四川师范大学附属实验学校2010级初二下期期末复习数学试题及答案(2)

合集下载

四川初二初中数学期末考试带答案解析

四川初二初中数学期末考试带答案解析

四川初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是A.18B.16C.10D.202.已知,则的值为()A.B.C.2D.二、解答题1.(本题10分)如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠ABC,连接AC、BE.求证:四边形ABEC是矩形.2.有一道题:“先化简,再求值:其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?3.(-1)3+(2012-)0-4.5.÷6.7.解分式方程:(1);(2)8.甲、乙两名同学进行射击练习,在相同条件下各射靶10次,将射击结果作统计如下:(1)请你填上表中乙同学的有关数据;(2)根据你所学的统计知识,利用上述某些数据评价甲、乙两人的射击水平。

9.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF。

求证: DE=BF。

10.为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为小时,该月可得(即下月他可获得)的总费用为元,则(元)和(小时)之间的函数图像如图所示.(1)根据图像,分别写出当0≤≤20与>20时。

关于的函数关系式。

(2)若小强希望下个有250元费用,则小强本月需做家务多少时间?11.如图,在平面直角坐标系中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数(>0)的图象经过线段OC的中点A(3,2),交DC于点E,交BC于点F.设直线EF的解析式为.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式>0的解集.三、填空题1.当x= 时,分式的值为0.2.用科学记数法表示:-0.0000000017=__。

川师附属实验学校年八年级下期末数学复习试题二北师大版

川师附属实验学校年八年级下期末数学复习试题二北师大版

四川师范大学附属实验学校2010级初二下期期末复习数学试题(二)(A 卷100分 B 卷50分 总分150分 时间120分钟)A 卷(100分)一、选择题(3分×10=30分) 1、 -3x<-1的解集是( ) A 、x<13 B 、x<-31 C 、x>13 D 、x>-132、 如果a>b ,那么下列不等式不成立的是( ) A 、a -5>b -5 B 、-5a>-5b C 、5a >5bD 、-5a<-5b 3、 若4x 2+mxy+9y 2是一个完全平方式,则m=( )A 、6B 、12C 、±6D 、±12 4、 要使分式242--x x 为零,那么x 的值是( ) A 、-2B 、2C 、±2D 、05、分式222b ab a a +-,22b a b-,2222b ab a b ++的最简公分母是( )A 、(a 2-2ab+b 2)(a 2-b 2)(a ²+2ab+b ²) B 、(a+b )2(a -b )2C 、(a+b )2(a-b )2(a 2-b 2)D 、44b a -6、如图1,DE ∥BC ,则下列不成立的是( )A 、ECAEBD AD =B 、AE AC AD AB = C 、DBEC AB AC = D 、BC DEBD AD =7、如图2,∠1=∠B ,AD=5㎝,AB=10㎝,则AC=( )A 、50㎝B 、2㎝C 、25㎝D 、52㎝E D ACBDAC1B图1 图2 8、设S 是数据1x ,……,n x 的标准差,S ˊ是5,521--x x …… ,5-n x 的标准差,则有( )A 、S= S ˊB 、S ˊ=S -5C 、S ˊ=(S -5)²D 、S ˊ=5-S9、如果三角形三个外角度数之比是3:4:5,则此三角形一定是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、不能确定 10、m 、n 是常数,若mx+n>0的解是x<21,则nx-m<0的解集是( ) A 、x>2 B 、x<2 C 、x>-2 D 、x<-2 二、填空题(3分×6=18分)11、分解因式m (x-2y )- n (2y-x )=(x-2y )(______________) 12、(-x )2÷y ·y1=____________。

四川师范大学附属实验学校初中数学八年级下期末复习题(培优)

四川师范大学附属实验学校初中数学八年级下期末复习题(培优)

一、选择题1.(0分)[ID :10232]若2(5)x -=x ﹣5,则x 的取值范围是( ) A .x <5B .x ≤5C .x ≥5D .x >52.(0分)[ID :10223]下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等 B .如果两个数相等,那么它们的绝对值相等 C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等3.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >4.(0分)[ID :10204]如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.55.(0分)[ID :10141]12751348)的结果是( ) A .6B .3C .3D .126.(0分)[ID :10140]下列计算正确的是( ) A 2(4)-=2B 52=3C 52=10D 62=37.(0分)[ID :10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5B .2C .2.5D .-68.(0分)[ID :10193]如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =2,那么 AC 的长等于( )A .12B .16C .43D .829.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数B .平均数C .中位数D .方差10.(0分)[ID :10187]某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵 11.(0分)[ID :10179]若正比例函数的图象经过点(−1,2),则这个图象必经过点( ). A .(1,2)B .(−1,−2)C .(2,−1)D .(1,−2)12.(0分)[ID :10178]从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S 甲2=1.5,S 乙2=2.6,S 丙2=3.5,S 丁2=3.68,你认为派谁去参赛更合适( ) A .甲B .乙C .丙D .丁13.(0分)[ID :10168]无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限 14.(0分)[ID :10158]下列运算正确的是( ) A 235+=B .22=3 C 236=D 63215.(0分)[ID :10156]如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④二、填空题16.(0分)[ID :10323]如图.过点A 1(1,0)作x 轴的垂线,交直线y=2x 于点B 1;点A 2与点O 关于直线A 1B 1对称,过点A 2作x 轴的垂线,交直线y=2x 于点B 2;点A 3与点O 关于直线A 2B 2对称.过点A 3作x 轴的垂线,交直线y=2x 于点B 3;…按此规律作下去.则点A 3的坐标为_____,点B n 的坐标为_____.17.(0分)[ID :10311]若2(3)x -=3-x ,则x 的取值范围是__________.18.(0分)[ID :10310]如果二次根式4x -有意义,那么x 的取值范围是__________. 19.(0分)[ID :10297]如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .20.(0分)[ID :10294]如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.21.(0分)[ID:10287]已知函数y=2x+m-1是正比例函数,则m=___________. 22.(0分)[ID:10286]一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.23.(0分)[ID:10277]如图所示,已知ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC中,能说明ABCD是矩形的有______________(填写序号)24.(0分)[ID:10248]已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a 与b的大小关系是_________.25.(0分)[ID:10234]已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.三、解答题26.(0分)[ID:10395]某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?27.(0分)[ID:10393]为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.()1求每套队服和每个足球的价格是多少?()2若城区四校联合购买100套队服和a(a10)>个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;()3在()2的条件下,若a60=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?28.(0分)[ID:10392]如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD 的形状,并说明理由.29.(0分)[ID:10364]为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲70乙1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?30.(0分)[ID:10427]观察下列一组等式,然后解答后面的问题=,21)(21)1=,(32)(32)1=,(43)(43)1=⋯⋯1(1)观察以上规律,请写出第n个等式:(n为正整数).(2(3【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.B4.D5.D6.C7.A8.B9.D10.D11.D12.A13.C14.C15.C二、填空题16.(40)(2n﹣12n)【解析】【分析】先根据题意求出A2点的坐标再根据A2点的坐标求出B2的坐标以此类推总结规律便可求出点A3Bn的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A1作x轴17.【解析】试题解析:∵=3﹣x∴x-3≤0解得:x≤318.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根19.9【解析】∵四边形ABCD是矩形∴∠ABC=90°BD=ACBO=OD∵AB=6cmBC=8cm∴由勾股定理得:(cm)∴DO=5cm∵点E F分别是AOAD的中点(cm)故答案为2520.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠21.1【解析】分析:依据正比例函数的定义可得m-1=0求解即可详解:∵y=2x+m-1是正比例函数∴m-1=0解得:m=1故答案为:1点睛:本题考查了正比例函数的定义解题的关键是掌握正比例函数的定义22.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方23.①④【解析】矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形由此可得能使平行四边形ABCD是矩形的条件是①和④24.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x 的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征25.8cm【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt△ABC中∠ACB=90°AC=6cmBC=8cmCD⊥AB则(cm)由得解得CD=48(cm)故答案为48cm 【点三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】(a≤0),由此性质求得答案即可.【详解】,∴5-x≤0∴x≥5.故选C.【点睛】(a≥0(a≤0).2.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误. 故选C .3.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.4.D解析:D 【解析】 【分析】由▱ABCD 中,∠ABC 和∠BCD 的平分线交于AD 边上一点E ,易证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形,则可求得BC 的长,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB=CD ,AD=BC ,∴∠AEB=∠CBE ,∠DEC=∠BCE ,∠ABC+∠DCB=90°, ∵BE ,CE 分别是∠ABC 和∠BCD 的平分线,∴∠ABE=∠CBE=12∠ABC ,∠DCE=∠BCE=12∠DCB , ∴∠ABE=∠AEB ,∠DCE=∠DEC ,∠EBC+∠ECB=90°, ∴AB=AE ,CD=DE , ∴AD=BC=2AB , ∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.5.D解析:D【解析】【分析】【详解】12===.故选:D.6.C解析:C【解析】【分析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.7.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y 随x 值的增大而减小,∴当x=1时,y 取最大值,最大值为-0.5×1+2=1.5, 故选A .【点睛】本题考查了一次函数的性质,牢记“k <0,y 随x 的增大而减小”是解题的关键.8.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴OA OG ==AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴12AG ==,∴12416AC =+=.故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.9.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

华师版八年级数学下册期末复习综合题含答案

华师版八年级数学下册期末复习综合题含答案

华师版八年级数学下册期末复习综合题含答案第16章三、解答题(本大题共8小题,共72分) 17.(10分)计算:(1)|-2|+⎪⎪⎪⎪⎪⎪13 -1×(π-2 )0-9 +(-1)-2;解:原式=2+3×1-3+1=3.(2)⎝ ⎛⎭⎪⎫a 2b -cd 3 3 ÷2ad 3 · ⎝⎛⎭⎪⎫c 2a 3 ; 解:原式=(a 2b )3(-cd 3)3 ·d 32a ·c 3(2a )3=-a 6b 3c 3d 9 ·d 32a ·c 38a 3 =-a 2b 316d 6.(3)⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a +2a 2-2a ÷⎝ ⎛⎭⎪⎫4a -1 . 解:原式=⎣⎢⎡⎦⎥⎤a -1(a -2)2-a +2a (a -2) ÷4-aa =a (a -1)-(a -2)(a +2)a (a -2)2 ·a4-a=a 2-a -a 2+4a (a -2)2·a4-a=1(a -2)2. 18.(6分)解方程:(1)(广安中考)23 +x 3x -1 =19x -3 ;解:方程两边同乘以3(3x -1)去分母, 得2(3x -1)+3x =1,解这个整式方程得x =13 ,经检验,x =13 是原方程的增根,所以原方程无解.(2)2x 2-4 +x x -2=1. 解:方程两边同时乘以(x +2)(x -2), 得2+x (x +2)=x 2-4. 2+x 2+2x =x 2-4.x =-3.经检验,x =-3是原分式方程的解. 19.(8分)先化简再求值:(1)aa -b ⎝ ⎛⎭⎪⎫1b -1a +a -1b ,其中a =2,b =13; 解:原式=aa -b·a -b ab +a -1b=1b +a -1b =a b. 当a =2,b =13 时,原式=213=6.(2)x 2x 2-1 ÷⎝⎛⎭⎪⎫1x -1+1 ,其中x 是5 的整数部分. 解:原式=x 2(x +1)(x -1) ·x -1x =xx +1.∵x 是5 的整数部分,∴x =2.当x =2时,原式=22+1 =23.20.(8分)已知分式(m -1)(m -3)m 2-3m +2 ,试问: (1)当m 为何值时,分式有意义? (2)当m 为何值时,分式值为0.解:(1)由题意得m 2-3m +2≠0,解得m ≠1且m ≠2. (2)由题意得(m -1)(m -3)=0,m 2-3m +2≠0,解得m =3, 当m =3时,分式值为0.21.(8分)已知|2a -b +1|+⎝ ⎛⎭⎪⎫3a +32b 2 =0,求代数式b 2a +b ÷⎝ ⎛⎭⎪⎫a a -b -1 ·⎝ ⎛⎭⎪⎫a -a 2a -b 的值. 解:化简代数式得原式=b 2a +b ÷a -(a -b )a -b ·a (a -b )-a 2a -b=b 2a +b ·a -b b ·-ab a -b =-ab 2a +b.由题意得a =-14 ,b =12 ,∴原式=--14×⎝ ⎛⎭⎪⎫122-14+12 =14 .22.(10分)按下列要求完成各题.(1)已知实数a ,b 满足关系1a +b +1a -b =b a 2-b 2 ,求2ab +b 2a 2的值;解:由1a +b +1a -b =2a a 2-b 2 =ba 2-b 2 可得b =2a ,将b =2a 代入2ab +b 2a 2 =2a ·2a +(2a )2a2=8. (2)如果3(x +1)(x -2) =A x +B x +1 +C x -2,求A ,B ,C 的值.解:Ax +B x +1 +C x -2 =(Ax +B )(x -2)+C (x +1)(x +1)(x -2)=Ax 2+(B +C -2A )x +C -2B(x +1)(x -2)=3(x +1)(x -2), ∴⎩⎪⎨⎪⎧A =0,B +C -2A =0,C -2B =3, ∴⎩⎪⎨⎪⎧A =0,B =-1,C =1.23.(10分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2 000元要多,多出的部分能购买25副乒乓球拍. (1)若每副乒乓球拍的价格为x 元,请你用含x 的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用; (2)若购买的两种球拍数一样,求x . 解:(1)(4 000+25x )元;(2)由题意得2 000x =2 000+25x x +20 ,解得x =±40,经检验,x =±40都是原方程的解,但x>0,∴x =40.24.(12分)(德阳中考)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A 种板材48 000 m 2和B 种板材24 000 m 2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A 种板材60 m 2或B种板材40 m 2,请问:应分别安排多少人生产A 种板材和B 种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:问这400解:(1)设x 人生产A 种板材,根据题意得48 00060x =24 00040(210-x ) ,解得x =120.经检验,x =120是分式方程的解.210-120=90. 故安排120人生产A 种板材,90人生产B 种板材, 才能确保同时完成各自的生产任务;(2)设生产甲种板房y 间,乙种板房(400-y )间, 安置人数为12y +10(400-y )=2y +4 000, 根据题意得{108y +156(400-y )≤48 000,61y +51(400-y )≤24 000,解得300≤y ≤360,因为2大于零,所以当y =360时安置的人数最多.360×2+4 000=4 720.故最多能安置4 720人.第17章三、解答题(本大题共8小题,共72分) 17.(10分)已知一次函数y =(3+m )x +n -6.(1)当m ,n 为何值时,函数的图象过原点?(2)当m ,n 满足什么条件时,函数的图象经过第一、二、三象限? 解:(1)依题意得{3+m ≠0,n -6=0, 得m ≠-3且n =6.(2) ∵该函数图象经过第一、二、三象限, ∴{3+m>0,n -6>0, 解得m>-3且n>6.18.(6分)判断A (-2,-5),B (3,5),C (7,13)三点是否在一条直线上,并说明理由.解:A ,B ,C 三点在同一条直线上,设经过A ,B 两点的直线表达式是y =kx +b (k ≠0), ∴{-5=-2k +b ,5=3k +b , ∴{k =2,b =-1. ∴y =2x -1,当x =7时,y =2×7-1=13,∴点C 在直线AB 上,即A ,B ,C 三点在同一条直线上. 19.(8分)已知直线y =2x +3与直线y =-2x -1. (1)若两直线与y 轴分别交于点A ,B ,求点A ,B 的坐标; (2)求两直线的交点C 的坐标; (3)求△ABC 的面积.解:(1)对于y =2x +3,令x =0, 则y =3.∴点A 的坐标为(0,3).对于y =-2x -1,令x =0,则y =-1.∴点B 的坐标为(0,-1). (2)解方程组{y =2x +3,y =-2x -1, 得{x =-1,y =1. ∴点C 的坐标为(-1,1).(3)△ABC 的面积为12×[3-(-1)]×|-1|=2.20.(8分)如图,已知某电路的电压U (V)、电流I (A)、电阻R (Ω)三者之间有如下关系式:U =IR ,且该电路的电压U 恒为220 V . (1)求出电流I 关于电阻R 的函数表达式;(2)如果该电路的电阻为200 Ω,则通过他的电流是多少?解:(1)电流I 关于电阻R 的函数表达式是I =220R(R>0);(2)通过他的电流是220200=1.1 A .21.(8分)如图,一次函数y 1=kx +b (k ≠0)和反比例函数y 2=m x(m ≠0)的图象交于点A (-1,6),B (a ,-2). (1)求一次函数与反比例函数的表达式; (2)根据图象直接写出y 1>y 2时,x 的取值范围.解:(1)把点A (-1,6)代入反比例函数y 2=mx(m ≠0),得m =-1×6=-6,∴y 2=-6x.将B (a ,-2)代入y 2=-6x ,得-2=-6a,解得a =3,∴B (3,-2).将A (-1,6),B (3,-2)代入一次函数y 1=kx +b , 得{-k +b =6,3k +b =-2, 解得{k =-2,b =4. ∴y 1=-2x +4.(2)由函数图象可得当y 1>y 2时,x<-1或0<x<3.22.(10分)(泸州中考)某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A ,B 两种产品共50件.已知生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1 200元.设生产A,B两种产品的总利润为y元,其中A种产品生产的件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A,B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.解:(1)y=700x+1200(50-x),即y=-500x+60000;(2)由题意得{9x+4(50-x)≤380,3x+10(50-x)≤290,解得30≤x≤36,y=-500x+60000,y随x的增大而减小,当x=30时,y最大=45000,生产B种产品20件,A种产品30件,总利润y有最大值,y最大=45000元.23.(10分)甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车步行前往,乙骑电动车沿原路返回.乙取到相机后(在学校取相机所用时间忽略不计),骑电动车追甲,在距乡镇13.5千米处追上甲并同车前往乡镇.若电动车速度始终不变,设甲与学校相距y甲(千米),乙与学校相距y乙(千米),甲离开学校的时间为x(分),y甲,y乙与x之间的函数图象如图所示.结合图象解答下列问题:(1)电动车的速度为__0.9__千米/分;(2)甲步行所用的时间为__45__分钟;(3)求乙返回到学校时,甲与学校相距多远.解:甲步行过程中,设y甲与x的函数关系式为y甲=kx+b,则{20k +b =18,65k +b =22.5, 解得{k =0.1,b =16, ∴y 甲=0.1x +16,当x =40时,y 甲=20. 即乙返回到学校时,甲与学校相距20千米.24.(12分)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y (千克)与销售时间x (天)之间的函数关系如图甲所示,销售单价p (元/千克)与销售时间x (天)之间的函数关系如图乙所示. (1)直接写出y 与x 之间的函数关系式; (2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元/千克?解:(1)y ={2x (0≤x ≤15),-6x +120(15<x ≤20). (2)设销售单价p (元/千克)与销售时间x (天)之间的函数关系式为p =kx +b (10≤x ≤20),把点(10,10),(20,8)代入,得{10k +b =10,20k +b =8, 解得⎩⎨⎧k =-15,b =12.∴p =-15 x +12(10≤x ≤20).当x =15时,p =-15 ×15+12=9.第10天的销售金额为2×10×10=200元, 第15天的销售金额为30×9=270元.(3)当y ≥24时,①24≤2x ≤30,解得12≤x ≤15;②24≤-6x +120<30.解得15<x ≤16.综上可知“最佳销售期”的范围是12≤x ≤16,共有5天. 对于函数p =-15 x +12(10≤x ≤20),y 随x 的值的增大而减小,故当x =12时,p 有最大值,最高单价为-15×12+12=9.6元/千克.第18章三、解答题(本大题共8小题,共72分)17.(6分)如图,在▱ABCD 的对角线AC 上取两点E 和F ,若AE =CF ,求证:∠AFD =∠CEB .证明:∵四边形ABCD 为平行四边形, ∴AD 綊BC ,∴∠DAF =∠BCE , ∵AE =CF ,∴AE +EF =CF +EF , 即AF =CE ,∴△DAF ≌△BCE , ∴∠AFD =∠CEB.18.(10分)(宿迁中考)如图,在▱ABCD 中,点E ,F 分别在边CB ,AD 的延长线上,且BE =DF ,EF 分别与AB ,CD 交于点G ,H ,求证:AG =CH .证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AD ∥BC ,AD =BC ,∴∠E =∠F. 又∵BE =DF ,∴AD +DF =BC +BE ,即AF =EC.在△AGF 和△CHE 中,{∠A =∠C ,AF =CE ,∠F =∠E , ∴△AGF ≌△CHE (A.S.A.),∴AG =CH.19.(8分)如图,AB ,CD 相交于点O ,AC ∥DB ,AO =BO ,E ,F 分别是OC ,OD 的中点.求证: (1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.证明:(1)∵AC ∥DB ,∴∠C =∠D ,在△AOC 和△BOD 中,{∠C =∠D ,∠COA =∠DOB ,AO =BO , ∴△AOC ≌△BOD ;(2) ∵△AOC ≌△BOD ,∴CO =DO.∵E ,F 分别是OC ,OD 的中点,∴OF =12 OD ,OE =12 OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形.20.(8分)如图,▱ABCD 中,∠BAD 和∠DCB 的平分线AE ,CF 分别交BC ,AD 于点E ,F ,点M ,N 分别为AE ,CF 的中点,连接FM ,EN ,试判断FM 和EN 的数量关系和位置关系,并加以证明.解:FM =EN ,FM ∥EN.证明如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∠BAD =∠DCB ,∠B =∠D , ∴∠DAE =∠AEB ,∠DFC =∠BCF.∵∠BAD 和∠DCB 的平分线AE ,CF 分别交BC ,AD 于点E ,F ,∴∠BAE =∠DAE=12 ∠BAD ,∠BCF =∠DCF =12∠DCB ,∴∠BAE=∠DCF.在△BAE和△DCF中,{∠B=∠D,AB=CD,∠BAE=∠DCF,∴△BAE≌△DCF(ASA),∴AE=CF,∠AEB=∠DFC,∴∠AEB=∠BCF,∴AE∥CF.∵点M,N分别为AE,CF的中点,∴ME∥FN,ME=FN,∴四边形MENF是平行四边形,∴FM=EN,FM∥EN.21.(8分)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连结DG,B′G.求证:(1)∠1=∠2;(2)DG=B′G.证明:(1)∵在平行四边形ABCD中,DC∥AB,∴∠2=∠FEC,由折叠得∠1=∠FEC.∴∠1=∠2.(2)∵∠1=∠2,∴EG=GF.∵AB∥DC,∴∠DEG=∠EGF.由折叠得EC′∥B′F,B′F=BF,∴∠B′FG=∠EGF,∴∠DEG=∠B′FG.∵DE=BF,∴DE=B′F,∴△DEG≌△B′FG,∴DG=B′G.22.(10分)如图所示,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.(1)求证:CD=AN;(2)若AC⊥DN,AN=2,MN=1,求四边形ADCN的面积.(1) 证明:∵CN ∥AB ,∴∠DAC =∠NCA , (2)在△ADM 和△CNM 中,∵{∠DAC =∠NCA ,∠AMD =∠CMN ,MA =CM , ∴△ADM ≌△CNM , ∴CN =AD , ∵CN ∥AD ,∴四边形ADCN 为平行四边形,∴CD =AN ; (2)解:∵AC ⊥DN ,MN =1,AN =2,∴AM =AN 2-MN 2 =3 ,∴S △AMN =12 AM ·MN =12 ×3 ×1=32.∵四边形ADCN 是平行四边形,∴S 四边形ADCN =4S △AMN =23 .23.(10分)如图,平行四边形ABCD 中,BD ⊥AD ,∠A =45°,E ,F 分别是AB ,CD 上的点,且BE =DF ,连结EF 交BD 于点O .(1)求证:BO =DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于点G ,当FG =1时,求AE 的长.(1) 证明:∵四边形ABCD 是平行四边形, (2)∴DC ∥AB ,∴∠OBE =∠ODF.在△OBE 与△ODF 中,{∠BOE =∠DOF ,∠OBE =∠ODF ,BE =DF , ∴△OBE ≌△ODF ,∴BO =DO.(2) 解:∵EF ⊥AB ,AB ∥DC ,∴∠GFD =∠GEA =90°.∵∠A =45°,∴∠G =∠A =45°,∴AE =GE.∵BD ⊥AD ,∴∠ADB =∠GDO =90°,∴∠GOD=∠G=45°,∴DG=DO,∴OF=FG=1.由(1)可知,OE=OF=1,∴GE=OE+OF+FG=3,∴AE=3.24.(12分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与点B,C重合),△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC 于点E,连接BF.(1)如图①,求证:△AFB≌△ADC;(2)请判断图①中四边形BCEF的形状,并说明理由;(3)若点D在BC的延长线上,如图②,其他条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.(1)证明:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°.又∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠FAB=∠DAC.在△AFB和△ADC中,{AF=AD,∠BAF=∠CAD,AB=AC,∴△AFB≌△ADC(S.A.S.).(2)解:四边形BCEF为平行四边形.理由如下:由(1)得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC.又∵BC∥EF,∴四边形BCEF是平行四边形.(3)解:成立,理由如下:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠BAC-∠FAE,∠DAC=∠FAD-∠FAE,∴∠FAB=∠DAC.在△AFB和△ADC中,{AF=AD,∠BAF=∠CAD,AB=AC,∴△AFB≌△ADC(S.A.S.),∴∠AFB=∠ADC,又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE.又∵BC∥EF,∴四边形BCEF是平行四边形.第19章三、解答题(本大题共8小题,共72分)17.(10分)如图,在矩形ABCD内部,以AB为边作等边△ABE,且DE=CE,∠DEC=90°,求∠AED的度数.解:∵四边形ABCD是矩形,△ABE是等边三角形,∴AD=BC,AE=BE,∠AEB=60°,在△ADE和△BCE中,{AD=BC,AE=BE,DE=CE,∴△ADE≌△BCE(S.S.S.),∴∠AED=∠BEC,∵∠DEC=90°,∴∠AED=(360°-90°-60°)÷2=105°.18.(6分)如图,Rt△ABC中,∠C=90°,∠A,∠B的平分线交于点O,OE ⊥BC于点E,OF⊥AC于点F,求证:四边形CEOF为正方形.证明:过O点作OG⊥AB,∵AO,BO分别平分∠CAB,∠ABC,OE⊥BC,OF⊥AC,∴OF=OE=OG.又∵∠C=90°,∴四边形CEOF为正方形.19.(8分)如图,在菱形ABCD中,F为对角线BD上一点,点E为AB延长线上一点,DF=BE,CE=CF.求证:(1)△CFD≌△CEB;(2)∠CFE=60°.证明:(1)∵四边形ABCD是菱形,∴CD=CB.在△CFD和△CEB中,{CD=CB,CF=CE,DF=BE,∴△CFD≌△CEB(S.S.S.).(2)∵△CFD≌△CEB,∴∠CDB=∠CBE,∠DCF=∠BCE.∵四边形ABCD是菱形,∴∠CBD=∠ABD.∵CD=CB,∴∠CDB=∠CBD,∴∠ABD=∠CBD=∠CBE=60°.∴∠DCB=60°,∴∠FCE=∠DCB=60°.∵CF=CE,∴∠CFE=∠CEF=60°.20.(8分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连结CE,CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.(1)证明:∵四边形ABCD是正方形,(2)∴AB=CB,∠ABC=90°.∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∠EBC+∠FBC=90°.又∵∠ABF+∠FBC=90°,∴∠ABF=∠CBE.在△ABF和△CBE中,有{AB=CB,∠ABF=∠CBE,BF=BE,∴△ABF≌△CBE(S.A.S.).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°-∠BFE=135°.又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB-∠FEB=135°-45°=90°,∴△CEF是直角三角形.21.(8分)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD 的中点,射线BE交AD的延长线于点F,连结CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.(1)证明:∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC.在△BCE与△FDE中,{∠FBC=∠BFD,∠DCB=∠CDF,DE=EC,∴△BCE≌△FDE,∴DF=BC.又∵DF∥BC,∴四边形BCFD为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)解:∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=BD2-AD2=3,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=AB2+AF2=12 .22.(10分)如图,在△ABC中,D是BC边的中点,E,F分别在线段AD及其延长线上,CE∥BF.(1)求证:△BDF≌△CDE;(2)若BD=DF,求证:四边形BFCE是矩形.证明:(1)∵D是BC边的中点,∴BD=DC.∵CE∥BF,∴∠ECD=∠FBD.在△BDF和△CDE中,{∠FBD=∠ECD,DB=DC,∠BDF=∠CDE,∴△BDF≌△CDE(A.S.A.).(2)∵△BDF≌△CDE,∴ED=DF.又BD=CD,∴四边形BFCE是平行四边形.∵BD=DF,∴BC=EF.∴四边形BFCE是矩形.23.(10分)如图,菱形ABCD中,对角线AC,BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连结OF,若AC=16,BD=12,求四边形OFCD的面积.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形. 又∵四边形ABCD 是菱形,∴AC ⊥BD , ∴∠DOC =90°.∴四边形OCED 为矩形; (2)解:作OH ⊥BC 于点H.∵四边形ABCD 是菱形,∴AC ⊥BD ,OD =OB =12 BD =6,OA =OC =12 AC =8.∴S △DBC =12DB ·OC =48.在Rt △OBC 中,BC =OB 2+OC 2 =10,∵CF =CO =8, ∴BF =2.∵S △OBC =12 ·BO ·OC =12 ·BC ·OH ,∴6×8=10×OH.∴OH =48,∴S △OBF =12·BF ·OH =4.8,∴S 四边形OFCD =S △DBC -S △OBF =48-4.8=43.2.24.(12分)在菱形ABCD 中,∠ABC =60°,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且CF =AE ,连结BE ,EF . (1)如图①,当E 是线段AC 的中点时,求证:BE =EF ;(2)如图②,当点E 不是线段AC 的中点,其它条件不变时,请你判断(1)中的结论:__成立__.(选填“成立”或“不成立”)(3)如图③,当点E 是线段AC 延长线上的任意一点,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(1)证明:∵四边形ABCD 是菱形,∴AB =BC , ∵∠ABC =60°, ∴△ABC 是等边三角形, ∴∠BCA =60°, ∵E 是线段AC 的中点,∴∠CBE =∠ABE =30°,AE =CE , ∵CF =AE ,∴CE =CF ,∴∠F =∠CEF =12 ∠BCA =30°,∴∠CBE =∠F =30°,∴BE =EF ;(2)解:结论成立;理由如下:过点E 作EG ∥BC 交AB 于点G , ∵四边形ABCD 为菱形,∴AB =BC ,∠BCD =120°,AB ∥CD , ∴∠ACD =60°,∠DCF =∠ABC =60°, ∴∠ECF =120°, 又∵∠ABC =60°, ∴△ABC 是等边三角形, ∴AB =AC ,∠ACB =60°,又∵EG ∥BC ,∴∠AGE =∠ABC =60°, 又∵∠BAC =60°, ∴△AGE 是等边三角形,∴AG =AE =GE ,∠AGE =60°,∴BG =CE ,∠BGE =120°=∠ECF ,又∵CF =AE,∴GE=CF,在△BGE和△ECF中,{BG=CE,∠BGE=∠ECF,GE=CF,∴△BGE≌△ECF(S.A.S.),∴BE=EF.(2)解:结论成立,证明如下:过点E作EG∥BC交AB的延长线于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△ECF中,{BG=CE,∠AGE=∠ECF,GE=CF,∴△BGE≌△ECF(S.A.S.),∴BE=EF.第20章三、解答题(本大题共8小题,共72分)17.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、课外论文成绩、平日表现成绩(三部分所占比例如图),若小方的三部分得分依次是92,80,84,求他这学期期末数学总评成绩是多少?解:92×70%+80×20%+84×10%=88.8分,即小方的数学总评成绩为88.8分.18.(10分)2018年7月27日上午九点三十分在黑龙红省青少年发展基金会举行“2018年园梦大学捐款资助仪式”.八年级(1)班50名同学积极参加了这次捐款活动,下表是小明对全班捐款情况的统计结果:38元.(1)根据以上信息,请帮助小明计算出被污染的数据,并写出解答过程;(2)该班捐款金额的众数、中位数分别是多少?解:(1)被污染处的人数为50-(3+6+11+13+6)=11人.设被污染处的捐款数为x元,则11x+1460=50×38,解得x=40.即被污染处的捐款为40元;(2)捐款金额的中位数是40元,捐款金额的众数是50元.19.(8分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选他们的各项成绩如下表所示:人的综合成绩(满分为100分).(1)(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.解:(1)这四名候选人面试成绩的中位数为88+902 =89分;(2)由题意得x ×60%+90×40%=87.6, 解得x =86,答:表中x 的值为86;(3)甲候选人综合成绩为90×60%+88×40%=89.2分, 乙候选人的综合成绩为84×60%+92×40%=87.2分, 丁候选人的综合成绩为88×60%+86×40%=87.2分, ∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.20.(8分)(东莞中考)甲、乙两人参加操作技能培训,他们在培训期间参加的5次测试成绩(满分10分)记录如下:(1) (2)如果乙再测试一次,成绩为8分,请计算乙6次测试成绩的方差(结果保留小数点后两位).解:(1)∵x 甲=x 乙,s 2甲 <s 2乙 ,∴甲的成绩比较稳定,派甲参赛比较合适;(2)x 乙=(5+9+7+10+9+8)÷6=8,s 2乙=16[(5-8)2+(9-8)2+(7-8)2+(10-8)2+(9-8)2+(8-8)2] ≈2.67.21.(8分)(威海中考)为积极响应“弘扬传统文化”的号召,某学校倡导全校1 200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表(1)活动启动之初学生“一周诗词诵背数量”的中位数为__4.5__首; (2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数; (3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果. 解:(1)本次调查的学生有20÷60°360°=120名, 背诵4首的有120-15-20-16-13-11=45人, ∵15+45=60人,∴这组数据的中位数是(4+5)÷2=4.5首, 故答案为4.5首; (3)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有1 200×40+25+20120=850人,答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人; (3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次活动举办后的效果比较理想.22.(10分)甲、乙两名同学进入九年级后,某科6次考试成绩如图:(1)请根据统计图填写下表:(2)析;①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?解:(2)①甲、乙两同学平均分相同,乙的方差小,说明乙的成绩较稳定;②甲的成绩越来越好,而乙的成绩起伏不定.23.(10分)某地发生地震后,某校学生会向全校1 900名学生发起了“心系灾区人民”的捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__50人__,图①中m的值是__32__;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.解:(2)平均数为16元,众数为10元,中位数为15元.(3)608名.24.(12分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:(1)a=__8__,b=__8__,c=__9__;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会__变小__.(选填“变大”“变小”或“不变”)解:(1)由题可得a=15(5+9+7+10+9)=8;甲的成绩7,8,8,8,9中,8出现的次数最多,故众数b=8;而乙的成绩5,7,9,9,10中,中位数c=9;故答案为:8,8,9;(2)乙成绩变化情况的折线如图.(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定;(4)由题可得,选手乙这6次射击成绩5,9,7,10,9,8的方差=16[(5-8)2+(9-8)2+(7-8)2+(10-8)2+(9-8)2+(8-8)2]≈2.7<3.2,∴选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会变小.故答案为变小.。

2020-2021四川师范大学附属实验学校八年级数学下期末一模试题(含答案)

2020-2021四川师范大学附属实验学校八年级数学下期末一模试题(含答案)

2020-2021四川师范大学附属实验学校八年级数学下期末一模试题(含答案)一、选择题1.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( )A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h+= 2.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是503.( )A .6B .C .D .124.已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5 B .2C .2.5D .-65.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米D .26厘米,26厘米6.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形7.下列结论中,错误的有( )①在Rt △ABC 中,已知两边长分别为3和4,则第三边的长为5;②△ABC 的三边长分别为AB ,BC ,AC ,若BC 2+AC 2=AB 2,则∠A =90°; ③在△ABC 中,若∠A :∠B :∠C =1:5:6,则△ABC 是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形; A .0个B .1个C .2个D .3个8.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .-2B .﹣1+2C .﹣1-2D .1-29.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .610.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .511.将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤12.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48B.60 C.76D.80二、填空题13.计算:182=______.14.如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是_____.15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.16.如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.17.如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.18.直角三角形两直角边长分别为31,31,则它的斜边长为____.19.若一个多边形的内角和是900º,则这个多边形是边形.20.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是.三、解答题21.如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B将向左滑动多少米?22.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中a=1+2,b=1﹣2.23.某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.(Ⅰ)写出y关于x的函数关系式;(Ⅱ)该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?24.如图,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且AE CF=.求证:DE BF=.25.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h +=. 故选D .2.B解析:B 【解析】 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选:B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.3.D解析:D 【解析】 【分析】【详解】===.12故选:D.4.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y随x值的增大而减小,将x=1代入一次函数解析式中求出y值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y随x值的增大而减小,∴当x=1时,y取最大值,最大值为-0.5×1+2=1.5,故选A.【点睛】本题考查了一次函数的性质,牢记“k<0,y随x的增大而减小”是解题的关键.5.D解析:D【解析】【分析】【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念6.D解析:D【解析】【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a 2+b 2=c 2的三角形是直角三角形.7.C解析:C 【解析】 【分析】根据勾股定理可得①中第三条边长为5∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确. 【详解】①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或.②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确. 故选C . 【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.D解析:D 【解析】 【分析】 【详解】∵边长为1=∴∵A 在数轴上原点的左侧,∴点A 表示的数为负数,即1 故选D9.C解析:C 【解析】 【分析】 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C10.A解析:A【解析】【分析】【详解】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.11.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;再根据勾股定理求得筷子在杯内的最大长度是(如图)AC=2222AB BC+=+=17,则在杯外的最小长度是24-17=7cm,158所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.12.C解析:C 【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S 阴影部分=S 正方形ABCD -S Rt △ABE =102-1682⨯⨯ =100-24 =76. 故选C. 考点:勾股定理.二、填空题13.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法【解析】 【分析】先化简二次根式,然后再合并同类二次根式. 【详解】1(22-【点睛】本题考查二次根式的减法,化成最简二次根式再计算,这是通常最直接的做法.14.x=2【解析】【分析】依据待定系数法即可得到k 和b 的值进而得出关于x 的方程kx =b 的解【详解】解:∵一次函数y =kx+b 的图象与x 轴相交于点(﹣20)与y 轴相交于点(03)∴解得∴关于x 的方程kx =解析:x=2 【解析】 【分析】依据待定系数法即可得到k 和b 的值,进而得出关于x 的方程kx =b 的解. 【详解】解:∵一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3), ∴0=-2k+b3=b⎧⎨⎩ ,解得323k b ⎧=⎪⎨⎪=⎩,∴关于x 的方程kx =b 即为:32x =3, 解得x =2, 故答案为:x =2. 【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b =0 (a ,b 为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y =ax+b 确定它与x 轴的交点的横坐标的值.15.9【解析】∵四边形ABCD 是矩形∴∠ABC=90°BD=ACBO=OD∵AB=6cmBC=8cm∴由勾股定理得:(cm)∴DO=5cm∵点E F 分别是AOAD 的中点(cm)故答案为25解析:9 【解析】∵四边形ABCD 是矩形, ∴∠ABC =90°,BD =AC ,BO =OD , ∵AB =6cm ,BC =8cm ,∴由勾股定理得:226810BD AC ==+= (cm ), ∴DO =5cm ,∵点E . F 分别是AO 、AD 的中点,12.52EF OD ∴== (cm ),故答案为2.5.16.3【解析】【分析】根据折叠的性质只要求出DN 就可以求出NE 在直角△CEN 中若设CN=x 则DN=NE=8-xCE=4根据勾股定理就可以列出方程从而解出CN 的长【详解】设CN=x 则DN=8-x 由折叠的性 解析:【解析】 【分析】根据折叠的性质,只要求出DN 就可以求出NE ,在直角△CEN 中,若设CN=x ,则DN=NE=8-x ,CE=4,根据勾股定理就可以列出方程,从而解出CN 的长.【详解】设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,而EC=BC=4,在Rt△ECN中,由勾股定理可知,即整理得16x=48,所以x=3.故答案为:3.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.17.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC再根据菱形的周长公式列式计算即可得解【详解】∵EF分别是ABAC 的中点∴EF是△ABC的中位线∴BC=2EF=2×3=6∴菱解析:【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故答案为24.【点睛】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.18.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股26【解析】【分析】已知直角三角形的两条直角边,由勾股定理直角三角形两条直角边的平方和等于斜边的平方,即可求得斜边的长度.【详解】由勾股定理得(3 +1)2+(3−1)2=斜边2,斜边26,【点睛】勾股定理:直角三角形两条直角边的平方和等于斜边的平方,我们应熟练正确的运用这个定理,在以后复杂的题目中这是最为常见也最为基础的定理公式.19.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n-⋅︒,列式求解即可.【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,解得7n=.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.20.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差解析:2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(12nx x x++⋯+),则方差2 S=1n[222 12nx xx x x x-+-+⋯+-()()()]),2 S=15[222222434445464-+-+-+-+-()()()()()]=2.考点:平均数,方差三、解答题21.点B将向左移动0.8米.【解析】【分析】根据勾股定理即可求AC的长度,根据AC=AA1+CA1即可求得CA1的长度,在直角三角形A 1B 1C 中,已知AB=A 1B 1,CA 1即可求得CB 2的长度,根据BB 1=CB 1-CB 即可求得BB 1的长度.【详解】解:在△ABC 中,∠C =90°,∴AC 2+BC 2=AB 2,即AC 2+0.72=2.52,∴AC =2.4.在△A 1B 1C 中,∠C =90°,∴A 1C 2+B 1C 2=A 1B 12,即(2.4–0.4)2+B 1C 2=2.52,∴B 1C =1.5.∴B 1B =1.5–0.7=0.8,即点B 将向左移动0.8米.【点睛】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求CB 1的长度是解题的关键.22.原式=a b a b-=+ 【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】 原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.23.(Ⅰ)103000y x =-+;(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】【分析】(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x 的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:()()()604012090100103000y x x x =-+--=-+则y 与x 的函数关系式为103000y x =-+.(Ⅱ)()40901008000x x +-≤,解得20x ≥.∴至少要购进20件甲商品.103000y x =-+,∵100-<,∴y 随着x 的增大而减小∴当20x 时,y 有最大值,102030002800y =-⨯+=最大.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.24.证明见解析.【解析】【分析】由“平行四边形ABCD 的对边平行且相等”的性质推知AB=CD ,AB ∥CD .然后根据图形中相关线段间的和差关系求得BE=FD ,易证四边形EBFD 是平行四边形.【详解】证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD .∵AE=CF .∴BE=FD ,BE ∥FD ,∴四边形EBFD 是平行四边形,∴DE=BF .【点睛】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.25.3cm .【解析】【分析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF ,在Rt △ABF 中,利用勾股定理计算出BF=6,则CF=BC ﹣BF=4,设CE=x ,则DE=EF=8﹣x ,在Rt △CEF 中利用勾股定理得到∴42+x 2=(8﹣x )2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴6=∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.【点睛】本题考查翻折变换(折叠问题);矩形的性质;勾股定理;方程思想的应用.。

2020-2021成都四川师范大学附属实验学校初二数学下期末模拟试题含答案

2020-2021成都四川师范大学附属实验学校初二数学下期末模拟试题含答案

2020-2021成都四川师范大学附属实验学校初二数学下期末模拟试题含答案一、选择题1.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.52.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .3.如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==o,则AB 的长为( )A .3B .4C .43D .54.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形 B .钝角三角形C .直角三角形D .锐角三角形5.将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒6.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个B .3个C .2个D .1个7.如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD8.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数C .中位数D .方差9.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A.9B.6C.4D.311.如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD 的面积为()A.4B.5C.6D.712.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示:颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的()A.平均数B.中位数C.众数D.平均数与众数二、填空题13.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足_________条件时,四边形BEDF是正方形.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_________°.15.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_____ cm.16.菱形的边长为5,一条对角线长为6,则该菱形的面积为__________.17.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .18.若一个多边形的内角和是900º,则这个多边形是边形.19.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0123y(升)100928476由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为0.20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≦x≦5)的函数关系式为___三、解答题21.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.22.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.23.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.24.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.25.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=12AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=12 AC,∴222251213AB BC+=+=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.2.A解析:A 【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A . 考点:函数的图象.3.B解析:B 【解析】 【分析】由四边形ABCD 为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB 为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO 为60°,据此即可求得AB 长. 【详解】∵在矩形ABCD 中,BD=8,∴AO=12AC , BO=12BD=4,AC=BD , ∴AO=BO ,又∵∠AOB=60°,∴△AOB 是等边三角形, ∴AB=OB=4, 故选B. 【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.4.C解析:C 【解析】 【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案. 【详解】∵22()2a b c ab +=+, ∴a 2+2ab+b 2=c 2+2ab , ∴a 2+b 2=c 2,∴这个三角形是直角三角形, 故选:C . 【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.5.C解析:C 【解析】 【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕 ∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义) ∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90° 即CBD ∠=90° 故选:C . 【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.6.B解析:B 【解析】 【分析】根据正方形的性质得AB=AD=DC ,∠BAD=∠D=90°,则由CE=DF 易得AF=DE ,根据“SAS”可判断△ABF ≌△DAE ,所以AE=BF ;根据全等的性质得∠ABF=∠EAD , 利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE ⊥BF ;连结BE ,BE >BC ,BA≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA≠OE ;最后根据△ABF ≌△DAE 得S △ABF =S △DAE ,则S △ABF -S △AOF =S △DAE -S △AOF ,即S △AOB =S 四边形DEOF . 【详解】解:∵四边形ABCD 为正方形, ∴AB=AD=DC ,∠BAD=∠D=90°, 而CE=DF , ∴AF=DE , 在△ABF 和△DAE 中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE , ∴AE=BF ,所以(1)正确; ∴∠ABF=∠EAD , 而∠EAD+∠EAB=90°, ∴∠ABF+∠EAB=90°, ∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确; 连结BE ,∵BE >BC , ∴BA≠BE , 而BO ⊥AE ,∴OA≠OE ,所以(3)错误; ∵△ABF ≌△DAE , ∴S △ABF =S △DAE ,∴S △ABF -S △AOF =S △DAE -S △AOF , ∴S △AOB =S 四边形DEOF ,所以(4)正确. 故选B . 【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.7.B解析:B 【解析】 【分析】 【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC 、BD 互相垂直, 则需添加条件:AC 、BD 互相平分 故选:B8.D解析:D 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

初二数学下册期末测试题及答案

初二数学下册期末测试题及答案

四川省中学2010-2011学年度第二学期八年级期末数学模拟考试试题一、选择题每小题3分,共30分1、在函数y=错误!中,自变量x 的取值范围是 A .3x ≠B .0x ≠C .3x >D .3x =2、下列计算正确的是A .623x x x =B .()248139x x --= C.111362a a a --= D.()021x +=3、下列说法中错误的是A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的A .平均数B .中位数C .众数D .方差5、点P3,2关于x 轴的对称点'P 的坐标是 A .3,-2 B .-3,2 C .-3,-2 D .3,26、下列运算中正确的是A .1y x x y +=B .2233x y x y +=+C .221x y x y x y +=--D . 22x y x y x y+=++7、如图,已知P 、Q 是△ABC 的BC 边上的两点,且BP=PQ=QC=AP=AQ,则∠BAC 的大小为A .120°B .110°C .100°D .90°8、如图,在□ABCD 的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为 A. 6 B. 4 C. 3 D. 2 9、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车的速度继续匀速行驶,下面是行使路程s 米关于时间t 分的函数图象,那么符合这个同学行驶情况的图像大致是A .B .C .D .10、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是 A.梯形的下底是上底的两倍 B.梯形最大角是120° C.梯形的腰与上底相等D.梯形的底角是60°二、填空题每小题3分,共30分11、若分式错误!的值为零,则x 的值是 .12、已知1纳米=错误!米,一个纳米粒子的直径是35纳米,这一直径可用科学计数法表示为 米.C Q P B AEF D BAECBD A13、如图,已知OA =OB ,点C 在OA 上,点D 在OB 上,OC =OD ,AD 与BC 相交于点E ,那么图中全等的三角形共有 对.14、如图,ACB DFE BC EF ==∠∠,,要使ABC DEF △≌△,则需要补充一个条件,这个条件可以是 .15、已知y 与x-3成正比例,当x=4时,y=-1;那么当x=-4时,y= ; 16、已知样本x , 99,100,101,y 的平均数为100,方差是2, 则x = ,y = .17、将直线y=3x 向下平移2个单位,得到直线 . 18、如图,在t R ABC ∆中,90C ∠=,33A ∠=,DE 是线段AB 的垂直平分线,交AB 于D ,交AC 于E ,则EBC ∠=________;19、已知三角形的3条中位线分别为3cm 、4cm 、6cm,则这个三角形的周长是 ;20、甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之比是3:2,求甲、 乙两队单独完成此项工程各需多少天 若设甲队单独完成此项工程需x 天,由题意可列方程为________ ____; 三、解答题共60分21、本题8分化简并求值:错误!+错误!÷ 错误!,其中x=0; 22、本题10分已知:锐角△ABC,求作:点 P,使PA =PB,且点 P 到边 AB 的距离和到边AC 的距离相等;不写作法,保留作图痕迹23、本题10分如图,在□ABCD 中,F E 、分别是边BC 和AD 上的点.请你补充一个条件,使CDF ABE ∆∆≌,并给予证明.24、本题10分 某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小东和小华的成绩如下表所示:请你通过计算回答:小东和小华的学期总评成绩谁较高25、本题12分某商店试销一种成本单价为100元/件的运动服,规定试销时的销售单价不低于成本单价,又不高于180元/件,经市场调查,发现销售量y 件与销售单价x 元之间的关系满足一次函数y=kx+bk ≠0,其图象如图; 1根据图象,求一次函数的解析式;2当销售单价x 在什么范围内取值时,销售量y 不低于80件;学生 平时成绩期中成绩期末成绩小东 70 80 90 小华907080C26、本题12分如图,E 、F 分别是矩形ABCD 的对角线AC 、BD 上两点,且AE DF =.求证:1BOE ∆≌COF ∆;2四边形BCFE 是等腰梯形.中学2010-2011学年度第二学期末数学模拟考试试题参考答案 一、选择题每小题3分,共30分1.A 2. B 3.B 4.D 5.A 6.C 7.A 8.D 9.C 10.D 二、填空题每小题3分,共30分11、2x =- 12、83.510-⨯ 13、4 14、答案不唯一 ; 15、7 16、98,102 17、32yx =- 18、24° 19、26cm 20、221x x+=三、解答题共60分21、本题8分化简并求值; 解:22121111x x x x x -⎛⎫+÷⎪+--⎝⎭222(1)21(1)(1)11x x x x x x ⎛⎫-=+÷ ⎪+---⎝⎭ 3分 2221(1)1x x x +=⨯-- 5分 21x =+ 6分 当0x =时,原式=1. 8分 22、本题8分图略,要求保留作图痕迹; 23、本题10分解:若EC=FA 2分 ∵ABCD 是平行四边形,∴AB=CD,∠B=∠D,BC=DA, 5分 又∵EC=FA,∴BE=DF, 8分 ∴CDF ABE ∆∆≌ 10分 24、本题10分解: 小东:70×20%+80×30%+90×50% 2分 = 14+24+45=83 4分小华:90×20%+70×30%+80×50% 6分 = 18+21+40=79 8分答:所以,小东的成绩较好; 10分 25、本题12分解: 1设一次函数的解析式为b kx y +=,由已知条件,得 2分FEODCBA120120140100k b k b +=⎧⎨+=⎩5分 解之得1240k b =-⎧⎨=⎩ 7分所以,240y x =-+; 8分2若y ≥80,即240x -+≥80,解之得x ≥160. 12分26、本题12分 证明:1矩形ABCD 的对角线AC 、BD相交于O , OB OC ∴=,OA OD =,OAD OCB ∠=∠. 又AE DF =,OEOF ∴=. 3分在BOE ∆和COF ∆中;OE OF =,BOE COF ∠=∠,OB OC =,∴BOE ∆≌COF ∆; 6 分2在等腰EOF ∆中,1802EOFOEF -∠∠=,在等腰AOD ∆中,1802EOFOAD -∠∠=,OEF OAD ∴∠=∠,又OCB OAD ∴∠=∠,OEF OCB ∴∠=∠, //EF BC ∴ 9分由1BOE ∆≌COF ∆,BE CF ∴=,∴四边形BCFE 是等腰梯形; 12分。

四川初二初中数学期末考试带答案解析

四川初二初中数学期末考试带答案解析

四川初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直D.对角线互相垂直平分2.下列命题是假命题的是【】A.平行四边形的对边相等B.四条边都相等的四边形是菱形C.矩形的两条对角线互相垂直D.等腰梯形的两条对角线相等3.下列几组数据能作为直角三角形的三边长的是( )A.2,3,4B.5,3,4C.4,6,9D.5,11,134.6名同学体能测试成绩如下:80,90,75,75,80,80.下列表述错误的是A.众数是80B.中位数是75C.平均数是80D.极差是155.下列图形中,既是轴对称又是中心对称的图形是( )A.正三角形B.平行四边形C.等腰梯形D.正方形6.在平面直角坐标系中,直线y=-kx+b(k<0,b>0)不经过哪一象限()A.第一象限B.第二象限C.第三象限D.第四象限7.直角三角形两直角边边长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cm B.3cm C.4cm D.5cm8.如图,在平面直角坐标系中,□ABCD的顶点A.B.D的坐标分别是(0,0),(5,0)(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)9.如图,将一张矩形纸片对折后再对折,然后沿着图中的虚线剪下,得到①、②两部分,将②展开后得到的平面图形是( )A.矩形B.平行四边形C.梯形D.菱形10.如图,□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为( )A.6cm B.12cm C.4cm D.8cm11.如图,将一张一个角为60°的直角三角形纸片,沿其一条中线剪开后,不能拼成的四边形是().A.邻边不等的矩形B.等腰梯形C.有一个角是锐角的菱形D.正方形12.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A.B.C.D.二、填空题1.若,那么x+y=_________2.若菱形的两条对角线长分别为6cm,8cm,则其周长为_________cm.3.对于一次函数y=2x-5,如果x1<x2,那么y1________y2(填“>”、“=”、“<”).4.如图,在四边形ABCD中AB//CD,若加上AD//BC,则四边形ABCD为平行四边形。

2020-2021四川师范大学附属中学八年级数学下期末模拟试题(含答案)

2020-2021四川师范大学附属中学八年级数学下期末模拟试题(含答案)

2020-2021四川师范大学附属中学八年级数学下期末模拟试题(含答案)一、选择题1.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h+= 2.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5 B .24.5,24C .24,24D .23.5,243.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .4.如图,在Y ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠5.对于函数y =2x +1下列结论不正确是( ) A .它的图象必过点(1,3) B .它的图象经过一、二、三象限 C .当x >12时,y >0 D .y 值随x 值的增大而增大 6.如图,菱形中,分别是的中点,连接,则的周长为( )A .B .C .D .7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵8.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( )A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形9.若正比例函数的图象经过点(,2),则这个图象必经过点( ).A .(1,2)B .(,)C .(2,)D .(1,)10.如图(1),四边形ABCD 中,AB ∥CD ,∠ADC =90°,P 从A 点出发,以每秒1个单位长度的速度,按A →B →C →D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图(2)所示,当P 运动到BC 中点时,△APD 的面积为( )A .4B .5C .6D .711.如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为( )A .23B .1C .32D .212.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .二、填空题13.如图,一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x 的方程kx =b 的解是_____.14.若x <222)x -(﹣x|的正确结果是__.15.如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.16.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.17.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

四川初二初中数学期末考试带答案解析

四川初二初中数学期末考试带答案解析

四川初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.的值等于()A.4B.2C.D.2.等腰三角形的底边长为12,底边上的中线长为8,它的腰长为()A.6B.8C.10D.3.数据5,7,5,8,6,13,5的中位数是( )A.5B.6C.7D.84.如图,已知直线a∥b,直线c与a、b分别交于A、B;且∠1=120°,则∠2=()A、60°B、80°C、120°D、150°5.下列计算正确的是()A.B.C.D.6.在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点在第()象限A.一B.二C.三D.四7.下列命题中,是真命题的是()A.同位角相等B.同旁内角互补C.内错角相等D.对顶角相等8.将△ABC的三个顶点的横坐标不变,纵坐标乘以-1,则所得图形()A.与原图形关于x轴对称B.与原图形关于y轴对称C.与原图形关于原点对称D.向轴的负方向平移了一个单位9.二元一次方程组的解是()A.B.C.D.10.一次函数的图象如图所示,当<0时,的取值范围是( )A.<0B.>0C.<2D.>2二、填空题1.如果正比例函数的图象经过点(-2,1),那么k 的值等于.2.已知实数x,y满足,则的值为.3.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.4.如图,一次函数的图象与的图象相交于点P,则方程组的解是.5.如图,∠AOE=∠BOE=22.5°,EF∥OB,EC⊥OB,若EC=1,则EF=.6.点P(3,)、Q(,)在一次例函数的图象上,则的大小关系是.7.实数在数轴上的位置如图所示,化简下列代数式的值= .8.在Rt△ABC中,∠BAC=90°,AB=AC=1,以AC为腰作等腰直角三角形ACD ,则线段BD的长为.9.对于每个非零自然数,轴上有两点,以表示这两点间的距离,其中,的横坐标分别是方程组的解,则的值等于.三、解答题1.(1)计算(2)解方程:2.已知,求代数式的值.3.若方程组的解满足,求关于的函数的解析式.4.某中学为调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)在这次调查的数据中,做作业所用时间的众数是,中位数是,平均数是;(2)若该校共有2000名学生,根据以上调查结果估计该校全体学生每天做作业时间在3小时内(含3小时)的同学共有多少人?5.如图,直线与x轴相交于点A,与y轴相交于点B.⑴求A、B两点的坐标;⑵过B点作直线BP与x轴相交于P,且使AP=2OA,求ΔBOP的面积.6.如图,△ABD、△CBD都是等边三角形,DE、BF分别是△ABD的两条高,DE、BF交于点G.(1)求∠BGD的度数(2)连接CG①求证:BG+DG=CG②求的值7.为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买x个文具盒,10件奖品共需w元,求w与x的函数关系式。

四川师范大学附属实验学校2010级初二下期期末复习2

四川师范大学附属实验学校2010级初二下期期末复习2

四川师范大学附属实验学校2010级初二下期期末复习数学试题A 卷100分B 卷50分 总分150分 时间120分钟命题人:沈军卫 审题人:陈宏A 卷(100分)一、选择题(每小题3分,共30分)1.不等式2x+4>0的解集是( )A .x >2B . x <2C .x >-2D . x <-22.方程 11+x = 21解的情况为 ( )A.x=-1B.x=1C.无解D.x ≠1的一切实数3.点A (-5,y 1),B(-2,y 2)是函数y=-2x 图象上的两点,则 ( ) A. y 1≤y 2 B. y 1≥y 2 C. y 1>y 2 D. y 1<y 24.若a b a + = 47,则a b的值为 ( )A.52B.43C. 34D.235.点C 是线段AB 的黄金分割点,如果AC >BC ,则( )A .AC 2=AB ·BC B .AB 2=AC ·BC C .AB=(15-)ACD .AC=52BC 6.下列命题中真命题的个数是( )①两个正多边形一定相似 ②两个等腰直角三角形一定相似 ③两个位似图形一定是相似图形 ④三角形的一个外角大于它的任何一个内角 A .1 B .2 C .3 D .47.数据70,71,72,73,74的标准差是( ) A .2 B .2 C .25D .458.两个相似多边形面积之比为4∶9,则它们的周长之比为( )A .4∶9B .9∶4C .2∶3D .3∶29.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 ( )A .20o B.120o C .20o 或120o D .36o10.在□ABCD 中,E 是AD 上一点,若S □ABCD =12, 则S ΔBEC =( ) A .4 B .5 C .6 D .7二、填空题(每小题4分,共20分)1.若2x=3y=4z ,则x:y:z=___________.2.某同学利用树影测树高,他在某一时刻测得1.5米长的竹竿的影长为0.9米,他马上测得树的影长为3米,则这棵树高为 .3.分解因式:3x 3-12x=____________________.4.若实数x 是2和6的比例中项,则x=___________.5.命题“平行于同一直线的两条直线互相平行”的条件是 ,结论是 .三、解答题(1题每小题4分,2、3小题各6分,共20分)1.分解因式:(1) ax 2-4ax+4a (2) x 2-5x-62.解不等式组,并把解集表示在数轴上x x x x -<+-+-<+⎧⎨⎪⎪⎩⎪⎪1533232216133.先化简,再求值:(a-b + b a ab -4 )(a+b - ba ab+4 ),其中a=2,b=5.四、解答题(1小题6分,2小题6分共12分)1.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班的所有学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表(左图所示)和部分频数分布直方图(下图所示): 已知第一小组的频率为0.12,请结合图表完成下列问题: (1)表中的a =_____________; (2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第______组;2.全球气候变暖,部分地区沙尘暴频发,为治理风沙,很多国家积极建设防 护林。

2010小升初数学试卷四川师范大学实验学校答案(二)

2010小升初数学试卷四川师范大学实验学校答案(二)

2010年成都市四川师范大学实验学校数学测试题答案一、计算题:(20分)1.直接写出得数:(每小题1分,共10分)(1)280 (2)18.25 (3)20 (4)100 (5)37 (6)716 (7)113(8)(9)8 (10)902.解方程:(每小题2分, 共4分) (1) y =3.2 (2) x =4 3.列式计算:(每小题3分,共6分)(1)132÷(5.02-4.82)=17.5 (2) (45×59-0.4)÷0.6=41 二、选择题:(每小题3分,共18分)1.C2.B3.D4.B5.C6.A三、填空题:(每小题3分,共18分)1. 17,1米2. 91km3. 435 4. ①②④ 5. 2800元 6.250秒四、解答题:(24分)1.计算:(每小题4分,共16分) (1)5.0211)7.32.10(-÷-5.0325.6-⨯=21313-=623=(或653). (2)40375.08.041545.2÷-⎪⎭⎫⎝⎛⨯÷⎪⎭⎫ ⎝⎛⨯340432.02⨯-÷=1010-==0.(3)9.17.5321921.11.82.41⨯+⨯+⨯ 5.921.19.1)5.122.41(1.82.41⨯+⨯++⨯=5.921.19.15.129.12.411.82.41⨯+⨯+⨯+⨯= )805.12(1.19.15.12)9.11.8(2.41+⨯+⨯++⨯= 801.1)1.19.1(5.12412⨯++⨯+=885.37412++=5.537=.或9.17.5321921.11.82.41⨯+⨯+⨯03.10275.10172.333++=5.537=.注:若学生直接计算正确也给满分.(4)43371275.3326411÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫⎝⎛-+41571541532045÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫⎝⎛-+= 415715123545÷⎪⎭⎫ ⎝⎛⨯+=15442545⨯⎪⎭⎫ ⎝⎛+=2154215=⨯=. 2.看图计算:(每小题4分,共8分) (1)11010 3.1455139.252S =⨯+⨯⨯⨯=总; 5.3751521=⨯⨯=∆AEG S ; 505)155(21=⨯+⨯=BFEG S 梯形;BFEG AFG S S S S 梯形总阴--=∆75.51505.3725.139=--=.答:图中阴影部分的面积为51.75平方厘米.(2)乙长方体容器中水的体积为10×10×12.56=1256立方厘米. 甲圆柱体容器中水的深度为12563.1455⨯⨯=16厘米.答:这时圆柱体容器甲中的水深应为16厘米.五、应用题:(每小题5分,共20分)1.教师为青海玉树地震灾区捐款:45+93=18千元,学生为青海玉树地震灾区捐款:2×18-9=27千元.另解: 设教师为青海玉树地震灾区捐款x 千元,则学生捐款(2x –9)千元. 45)92(=-+x x ,解得18=x . 2792=-x .答:教师捐款1万8千元,学生捐款2万7千元 .2. 妈妈与小明年龄之和:(147+38)÷(2×2+1)=37(岁).小明的年龄:(37-27)÷2=5(岁). 妈妈的年龄:37-5=32(岁).爷爷的年龄: 37×2=74(岁).爸爸的年龄:74-38=36(岁).答:小明5岁,妈妈32岁,爸爸36岁,爷爷74岁. 3. 每个工人一天可以加工:15)125(135=-⨯÷(个), 剩余零件还需要6.9)155()135855(=⨯÷-(天). 因为106.92>+,所以不能按期完成任务. 需要增加15158720=-÷÷(人). 答:最少还需要安排1名工人增援.4.甲、乙两辆汽车在第二段公路上的速度都为每小时90千米(甲汽车:40×(1+125%)=90;乙汽车:50×(1+80%)=90),因此,甲、乙两车在第二段公路上所用的时间之比为1∶2. 甲汽车在第一段公路上与乙汽车在第三段公路上的速度之比为4∶5,而两段公路的路程之比为2∶1,所以,甲、乙两车分别在第一段公路上、第三段公路上所用的时间之比是2:551:42=. 由于甲、乙两车从出发到相遇所用的时间相同(即322315⨯+=⨯+),所以,甲汽车在第一段公路上与在第二段公路上所用的时间之比是5∶3,乙汽车在第三段公路上与在第二段公路上的时间之比是2∶6,即1∶3. 因此,A 、B 两市之间的公路总长度是:4543414340905090185335335331331⨯⨯+⨯⨯+⨯⨯+⨯⨯=++++()()()()(千米). 答:A 、B 两市之间的公路总长为185千米.另解:设第三段公路长为x 千米,第二段公路长为3y 千米,则244090324.50903x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得50345.x y ⎧=⎪⎨⎪=⎩,1851355033=+=+y x (千米).答:A 、B 两市之间的公路总长为185千米.。

四川初二初中数学期末考试带答案解析

四川初二初中数学期末考试带答案解析

四川初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图形中,不是轴对称图形的是()2.在实数中,无理数有()A.2个B.3个C.4个D.5个3.下列说法正确的是()A.8的立方根是±2B.负数没有立方根C.互为相反数的两个数立方根也互为相反数D.立方根是它本身的数是04.下列运算正确的是()A.B.C.D.5.一次函数y=2x-2的图像不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列可使两个直角三角形全等的条件是()A.一条边对应相等B.斜边和一直角边对应相等C.一个锐角对应相等D.两个锐角对应相等7.如果等腰三角形的两边长是25cm和10cm,那么它的周长是()A.60cm B.45cm C.35cm D.60cm或45cm 8.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为 ( )A.4cm B.5cm C.6cm D.10cm9.如图,长方形ABCD 沿EF 折叠后,梯形ABFE 落到梯形A 1B 1FE 的位置,若∠AEF=110°,则∠B 1FC=( )A .30°B .35°C .40°D .50°10.一次函数y 1=kx+b 与y 2=x+a 的图象如图,下述结论:①;②;③当时,y 1﹤y 2;④,其中正确结论的个数有:( )A .4个B .1个C .2个D .3个二、填空题1.的绝对值是_________.2.若直线y=kx 平行直线y=5x+3,则k= .3.如图,△ABC ≌△DCB ,点A 和点D ,点B 和点C 是对应点,AC ,DB 相交于点O ,如果AB=7cm ,BC=12cm ,AC=9cm ,DO=2cm ,那么OC 的长是 _____cm .4.已知y 与x 成正比例,且当x=1时,y=3,则y 与x 的函数关系式是 .5.若多项式可分解为,则a= ,b= .6.已知关于x 的方程mx+n=0的解是x=-2,则直线y=mx+n 与x 轴的交点坐标是__________.7.如果,那么 .8.如图,在△ABC 中,AB=AC ,∠A=400,AB 的垂直平分线MN 交AC 于D ,则∠DBC=____度.三、解答题1.计算:(1)(2)(3)2.分解因式:(1);(2)3.如图,请作出△ABC 关于y 轴对称的△A´B´C´(其中A´、B´、C´分别是A 、B 、C 的对应点,不写画法),并直接写出A´、B´、C´的坐标.4.小亮步行去郊游,图中的折线表示他离家的距离y米与所用的时间x分的关系,请你根据这个折线图回答下列问题:(1)小亮离家最远的距离是米,他途中休息了分钟;(2)当50≤x≤80时,求y与x的函数关系式。

四川初二初中数学期末考试带答案解析

四川初二初中数学期末考试带答案解析

四川初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列式子是分式的是()A.B.C.D.2.已知=2,则的值为()A.0.5B.﹣0.5C.2D.﹣23.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33B.﹣33C.﹣7D.74.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0B.m<0C.m>3D.m<35.分式的值为0,则()A.x=﹣2B.x=±2C.x="2"D.x=06.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.7.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4B.6C.8D.108.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A .(﹣,1) B .(﹣1,) C .(,1) D .(﹣,﹣1)9.如图所示,已知A (,y 1),B (2,y 2)为反比例函数y=图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(,0)B .(1,0)C .(,0)D .(,0)二、填空题1.实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00000156m ,则这个数用科学记数法表示是 m .2.有一组数据:3,a ,4,6,7.它们的平均数是5,那么这组数据的方差是 .3.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C ,则k 的值为 .4.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示的方式放置,点A 1,A 2,A 3,…在直线y=x+1,点C 1,C 2,C 3,…在x 轴上,则B 6的坐标是 .三、计算题1.(1)计算:()﹣1﹣(﹣1)2015﹣(π﹣3.14)0+|﹣5| (2)先化简÷(a+1)+,然后在﹣1,1,2中选一恰当值代入求值. 2.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 的中点,连接AF ,CE .(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.四、解答题1.州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a= %,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?2.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?3.如图,反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4),点B(m,﹣2)(1)求这两个函数的关系式;(2)观察图象,写出不等式>ax+b的解集;(3)如果有一点C与点A关于x轴对称,求△ABC的面积.四川初二初中数学期末考试答案及解析一、选择题1.下列式子是分式的是()A.B.C.D.【答案】B.【解析】形如,并且A、B都为整式,B中含有字母,这样的式子称为分式,根据分式的定义可得选项B为分式,其它的选项都为整式,故答案选B.【考点】分式的定义.2.已知=2,则的值为()A.0.5B.﹣0.5C.2D.﹣2【答案】B.【解析】已知=2,分式通分可得,即a-b=-2ab,代入可得,故答案选B.【考点】分式的化简;整体代入.3.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33B.﹣33C.﹣7D.7【答案】D.【解析】已知点P(﹣20,a)与点Q(b,13)关于原点对称,关于原点对称的点的坐标特点是横坐标与纵坐标都互为相反数,根据这一规律可得a=﹣13,b=20,所以a+b=﹣13+20=7.故答案选D.【考点】关于原点对称的点的坐标特点.4.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0B.m<0C.m>3D.m<3【答案】C.【解析】在一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小,已知一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,根据一次函数的性质可得m﹣3>0,即m>3.故答案选C.【考点】一次函数的性质.5.分式的值为0,则()A.x=﹣2B.x=±2C.x="2"D.x=0【答案】C.【解析】要使分式的值为零,必须满足分子,且分母x+2≠0,解得x=2.故答案选C.【考点】分式的值为零的条件.6.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.【答案】B.【解析】设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,根据题目中的等量关系“小朱走1440米的时间=爸爸走1440米的时间+10分钟”,可列方程,故答案选B.【考点】分式方程的应用.7.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4B.6C.8D.10【答案】C .【解析】已知四边形ABCD 是矩形,根据矩形的性质可得AC=BD=4,OA=OC ,OB=OD ,所以OD=OC=AC=2,又因CE ∥BD ,DE ∥AC ,根据平行四边形的判定可得四边形CODE 是平行四边形,根据菱形的判定定理即可判定四边形CODE 是菱形,所以四边形CODE 的周长为4OC=4×2=8.故答案选C .【考点】矩形的性质;菱形的判定与性质.8.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,),则点C 的坐标为( )A .(﹣,1) B .(﹣1,) C .(,1) D .(﹣,﹣1)【答案】A.【解析】过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,可得∠COE+∠AOD=90°,∠OAD+∠AOD=90°,根据同角的余角相等即可得∠OAD=∠COE ;在△AOD 和△OCE 中,∠OAD=∠COE ,∠ADO=∠OEC=90°,OA=OC,根据“角角边”证明△AOD ≌△OCE ,根据全等三角形对应边相等可得OE=AD=,CE=OD=1,又因点C 在第二象限,所以点C 的坐标为(﹣,1).故答案选A .【考点】正方形的性质;全等三角形的判定与性质;坐标与图形性质.9.如图所示,已知A (,y 1),B (2,y 2)为反比例函数y=图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(,0)B .(1,0)C .(,0)D .(,0)【答案】D.【解析】在△ABP 中,由三角形的三边关系定理得:|AP ﹣BP|<AB ,延长AB 交x 轴于P′,当点P 与点P′重合时,PA ﹣PB=AB ,即此时线段AP 与线段BP 之差达到最大;把A (,y 1),B (2,y 2)代入反比例函数y=得:y 1=2,y 2=,即可得A (,2),B (2,);设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式为y=﹣x+,所以当y=0时,x=,即P (,0),故答案选D.【考点】三角形三边关系;反比例函数图象上点的特征;待定系数法求一次函数解析式.二、填空题1.实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00000156m ,则这个数用科学记数法表示是 m . 【答案】1.56×10﹣6.【解析】用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.这里a=1.56,n=6,所以0.000 001 56m=1.56×10﹣6m .【考点】科学记数法表示较小的数.2.有一组数据:3,a ,4,6,7.它们的平均数是5,那么这组数据的方差是 .【答案】2.【解析】已知3,a ,4,6,7.它们的平均数是5,根据平均数的公式可得a=5×5﹣3﹣4﹣6﹣7=5,所以这组数据的方差是s 2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2.【考点】平均数;方差.3.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C ,则k 的值为 .【答案】﹣6.【解析】已知菱形的两条对角线的长分别是6和4,根据菱形的对角线互相垂直平分及点C 在第二象限可得C (﹣3,2),又因反比例函数的图象经过点C ,代入可得k=﹣6.【考点】菱形的性质;反比例函数图象上点的坐标特征.4.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示的方式放置,点A 1,A 2,A 3,…在直线y=x+1,点C 1,C 2,C 3,…在x 轴上,则B 6的坐标是 .【答案】(63,32).【解析】已知点A 1在直线y=x+1,可得OA 1=1,又因正方形A 1B 1C 1O ,所以C 1坐标为(1,0),B 1的坐标(1,1);已知A 2在直线y=x+1图象上,所以A 2坐标为(1,2),A 2B 2C 2C 1是正方形,可得C 2坐标为(1,0),点B 2的坐标为(3,2),A 3在直线y=x+1图象上,可得点A 3的坐标为(3,4),以此类推可得点B 3的坐标为(7,4),所以B 1的纵坐标是:1=20,B 1的横坐标是:1=21﹣1;B 2的纵坐标是:2=21,B 2的横坐标是:3=22﹣1;B 3的纵坐标是:4=22,B 3的横坐标是:7=23﹣1;…B n 的纵坐标是:2n ﹣1,横坐标是:2n ﹣1,则B n (2n ﹣1,2n ﹣1).所以B 6的坐标是:(26﹣1,26﹣1),即(63,32).【考点】一次函数图象上点的坐标特征;正方形的性质;规律探究题.三、计算题1.(1)计算:()﹣1﹣(﹣1)2015﹣(π﹣3.14)0+|﹣5|(2)先化简÷(a+1)+,然后在﹣1,1,2中选一恰当值代入求值.【答案】(1)7;(2)原式=;当a=2时,原式=5.【解析】(1)根据0指数幂的计算法则、、负整数指数幂的计算法则、数的乘方法则及绝对值的性质分别计算出各项的结果,再根据实数运算的法则进行计算即可;(2)先根据分式运算的法则把分式进行化简,再选取合适的a的值代入进行计算即可(选取的a值必须使每一个分式都有意义).试题解析:解:(1)原式=2+1﹣1+5=7;(2)原式=;当a=2时,原式==5.【考点】零指数幂;负整数指数幂;实数的运算;零指数幂;负整数指数幂;实数的运算;分式的化简求值.2.如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.【答案】详见解析.【解析】(1)由矩形的性质可得AB=CD,AD=BC,又因E、F分别是边AB、CD的中点,所以BE=DF,在△BEC和△DFA中,利用SAS即可判断△BEC≌△DFA;(2)由(1)得,CE=AF,AD=BC,根据两组对边分别相等的四边形是平行四边形即可判定四边形AECF是平行四边形.试题解析:证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,又∵E、F分别是边AB、CD的中点,∴BE=DF,在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)得,CE=AF,AE=FC,故可得四边形AECF是平行四边形.【考点】矩形的性质;全等三角形的判定与性质;平行四边形的判定.四、解答题1.州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a= %,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?【答案】(1):10,36°,补图见解析;(2)众数是5天,中位数是6天;(3)800人.【解析】(1)用1减去各部分所占的百分比的和等即可求出a的值,再用360°乘以这部分所占的百分比即可得所对圆心角的度数,先用社会实践活动的天数为5的学生人数除以这部分人数所占的百分比即可得被抽查的学生的总人数,在用被抽查的学生的总人数乘以8天所占百分比求出8天的人数,补全条形统计图即可;(2)根据众数和中位数的定义即可判定结果;(3)用总人数乘以“活动时间不少于7天”的百分比,即可得“活动时间不少于7天”的学生人数.试题解析:解:(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%,所对的圆心角度数=360°×10%=36°,被抽查的学生人数:240÷40%=600人,8天的人数:600×10%=60人,补全统计图如图所示:故答案为:10,36°;(2)参加社会实践活动5天的人数最多,所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;(3)2000×(25%+10%+5%)=2000×40%=800人.【考点】条形统计图;扇形统计图;中位数;众数;用样本估计总体.2.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【答案】甲工厂每天加工40件产品,乙工厂每天加工60件产品.【解析】设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品.根据题目中的等量关系“甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10”,列出方程解方程即可.试题解析:解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【考点】分式方程的应用.3.如图,反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4),点B(m,﹣2)(1)求这两个函数的关系式;(2)观察图象,写出不等式>ax+b的解集;(3)如果有一点C与点A关于x轴对称,求△ABC的面积.=12.【答案】(1)y=,y=2x+2;(2):0<x<1或x<﹣2;(3)S△ABC【解析】(1)把A点坐标代入入y=求出k的值,从而得到反比例函数解析式,再把B(m,﹣2)代入反比例函数解析式求得m的值,从而确定B点坐标,然后利用待定系数法求一次函数解析式;(2)根据图象可知不等式>ax+b的解集就是反比例函数y=的图象位于一次函数y=ax+b的图象上方对应x 的取值;(3)根据点C与点A关于x轴对称即可得点C的坐标,利用三角形面积公式计算即可.试题解析:解:(1)∵y=函数的图象过点A(1,4),∴k=4,即y=,又∵点B(m,﹣2)在y=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y=ax+b过A、B两点,即,解得:,∴y=2x+2;(2)根据图象可得:不等式>ax+b的解为:0<x<1或x<﹣2;(3)∵点C与点A关于x轴对称,∴C点坐标为(1,﹣4),∴S=×(1+2)×(4+4)=12.△ABC【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川师范大学附属实验学校2010级初二下期期末复习数学试题二A 卷100分B 卷50分 总分150分 时间120分钟命题人:沈军卫 审题人:陈宏A 卷(100分)一、选择题(3分³10=30分) 1、-3x<-1的解集是( )A x<31B x<-31C x>31D x>-312、如果a>b ,那么下列不等式不成立的是( )A a -5>b -5B -5a>-5bC 5a >5bD -5a<-5b3、若4x ²+mxy+9y ²是一个完全平方式,则m=( ) A 6 B 12 C ±6 D ±124、要使分式242--x x 为零,那么x 的值是( ) A -2B 2C ±2D 05、分式222b ab a a +-,22b a b -,2222b ab a b ++的最简公分母是( )A (a ²-2ab+b ²)(a ²-b ²)(a ²+2ab+b ²)B (a+b )²(a -b )²C (a+b )²(a-b )²(a ²-b ²)D 44b a -6、如图1,DE ∥BC ,则下列不成立的是( ) A EC AE BD AD = B AE AC AD AB = C DBEC AB AC = D BC DEBD AD =7、如图2,∠1=∠B ,AD=5㎝,AB=10㎝,则AC=( ) A 50㎝ B 2㎝ C 25㎝D 52㎝8、设S 是数据1x ,……,n x 的标准差,S ˊ是5,521--x x …… ,5-n x 的标准差,则有( )A S= S ˊB S ˊ=S -5C S ˊ=(S -5)²D S ˊ=5-S9、如果三角形三个外角度数之比是3:4:5,则此三角形一定是( ) A 锐角三角形 B 直角三角形 C 钝角三角形 D 不能确定10、m 、n 是常数,若mx+n>0的解是x<21,则nx-m<0的解集是( )A x>2B x<2C x>-2D x<-2 二、填空题(3分³6=18分)11、分解因式m (x-2y )- n (2y-x )=(x-2y )(______________) 12、(-x )²÷y ²y1=____________ 13、若x:y:z=2:(-1):1,则zy x zy x +--+22=____________14、设C 是线段AB 的黄金分割点AB=4cm ,则AC=_______________ 15、若10个数据的平均数是22,平方和是10,则方差是_____________ 16、一项工程甲单独做5小时完成,甲、乙合做要2小时,那么乙单独做要__小时。

三、解答下列各题17、(6分)解不等式组⎪⎩⎪⎨⎧-≤-+>+3122146)1(3x x x x ,并将解集在数轴上表示出来.18、分解因式(6分): ①-3x ³+12x ²-12x ② 16(a –b )2–(a +b )2①②19、先化简,后求值(6分)2x–6 4–4x+x2÷(x+3)³x2+6x+93–x,其中x = 4。

20、(6分)八年级某班进行小制作评比,作品上交时间为5月1日至30日,评委把同学上交作品的件数按5天一组分组统计绘制了频数直方图如图。

已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12。

(1)本次活动共有多少件作品参评?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组与第六组分别有10件与2件获奖,那么这两组中哪组的获奖率较高?1 6 11 16 21 26 3121、(6分)如图,AB∥EF,问∠A,∠C,∠1有何等量关系?证明你的结论。

A BC1E D F22.(6分)将图中的△ABC作下列运动,画出相应的图形(1)沿y轴正向平移1个单位;(2)关于y轴对称;(3)以B点为位似中心,放大到2倍。

23、(8分)甲骑自行车从A地出发去距A地60km的B地,2.5h后乙骑摩托车也从A出发,到达B地10min后甲才到达,若乙的速度是甲速度的5倍,求甲、乙二人的速度。

24、(8分)如图,四边形ABCD中,AD⊥AB BC⊥AB BC=2AD DE⊥CD交AB 边于E,连结CE。

请找出DE、AE、CE之间的等量关系并加以证明。

CDA BEB 卷(50分)六.填空题(每小题3分,共15分)25.若关于x 的方程组⎩⎨⎧-=++=+134123p y x p y x 的解满足x >y ,则P 的取值范围是_ 。

26.M (3-a ,a -4)在第三象限,那么=+--+-964422a a a a 。

____________ 27.已知:关于x 的方程m x m x =--+2123的解是非正数,则m 的取值范围是 . 28.已知:21))(1(43-+-=---x Bx A x x x x ,则整式A= 和整式B= 。

29.已知: a 、b 、c 为实数,31=+b a ab ,41=+c b bc ,51=+a c ca ,那么cabc ab abc++的值是 。

二、(共8分)30.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共4350元;乙、丙两队合做10天完成,厂家需付乙、丙两队共4750元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共2750元。

(1)求甲、乙、丙各队单独完成全部工程各需多少天? (2)若工期要求不超过20天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由。

三、(共8分)31.如图直线EF 分别交AB 、AC 于F 、E 交BC 延长线于D ,已知AB •BF=DB •BC ,求证:AE •CE=DE •EF四(共8分)32.△ABC 是一块直角三角形余料,∠B =Rt ∠,AB =8cm ,BC =6 cm ,如图将它加工成正方形零件,试说明哪种方法利用率高?(即得到的正方形面积较大)FED CBANM QPCBA五.(共11分)33.将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G (如图)。

(1)如果M为CD 边的中点,求证:DE ∶DM ∶EM=3∶4∶5;(2)如果M 为CD 边上的任意一点,设AB=2a ,问△CMG 的周长是否与点M 的位置有关?若有关。

请把△CMG 的周长用含DM 的长x 的代数式表示;若无关,请说明理由。

.A 卷参考答案一、题号 1 2 3 4 5 6 7 8 9 10答案 C B D A B D C A B D二、11、m+n 12、22yx 13、-61 14、2(5-1)cm 或2(3-5)15、21 16、31020、解(1)第三组的频率是511464324=+++++12÷51=60(件) ∴共有60件作品参评(2)由图可知,第四组作品数量最多 206³60=18(件)∴第四组共有作品18件(4) 第四组获奖率是951810=第六组获奖率是32602012=⨯ ∵3295∠ ∴第六组的获奖率较高 21、解:等量关系为:∠A+∠C -∠1=180°证明:延长AC 交EF 于G ,则∠ACD=∠2+∠1(三角形外角定理) ∵AB ∥EF ∴∠A+∠2=180°(两直线平行,同旁内角互补)分 ∠2=180°-∠A 代入 ∠ACD=180°-∠A+∠1 即∠A+∠C -∠1=180°A BC 2 1 G ED F23、解:设甲速为xkm/h ,则乙速为5xkm/h依题意得60105.256060+=-x x 解之得x=18 经检验x=18是原方程的根∴5x=90 答:甲、乙两人速度分别是18km/h ,90km/h.24、解:关系式DE 2=AE ²CE 证明 延长BA 、CD 交于O∵AD ⊥AB BC ⊥AB ∴AD ∥BC (同位角相等,两直线平行) ∴△ODA ∽△OCB∴21==BC AD OC OD (相似三角形对应边成比例) 即 OD=DC 在△EDO 与△EDC 中 OD=DC∠EDO=∠EDC=90° ED=ED ∴ △EDO ≌△EDC (SAS ) ∴∠O=∠1又∵∠O+∠AED=∠ADE+∠AED=90°(互余) ∴∠O=∠ADE ∴∠1=∠ADE∴Rt △DAE ∽Rt △CDE ∴DE AECE DE =(相似三角形对应边成比例) 即 DE 2=AE ²CE C1DO A E BB 卷33(1)证明:∵A 、M 关于EF 对称,∴EM=AE=AD-DE .∵M 是CD 的中点,CD=AD ,∴AD DM 21=. 在Rt △DEM 中,DE 2+DM 2=EM 2,∴222)(41DE AD AD DE -=+∴AD DE 83=,AD DE AD EM 85=-=∴DE ∶DM ∶EM = AD 83∶AD 21∶AD 85=3∶4∶5(2)连AM 、AG ,作AH ⊥MG 于H ,则由题意知:∠AMG=∠MAB=∠AMD.又AM=AM ,∴Rt △ADM ≌Rt △AHM ,∴MH=DM ,AH=AD=AB.又AG=AG ,∴Rt △AGH ≌Rt △AGB ,∴GH=GB ,∴△CMG 的周长=CM+MG+CG=CM+MH+GH+CG=CM+MD+CG+GB=CD+CB=4a∴△CMG 的周长与点M 在CD 边上的位置无关。

相关文档
最新文档