一种基于本体的抽象度可调文档聚类
基于深度特征学习的聚类算法研究
基于深度特征学习的聚类算法研究基于深度特征学习的聚类算法研究摘要:聚类算法是数据挖掘领域中一种重要的无监督学习方法,它可以把没有标记的数据集分为多个不同的组或簇。
传统的聚类算法往往基于人工选定的特征,这些特征难以完美地捕捉数据间的复杂关系和变化规律。
现有的深度学习技术通过层层学习数据的抽象特征,可以更准确地表达数据间的相似性以及分析数据的分布规律。
因此,本文研究了基于深度特征学习的聚类算法,以解决传统算法在面对大规模、复杂、高维度的数据时的拓展性问题。
本文首先介绍了深度学习的概念和常用模型,然后详细阐述了深度学习在特征学习方面的应用,并分析了其特点和优势。
随后,以K-Means算法为基础,提出一种基于深度特征学习的聚类算法——Deep K-Means。
这种算法利用深度卷积神经网络(DCNN)对原始数据进行特征学习,并采用K-Means算法对提取出的深度特征进行聚类,从而实现数据的自适应分类。
本文对Deep K-Means算法进行了实验验证,并与传统的K-Means算法和基于主成分分析(PCA)降维的K-Means算法进行了比较。
实验结果表明,Deep K-Means算法在许多数据集上表现出良好的聚类效果和鲁棒性,尤其在处理高维度的数据时具有明显优势。
此外,本文还分析了算法的缺陷和不足,并提出了一些改进思路和未来研究方向。
关键词:聚类算法;深度学习;特征学习;K-Means算法;卷积神经网络;自适应分类一、引言随着数据的不断增多和复杂性的不断提高,传统的聚类算法不能满足越来越多的数据挖掘需求。
传统的聚类算法,如K-Means、层次聚类等,通常是基于距离或相似度度量来进行样本分类,且通常需要预定义样本的数量。
当数据的维度太高时,传统算法将面临维度灾难和计算复杂度问题。
为了解决这些问题,深度学习方法被引入到聚类算法中,可以通过特征学习自动生成特征或表达,并对数据进行自适应的层次化聚类,从而提高分类的准确性和鲁棒性。
数据挖掘考试题库
13. 预测型知识:是根据时间序列型数据,由历史的和当前的数据 去推测未来的数据,也可以认为是以时间为关键属性的关联知 识。
14. 偏差型知识:是对差异和极端特例的描述,用于揭示事物偏离 常规的异常现象,如标准类外的特例,数据聚类外的离群值 等。
15. 遗传算法:是一种优化搜索算法,它首先产生一个初始可行解 群体,然后对这个群体通过模拟生物进化的选择、交叉、变异 等遗传操作遗传到下一代群体,并最终达到全局最优。
作。 22. 传统的决策支持系统是以 和 驱动,而新决策支持系统
则是以 、建立在 和 技术之上。 23. OLAP的数据组织方式主要有 和 2种。 24. SQL Server2000的OLAP组件叫 ,OLAP操作窗口叫 。 25. BP神经网络由 、 以及一或多个 结点组成。 26. 遗传算法包括 、 、 3个基本算子。 27. 聚类分析的数据通常可分为区间标度变
等。 6. 评价关联规则的2个主要指标是 和 。 7. 多维数据集通常采用 或雪花型架构,以 表为中心,连
接多个 表 。 8. 决策树是用 作为结点,用 作为分支的树结构。 9. 关联可分为简单关联、 和 。 10. BP神经网络的作用函数通常为 区间的 。 11. 数据挖掘的过程主要包括确定业务对象、 、 、 及
和低层管理人员、对基本数据进行查询和增、删、改等的日常事务 处理。OLAP即联机分析处理,是在OLTP基础上发展起来的、以数据 仓库基础上的、面向高层管理人员和专业分析人员、为企业决策支 持服务。
OLTP和OLAP的主要区别如下表:
OLTP
OLAP
数据库数据
数据库或数据仓库数据
细节性数据
综合性数据
知识同化等几个步骤。 12. 数据挖掘技术主要涉及 、 和 3个技术领域。 13. 数据挖掘的主要功能包括 、 、 、 、趋势分
基于LDA改进的K-means算法在短文本聚类中的研究
基于LDA改进的K-means算法在短文本聚类中的研究冯靖;莫秀良;王春东【摘要】在短文本聚类的过程中,常发现特征词的稀疏性质、高维空间处理的复杂性.由于微博的内容长度限制和特征稀疏性,特征向量的高维度被执行,导致模糊聚类结果.本文使用了Latent Dirichlet Allocation主题模型,对训练数据进行建模,并将主题术语扩展原始微博的特征,从而丰富了聚类文本特征,提高聚类效果.实验结合K-means和Canopy聚类算法对文本数据进行处理,提出了LKC算法,弥补了K-means算法对初始聚类中心点选取的敏感性,结果实现了更高的精度和聚类F1-measure的测量值.F1值提高了10%,准确度提高了2%.%In the process of short text clustering,the sparse nature of the characteristic words,the complexity of the high-dimensional space processing are often found.Due to the content length limitation of the micro blog and its feature sparsity,the high dimensionality of feature vectors is performed,resulted in obscured clustering results.A Latent Dirichlet Allocation (LDA)theme model is proposed to the training data,and extend the subject term into the characteristics of the original micro blog,such that to enrich the category features to improve the clustering consequent.Our experiment combines K-means and Canopy clustering algorithm to process the text data and the results achieve higher accuracy and F1-measure.The F1 value improved by 10%,and the accuracy improved by 2%.【期刊名称】《天津理工大学学报》【年(卷),期】2018(034)003【总页数】5页(P7-11)【关键词】短文本;LDA;K-means聚类;Canopy聚类【作者】冯靖;莫秀良;王春东【作者单位】天津理工大学计算机科学与工程学院天津市智能计算及软件新技术重点实验室,天津300384;天津理工大学计算机科学与工程学院天津市智能计算及软件新技术重点实验室,天津300384;天津理工大学计算机科学与工程学院天津市智能计算及软件新技术重点实验室,天津300384【正文语种】中文【中图分类】TP391.1自媒体时代[1],除了新奇的交流体验,微博也产生了大量的冗余或无用的短文本内容.微博数据在舆情监控方面得到广泛的应用,它在舆情信息工作中扮演着不可忽视的角色.传统的K-means算法能够有效地处理大数据集而被广泛使用,但对于微博短文本聚类时通常存在以下局限:(1)聚类的数目和聚类的初始中心点的选取比较敏感.(2)微博的表达非常口语化,语法的使用不规范,通常使用图像、视频、链接和其他多媒体技术.因此,数据收集和预处理过程变得更具挑战性.(3)针对短文本特征关键词词频过低,使用传统的向量空间模型Vector Space Model 模型会陷入维度过高,产生大量的0值,从而不能真实的描述文本.目前,针对短文本特征信息少,只有少量的字可以被分析使用的特性,国内外对短文本聚类[2-3]已经进行了比较深入的研究,文献[4]提出通过结合语义改进K-means短文本聚类算法,通过语义集合表示短文本缓解了短文本特征关键词的稀疏性问题.但是文中语义距离的计算忽略了上下文语境,语义距离的计算不够精确.文献[5]提出一种结合上下文语义的短文本聚类算法,首先通过发现词语间共现关系引入上下文语义信息对传统的TF-IDF权重计算进行修改然后进一步结合潜在语义分析方法降维到潜在语义空间完成短文本聚类,改善了短文本特征不足及特征高维稀疏问题.文献[6]提出基于语义特征选取与改进K均值算法的文本聚类,在对文本进行预处理过程采用语义特征选择进行优化,且改进K-means初始聚类个数,减少了整个聚类算法的时间,提高聚类精度.文献[7]构造了一种针对中文网络短文本的特征表示,构建动态网络,用其支持聚类,可以获得满意的聚类结果.由于短文本,固有的缺陷,为了解决短长度、弱信号和小特征的问题,文献[8]中提出了一种用于短文本分类的语义词典方法.从文本中提取主题是具有挑战性的,文献[9]提出了一种通用框架,可以通过创建lager伪文档的原始文档来创建短文本的主题建模.在最初的实验过程中使用原始的TF-IDF计算权重值发现其并不适用于微博短文本,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的.考虑到传统主题模型在处理大规模文本时存在的局限性,本文使用LDA主题模型做文本特征抽取,其有效解决了文本挖掘中的特征稀疏等问题.1 聚类算法描述1.1 K-means算法K-means[10]算法是一种top-down的思想,它首先要解决的问题是,确定cluster数量,也就是K的取值.在确定了K后,再来进行数据的聚类.其具体实现过程如下所陈述:输入:待聚类文本数N,聚类数目k,最大迭代次数Stepmax,迭代终止条件m. 输出:k个聚类和迭代次数.1)从N个待聚类的文本选择K个聚类质心点为初始质心,例如c[0]=data[0],...c[k-1]=data[k-1];将data[0]...data[n],分别与 c[0]...c[k-1]比较,若与 c[i]差值最少,就标记为i;2)Repeat.把剩下的点分配到最近的质量中心,形成k团.重新计算每个集群的质心,直到集群中心的质点没有变化或达到最大迭代次数.基于不同的算法,可以利用不同的指标来确定聚类算法的优缺点.对于文本聚类,K-means算法简单有效.但传统的K-means算法对初始聚类中心敏感,结果不同.它很容易进入局部最优,此外,它对噪声和异常值很敏感.因此,本文提出了一种基于LDA主题模型和canopy-kmeans算法的短文本聚类算法.1.2 Latent Dirichlet Allocation模型本文使用LDA文本主题空间模型,对文本特征进行抽取.LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,包含特征词、隐含主题和文档三层结构. 图1 LDA主题模型三层结构图Fig.1 Three-tier structure diagram of LDA theme model在判断文档相关性的时候需要考虑到文档的语义,而语义挖掘的利器是主题模型,LDA[11]就是其中一种比较有效的模型.它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类.LDA是一种非监督机器学习技术,可以用来识别大规模文档集或语料库中潜藏的主题信息.本文中利用LDA模型代替传统的VSM模型来提取隐藏的微博主题信息,并进行聚类分析.其有向概率图如下所示:图2 LDA概率图Fig.2 Latent dirichlet allocation model图2中,参数α反映出文本集中不同隐含主题间的相对强弱关系,参数β则代表主题自身的概率分布.z表示隐含主题,w表示词表的每个词,即观察值,θ代表文本-主题概率分布.对于给定的文本集D,包含M个文档,T个主题,而每个文档d中又包含N个词.LDA的主要工作是根据给定的一篇文档,推测其主题分布.LDA定义生成任意一个文本dj的过程陈述如下:1)选择一个N,N表示整个文档集中不同词语的个数;2)选择一个θ,θ是主题分布所服从的多项分布的参数;3)对于文档找那个的每一个词wn:(1)选择一个主题zn;(2)在选定主题zn后,在该主题对应的词分布中选择一个单词 wn,它的概率是p(w|zn,β).1.3 相似度判定文本聚类的相似度计算使用余弦距离,假设三角形的三条边为a、b和c,边所对应的三个角为A、B和C,那么角A的余弦为:如果将三角形的边当成向量对待,则公式等价于:其中<b,c>是向量的内积,|b||c|是向量长度乘积.文本X和文本Y经过结构化处理后对应向量分别是:X1,X2,...X1000和 Y1,Y2,...,Y1000,则两文本间的余弦距离就可以用这两向量的余弦值来表示:在文本相似度判定中,由于文本特征向量定义的特殊性,其cosθ范围为[0,1],即如果cosθ越接近于1时,两个文本越相似;当cosθ等于1时,则这两个文本是完全重复的;cosθ越小,则两个文本相关度越低.余弦相似度适用于短文本,用余弦距离计算文本的相似度首先基于词频统计的,根据公式(4)也可以看出,该距离的计算难度是随着文本的增多而增大的,因为文本变多,维度也随着提高了. 1.4 LKC聚类算法实现过程任何基于文本的系统都需要文档的一些表示,并且适当的表示取决于要执行任务的种类.聚类[12]是通过合适的策略把相似的对象聚到一个集合,该集合中的对象在某个方面有着相似的属性.本文选用K-Means method结合Canopymethod[13].K-Means是经典的基于原型的目标函数聚类方法,它试图找到最小的一组普通误差标准函数.但其初始K值的选择是随机性的,这会影响到后续实验聚类的结果.所以第一阶段首先使用Canopy算法选择合适的K个点作为初始质心,并排除与大部分数据点相差甚远的数据点.本文LKC聚类算法实验流程如下:图3 聚类算法流程图Fig.3 The flow chart of LKC clusteing alorithm2 实验结果及评价2.1 数据准备实验数据来自微博200万情感短文本.0到3分别对应不同类别的感情,0代表喜悦,1代表愤怒,2代表厌恶,3代表低落.在实验过程中,把这四类情感倾向分为两大类,0为积极,1、2和3为消极.实验中会对文本数据预处理主要使用Python进行文本预处理,包括文本分词,过滤停用词,词频统计,特征选择,文本表示等.中文文本一般需要用分词算法完成分词,它是没有类似英文空格的边界标志,不能像西方语言那样可以根据空格和标点符号完成分词.文本分词是一个处理的关键,词是最小的能够独立运用的语言单位,它的定义非常抽象且不可计算.网上已有许多开放的分词引擎,例如 BosonNLP、IKAnalyzer、NLPIR、SCWS、结巴分词、盘古分词等多款分词系统.停用词(Stop Words),最简单的如汉语中的“啊”、“的”、“啦”等词,它们没有具体的意义,不能体现文本所表示的内容,但几乎在所有文本中都出现,如果在聚类中考虑这些词,那么文本之间的相似性不能表现出内容的相似性,而是一些无意义的相似性,这不是我们所希望的.为此我们建立一个中文停止词词表,通过这个词表去掉短文本中的停用词.使用十分广泛,甚至过于频繁的一些单词,如果分词前就把停用词剔除,会导致分词不准.所以本文在分词后再根据停用词表把字符串中的停用词删掉.2.2 评价标准采用F1值和准确率(Accuracy)来衡量聚类算法的有效性.其中F1的值又取决于精确率(Precision,Pr)、召回率(Recall,Re).精确率和召回率的计算公式如下:式(5)中:nj表示识别出的个体 j的总数;ni表示测试集中存在的个体总数;nij 表示正确识别的个体总数.F1-measure的值可以定义为(参数β=1时):准确率(Accuracy)指在一定实验条件下多次测定的平均值与真值相符合的程度.2.3 实验结果与分析为了充分验证本文改进算法的有效性,重复抽取数据进行实验,在一定程度上缓解了短文本表征中固有的高维度高稀疏性问题.为了降低实验的误差,对数据进行多次重复性实验.表1是取自迭代次数为300时的11次试验结果,因为每次的数据选取都是随机的,排除了与平均值相差较大的几个数据点.表1 两种算法运行结果对比表Tab.1 Comparison results of two algorithms实验序号标准K-means算法改进算法F1值 Acc F1值 Acc 1 0.550 7 0.533 0 0.625 8 0.511 5 2 0.551 6 0.530 4 0.626 5 0.512 6 3 0.552 1 0.530 7 0.625 3 0.510 4 4 0.553 1 0.530 1 0.625 1 0.511 2 5 0.553 5 0.529 6 0.623 6 0.508 56 0.552 5 0.529 3 0.6227 0.507 1 7 0.549 1 0.532 9 0.6238 0.5079 8 0.5537 0.530 1 0.628 1 0.512 3 9 0.552 4 0.530 3 0.625 6 0.510 9 10 0.553 5 0.5296 0.624 3 0.510 4 11 0.552 2 0.529 6 0.626 3 0.512 8平均值 0.552 2 0.530 5 0.625 1 0.510 5通过图4可以清晰的看出,相对于标准的K-means聚类算法,本文提出的改进的算法在F1-measure值上有明显的提高.从图4中可以看出,第8次重复性实验的结果中F1值为0.6281,较为理想.图4中F1值整体走势相对平缓,证明了基于LDA主题模型改进的K-means聚类算法在短文本数据处理上有一定的可行性. 图4 F1-measure值对比图Fig.4 Comparison diagram of F1-measure value 通过图5可以清晰的看出,本文算法在准确率上较标准的K-means聚类算法有明显的提高.其中在第6次实验中,精确率为0.507 1结果比较优秀.但是,从整体来看,本文改进算法的精确率走势不是特别稳定.由此可见,改进算法在精确率的稳定性上有待提高.图5 Acc值对比图Fig.5 Comparison diagram of Accuracy value图6和图7数值为迭代次数50到400的对比图,其中不同的迭代次数都进行20次重复实验取其平均值,为确保数据的准确性.通过图6和图7可以清晰看出,标准K-means算法和本文改进算法在不同迭代次数时,其F1-measure值和精确率均较标准算法有所提高.经过实验验证本文改进的算法在迭代次数为300时,F1-measure为0.625和精确率为0.51达到最优解.其中在迭代次数为200时,精确率为0.529 8与标准算法相差很少.图6 不同迭代次数F1值对比Fig.6 Comparison of F1values for different iterations图7 不同迭代次数Acc对比Fig.7 Comparison of Accuracy values for different iterations3 结论K-means的时间复杂度是线性的O(n*k*t),其中n为数据对象,k为指定的类别数,t为迭代次数上限,算法简单且收敛速度快,所以更适用于处理大规模文本.但是也存在对噪声和离群点敏感,容易达到局部最优等缺点.实验结果证明,改进的算法虽然在F1值和精确率上较传统算法均有所提高,但是稳定性较差.为了确保实验的准确性,进行了多次重复实验,每次实验数据从38万条数据里随机挑取10%的数据进行实验.在未来的工作中,将使用MapReduce框架来实现K-means 聚类算法.参考文献:[1]Pääkkönen P,Jokitulppo J.Quality management architecture for social media data[J].Journal of Big Data,2017,4(1):6.[2] Xu J,Xu B,Wang P,et al.Self-Taught convolutional neural networks for short text clustering[J].Neural Netw,2017,88:22-31. [3] Sun J G,Liu J,Zhao LY.Clustering algorithms research[J].Journal of Software,2008,19(1):48-61.[4]邱云飞,赵彬,林明明,等.结合语义改进的K-means短文本聚类算法[J].计算机工程与应用,2016,52(19):78-83.[5]张群,王红军,王伦文.一种结合上下文语义的短文本聚类算法[J].计算机科学,2016,43(S2):443-446.[6]何晓亮,宋威,梁久桢,等.基于语义特征选取与改进k均值算法的文本聚类研究[M].重庆:《计算机科学》杂志社,2012.[7]贺涛,曹先彬,谭辉.基于免疫的中文网络短文本聚类算法[J].自动化学报,2009,35(7):896-902.[8] Tang H J,Yan D F,Tian Y.Semantic dictionary based method for short text classification[J].Journal of China Universities of Posts and Telecommunications,2013,20(13):15-19.[9] Bicalho P,Pita M,Pedrosa G,et al.A general framework to expand short text for topic modeling[J].Information Sciences,2017,393(C):66-81.[10] Bai L,Cheng X,Liang J,et al.Fast density clustering strategies based on the k-means algorithm[J].Pattern Recognition,2017,71:375-386.[11] Sun Y.The collocation model based on LDA[C]//International Conference on Electronics and Information Engineering.SPIE:Bellingham WA,2015.[12] Liu Y,Li Z,Xiong H,et al.Understanding of Internal Clustering Validation Measures[C]//IEEE International Conference on Data Mining.IEEE:Piseataway,2010:911-916.[13] Zhao Q.Efficient algorithm of canopy-kmean based on hadoop platform[J].Electronic Science and Technology.2014,27(02):29-31.。
(完整版)聚类算法总结
1.聚类定义“聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有一些相似的属性”——wikipedia“聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。
它是一种重要的人类行为。
聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
”——百度百科说白了,聚类(clustering)是完全可以按字面意思来理解的——将相同、相似、相近、相关的对象实例聚成一类的过程。
简单理解,如果一个数据集合包含N个实例,根据某种准则可以将这N 个实例划分为m个类别,每个类别中的实例都是相关的,而不同类别之间是区别的也就是不相关的,这个过程就叫聚类了。
2.聚类过程:1) 数据准备:包括特征标准化和降维.2) 特征选择:从最初的特征中选择最有效的特征,并将其存储于向量中.3) 特征提取:通过对所选择的特征进行转换形成新的突出特征.4) 聚类(或分组):首先选择合适特征类型的某种距离函数(或构造新的距离函数)进行接近程度的度量;而后执行聚类或分组.5) 聚类结果评估:是指对聚类结果进行评估.评估主要有3 种:外部有效性评估、内部有效性评估和相关性测试评估.3聚类算法的类别没有任何一种聚类技术(聚类算法)可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,有多种聚类算法.聚类算法有多种分类方法将聚类算法大致分成层次化聚类算法、划分式聚类算法、基于密度和网格的聚类算法和其他聚类算法,如图1 所示的4 个类别.3.聚类算法基于层次聚类算法:基于划分聚类算法(partition clustering)基于密度聚类算法:基于网格的聚类算法:STING :利用网格单元保存数据统计信息,从而实现多分辨率的聚类WaveCluster:在聚类分析中引入了小波变换的原理,主要应用于信号处理领域。
基于LPP和Rocchio的文本分类方法
基于LPP和Rocchio的文本分类方法提要:支持向量机(SVM)是最常用的文本分类算法之一,但文本特征空间维数巨大的问题会影响分类的效果。
为此,提出了一种提高SVM分类性能的方法。
本文利用LPP算法对特征空间的维数进行降维,然后用SVM算法进行分类。
实验结果证明,该算法能够有效地提高分类的准确率。
关键词:Rocchio算法;LPP算法;文本分类引言随着互联网的快速增长,信息资源也飞速的增多,形式也多种多样,其中文本占大多数。
那么怎样从大量的文本信息中搜索到自己想要的信息[1],就成为了人们关注的焦点。
文本分类技术在信息检索中起着重要的作用,因此,文本分类技术的成为了研究的对象。
本文是对特征维数在利用互信息进行特征提取的基础上,然后采用LPP进行降维,从而提高了Rocchio分类器的分类性能。
1.Rocchio算法Rocchio算法[2]又称为类中心最近距离判别算法,是基于向量空间模型和最小距离的算法,最早是由Hull提出来的,它是通过信息检索中用来计算“询问”与文本间的关联程度Rocchio公式改造而来的。
由于Rocchio分类器非常的直观和简单,使得它广泛应用于文本分类领域中。
Rocchio算法的训练过程的目的是获得所有类别的中心向量,分类阶段是计算测试集文本与每一个类别中心向量的相似度,相似度最大的类别就是测试集文本所属的类别。
Rocchio算法对于类间距离较大而类内距离较小的类别分布情况能达到较好的分类效果。
这种算法计算简单、迅速,因此采用它有助于节省时间,提高效率。
其计算类中心向量Oj公式为:其中,Nj表示第Cj类中文本的总数,Yij表示类别Cj中的第i个文本向量。
向量相似度的度量方法有夹角余弦、向量内积、欧氏距离等,本文采用的是夹角余弦的方法,即总的来说,Rocchio算法分类原理简单,且在进行训练和分类时计算量也相对较小,分类速度较快。
2.LPP算法LPP算法具有保持数据集的局部非线性流行结构信息的能力,计算简单,处理速度快等特点,利用该算法可以大大减少参与比较的向量文本的数目,其基本思想是通过原始空间中离得近的点在降维后的低维空间中也保持较近,因此能保留原始数据的局部结构。
chatgpt辅助课题申报书写作
文章标题:ChatGPT辅助课题申报书写作一、引言在当今信息爆炸的时代,科学研究的范围和深度变得越来越广泛,而科研人员们也需要更好地表达自己的研究课题和想法,以满足学术界和社会的需求。
然而,对于一些研究人员来说,如何书写高质量、深度和广度兼具的课题申报书成为了一个挑战,因为他们可能缺乏相关经验和技巧,同时也需要兼顾其它研究工作。
ChatGPT作为一种人工智能语言模型,可以为科研人员提供帮助,辅助他们书写课题申报书,使其更加高效和有效。
二、ChatGPT是什么?ChatGPT是由Open本人公司开发的一种基于生成对抗网络(GAN)的语言模型。
它通过对大规模的文本数据进行学习,能够生成具有逻辑性和语法正确的文本,并且能够完成各种自然语言处理的任务。
这使得ChatGPT可以用于辅助科研人员进行课题申报书的书写,提供高质量、深度和广度兼具的文本支持。
三、评估ChatGPT辅助课题申报书写作的深度和广度使用ChatGPT辅助课题申报书写作,我们需要评估其在深度和广度方面的表现。
在深度上,ChatGPT要求能够理解和梳理复杂的科研课题,提供有条理、严谨的表达。
在广度上,ChatGPT需要能够涵盖多个领域的知识,以满足不同研究人员的需求。
ChatGPT能够帮助科研人员完成这些任务。
它通过对大规模数据的学习,能够理解和解释复杂的科研课题,提供深度的表达。
ChatGPT能够涵盖多个学科领域的知识,可以为不同领域的科研人员提供帮助。
ChatGPT在深度和广度方面的表现都是令人满意的。
四、ChatGPT辅助课题申报书写作的个人观点与理解作为一个科研人员,我对ChatGPT在辅助课题申报书写作方面的应用持积极态度。
我认为,ChatGPT能够帮助科研人员节省大量的时间和精力,提高课题申报书的质量和效率。
尤其对于那些缺乏书写经验的科研人员来说,ChatGPT更是一种宝贵的辅助工具。
然而,我也意识到ChatGPT可能存在一定的局限性,比如在处理某些特定领域的知识时可能不够准确。
一种基于Ontology的中文Web文本聚类算法的研究
稀疏性 : 另外 . 文本 表 现 出 的 复 杂语 义 远 远 不 是各 个独 立词 集 向 量 所 能 描 述 . 且 这种 词 集 独 立 性 的 假 设 也 不符 合 语 言 事 实 。 而 近
I D (
…
qq J tO : , :
、
荟宕, ( ) ( ) ( 吼
年来 . 少 学 者 基 于此 展 开 研 究 。 不 文献 f1 出 了一 种 基 于 用 户反 1提 V e c V0 0 c . 馈 的 聚类 技 术 来 解 决词 的 误 匹 配 问 题 .但 由 于 引 入 用 户 反 馈 使 23利 用 粗 糙 集 对 概念 聚类 进 行 二次 反馈 学 习 我 们 把 H w e 本 体 引 入 到 文本 聚类 。 现 概念 映射 , 算 ont 实 该 得 聚类 过 程 变 得 漫 长 .同 时如 何 准 确 的 选 取 正 、反 例 也 是 个 难
维普资讯
2 0 年 第 6期 08
福
建 电
脑
17 0
一
种基于 O t oy的中文 We no g l b文本聚类算法的研究
庄世芳
(泉 州 师 范 学 院 福 建 泉 州 3 20 6 0 0) 【 摘 要 】 本 文 引入 H w e 本 体 , 构 t# : oNt 重 -We b文 档 集 特 征 向 量 , 实现 特 征 降 维 , 高聚 类 分 析 的 效 率 ; 提 引入 粗 糙 集 属性 约 简对 文 档 未 登 陆 词 集 进 行 二 次反 馈 学 习 。 正 H w e 的不 完备 性 。最后 , 过 两 个 实验 , 测 了该 聚 类分 析 算 法 优 缺 修 oNt 通 评
1 引 言 .
当前 . 文本 聚 类 面 临 多 方 面 的挑 战 。例 如 。 多 已有 的 文本 征 矩 阵 的 凸 集 外 形 的 聚类 结 果 。 大 设 q q ∈p。 于 概 念集 的文 档 之 间 的相 似 度 公式 转 化 为 : z2 , 基 聚类 分 析都 是 基 于 词 集模 型 . 因此 文 档集 的特 征 矩 阵 具 有 高维
数据挖掘考试题库完整
一、名词解释1. 数据仓库:是一种新的数据处理体系结构 .是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化 (不同时间)的数据集合.为企业决策支持系统提供所需的集成信息。
2. 孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。
3. OLAP:OLAP 是在OLTP 的基础上发展起来的.以数据仓库为基础的数据分析处理 .是共享多维信息的快速分析.是被专门设计用于支持复杂的分析操作 .侧重对分析人员和高层管理人员的决策支持。
4. 粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小 .同时影响数据仓库所能回答查询问题的细节程度。
5. 数据规范化:指将数据按比例缩放(如更换大单位).使之落入一个特定的区域(如 0-1) 以提高数据挖掘效率的方法。
规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。
6. 关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。
如果两项或多项属性之间存在关联.那么其中一项的属性值就可以依据其他属性值进行预测。
7. 数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中.提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
8. OLTP:OLTP 为联机事务处理的缩写.OLAP 是联机分析处理的缩写。
前者是以数据库为基础的.面对的是操作人员和低层管理人员 .对基本数据进行查询和增、删、改等处理。
9. ROLAP:是基于关系数据库存储方式的 .在这种结构中.多维数据被映像成二维关系表.通常采用星型或雪花型架构.由一个事实表和多个维度表构成。
10. MOLAP:是基于类似于“超立方”块的OLAP 存储结构.由许多经压缩的、类似于多维数组的对象构成.并带有高度压缩的索引及指针结构 .通过直接偏移计算进行存取。
11. 数据归约:缩小数据的取值范围.使其更适合于数据挖掘算法的需要 .并且能够得到和原始数据相同的分析结果。
山东大学学报(工学版)总目次
第6期第50卷总目次山东大学学报(工学版)第50卷2020 年总目次机器学习与数据挖掘基于域对抗网络和B E R T 的跨领域文本情感分析...............基于V i B e 算法运动特征的关键帧提取算法......................自适应属性选择的实体对齐方法.............................基于门控循环单元与主动学习的协同过滤推荐算法...........基于异质集成学习的虚假评论检测..........................一种使用并行交错采样进行超分辨的方法....................基于校正神经网络的视频追踪算法...........................基于改进Y O L O v 3的复杂场景车辆分类与跟踪..................基于混合决策的改进鸟群算法..............................一种基于深度神经网络的句法要素识别方法..................基于多维相似度和情感词扩充的相同产品特征识别...........符号序列的L D A 主题特征表示方法 .........................基于元图归一化相似性度量的实体推荐.......................基于Laplacian 支持向量机和序列信息的m i c r o R N A -结合残基预测 基于三维剪切波变换和B M 4D 的图像去噪方法................................蔡国永,林强,任凯琪(1-1)……李秋玲,邵宝民,赵磊,王振,姜雪(1-8)……苏佳林,王元卓,靳小龙,程学旗(1-14)......陈德蕾,王成,陈建伟,吴以茵(1-21)…张大鹏,刘雅军,张伟,沈芬,杨建盛(2-1)........................朱安,徐初(2-10)...........陈宁宁,赵建伟,周正华(2-17).............宋士奇,朴燕,蒋泽新(2-27)闫威,张达敏,张绘娟,辛梓芸,陈忠云(2-34)......陈艳平,冯丽,秦永彬,黄瑞章(2-44)...................胡龙茂,胡学钢(2-50).............冯超,徐鲲鹏,陈黎飞(2-60).............张文凯,禹可,吴晓非(2-66).....................马昕,王雪(2-76)......张胜男,王雷,常春红,郝本利(2-83)基于预测数据特征的空气质量预测方法...................................................................................................高铭壑,张莹,张蓉蓉,黄子豪,黄琳焱,李繁菀,张昕,王彦浩(2-91)基于轻型卷积神经网络的火焰检测方法..........................严云洋,杜晨锡,刘以安,高尚兵(2-100)基于深度学习的洗衣机异常音检测..........................李春阳,李楠,冯涛,王朱贺,马靖凯(2-108)语义分析及向量化大数据跨站脚本攻击智检.....................................张海军,陈映辉(2-118)自然语言问答中的语义关系识别.....................一种Chirplet 神经网络自动目标识别算法..............基于G a b o r 特征的乳腺肿瘤M R 图像分类识别模型......基于U A R T 串口的多机通讯.............................基于多模态子空间学习的语义标签生成方法.........基于背景复杂度自适应距离阈值修正的S u B S E N S E 算法基于双重启发式信息求解影响最大化问题的蚁群算法…联合检测的自适应融合目标跟踪.....................基于核极限学习机自编码器的标记分布学习.........基于集成学习〇,的质量浓度预测模型................基于空间注意力和卷积神经网络的视觉情感分析..............................段江丽,胡新(3-1)......................李怡霏,郭尊华(3-8).........袁高腾,刘毅慧,黄伟,胡兵(3-15).............................马金平(3-24)田楓,李欣,刘芳,李闯,孙小强,杜睿山(3-31)...............成科扬,孙爽,詹永照(3-38)•…覃俊,李蔚栋,易金莉,刘晶,马懋德(3-45)...............刘保成,朴燕,宋雪梅(3-51).......王一宾,李田力,程玉胜,钱坤(3-58)..................彭岩,冯婷婷,王洁(4-1)............蔡国永,贺歆灏,储阳阳(4-8)• 2 ■山东大学学报(工学版)第50卷一种基于多目标的容器云任务调度算法...............基于卷积神经网络的深度线段分类算法................基于类激活映射-注意力机制的图像描述方法...........基于Bi -LSTM 的脑电情绪识别.........................带特征指标约束描述的设计模式分类挖掘..............基于NRC 和多模态残差神经网络的肺部肿瘤良恶性分类中文对话理解中基于预训练的意图分类和槽填充联合模型融合残差块注意力机制和生成对抗网络的海马体分割••…........................谢晓兰,王琦(4-14)..............赵宁宁,唐雪嵩,赵鸣博(4-22).....廖南星,周世斌,张国鹏,程德强(4-28)..................刘帅,王磊,丁旭涛(4-35).....肖卓宇,何锫,陈果,徐运标,郭杰(6-48)■•…霍兵强,周涛,陆惠玲,董雅丽,刘珊(6-59)........................马常霞,张晨(6-68)张月芳,邓红霞,呼春香,钱冠宇,李海芳(6-76)控制科学与工程基于空间隐患分布与运动意图解析的危险评估方法........一类非仿射非线性大系统的结构在线扩展.................GPRS 监管的多协议异构现场总线控制系统................基于新型趋近律的参数未知分数阶Rucklidge 系统的滑模同步分数阶Brussel 系统混沌同步的三种控制方案...............一类非线性混沌系统的自适应滑模同步...................含对数项分数阶T 混沌系统的滑模同步...................赵越男,陈桂友,孙琛,卢宁,譽立伟(1 -28)............曹小洁,李小华,刘辉(1-35)……侯鹏飞,孙竹梅,王琦,白建云(1-49).........王春彦,邸金红,毛北行(4-40).........................程春蕊(4-46)..................程春蕊,毛北行(5-1)..................孟晓玲,毛北行(5-7)土木工程含层状节理岩体力学性质数值模拟研究.......................................徐子瑶,虞松,付强(3-66)水泥土搅拌桩沿海软基处理..............................................吕国仁,葛建东,肖海涛(3-73)高地应力下砂岩力学参数和波速变化规律试验研究..............................宫嘉辰,陈士海(3-82)饱和地基中单排孔近场隔振的现场试验与数值分析智慧公路关键技术发展综述...................双节理岩体T B M 滚刀破岩过程数值模拟......基于熵值法的水利施工企业绩效考核K P I 设计方法偏压大跨小净距公路隧道施工力学行为..........基于B P 神经网络算法的结构振动模态模糊控制••砂土介质中颗粒浆液扩散距离变化规律........预应力中空棒构件设计与力学特性..............隐伏溶洞对隧道围岩稳定性影响规律及处治技术硬岩隧道纯钢纤维混凝土管片应用..............喷扩锥台压灌桩最优构造.......................松散地层隧道进洞段管棚注浆加固效应分析……孙连勇,时刚,崔新壮,周明祥,王永军,纪方,闫小东(3-88)................................吴建清,宋修广(4-52)施雪松,管清正,王文扬,许振浩,林鹏,王孝特,刘洁(4-70).........................................程森(4-80)........................................王春国(4-85)...........................王志伟,葛楠,李春伟(5-13)........................冯啸,夏冲,王凤刚,张兵(5-20).............................林超,张程林,王勇(5-26).....................陈禹成,王朝阳,郭明,林鹏(5-33)..............徐振,李德明,王彬,詹谷益,张世杰(5-44)...........李连祥,邢宏侠,李金良,黄亨利,王雷(6-82)...................余俊,翁贤杰,樊文胜,张连震(6-92)机械与能动工程柔性Rushton 桨的振动特性.........................................................刘欣,杨锋茶(5-50)湿法脱硫塔一维传热传质性能模型理论与试验.....................陈保奎,孙奉仲,高明,史月涛(5-56)波浪能发电装置浮体形状参数对俘能性能影响............刘延俊,王伟,陈志,王冬海,王登帅,薛钢(6-1)深拖地震线列阵的动力学建模与位置预报...................朱向前,魏峥嵘,裴彦良,于凯本,宗乐(6-9)淹没深度对三自由度波能浮子获能的影响........................黄淑亭,翟晓宇,刘延俊,史宏达(6-17)尾缘襟翼振荡水翼的水动力特性.................................孙光,王勇,谢玉东,陈晨,张玉兵(6-23)深海带电插拔连接器力学特性分析…韩家桢,王勇,谢玉东,王启先,张新标,高文彬,李荣兰,张传军(6-30) 振荡翼改进运动模型的能量捕获性能分析............................乔凯,王启先,王勇,谢玉东(6-40)第6期第50卷总目次电气工程能源消费发展及预测方法综述..............................杨明,杜萍静,刘凤全,郝旭鹏,孛一凡(1-56)基于物理不可克隆函数的电网NB-IoT端到端安全加密方案............................................................................................刘冬兰,刘新,陈剑飞,王文婷,张昊,马雷,李冬(丨-63)中央空调紧急控制应对受端电网直流闭锁故障研究.................................................................................................刘萌,程定一,张文,张恒旭,李宽,张国辉,苏建军U-72)风电爬坡事件的非精确条件概率预测..........................王勃,汪步惟,杨明,赵元春,朱文立(丨-82)考虑同步调相机无功特性的多馈入直流同时换相失败风险评估方法............................................................................................麻常辉,王亮,谭邵卿,卢奕,马欢,赵康(3-98)考虑路灯充电桩接入的城市配电网电压控制方法............宋士瞻,陈浩宇,张健,王坤,郝庆水(3-104)基于分时电价的含光伏的智慧家庭能量调度方法…潘志远,刘超男,李宏伟,王婧,王威,刘静,郑鑫(3-111)基于弹性梯度下降算法的B P神经网络降雨径流预报模型..........金保明,卢光毅,王伟,杜伦阅(3-117)基于学习理论的含光储联合系统的输电网双层规划……孙东磊,赵龙,秦敬涛,韩学山,杨明,王明强(4-90) 考虑内部动态约束的MMC功率运行区间的确定及控制方法……张锋,杨桂兴,岳晨晶,郝全睿,李东(4 - 9 8)虾米腰弯管内置导流板优化...................................祁金胜,曹洪振,石岩,杜文静,王湛(5-64)基于B P神经网络的短期光伏集群功率区间预测........孙东磊,王艳,于一潇,韩学山,杨明,闰芳晴(5-70)偏心方圆节扩散管数值模拟.................................曹洪振,祁金胜,袁宝强,杜文静,王湛(5-77)烟气成分对湿式电除尘器电晕放电特性的影响.................王磊,张玉磊,李兆东,张金峰,王翔(5-83)含电极式电锅炉的地区电网电源侧综合效益分析......葛维春,李昭,赵东,李振宇,叶青,傅予,于娜(5-90)基于特征频带相电流提取的故障选相和选线方法........................张贺军,王鹏,徐凯,石访(5-99)电动汽车虚拟储能可用容量建模.......................................李蓓,赵松,谢志佳,牛萌(6-101)基于RTDS的配电网一二次融合仿真技术...............李志,余绍峰,苏毅方,王蔚,蒋宏图,张伟(6-112)芒刺参数对电晕放电及细颗粒物脱除特性的影响............................王磊,李明臻,王翔(6-118)含不凝气蒸汽在锯齿形表面的凝结传热特性............................闫吉庆,王效嘉,田茂诚(6-129)化学与环境济南城区大气PM2.5、PM,。
一种新的基于knn和rocchio的文本分类方法
一种新的基于knn和rocchio的文本分类方法摘要:面对如今海量的文本数据,文本分类成为了一个重要的研究方向。
本文提出了一种新的基于kNN和Rocchio的文本分类方法,它能够在进行文本分类时实现高效和准确的分类功能。
我们将KNN和Rocchio算法进行了深入的研究,并将两种算法结合起来,提出了一种新的文本分类方法。
在实验方面,我们比较了我们的方法与其他几种常用文本分类方法,实验结果表明,我们的方法能够在特征提取、预处理和准确性方面取得更好的效果。
1. 引言随着人们对文本信息的需求日益增加,大量的文本数据正在被产生。
这些数据包含着大量有价值的信息,如何有效地利用这些信息成为了人们研究的一个重要问题。
在实践中,文本分类可以将文本数据按照预定义的类别进行分类,以便更好地对这些数据进行管理和利用。
文本分类已成为一项重要的研究领域。
随着计算机技术的不断发展,如何用计算机的方法对文本进行分类成了当前重点研究的问题之一。
在文本分类的研究中,表征文本是一个重要的问题。
文本数据一般是高维稀疏的,为了能够对这些数据进行分类,我们需要对其进行特征提取。
目前,常用的特征提取方法包括基于词袋模型的技术、基于特征选择的技术等。
这些技术相对容易实现,但是它们都存在一些问题,如无法准确的表达文本的语义信息。
我们需要寻找新的特征提取方法以提高分类的准确性。
在本文中,我们提出了一种基于kNN和Rocchio的文本分类方法。
KNN是一种常用的分类算法,它通过寻找最邻近的数据点来对新输入的数据点进行分类。
而Rocchio算法是一种重心聚类算法,它通过在数据点的质心进行分类。
我们将两种算法结合起来,提出了一种新的文本分类方法。
我们通过实验验证了我们的方法,在特征提取、预处理和准确性方面均取得了良好的效果。
2. 相关工作目前,文本分类技术已经被广泛的应用于许多领域。
很多研究者提出了许多基于不同算法的文本分类方法,例如基于贝叶斯的方法、SVM方法、决策树方法等。
基于关键词抽取的文本自动分类技术研究
基于关键词抽取的文本自动分类技术研究随着信息时代的到来,人们获得信息的途径和数量都不断增加。
而对于海量的信息,人工分类和处理的效率逐渐变得低效。
这时,文本自动分类技术的出现将成为信息处理的重要工具。
文本自动分类技术是利用计算机技术对文本进行分类和归纳,以达到快速筛选、取舍有用信息的目的。
文本自动分类技术包括多种方法,其中基于关键词抽取的文本自动分类技术是其中一种应用最广泛的方法。
基于关键词抽取的文本自动分类技术通过提取文本中的关键词、词组或短语,并利用这些关键词对文本进行分类。
在这个过程中,需要对文本进行预处理,如去除停用词和干扰因素,然后利用词频、文档频率、TF-IDF等算法来获得关键词。
最后,将文本与已经分类好的文本进行相似度匹配,以实现文本的自动分类。
作为文本自动分类技术的一种,基于关键词抽取的文本自动分类技术具有以下特点:1. 算法简单:基于关键词抽取的文本自动分类技术主要利用文本预处理和关键词提取算法配合,算法流程简单易懂,并且效果较好。
2. 可扩展性强:基于关键词抽取的文本自动分类技术不局限于某一领域或一些具体特征的分类,因此可应用于各种文本分类场景。
另外,基于关键词抽取技术可通过添加、删除关键词和改变权重来进行分类模型优化,具有较高的可扩展性。
3. 准确性较高:基于关键词抽取的文本自动分类技术可以通过调整权重、过滤垃圾信息等方式提高分类准确性,可以适应不同的场景和要求。
但是,基于关键词抽取的文本自动分类技术也存在一定的局限性:1. 语言差异:由于不同语言的文本存在明显差异,因此基于关键词的抽取方法可能会导致误分类。
2. 数据样本不足:由于训练数据的不足,分类器无法有效识别某些类型的文本,导致分类准确性受到影响。
3. 算法复杂度低:虽然算法简单易懂,但是分类效果好坏很大程度上取决于关键词选择的准确性,同时基于关键词抽取的文本自动分类技术只能处理文本的语义和主题信息,其他方面的信息无法进行处理。
多维数据的分组和聚类分析方法及应用研究
多维数据的分组和聚类分析方法及应用研究随着数据产生和积累的飞速增长,多维数据的分组和聚类分析变得日益重要。
这些分析方法帮助人们理解和发现数据背后的模式和关系,从而为决策提供基础和洞察力。
本文将介绍多维数据的分组和聚类分析的常见方法,并探讨它们在不同领域的应用研究。
1. 多维数据分组分析方法多维数据分组分析的目标是将数据集划分为不同的组,使得每个组内的成员具有相似的特征。
以下是几种常见的多维数据分组分析方法:1.1. K-means聚类K-means聚类是一种基于距离的分组方法,将数据集划分为K个类别,使得每个数据点与其所属类别的质心之间的距离最小化。
该方法适用于连续变量和欧几里得距离度量的数据集。
K-means聚类具有简单、高效的优点,但对初始聚类中心的选择敏感。
1.2. 层次聚类层次聚类是一种自底向上或自顶向下的分组方法,通过计算样本间的距离或相似度来确定聚类结构。
该方法生成一个树形结构,可视化地表示不同类别之间的关系。
层次聚类不需要预先指定类别数量,但对于大规模数据集计算复杂度较高。
1.3. 密度聚类密度聚类方法基于数据点周围的密度来划分组,将样本点密度较高的区域作为一个组,较低的区域作为另一个组。
该方法可以识别复杂的聚类形状和噪声数据,适用于非凸数据集。
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种常见的密度聚类方法。
2. 聚类分析方法聚类分析的目标是将数据集划分为若干个不相交的子集,每个子集中的数据点在某种意义上具有相似性。
以下是几种常见的聚类分析方法:2.1. 分层聚类分层聚类是一种基于相似性度量的聚类方法,将数据集划分为多个子集,类别数量从1逐渐增加到N。
该方法可通过树状图表示不同层级之间的相似性关系。
分层聚类的优点是不需要预先指定聚类数量,但对于大规模数据集计算复杂度较高。
2.2. 期望最大化(EM)算法EM算法是一种基于概率模型的聚类方法,通过迭代生成最大似然估计的方法来拟合数据分布。
基于Word2Vec模型和K-Means算法的信息技术文档聚类研究
基于Word2Vec模型和K-Means算法的信息技术文档聚类研究1. 引言1.1 研究背景信息技术的飞速发展使得海量的文档数据得到了广泛应用,然而由于文档数据的复杂性和庞大规模,如何对文档进行高效的聚类成为了一个重要的研究问题。
传统的文档聚类方法往往面临着词汇表达的稀疏性和语义相似性的不准确性等挑战,导致聚类效果有限。
为了解决这些问题,基于Word2Vec模型和K-Means算法的文档聚类研究应运而生。
Word2Vec是一种广泛应用于自然语言处理领域的词向量表示方法,可以将文档中的词语映射为高维的词向量,从而捕捉词语之间的语义关系。
K-Means算法是一种常用的聚类算法,通过迭代更新聚类中心来不断优化聚类效果。
结合Word2Vec和K-Means算法,可以充分挖掘文档数据中的语义信息,实现更准确和高效的文档聚类。
在这样的背景下,本研究旨在探索基于Word2Vec模型和K-Means算法的文档聚类方法,提高文档聚类的准确性和效率,为信息技术领域的文档处理提供新的思路和方法。
【2000字】1.2 研究目的研究目的是为了探究基于Word2Vec模型和K-Means算法的信息技术文档聚类研究,在当前信息爆炸的时代,海量的文档数据给信息检索和管理带来了巨大挑战。
通过利用Word2Vec模型来将文档数据转换为向量表示,再配合K-Means算法进行聚类分析,可以有效地对文档数据进行分类和整理,以便用户更加便捷地获取所需信息。
本研究旨在探讨如何利用这两种先进技术相结合的方法来实现文档聚类,提高信息检索效率和准确性,从而为信息技术领域的发展提供新的思路和方法。
通过本文的研究,我们希望能够深入了解Word2Vec模型和K-Means算法的原理和应用,为信息技术领域的文档管理和检索提供新的解决方案,并促进相关技术的进一步发展和应用。
1.3 研究意义信息技术在当今社会中扮演着日益重要的角色,随着信息量的急剧增加,人们需要更好的方法来管理和利用这些海量的数据。
基于深度学习的文本聚类算法
基于深度学习的文本聚类算法深度学习作为一种新兴的技术,已经逐渐在各个领域得到了广泛的应用。
其中,基于深度学习的文本聚类算法在信息处理中占据了重要地位。
那么,什么是文本聚类,深度学习又该如何在其中使用呢?一、文本聚类简介文本聚类指的是将大量的文本数据聚集在一起,依据其相似性来分成不同组别。
文本聚类主要是用于资讯分类、信息检索和组织自动化等领域。
相似的文本被分到一个组,不同群组之间的文本有着显著的差异。
聚类分析是文本挖掘中一项重要的技术,其目的是发现数据之间的关系。
文本聚类可以分为传统文本聚类和基于深度学习的文本聚类。
传统的文本聚类采用的是传统的机器学习算法,例如KNN算法、决策树算法和朴素贝叶斯算法等。
近年来,深度学习技术的不断发展,为文本聚类算法提供了更为高效、准确、自适应的方法。
二、深度学习在文本聚类中的应用深度学习在文本聚类领域的最大优点是能够自动学习特征。
这种自动学习的特征可以捕捉到文本的最主要的特征,从而使得聚类的效果更稳定和更准确。
深度学习在文本聚类中的应用主要有以下几个方面:1、词向量表示方法深度学习算法中通常采用的是词向量表示方法(Word Embedding),即将语料库中的每个词通过词嵌入的方式表示为一个向量。
在文本聚类中,采用词向量的方法来表示每个文本中的词语,将文本数据转化为向量数据,进而进行聚类。
2、自编码器自编码器是一种常见的深度学习技术,在文本聚类中经常被使用。
自编码器的工作原理是建立一个特定的神经网络,其中一部分网络层被用作输入,在经过若干层之后再输出一个相同的矩阵。
因此,自编码器可以从数据中自动抽象出最主要的特征。
3、卷积神经网络卷积神经网络(Convolutional Neural Networks)是一种常见的深度学习神经网络结构,其主要应用于图像识别和自然语言处理。
在文本聚类中,卷积神经网络主要用于提取文本数据中的特征,例如词汇、句子、段落等。
4、递归神经网络递归神经网络(Recurrent Neural Networks)是一种能够处理时序数据的神经网络结构,在文本聚类中也经常被使用。
基于本体的知识资源模糊聚类分析
本文首先建立知识本体的向量空间模 型 , 再根据本体 内元
素 的特征建立待聚类本体间的模 糊关 系矩 阵 , 最后基于模糊 聚 类方法 , 以宽泛 的边界将 具有相 同语义 的知识 本体 聚为一类 , 并通过具体实例来说明本文方法。
d i1 .9 9 ji n 10 —6 5 2 1 . 2 0 0 o :0 3 6 /.s .0 1 3 9 .0 10 .5 s
Kn wld e r s u c sfz y cu trn n lss b s d o n oo y o e g e o r e u z l se i g a ay i a e n o tlg
源众多 , 了方便使用 , 为 有必要将 表示相 同语义 的知 识分块使
用, 即知 识 的聚 类 。表 示 知 识 的 方 法 有谓 词 逻 辑 、 向对 象 、 面 面
向规则 , 随着语义 网的发展 , 向语义 的知 识本体表 示方法 已 面 经成为异构知识的最好表示方法 , 网格 中的异构知识资源多以 本体 的形 式 表示 , 因此 知 识 的 聚类 就 可理 解 为对 知 识 的 载 体——本体的聚类。
2 知 识本体 空 间表示模 型
2 1 知 识 本体 的 表 示 .
知识本体结构可用 otl y C R, . 来表 示。其 中: no g =( , P, ) o s C表示 由问题领域 中的名词 概念抽象 出来 , 具有相 同属性和行
为 结 构 的概 念 类 的集 合 ; R表 示 问 题 领 域 中概 念 间 的关 系 , 关
第2 8卷 第 2期
21 0 1年 2月
基于本体和相似图的概念语义相似度计算
领域本体 和形式 概念 分析虽 然两者 不 同 , 它们 但
收稿 日期 :0 1 O — 3 修回 日期 :0 1 0 —1 21一 1 1 ; 2 1— 4 4
建立都是对概念进行建模 , 主要有三个方面 : 差异 () 1 两者建模的对象不 同 , 前者 为现实建模 , 后者
为人工世界建模 ;
T ersl f p ldcs hwsh o u t nrsl r iet a t u nsbet e u g n. hs to f c v r o — h eut o pi aeso ec mpti utae d n c wi hma ujc v d metT i me d ie et ef n s a e t a o e s il h i j h s i oc
a i ia r ph nd S m l r G a
ZHANG a — u n,W ANG - g Xio l a Xi  ̄n
( e ame t f o ue c ne B oi ol eo r &Sine B oi 20 6 C ia D pr n mp t S i c 。 aj C l g f t t oC r e e A s c c 。 aj7 11 。 hn ) e
ie so o i noo ya d F d a fd man o tlg CA o c mp t h e n tcsm lrt y ted fnt n ftesm lrga ha d c n iaeatiue t n t o uetesma i i ai b e i o so i a rp n a dd t t b tss . i y h i i h i r e
支持用户在给定数据 的基础上进行领域分析 和建模 。 F A作为一 种 对人 工世 界进 行 建模 的工具 无 可 C
基于本体及相似度的文本聚类研究
计算 方法进行 了改进和 完善 , 通过应 用本体的语 义相似度 来度 量 文档 间相近 程度 , 完善 了根 据相 似度 进行 文本 聚类 的 K中心点算 法。 实验证 明 , 该方法从 聚类的 准确性和 聚 类的 关联 度 方面 改善 了聚类质 量 , 文本 的 自动 为
分析和推 荐提供 了一条途 径。
a d r lto so o e s T spa e e in d a mpr v d te me s r me to i i rt nd me s r d t e tsmiaiy by n ea in fc nc pt. hi p rd sg e nd i o e h a u e n fsm l iya a u e he tx i lrt a smiaiy o e to t lg , sg e h lo t i lrt ftx n oo y de in d t e ag r hm ftx lsei g b s d o i lrt Ex e i n ss w h tt to a i o e tcu trn a e n smia i y. p rme t ho t a he meh d c n a od u i gt etr ioain a d hih d i n i n l n a mp o et l trngq ly i o rc in d ge n s o ito v i sn h e m s lt n g — i o ne so a ,a d c ni r v hecuse i uai n c re to e re a d a s cain t de r e,t S awa o a lz hetx uo tc ly. g e i’ y t nay e t e ta tma ial Ke r s: o tlg ; sm i rt y wo d noo y i l iy; tx l trng; s ma i a e tcuse i e nt c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W A a — o g GU L iF NG J n.ta. tlg - ae dutbetx ls rn s g a s atd ge fc n et NG Xi d n . O e. A u e 1 oo y b sd aj s l etc t igu i bt c e reo o cp. o On a ue n r
to a me s r sThe c e e irty r nsa e t f aur t r o in l a u e . s h m f sl ta lt s he e t e e ms f VSM i o o c pt by a n a d nt c n e s m ppig n dia s mbiu in g at wih h a d o t te i
W ANG Xio d n , a - o g GUO L iF e , ANG J n YANG Ni g DE a u , n , NG T o
西北工业大学 自动化学院 , 西安 70 7 10 2
C l g f Au o t n, o h s m o ye h ia ie st Xi a 7 0 2, h n o l e o tmai N r we t e o t e P l tc n c l Un v ri y, ’ n 7 C i a 1 0
t e a i o wie e t r s lc ins whih a s a pl d c e s t e o lc cy f c u t rng, g l h b ss f t c fa u e ee to , c c n h r y e r a e h c mp ia o l se i a gome ai e l se ng alo t m i r tv c u tr g r h i i s
cnet,n dute ti vl . ocpsad ajs n s ai m d
Ke wor : o t lg ;e t l se ng; o e ; s m b g ai n; b ta t e r e y ds n oo y tx c u t r i c nc pt dia i u to a sr c d g e
o h n oo , o d e . ig t e mp o e fau e e t r o M , e s h me a r i t e e n i e e. u s q e t . 1 f t e o t lg W r n t y Usn h i r v d e t r v co f VS t c e c n wo k n h s ma t l v 1 b e u n l O h c S y 1
维普资讯
12 2 0 ,3 2 ) 0 74 (9 7
C m u rE n ei n p l ai s计算机 工程 与应用 o p t n e r g ad A pi t n e n c o
一
种基于本体 的抽象度 可调文档聚 类
王 晓东 , 郭 雷 , 方 俊 , 杨 宁 , 邓 涛
q r me t o e sI t e pe i e ,he es l s ws he c ur y f hi she i hih, l se s a be x a n d uie n s f us r.n he x rm nt t r uห้องสมุดไป่ตู้t ho t a c ac o t s c me s g c u t r c n e pli e by e t r f a u e
摘
要: 文档聚类随着网上文本数量的激增以及 实际应用 中的需求, 引起 了人们 广泛的关注。 对 目前文档聚 类的主要缺陷 , 出 针 提
了一 种 新 的 基 于 本 体 的抽 象度 可 调 文 档 聚 类 ( dutb etCut n s g A s atD ge fC ne tA C D ) 该 方 法 采 A js l T x ls r gu i bt c ereo ocp ,T A C 。 ae e i n r 用 Wod e 对 V M 特 征 词 进 行 概 念 映射 和 消歧 处 理 , 用 生 成 的 特 征 概 念 实现 文 档 语 义层 面 上 的 矢 量描 述 , rnt S 利 并在 二 次 特 征 选 择
的基础上 , 完成合成 聚类( HC) 方 法能够依据用户设 定的概念抽 象度 , A 。 借助专 门设 计的语 义 中心矢量调 节聚 类, 还可利 用关键特
Co ue gn e i g a d Ap l ain 。0 7 4 ( 9) 1 2 7 . mp tr En ie rn n p i to s 2 0 . 3 2 :7 —1 5 c
Ab t a t sr c :T i p p r s g e t a n v l tx lse i g s h me a e n o t lg i r e o o e c me t e s o to n s o r d — h s a e u g s o e e t c u trn c e b s d o no o y,n o d r t v ro h h r mig f ta i s c
api . t h pca smat etrvcossh m a dutcutr gb h bt c d g eo ocp o ieetr- p ldWi te se i e ni cne etr,ce e cn ajs ls i y tea s at er fcnetfrdfrn e e h l c en r e f