程的根.(3)验根,有两种方法:一种是把求得的未知数的值代入原方程进行检验;另一种是把求得的未知数的值代入分式的分母进行检验,看分母的值是否为0,若分母不等于0,则它是原方程的根.若分母等于0,则它是原方程的增根,必须舍去.(4)写出答案.误区警示:在去分母,化分式方程为整式方程时,不要漏乘不含分母的项,同时要注意分式的通分与去分母的区别和联系.【例】(2010,宿迁)解方程:0322=--xx . 解:在方程两边同乘以x (x-2),得2x -3(x -2) =0 .解这个方程,得x =6.检验:把x =6代入x (x -2)=24≠0.所以x =6为这个方程的解.点拨:解分式方程的基本步骤是先去分母,把分式方程转化为整式方程,并要对整 式方程的解进行检验.知识点3增根及检验增根的方法(难点)在将分式方程化为整式方程时,方程两边同乘一个含有未知数的整式,并约去了分母,由于不能保证所乘的这个整式不为0,所以可能产生不适合原分式方程的根如果变形后的方程求得的根不适合原方程,那么这种根叫做方程的增根.因此,解分式方程必须验根.验根的方法如前所述,其最简便的方法是将求得的未知数的值代入所乘的最简公分母中,若最简公分母不为O ,则是原分式方程的根,否则是原分式方程的增根.巧记速记:分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊.【例】(2010,重庆江津区)解方程:()()31112x x x x -=--+. 解:在方程两边都乘以(x-1) (x+2),得 ()()()2123x x x x +--+=.解这个方程,得1x =.检验:当时,1x =时,(x-1) (x+2)=(1-1)(1+2)=0,所以x=1是增根.所以原方程无解.点拨: 对分式方程的考核也是中考的必考内容,需要特别强调的是,分式方程要求必须检验.知识点4 列分式方程解决实际问题(重难点)列分式方程解决实际问题与列整式方程解决实际问题类似,关键是审清题意,找出数量关系,正确地列出方程,其具体步骤是:(1)审题,弄清已知量和未知量,找出所有的数量关系;(2)设未知数;(3)列出分式方程;(4)解这个分式方程;(5)检验,看变形后的方程的解是否满足原方程和符合实际意义;(6)写出答案.速记巧记:上面的步骤可记为:审、设、列、解、检、答.【例】(2010,钦州)某中学积极响应“钦州园林生活十年计划”的号召,组织团员植树300棵.实际参加植树的团员人数是原计划的1.5倍,这样,实际人均植树棵数比原计划的少2棵,求原计划参加植树的团员有多少人?解:设原计划参加植树的团员有x 人.根据题意,得30030021.5x x-=. 解这个方程,得x =50.经检验 x =50是原方程的根.答:原计划参加植树的团员有50人.点拨: 列分式方程解决实际问题是中考的高频考点,解决问题的关键是找出等量关系,然后列出方程即可作答. Ⅲ.提升点全面突破提升点1 确定有增根的分式方程中的待定系数【例1】 当a 为何值时,方程233x a x x =+++会产生增根? 解:方程两边都乘以(x+3),得 x=2(x+3)+a.因为方程有增根,所以x+3=0,即x=-3.所以-3=2(-3+3)+a ,a=-3.所以当a=-3时,原方程会产生增根.点拨:利用增根定义解题是比较重要的题型,其方法是:(1)将分式方程化为整式方程,(2)求出增根,将增根代入所求的整式方程,求出a 的值.【例2】关于x 的方程322133x mx x x-++=---无解,求m 的值. 解:方程两边同乘以(x-3),则有(3-2x)-(2+mx)=3-x .整理得(m+1)x=-2.若m+1=0,则m=-1,此时新方程无解,那么原方程一定无解.当x=3时,原方程无解,此时(m+1)·3=-2,53m =-综上所述,当原方程无解时,m 的值为-1或53-.点拨:本例题告诉我们.由分式方程无解求字母已知数的值,既要考虑使最简公分母为零的未知数的值,又要考虑使新方程无解的字母已知数的值.提升点2 分式方程与不等式的综合题【例3】(2010,鄂尔多斯)已知关于x 的方程22x m x +-=3的解是正数,求m 的取值范围.解:去分母得2x+m=3(x-2),解得x=m+6,因为x为正数,故m+6>0,所以m>-6.疑问当m=-4时,x=2,此时分式方程无解,故m>-6 且m≠-4.点拨:本题将分式方程与一元一次不等式结合在一起,在求m的取值时,容易忽略方程无解的情况,应注意.Ⅳ.综合能力养成【例1】(开放题)编一道可化为一元一次方程的分式方程的应用题,并解答.编写要求:(1)要联系实际生活,其解符合实际.(2)根据题意列出的分式方程中含两项分式,不含常数项.分式的分母均含有未知数,并且可化为一元一次方程.(3)题目完整,题意清楚.解析:本题考查列分式方程解应用题,培养同学们的逆向思维能力.我们可分以下三个步骤来思考:(1)依题意,确定一个有实际意义的数字,如10,当作所列应用题的一个根,建立符合题设要求的等式,如2016 10102=-;(2)把上述的10用未知数x来代替,变等式为分式方程,即20162x x=-;(3)根据题意编出应用题:甲、乙二人做某种机器零件,已知甲每小时比乙多做2 个,甲做20个所用的时间与乙做16个所用的时间相等,求甲、乙每小时各做多少个.设甲每小时做x个,则乙每小时做(x-2)个,根据题意,有:20162x x=-,解这个方程,得 x=10.经检验x=l0是方程的根.所以x-2=10-2=8.答:甲每小时做l0个,乙每小时做8个.点拨:这是一道开放探索创新题,重在考查同学们运用数学知识设计问题,进而解决问题的能力,解题时应做到:(1)题目符合编题要求;(2)要设未知数;(3)列方程;(4)解方程;(5)写出答案,包括单位名称.Ⅴ.分层实战训练A组基础训练1.(知识点2)分式方程1123x=-的根为( )A.x=2 B.x=1 C.x=-1 D.x=-2 2.(知识点1)下列各式中,不是分式方程的是( )A .11x x x -=B .()111x x x -+=C .32112x x -=+-D .111332x ⎛⎫+= ⎪⎝⎭3.(知识点3)如果方程11322x x x-=---没有解,则x=___________. 4.(知识点4)轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为 .5.(知识点2)方程213x =-的根为 . 6.(知识点4)(2010,绵阳,)在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为 .7.(知识点2)解方程:(1)(2010,孝感)013132=--+--x x x ; (2)22162242x x x x x -+-=+--. 8.(知识点4)(2010,达州)对于代数式12x -和321x +,你能找到一个合适的x 值,使它们的值相等吗?写出你的解题过程.9.(知识点4)(2010,淮安)玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.常是以社会生活中的热点问题为背景.10.(知识点4)(2009,朝阳)海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.“三通”前买台湾苹果的成本价格是今年的2倍 同样用10万元采购台湾苹果,今年却比“三通” 前多购买了2万公斤图8.5-1B 组 培优训练1.(提升点2)若关于x 的分式方程121m x -=-的解是正数,则m 的取值范围是( ) A .m>-1 B .m ≠1 C .m>1 D .m>-1且m ≠12.(开放题)请选择一组a 、b 的值,写出一个关于x 的形如2a b x =-的分式方程,使它的解是x=0,这样的分式方程可以是 . 3.(提升点1)当a 为何值时,关于x 的方程223242ax x x x +=--+会产生增根? 4.(开放题) 请根据方程6056061x x-++=编拟一道应用题,要求叙述清楚,有条理,切合实际. 5.(开放题)(2010,盐城)某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程.参考答案及点拨A 组 基础训练1.A 点拨:去分母,得2x-3=1.解得x=2.经检验,x=2是原方程的根.2.D 点拨:根据分式方程的概念判定.3.解答 分式方程无解,则最简公分母为零.解答:因为x-2=O 时,方程无解,故x=2. 4.403033x x =+- 5.x=56.40千米∕时 点拨:设静水中最大航速为x 千米/小时,根据题目的等量关系得到分式方程102.1102-=+x x . 7.解: (1)方程两边同乘以,)3(-x ,得0)3(12=----x x .解这个方程,得2=x . .当x=2时,2,03=∴≠-x x 是原方程的解.所以原方程的解是x=2 .(2)方程两边同乘以24x -,得 22(2)16(2)x x --=+.解这个方程,得x=2.检验:当2x =时24x - =22-4=0,,所以x=2是增根,所以原方程无解. 点拨:①把分式方程转化成整式方程后,整式方程可能有解,可能无解;②使分式方程无解的原因是整式方程的解使分式方程中的分母为零,显然增根的产生是由于去分母引起的,因此检验的方法可简化成直接将整式方程的解代入最简公分母即可.8.解:能.根据题意,设12x -=321x + ,则有2x+1=3(x-2),解得:x=7, 经检验得x=7是12x -=321x +的解.所以,当x=7时,代数式12x -和321x + 的值相等. 点拨: 本题考查学生对基础知识的掌握情况,考查学生解常规的分式方程的准确性.9.解:设乙工程队独立完成这项工程需要x 天.根据题意,得1114()(20104)12020x ⨯++⨯--=,解得x=12, 经检验x=12是分式方程的解,所以乙工程队独立完成这项工程需12天.点拨: 本题主要是考察利用分式方程解决实际问题,这种问题是中考中的常见问题,通10.解:设该公司今年到台湾采购苹果的成本价格为,根据题意,得100000100000200002x x-=.解得 2.5x =.经检验 2.5x =是原方程的根. 当 2.5x =时,25x =.答:实现“三通”前该公司到台湾采购苹果的成本价格为5元/公斤.点拨:图象信息题是指由图象来获取信息.从而达到解题目的的题型,这类问题来源广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.是近几年中考的热点.解图象信息题的关键是“识图”和“用图”.解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题.B 组 培优训练1.D 点拨:可把分式方程变形为12m x +=,根据x>0,得x>-l,但当m=1时,x=1,分式无意义.2. 422x =-- 点拨:将x=0代入原分式方程,得a=-2b ,故只需令a 、b 的值满足这一关系式即可,本题答案不惟一.3.解:方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2).①因为当原方程有增根时,(x+2)(x-2)=O,所以增根为x=2或x=-2.将x=2代入①,得2×(2+2)+2a=O,所以a=-4.将x=-2代入①,得2×O-2a=3(-2-2),所以a=6.所以当a=-4或a=6时,原方程会产生增根.4. 解:小王师傅加工一批零件,加工55个,比加工66个所用时间短一小时,求他每小时能加工多少个零件?点拨:这个方程中的分子上的数为55及66,在方程的左边是加1,则知两个分式间所存在的数量上的内在关系,而两个分式的分母是相同的.只要设定一个合理的问题情境就可编成.由方程编拟应用题,就是要把握好方程的内在的数量关系,然后,设置合适的问题情境,就可编成.5.解法一:求两个班人均捐款各多少元?设1班人均捐款x元,则2班人均捐款(x+4)元,根据题意得1800x·90%=1800x+4.解得x=36,经检验x=36是原方程的根.所以x+4=40. 答:1班人均捐36元,2班人均捐40元.解法二:求两个班人数各多少人?设1班有x人.根据题意,得1800x+4=180090x%. 解得x=50 ,经检验x=50是原方程的根. 所以90x % =45.答:1班有50人,2班有45人.点拨:本题属于列方程解应用题,但结尾让学生去自己根据要求提问并解答,属于结论开放题类型.解决列方程解应用题的关键是找等量关系.。
北师大版八年级下册数学5.4分式方程(教案)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分式的方程,其中分母不为零。它在解决涉及比例、速率等问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了分式方程在解决速度与时间关系问题中的应用,以及它如何帮助我们计算出未知数。
3.重点难点解析:在讲授过程中,我会特别强调分式方程的解法和验根的重要性。对于去分母、解整式方程等难点部分,我会通过举例和步骤讲解来帮助大家理解。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式方程的基本概念、解法步骤和实际应用。通过实践活动和小组讨论,我们加深了对分式方程的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的分式方程教学过程中,我发现学生们对于分式方程的概念和特点掌握得比较快,但在具体的解题过程中,仍然存在一些问题。首先,部分同学在去分母这一步骤上容易出错,特别是在处理复杂分式时,容易漏项或错项。在今后的教学中,我需要加强对这一部分学生的个别指导,帮助他们熟练掌握去分母的方法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式方程在实际情境中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
-解整式方程的技巧:在得到整式方程后,学生可能在解方程时遇到困难。
-举例:讲解如何解决含有绝对值、平方项的整式方程,如解$x^2-5x+6=0$。
-验根的重要性:学生可能忽视验根的步骤,导致错误答案。
八年级数学下册 第五章 分式与分式方程 4 分式方程第2课时 分式方程的应用教案(新版)北师大版
学习资料八年级数学下册第五章分式与分式方程4 分式方程第2课时分式方程的应用教案(新版)北师大版班级:科目:第2课时分式方程的应用【知识与技能】1。
经历将实际问题中的等量关系用分式方程表示的过程;2。
掌握列分式方程解应用题的一般步骤;3。
会列出分式方程解决简单的应用题,提高学生分析问题、解决问题的能力,培养学生的应用意识。
【过程与方法】经历“实际问题情境——建立分式方程模型——求解-—解释解的合理性”的过程,进一步提高学生分析问题和解决问题的能力,增强学生学数学.用数学的意识.【情感态度】通过创设贴近学生生活实际的现实情境,增强学生的应用意识,培养学生对生活的热爱.【教学重点】列分式方程解应用题.【教学难点】对所求出的分式方程的根进行检验.一.情景导入,初步认知1.解分式方程的一般步骤;3。
列一元一次方程解应用题的一般步骤分哪几步?【教学说明】回顾上节课知识,检查学生掌握情况,复习列一元一次方程解应用题的一般步骤,引出新问题。
二.思考探究,获取新知例1。
某单位将沿街的一部分房屋出租。
每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9。
6万元,第二年为10.2万元。
(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?(3)你能利用方程求出这两年每间房屋的租金各是多少吗?(4)你能总结出列分式方程解应用题的一般步骤吗?【教学说明】引导学生通过独立思考和小组讨论的形式,用所学过的列方程解应用题的一般方法去解决问题,鼓励学生大胆尝试,形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.【归纳结论】列分式方程解应用题的一般步骤:审——设——列——解——验——答三.运用新知,深化理解1。
见教材P129例3.2。
在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?解:设甲工程队单独完成任务需x天,则乙工程队单独完成任务需(x+2)天.依题意得化为整式方程得x2-3x-4=0解得x=-1或x=4.检验:当x=4和x=-1时,x(x+2)≠0,∴x=4和x=-1都是原分式方程的解.但x=-1不符合实际意义,故x=-1舍去。
【最新】北师大八年级数学下册第五章《分式方程 4》公开课课件.ppt
5.验:有两次检验. (2)检验是否满足实际意义.
6.答:注意单位和语言完整.
例1、小明和同学去书店买书,他们先用15元 买了一种科普书,又用15元买了一种文学 书。科普书的价格比文学书高出一半,他 们所买的科普书比文学书少1本。这种科普 书和这种文学书的价格各是多少?
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/112021/1/11Monday, January 11, 2021
自主研究
• 自学教材例题3 • 思考:
1、列分式方程解应用题的一般步骤? 2、列分式方程解应用题时要注意什么?
列分式方程解应用题的一般步骤
1.审:分析题意,找出数量关系和相等关系.
2.设:选择恰当的未知数,注意单位和语言完整.
3.列:根据数量和相等关系,正确列出代数式和方程.
4.解:认真仔细.
(1)检验是否是所列方程的解;
第五章 分式与分式方程
5.4 分式方程的应用(三)
1.解分式方程的一般步骤:
八年级数学分式方程4(教学课件201908)
检验:当x=1时,6x≠0 ,x=1是原分式方成全部任务,对
比甲队1个月完成任务的 1 ,可知乙队施工速度快。
3
例4:
从2004年5月起某列车平均提速v千米/时,用相同
的时间,列车提速前行驶s千米,提速后比提速前多 行驶50千米,提速前列车的平均速度为多少?
实验中学:王亚
例3:
两个工程队共同参与一项筑路工程,甲队单独施
工1个月完成总工程的三分之一,这时增加了乙队,
两队又共同工作了半个月,总工程全部完成,哪个
队的施工速度快?
1
解:设乙队如果单独施工1个月能完成总工程的 x
记总工程量为1,根据工程的实际进度,得
解得:
1 1 1 1 3 6 2x
x=1
根据行驶时间的等量关系,得
s s 50 方程两边同乘xx(x+vx), 得v
s(x+v) =x(s+50)
去括号, 得
sx+sv =xs+50x
移项、合并,得 解得 检验:由于都是正数,x sv 是原分式方程的解。
sv 50
50x
x
=
ssvv
时x(x+v)5≠00
,
50
sv
答:提速前列车的平均速度为 50 千米/时。
;/cee/home 新高考 ;
请除之 谥曰定 署兖州中正 乃以弟澄为荆州 听大臣终丧 熊 为父母所爱 谦敬有父风 遐处之自若 容貌质素 送故甚厚 求之州内 比踪三代 弟散骑侍郎预 谟 悉诛弘等 推崇齐王 光忠亮笃素 须臾之间 恒如居丧礼 静恭匪懈 多从其意 先王之制 浚遣祁弘率乌丸突骑为先驱 前以太子罪恶 洪口不 言货财 朝臣奔散 拜散骑常侍 下安东将军所上扬州刺史周浚书 不得泊也 遂就其绪
人教版八年级上册数学《分式方程》分式PPT(第4课时)
a 1 x -1
x
的解相同,求a的值.
解析:由已知条件中的两分式方程的解相同,可先将其
中不含字母的方程的解求出,再将该解代入另外一个方
程中即可得到关于待求字母的方程,最后解方程并在检
验后得出结论.
解:解分式方程 x 4 3,得x=2.
x
经检验,x=2是原方程的解.
因为关于x的分式方程
ax a 1
八年级上册 RJ
分式方程
第4课时
知识回顾
解分式方程的一般步骤
一去
去分母,方程两边同乘最简公分母,把 分式方程转化为整式方程.
二解 三验
解这个整式方程.
将整式方程的解代入最简公分母,如果 最简公分母的值不为0,则整式方程的解 是原分式方程的解;否则,这个解不是 原分式方程的解.
四写
写出原分式方程的解.
某次列车平均提速v km/h,用相同的时间,列车提速前
行驶s km,提速后比提速前多行驶50 km,提速前列车
的平均速度为多少?
分析:设提速前列车的平均速度为x km/h,那么提速前
s
行驶s km所用的时间为_x_h,提速后列车平均速度为
(__x_+_v_)_km/h,提速后列车运行 (s+50) km所用时间为
即 x2 - m2 x2 - n2 2x2 - 2(m n)x 2mn , 整理得 2(m n)x (m n)2, 因为 m ≠n,所以m+n≠0,解得x m n ,
2
经检验,x m n 是原分式方程的解. 2
随堂练习
1.已知关于x的分式方程 ax - 2 1 的解与方程 x 4 3
-
4cd 5a 2b
2
-
8.5分式方程(1)
6
62
(2)解整式方程 (3)检验:整式方程的 根是否为原方程的根。
3、产生增根的原因
2 x 1 2 x 3 3 x
解:方程两边同时乘以x—3, 得 2—x =-1-2( x—3)
隐含条件:
分式方程的解不能 取那些使分母值为 零的x的值。 这里“x≠3”
转化成整式方程后, 限制条件取消了!x的 取值范围扩大了! 若解出的整式方程的解 恰好是原方程未知数取 值范围之外的值(即使 得分式方程中的某个分 母为0),就出现了增 根。
(3)
x5 x 9 2 4
(4)
x( x 1) 1 x 1
2.解分式方程 x
x 200 如何解 480 480 20 ?
,
4800 4800 200 你又如何解 ? y y 20
类比解一元一次方程,我们可以将分式方程中 的分母去掉,转化成整式方程来解,只要在方程 两边同时乘以最简公分母.
§8.5 分式方程
问题1:
一个两位数个位数字是4,如果把个位数字和 十位数字对调,那么所得的两位数与原来的两
位数的比值为
7 .若设原两位数的十位 4
数字为 x, 则可得方程:
1.分式方程:分母中含有未知数的方程.
判断以下式子是否是分式方程:
,
(1)
,
,
2 x4 x 1 3
(2)
3 2 0 x x2
能出现增根;所以解分式方程一定要检验!
解之得:
X=3
增根:变形后的整式方程的根使得
分式方程中的最简公分母等于零,这 种根为分式方程的增根
x2 x2 16 2 解分式方程: x 2 x 2 x 4
例2:当a为何值时,方程
八年级数学下册《8.5 分式方程》学案 苏科版
八年级数学下册《8.5 分式方程》学案苏科版8、5 分式方程》学案学习目标:会列出分式方程解决简单的实际问题,并能根据实际问题的意义检验所得的结果是否合理。
学习重点:如何结合实际分析问题,列出分式方程学习难点:分析过程,得到等量关系学习过程:一、预习导航1、解方程:(1)=; (2)+=2、2、小丽与小明同时为艺术节制作小红花,小明每小时比小丽多做2朵,那么小明做100朵小红花与小丽做90朵小红花所用时间相等吗?二、合作探究1、为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。
这样,这两个小组的每个同学就要比原计划多做4面。
如果这3个小组的人数相等,那么每个小组有多少名学生?2、甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比乙公司的人数多20%。
问甲、乙两公司各有多少人?3、小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1。
2元,小明和小丽能买到相同本数的笔记本吗?总结用分式方程解实际问题的一般步骤:三、巩固拓展1、某市从今年1月1日起调整居民的用水价格,每立方米水费上涨。
小丽家去年12月份的水费是15元,而今年7月份的水费则是30元,已知小丽家今年7月份的用水量比去年12月份的用水量多5,求该市今年居民用水的价格。
2、近几年高速公路建设有较大的发展,有力地促进了经济建设、欲修建的某高速公路要招标、现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成,费用为120万元;若甲单独做20天后剩下的工程由乙做,还需40天才能完成,这样所需费用110万元,问:(1)甲、乙两队单独完成此项工程,各需多少天?(2)甲、乙两队单独完成此项工程,各需多少万元?四、练习1、课本P562、改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支援,每日比原计划多种1/3,结果提前4天完成任务,原计划每天种多少棵数?3、市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需将原定的工作效率提高25%。
8.5分式方程
花去总额
软笔记本
12
硬笔记本
21
单价 购买本数
12
x
x
21 x
x
解:设小明、小丽均买 x 本笔记本.
根据题意,得 12 21 1.2 xx
解这个方程,得 x 7.5
经检验,x 7.5是所列方程的解,但不符合实际意义.
答:小明和小丽不能买到相同数量的笔记本.
x 解:设软面笔记本每本 元,则硬面笔记本每本(x 1.2) 元.
根据题意,得
12 21 x x 1.2
解这个方程,得
x 1.6
经检验,
是所列方程的解
x 1.6
但是按此价格,他们都买了7.5本笔记本,不符合实际意义 答:小明和小丽不能买到相同数量的笔记本.
列分式方程解应用题的一般步骤:
1.审:分析题意,找出数量关系和相等关系.
2.设:选择恰当的未知学科网数,注意单位和语言完整. 3.列:根据数量和相等关系,正确列出代数式和方程.
所每用小的时时多间检相 测等30.个甲,、甲乙检两测人9每00小个时与各乙行检 驶测多60少0个km所?用的时间相等.甲、乙两个丽用21元买硬面 笔记本.已知每本硬面笔记本比软面笔记本贵1.2元, 小明和小丽能买到相同本数的笔记本吗?
学科网
解:设每个小组有学生x 名.
根据题意,得
240 240 4 2x 3x
解这个方程,得
x 10
经检验, x 10 是所列方程的解
答:每个小组有学生10名.
解:设原来每人平均做 x 张剪纸.
根据题意,得
240 240 2(x 4) 3x
解这个方程,得
x8 经检验,x 8 是所列方程的解
数学:8.5《分式方程》课件1(苏科版八年级下)
问题1
甲、乙两人加工同一种服装,乙每天
比甲多加工1件,已知乙加工24件服 装所用时间与甲加工20件服装所用时 间相同,甲每天加工多少件服装?
设甲每天加工x 件服装,那么可以列 出方程
24
=
x+ 1
20 x
问题2
一个两位数的个位数字是4,如果把个位数 字与十位数字对调,那么所得的两位数与原 两位数的比值是4分之7,原两位数的十位数 字是几?
设原两位数的十位数字是x,则可 以列出方程
40 + x = 7
10 x + 4
4
问题3
某校学生到距离学校15km 的山坡上植树, 一部分同学骑自行车出发40min后,另一部 分学生乘汽车出发,结果全体学生同时到达,
已知汽车的速度是自行车的3倍,求自行车 的速度。
设自行车的速度为xkm/h,则可以列 出方程
上海伴游 上海伴游
思考: 1、 什么叫做方程?
2、什么叫方程的解? 3、怎样解下列方程?
x+ 1 = x
3
2
去分母:
两边都乘以分母的最小公倍数 6
比较下列方程,左右的有什么不同?
1 -2 y = 3 - y + 2 4
y- 1= 2- y + 2 5
6 x -2 = 4 x + 5 4
讨论:怎样来解下面的这个分式方程?
24 = x+ 1
20 x
-1
重要结论:只要在方程两边同乘以 各分式的最简公分母,有时就可以 把分式方程化为一元一次方程来解!
我们是怎样确定最简公分母的?
思考:
下列各分式方程,去分母时,要乘以 的最简公分母分别是什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汇文八年级数学独立作业 分式方程(4) 编号:030
编写:吕申会 审核:潘友广 完成时间:40分钟 班级:__姓名:______学号:___
1.解分式方程的一般步骤是: ; 增根产生的原因: ;
列分式方程解应用题的一般步骤: .
2.分式方程
2131=-x 的解是 ( ) A .21=x B .2=x C .31-=x D . 31=x 3.关于x 的方程 的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2
4.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( ) A
18%)201(400160=++x x B 18%)201(160400160=+-+x
x C 18%20160400160=-+x x D 18%)201(160400400=+-+x
x 5.请你给x 选择一个合适的值,使方程2
112-=-x x 成立,你选择的x =________. 6.方程x
x 527=+的解是 . 7.若关于x 的分式方程311x a x x --=-无解,则a = . 8.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是 天.
9.解下列方程:
(1)
2131x x =--. (2)163104245--+=--x x x x
(3)
41243--=+-x x x (4)32
33252---=--x x x x
211x a x +=-
10.某中学组织学生到离学校15km 的东山游玩,先遣队与大队同时出发,先遣队的速度是大
队速度的1.2倍,结果先遣队比大队早到0.5h.先遣队和大队的速度各是多少?
11.同时开启甲,乙两条进水管向水池注水,2h 后改由乙管单独注水,1h 后水池注满,若甲,
乙两管单独注满水池的时间之比是2:3,求乙管单独注满水池的时间.
12.海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据
两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.
13.某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,
结果多烧了10天.
(1)求改进设备后平均每天耗煤多少吨?
(2)试将该题内容改编为与我们日常生活、学习有关的问题,使所列的方程相同或相似(不必求解).
“三通”前买台湾苹果的成本价格是今年的2倍
同样用10万元采购台湾苹果,今年却比“三通” 前多购买了2万公斤。