绥宁县一中2018-2019学年高二上学期第二次月考试卷数学

合集下载

绥宁县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

绥宁县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
绥宁县第二中学 2018-2019 学年高二上学期数学期末模拟试卷含解析 班级__________ 一、选择题
1. 某几何体的三视图如图所示,则该几何体为( )
座号_____
姓名__________
分数__________
A.四棱柱
B.四棱锥
C.三棱台
D.三棱柱 )等于( )
2. 已知 α 是△ABC 的一个内角,tanα= ,则 cos(α+ A. B. C. D.
解得 sinα= ,cosα= (负值舍去). 则 cos(α+ 故选 B. 【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力 ,属于基础题. 3. 【答案】B 【解析】解:向量 可得 2m=﹣1. 解得 m=﹣ . 故选:B. 4. 【答案】B 【 解 析 】 ,向量 与 平行, )=cos cosα﹣sin sinα= ×( ﹣ )= .
第 3 页,共 16 页
20. 【盐城中学 2018 届高三上第一次阶段性考试】 已知函数 f(x) =(2﹣a) (x﹣1) ﹣2lnx, g(x) = xe1 x. (a ∈R,e 为自然对数的底数) (Ⅰ)当 a=1 时,求 f(x)的单调区间; (Ⅱ)若函数 f(x)在 0,

1 上无零点,求 a 的最小值; 2
x




, a1 a2 a3 的最大

a2 3 ,当 x 0,ln3 时,函数 g(x)的最大值 M 与最小值 m 的差为 ,则 a 的值 2 2
为______.
三、解答题
19.将射线 y= x(x≥0)绕着原点逆时针旋转 (Ⅰ)求点 A 的坐标; (Ⅱ)若向量 =(sin2x,2cosθ), =(3sinθ,2cos2x),求函数 f(x)= • ,x∈[0, ]的值域. 后所得的射线经过点 A=(cosθ,sinθ).

绥宁县民族中学2018-2019学年上学期高二数学12月月考试题含解析

绥宁县民族中学2018-2019学年上学期高二数学12月月考试题含解析

绥宁县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是( )A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④2. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->”C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥ 3. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .4. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24 C .30 D .365. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部6. 已知函数f (x )=Asin (ωx ﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位7. 数列1,,,,,,,,,,…的前100项的和等于( )A .B .C .D .8. 已知双曲线﹣=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .B .C .3D .59. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .011.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值12.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)二、填空题13.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .14.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.15.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________. 16.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.17.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .18.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .三、解答题19. 坐标系与参数方程 线l :3x+4y ﹣12=0与圆C:(θ为参数 )试判断他们的公共点个数.20.(本小题满分12分)某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占13)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:^121()()()nii i nii uu v v uu β==--=-∑∑,^^a v u β=-.21.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;22.已知函数f (x )=log a (1﹣x )+log a (x+3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为﹣4,求a 的值.23.已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.24.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b 至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.绥宁县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】 D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f (x );图象②④恒在x 轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h (x )和Φ(x ), 又图象②过定点(0,1),其对应函数只能是h (x ), 那图象④对应Φ(x ),图象③对应函数g (x ). 故选:D .【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.2. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 3. 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O ,A ,B 三点能构成三角形,则O ,A ,B 三点不共线。

绥宁县三中2018-2019学年高二上学期第二次月考试卷数学

绥宁县三中2018-2019学年高二上学期第二次月考试卷数学

绥宁县三中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x2.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为()A.4 B.5 C.6 D.73.如果a>b,那么下列不等式中正确的是()A.B.|a|>|b| C.a2>b2D.a3>b34.已知角α的终边上有一点P(1,3),则的值为()A.﹣B.﹣C.﹣D.﹣45.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()ABCD6.定义在R上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f(7)=6,则f(x)()A.在[﹣7,0]上是增函数,且最大值是6B.在[﹣7,0]上是增函数,且最小值是6C.在[﹣7,0]上是减函数,且最小值是6D.在[﹣7,0]上是减函数,且最大值是67.双曲线4x2+ty2﹣4t=0的虚轴长等于()A. B.﹣2t C.D.48.函数y=f′(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0))处的切线为l:y=g(x)=f′(x0)(x﹣x0)+f(x0),F(x)=f(x)﹣g(x),如果函数y=f(x)在区间[a,b]上的图象如图所示,且a<x0<b,那么()A.F′(x0)=0,x=x0是F(x)的极大值点B.F′(x0)=0,x=x0是F(x)的极小值点C.F′(x0)≠0,x=x0不是F(x)极值点D.F′(x0)≠0,x=x0是F(x)极值点9.若向量=(3,m),=(2,﹣1),∥,则实数m的值为()A.﹣B.C.2 D.610.是首项,公差的等差数列,如果,则序号等于()A.667B.668C.669D.670x=-,则输出的结果为()11.执行下面的程序框图,若输入2016A.2015 B.2016 C.2116 D.204812.如图,已知正方体ABCD﹣A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是()A.5 B.4 C.4D.2二、填空题13.设m是实数,若x∈R时,不等式|x﹣m|﹣|x﹣1|≤1恒成立,则m的取值范围是.14.已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为.15.设是空间中给定的个不同的点,则使成立的点的个数有_________个.16.已知函数f(x)=cosxsinx,给出下列四个结论:①若f(x1)=﹣f(x2),则x1=﹣x2;②f(x)的最小正周期是2π;③f(x)在区间[﹣,]上是增函数;④f(x)的图象关于直线x=对称.其中正确的结论是.17.设函数f(x)=则函数y=f(x)与y=的交点个数是.18.数列{ a n}中,a1=2,a n+1=a n+c(c为常数),{a n}的前10项和为S10=200,则c=________.三、解答题19.已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.20.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.(1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值;21.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R . (Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值.22.已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值.求函数f(x)的解析式.23.如图,在底面是矩形的四棱锥P﹣ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中点.(1)求证:平面PDC⊥平面PAD;(2)求二面角E﹣AC﹣D所成平面角的余弦值.24.已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.绥宁县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.2.【答案】A解析:模拟执行程序框图,可得S=0,n=0满足条,0≤k,S=3,n=1满足条件1≤k,S=7,n=2满足条件2≤k,S=13,n=3满足条件3≤k,S=23,n=4满足条件4≤k,S=41,n=5满足条件5≤k,S=75,n=6…若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,则输入的整数k的最大值为4.故选:3.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.4.【答案】A【解析】解:∵点P(1,3)在α终边上,∴tanα=3,∴====﹣.故选:A.5.【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|==13。

绥宁县第二中学2018-2019学年高二上学期第二次月考试卷数学

绥宁县第二中学2018-2019学年高二上学期第二次月考试卷数学

绥宁县第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111] 2. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( ) A .①④B .①⑤C .②⑤D .③⑤3. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1D .﹣14. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .4D .25. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N6. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧qC .p ∧¬qD .¬p ∧¬q7.函数f(x)=sinωx(ω>0)在恰有11个零点,则ω的取值范围()A. C. D.时,函数f(x)的最大值与最小值的和为()A.a+3 B.6 C.2 D.3﹣a8.下列命题中正确的是()A.复数a+bi与c+di相等的充要条件是a=c且b=dB.任何复数都不能比较大小C.若=,则z1=z2D.若|z1|=|z2|,则z1=z2或z1=9.已知点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,双曲线C的焦距为12,则它的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x10.四棱锥P﹣ABCD的底面是一个正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是()A. B. C.D.11.在△ABC中,,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角 D.等腰或直角三角形12.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是()A.B.C.D.二、填空题13.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .14.-23311+log 6-log 42()= . 15.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b .16.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.17.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .18.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .三、解答题19.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球. (1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X ,求X 的分布列和数学期望.20.已知函数.(1)求f (x )的周期和及其图象的对称中心;(2)在△ABC中,角A、B、C的对边分别是a、b、c,满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.21.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.22.在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:.(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.23.19.已知函数f(x)=ln.24.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、、三线共点.绥宁县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.2.【答案】D【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m ∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.3.【答案】D【解析】解:由zi=1+i,得,∴z的虚部为﹣1.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),∵点P到点F的距离等于点P到平面ABB1A1的距离,∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),∴|PE|min==2.故选:D.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.5.【答案】D【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},∴M∪N={1,2,3,6,7,8},M∩N={3};∁I M∪∁I N={1,2,4,5,6,7,8};∁I M∩∁I N={2,7,8},故选:D.6.【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.7.【答案】A【解析】A. C. D.恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12,故选:A.8.【答案】C【解析】解:A.未注明a,b,c,d∈R.B.实数是复数,实数能比较大小.C.∵=,则z1=z2,正确;D.z1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确.故选:C.9.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C的焦距为12,∴12=2,即a2+b2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A.【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.10.【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE与AC所成角为θ,则cosθ===.故选:B.11.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.12.【答案】D【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P==,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题13.【答案】63.【解析】解:∵第一圈长为:1+1+2+2+1=7 第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23 …第n 圈长为:n+(2n ﹣1)+2n+2n+n=8n ﹣1 故n=8时,第8圈的长为63, 故答案为:63.【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.14.【答案】332【解析】试题分析:原式=233331334log log 16log 16log 1622+=+=+=+=。

绥宁县一中2018-2019学年上学期高二数学12月月考试题含解析

绥宁县一中2018-2019学年上学期高二数学12月月考试题含解析

又∵f(﹣3)=0,
∴f(3)=0
∴当 x∈(﹣∞,﹣3)∪(0,3)时,f(x)<0;当 x∈(﹣3,0)∪(3,+∞)时,f(x)>0;
∴(x﹣2)•f(x)<0 的解集是(﹣3,0)∪(2,3)
故选:A. 8. 【答案】B




第 8 页,共 17 页
9. 【答案】C
【解析】解:∵z= =
矩形的一边 在直径上,点 、 、 、 在圆周上, 、 在边 上,且
,设

(1)记游泳池及其附属设施的占地面积为 ,求 的表达式;
(2)怎样设计才能符合园林局的要求?
第 5 页,共 17 页
第 6 页,共 17 页
绥宁县一中 2018-2019 学年上学期高二数学 12 月月考试题含解析(参考答案) 一、选择题
20. f (x) sin2 x 3 sin 2x . 2
第 3 页,共 17 页
(1)求函数 f (x) 的单调递减区间; (2)在 ABC 中,角 A, B,C 的对边分别为 a, b, c ,若 f ( A) 1, ABC 的面积为 3 3 ,求的最小值.
2
21.某人在如图所示的直角边长为 4 米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处

A.1 B.2 C.3 4. 下列 4 个命题:
D.4
①命题“若 x2﹣x=0,则 x=1”的逆否命题为“若 x≠1,则 x2﹣x≠0”;
②若“¬p 或 q”是假命题,则“p 且¬q”是真命题;
③若 p:x(x﹣2)≤0,q:log2x≤1,则 p 是 q 的充要条件; ④若命题 p:存在 x∈R,使得 2x<x2,则¬p:任意 x∈R,均有 2x≥x2;

绥宁县实验中学2018-2019学年高二上学期第二次月考试卷数学

绥宁县实验中学2018-2019学年高二上学期第二次月考试卷数学

绥宁县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l 2. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=3. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()32y f x x =-+的零点个数为( ) A .1 B .2 C .3 D .44. 函数是( )A .最小正周期为2π的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数5. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .6. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm7. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 38. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个9. 在三角形中,若,则的大小为( )A .B .C .D .10.已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .211 B .227 C . 32259 D .32435 11.已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( ) A .1B .2C .3D .412.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且c=2a ,则cosB=( )A .B .C .D .二、填空题13.设,则14.等比数列{a n }的前n 项和为S n ,已知S 3=a 1+3a 2,则公比q= .15.在复平面内,复数与对应的点关于虚轴对称,且,则____. 16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e ex x f x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________. 17.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .18.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.三、解答题19.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率. 参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力20.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1. (1)求数列{a n }的通项公式;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .21.已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程.22.函数f(x)=sin2x+sinxcosx.(1)求函数f(x)的递增区间;(2)当x∈[0,]时,求f(x)的值域.23.求点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标.24.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(1)求证:AC⊥平面BDEF;(2)求二面角H﹣BD﹣C的大小.绥宁县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C111]【解析】考点:线线,线面,面面的位置关系2.【答案】C【解析】解:对于A,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C,函数y=lnx在(0,+∞)上是增函数,∴满足题意;对于D,函数y=在(0,+∞)上是减函数,∴不满足题意.故选:C.【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.3.【答案】D【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.4. 【答案】B【解析】解:因为==cos (2x+)=﹣sin2x .所以函数的周期为: =π.因为f (﹣x )=﹣sin (﹣2x )=sin2x=﹣f (x ),所以函数是奇函数.故选B .【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.5. 【答案】B【解析】解:由约束条件作出可行域如图,由图可知A (a ,a ),化目标函数z=2x+y 为y=﹣2x+z ,由图可知,当直线y=﹣2x+z 过A (a ,a )时直线在y 轴上的截距最小,z 最小,z 的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.6.【答案】D【解析】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.7.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.8.【答案】D【解析】解:①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0∴当x为有理数时,f(f(x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1即不管x 是有理数还是无理数,均有f (f (x ))=1,故①正确; ②∵有理数的相反数还是有理数,无理数的相反数还是无理数, ∴对任意x ∈R ,都有f (﹣x )=f (x ),故②正确;③若x 是有理数,则x+T 也是有理数; 若x 是无理数,则x+T 也是无理数∴根据函数的表达式,任取一个不为零的有理数T ,f (x+T )=f (x )对x ∈R 恒成立,故③正确;④取x 1=﹣,x 2=0,x 3=,可得f (x 1)=0,f (x 2)=1,f (x 3)=0∴A (,0),B (0,1),C (﹣,0),恰好△ABC 为等边三角形,故④正确.故选:D .【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.9. 【答案】A【解析】 由正弦定理知,不妨设,,,则有,所以,故选A答案:A10.【答案】D 【解析】试题分析: 数列n n n a 2728-+=,112528++-+=∴n n n a ,11252722n nn nn n a a ++--∴-=- ()11252272922n n n n n ++----+==,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,2111=a ,∴最小项为211,M m +∴的值为3243532259211=+.故选D.考点:数列的函数特性. 11.【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6, ∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A.【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.12.【答案】B【解析】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.二、填空题13.【答案】9【解析】由柯西不等式可知14.【答案】2.【解析】解:设等比数列的公比为q,由S3=a1+3a2,当q=1时,上式显然不成立;当q≠1时,得,即q2﹣3q+2=0,解得:q=2.故答案为:2.【点评】本题考查了等比数列的前n项和,考查了等比数列的通项公式,是基础的计算题.15.【答案】-2【解析】【知识点】复数乘除和乘方【试题解析】由题知:所以故答案为:-216.【答案】()32-,【解析】∵()1e ,e x xf x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0x xf x e e -=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x-+-<的解集为()32-,,故答案为()32-,. 17.【答案】 0或1 .【解析】解:由A ∪B=A 知B ⊆A ,∴t 2﹣t+1=﹣3①t 2﹣t+4=0,①无解或t 2﹣t+1=0②,②无解或t 2﹣t+1=1,t 2﹣t=0,解得 t=0或t=1.故答案为0或1.【点评】本题考查集合运算及基本关系,掌握好概念是基础.正确的转化和计算是关键.18.【答案】1231n --【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式.三、解答题19.【答案】【解析】(Ⅰ)根据题中的数据计算:()224005017030150 6.2580320200200⨯⨯-⨯K ==⨯⨯⨯ 因为6.25>5.024,所以有97.5%的把握认为对这一问题的看法与性别有关(Ⅱ)由已知得抽样比为81=8010,故抽出的8人中,男士有5人,女士有3人.分别设为,,,,,1,2,3a b c d e ,选取2人共有{},a b ,{},a c ,{},a d ,{},a e ,{},1a ,{},2a ,{},3a ,{},b c ,{},b d ,{},b e ,{},1b ,{},2b ,{},3b ,{},c d ,{},c e ,{},1c ,{},2c ,{},3c ,{},d e ,{},1d ,{},2d ,{},3d ,{},1e ,{},2e ,{},3e ,{}1,2,{}1,3,{}2,328个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所求概率为189=2814P =. 20.【答案】解:(1)∵a n+1=2a n +1, ∴a n+1+1=2(a n +1), 又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列, ∴a n +1=2n , ∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1,∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n , 于是T n =1+(n ﹣1)•2n .则所求和为12nn - 6分21.【答案】【解析】解:(Ⅰ)设椭圆的方程为,由题意可得:椭圆C 两焦点坐标分别为F 1(﹣1,0),F 2(1,0).∴.∴a=2,又c=1,b 2=4﹣1=3,故椭圆的方程为.(Ⅱ)当直线l ⊥x 轴,计算得到:,,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),由,消去y得(3+4k2)x2+8k2x+4k2﹣12=0显然△>0成立,设A(x1,y1),B(x2,y2),则,又即,又圆F2的半径,所以,化简,得17k4+k2﹣18=0,即(k2﹣1)(17k2+18)=0,解得k=±1所以,,故圆F2的方程为:(x﹣1)2+y2=2.【点评】本题主要考查了椭圆的标准方程和椭圆与直线,椭圆与圆的关系.考查了学生综合运用所学知识,创造性地解决问题的能力.22.【答案】【解析】解:(1)…(2分)令解得…f(x)的递增区间为…(6分)(2)∵,∴…(8分)∴,∴…(10分)∴f(x)的值域是…(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.23.【答案】【解析】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),则线段A′A的中点B(,),由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0 ①.再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1 ②,解①②做成的方程组可得:m=﹣,n=,故点A′的坐标为(﹣,).【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.24.【答案】【解析】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.又∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,∴AC⊥平面BDEF;(2)解:设AC∩BD=O,取EF的中点N,连接ON,∵四边形BDEF是矩形,O,N分别为BD,EF的中点,∴ON∥ED,∵ED⊥平面ABCD,∴ON⊥平面ABCD,由AC⊥BD,得OB,OC,ON两两垂直.∴以O为原点,OB,OC,ON所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系.∵底面ABCD是边长为2的菱形,∠BAD=60°,BF=3,∴B(1,0,0),D(﹣1,0,0),H(,,)∴=(﹣,,),=(2,0,0).设平面BDH的法向量为=(x,y,z),则令z=1,得=(0,﹣,1)由ED⊥平面ABCD,得平面BCD的法向量为=(0,0,﹣3),则cos<,>=﹣,由图可知二面角H﹣BD﹣C为锐角,∴二面角H﹣BD﹣C的大小为60°【点评】本题考查面面垂直的性质,考查线面垂直,考查面面角,考查向量法的运用,正确求出平面的法向量是关键.。

2018-2019学年高二数学上学期第二次月考(期中)试题 文

2018-2019学年高二数学上学期第二次月考(期中)试题 文

2018-2019学年高二数学上学期第二次月考(期中)试题 文一、选择题(本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.)1.直线MN 的斜率为2,其中点()11N -,,点M 在直线1y x =+上,则( )A. ()57M ,B. ()45M ,C. ()21M ,D. ()23M ,2.超市为了检查货架上的奶粉是否合格,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( ) A .6,12,18,24,30 B .2,4,8,16,32 C .2,12,23,35,48D .7,17,27,37,473.在长方体1111ABCD A B C D -中,1AB BC ==,1AC 与1BB 所成的角为30︒,则1AA =( )A .3B .3C .5D .64.总体由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,则选出来的第5个个体的编号为( ) A .20B .16C .17D .185.在等比数列}{n a 中,已知343a a =,则=+++nn a aa a a a a a 2362412 A.233--n B.2331--n C.233-n D.2331-+n6.如图,正方体1111D C B A ABCD -中,E 为棱1BB 的中点,用过点1,,C E A 的平面截去该正方体的上半部分,则剩余几何体的左视图为( )7.已知正数,a b 满足21a b +=,则23a b+的最小值为( ) A. 843+B. 8C. 823+D. 208.某几何体的三视图如右图所示,则该几何体的体积为( )A .12B .18C .24D .369.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①l m αβ⊥⇒∥;②l m αβ⇒⊥∥; ③l m αβ⊥⇒∥;④l m αβ⇒⊥∥;其中正确命题的序号是( ) A .①②③B .②③④C .①③D .②④10.点()1,2A -在直线2140ax by -+=(0,0)a b >>上,且该点始终落在圆()()221225x a y b -+++-=的内部或圆上,那么ba的取值范围是( ) A . 34,43⎡⎤⎢⎥⎣⎦B . 34,43⎡⎫⎪⎢⎣⎭C . 34,43⎛⎤ ⎥⎝⎦D . 34,43⎛⎫⎪⎝⎭11.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若2sin sin a b c B A +=,则A 的大小是( ) A.2πB.3πC. 4πD. 6π12.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 是棱BC 、1CC 的中点,P 是底面ABCD 上(含边界)一动点,满足1A P EF ⊥,则线段1A P 长度的取值范围是( ) A .51,2⎡⎤⎢⎥⎢⎥⎣⎦B .2,3⎡⎤⎣⎦C .1,3⎡⎤⎣⎦D .53,22⎡⎤⎢⎥⎢⎥⎣⎦二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置)13.在等差数列{}n a 中,若43574,15a a a a =++=,则前10项和10S = __________. 14.空间直角坐标系中与点()2,3,5P 关于yOz 平面对称的点为'P ,则点'P 的坐标为________.15.为了研究某种细菌在特定环境下,随时间变化繁殖规律,得到如下实验数据,计算得回归直线方程为0.950.15y x =-.由以上信息,得到下表中c 的值为__________.天数x (天) 3 4 5 6 7繁殖个数y (千个)2345c16.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面,,SCB SA AC SB BC ==,三棱锥S ABC -的体积为9,则球O 的表面积为________. 三、解答题(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.) 17.( 本小题满分10分)某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图,观察图中数据,完成下列问题.(1)求a 的值及样本中男生身高在[185,195](单位:cm )的人数.(2)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高.18.( 本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知223b c a a ⎫+=+⎪⎪⎝⎭. (1)证明:23cos a A =; (2)若,36A B ππ==,求ABC ∆的面积.19. ( 本小题满分12分)如图,PA ⊥平面ABCD ,AD //BC ,2AD BC =,AB BC ⊥,点E 为PD 中点. (1)求证:AB PD ⊥; (2)求证:CE //平面PAB .20.( 本小题满分12分)设n S 为数列{}n a 的前n 项和,已知10a ≠,112n n a a S S -=⋅,n *∈N . (1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和.21.( 本小题满分12分)如图,在直三棱柱111ABC A B C -中,底面ABC △是边长为2的等边三角形,D 为BC 的中点,侧棱13AA =,点E 在1BB 上,点F 在1CC 上,且1BE =,2CF =.(1)证明:平面CAE ⊥平面ADF ; (2)求点D 到平面AEF 的距离.22. ( 本小题满分12分)已知圆C 的圆心在坐标原点,且与直线1:220l x y --=相切. (1)求圆C 的方程;(2)过点()1,3G 作两条与圆C 相切的直线,切点分别为,,M N 求直线MN 的方程; (3)若与直线1l 垂直的直线l 与圆C 交于不同的两点,P Q ,若POQ ∠为钝角,求直线l 在y 轴上的截距的取值范围.南康中学xx ~xx 第一学期高二第二次大考数学(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDBDAACDACB二、填空题13、55 14、()2,3,5- 15、9 16、36π 三、解答题17.解:(1)由题意:0.10.040.0250.020.0050.01a =----=,身高在的频率为,人数为.----------5分(2)设样本中男生身高的平均值为,则:,所以,估计该校全体男生的平均身高为.----------10分18.证明:(1)∵22233b c abc a +=+ ∴2223b c a +-=, 由余弦定理可得2222cos b c a bc A +-=∴32cos bc A =, ∴23cos a A =.----------6分 (2)∵3A π=∴23cos 3a A =,由正弦定理得sin sin a b A B= ∴3sin sin 61sin sin3a Bb Aππ===,又2C A B ππ=--=∴13sin 2ABC S ab C ∆==分 19.证:(1)因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA AB ⊥,又因为AB BC ⊥,AD BC ∥,所以AB AD ⊥, 又因为PA AB ⊥,PAAD A =,所以AB ⊥平面PAD所以AB PD ⊥.----------6分 (2)取PA 的中点F ,连接EF ,BF ,又因为点E 为PD 中点,所以EF AD ∥,12EF AD =,又AD BC ∥,2AD BC =,所以EF BC ∥,EF BC =, 所以四边形BCEF 是平行四边形,因此EC BF ∥,又因为EC ⊄平面PAB ,BF ⊂平面PAB ,所以CE ∥平面PAB .----------12分 20.解:(1)令1=n ,得21112a a a =-,因为01≠a ,所以11=a ,当2≥n 时,由21n n a S -=,1121n n a S ---=,两式相减,整理得12-=n n a a , 于是数列{}n a 是首项为1,公比为2的等比数列,所以12-=n na .----------6分(2)由(2)知12-=n n n na ,记其前n 项和为n T , 于是21122322n n T n -=+⨯+⨯++⨯① 2321222322n n T n =⨯+⨯+⨯++⨯②①-②得2112222212n n n n n T n n --=++++-⨯=--⨯从而1(1)2n n T n =+-⋅.----------12分21.解:(1)∵ABC △是等边三角形,D 为BC 的中点,∴AD BC ⊥,∴AD ⊥平面11BCC B ,得AD CE ⊥.① 在侧面11BCC B 中,1tan 2CD CFD CF ∠==,1tan 2BE BCE BC ∠==, ∴tan tan CFD BCE ∠=∠,CFD BCE∠=∠∴90BCE FDC CFD FDC ∠+∠=∠+∠=︒,∴CE DF ⊥.② 结合①②,又∵ADDF D =,∴CE ⊥平面ADF ,又∵CE ⊂平面CAE ,∴平面CAE ⊥平面ADF .----------6分(2)FDE △中,易求FD FE ==DE 1322FDE S ==△,EFA △中,易求EA EF ==AF =,得12EFA S =⨯=△设三棱锥D AEF -的体积为V ,点D 到平面AEF 的距离为h ,则1133FDE EFA V S AD S h ==△△,得32=,h =.---------12分22. (1)由题意得:圆心()0,0到直线1:0l x y --=的距离为圆的半径,2r ==,所以圆C 的标准方程为:224x y +=----------3分(2)因为点()1,3G ,所以OG ==,GM ==所以以G 点为圆心,线段GM 长为半径的圆G 方程:()()22136x y -+-=(1) 又圆C 方程为:224x y +=(2),由()()12-得直线MN 方程:340x y +-=----------7分(3)设直线l 的方程为:y x b =-+联立224x y +=得:222240x bx b -+-=,设直线l 与圆的交点()()1122,,,P x y Q x y ,由()()222840b b ∆=--->,得28b <,212124,2b x x b x x -+=⋅=(3)因为POQ ∠为钝角,所以0OP OQ ⋅<,即满足12120x x y y +<,且OP 与OQ 不是反向共线,又1122,y x b y x b =-+=-+,所以()21212121220x x y y x x b x x b +=-++<(4)由(3)(4)得24b <,满足0∆>,即22b -<<,当OP 与OQ 反向共线时,直线y x b =-+过原点,此时0b =,不满足题意,故直线l 在y 轴上的截距的取值范围是22b -<<,且0b ≠----------12分资料仅供参考!!!。

绥宁县第三中学校2018-2019学年高二上学期第二次月考试卷数学

绥宁县第三中学校2018-2019学年高二上学期第二次月考试卷数学

绥宁县第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.数列{a n}满足a n+2=2a n+1﹣a n,且a2014,a2016是函数f(x)=+6x﹣1的极值点,则log2(a2000+a2012+a2018+a2030)的值是()A.2 B.3 C.4 D.52.函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是()A.(0,1) B.(1,2) C.(2,e)D.(3,4)3.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体S﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体S﹣ABC的体积为V,则r=()A.B.C.D.4.已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是()A.B.C.D.5.“a>0”是“方程y2=ax表示的曲线为抛物线”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要6.函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数,则a的取值范围为()A.0<a≤B.0≤a≤C.0<a<D.a>7.已知M是△ABC内的一点,且=2,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为,x,y,则+的最小值是()A.20 B.18 C.16 D.98. 设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4﹣2,3S 2=a 3﹣2,则公比q=( ) A .3B .4C .5D .69. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5) C .(4,﹣3,1)D .(﹣5,3,4)10.已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )A .2017B .﹣8C .D .11.已知函数,,若,则( )A1 B2 C3 D-112.命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥1二、填空题13.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e e xxf x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.15.设函数 则______;若,,则的大小关系是______.16.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .17.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1③f(x)=x2+1 ④f(x)=其中是“H函数”的有(填序号)18.运行如图所示的程序框图后,输出的结果是三、解答题19.已知函数f(x)=2x﹣,且f(2)=.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.20.已知定义域为R的函数是奇函数.(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)<0.21.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.22.在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=a.(1)求角C的大小;(2)若c=2,a2+b2=6,求△ABC的面积.23.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,BC⊥CF,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF⊥平面DCE;(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°.24.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.绥宁县第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,∵a2014,a2016是函数f(x)=+6x﹣1的极值点,∴a2014,a2016是方程x2﹣8x+6=0的两实数根,则a2014+a2016=8.数列{a n}中,满足a n+2=2a n+1﹣a n,可知{a n}为等差数列,∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4.故选:C.【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.2.【答案】B【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),故选:B.3.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R=故选C.【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).4.【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:故选A.【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.5.【答案】A【解析】解:若方程y2=ax表示的曲线为抛物线,则a≠0.∴“a>0”是“方程y2=ax表示的曲线为抛物线”的充分不必要条件.故选A.【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础.6.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.7.【答案】B【解析】解:由已知得=bccos∠BAC=2⇒bc=4,故S△ABC=x+y+=bcsinA=1⇒x+y=,而+=2(+)×(x+y)=2(5++)≥2(5+2)=18,故选B.【点评】本题主要考查了基本不等式在最值问题中的应用,向量的数量积的运算.要注意灵活利用y=ax+的形式.8.【答案】B【解析】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,a4=4a3,∴公比q=4.故选:B.9.【答案】C【解析】解:设C(x,y,z),∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,∴,解得x=4,y=﹣3,z=1,∴C(4,﹣3,1).故选:C.10.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.11.【答案】A【解析】g(1)=a﹣1,若f[g(1)]=1,则f(a﹣1)=1,即5|a﹣1|=1,则|a﹣1|=0,解得a=112.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.二、填空题13.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P 1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P 2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P 2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.14.【答案】()32-,【解析】∵()1e ,e xx f x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0x xf x e e-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x -+-<的解集为()32-,,故答案为()32-,. 15.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数 【试题解析】,因为,所以又若,结合图像知:所以:。

2018-2019学年上学期高二数学12月月考试题含解析(1618)

2018-2019学年上学期高二数学12月月考试题含解析(1618)

绥宁县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .2. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .42 B .45 C .22 D .254. 已知a=,b=20.5,c=0.50.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a5. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( ) A .(11,25) B .(12,16] C .(12,17) D .[16,17)6. 设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111]7. 定义集合运算:A*B={z|z=xy ,x ∈A ,y ∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( )A .0B .2C .3D .68. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( )A .6B .3C .1D .29. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-,且0m n ?,则2163n n S a ++的最小值为( )A .4B .3C .32D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力. 10.sin45°sin105°+sin45°sin15°=()A .0B .C .D .111.函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称12.已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( ) A.5B.2 3D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.二、填空题13.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m=. 14.已知角α终边上一点为P (﹣1,2),则值等于 .15.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________.16.如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是.17.已知tanβ=,tan(α﹣β)=,其中α,β均为锐角,则α=.18.已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为.三、解答题19.已知曲线C的极坐标方程为4ρ2cos2θ+9ρ2sin2θ=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.20.在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥AC.(Ⅰ)求证:AB⊥SC;(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;(Ⅲ)若SA=AB=2,AC=4,求二面角A﹣FD﹣G的余弦值.21.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥a+b.22.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.23.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.24.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C (1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程.绥宁县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个, 故取出的3个数可作为三角形的三边边长的概率P=.故选:A .【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.2. 【答案】B【解析】解:∵(﹣4+5i )i=﹣5﹣4i , ∴复数(﹣4+5i )i 的共轭复数为:﹣5+4i ,∴在复平面内,复数(﹣4+5i )i 的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限. 故选:B .3. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0). 由题意得⎩⎪⎨⎪⎧2a +b =0(-1-a )2+(-1-b )2=r2(2-a )2+(2-b )2=r2,解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9, 令y =0得,x =-1±5,∴|MN |=|(-1+5)-(-1-5)|=25,选D. 4. 【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a <c <1,b=20.5>1,∴b >c >a , 故选:A .5. 【答案】C【解析】解:当a n ≤b n 时,c n =a n ,当a n >b n 时,c n =b n ,∴c n 是a n ,b n 中的较小者, ∵a n =﹣n+p ,∴{a n }是递减数列, ∵b n =2n ﹣5,∴{bn }是递增数列,∵c 8>c n (n ≠8),∴c 8是c n 的最大者,则n=1,2,3,…7,8时,c n 递增,n=8,9,10,…时,c n 递减, ∴n=1,2,3,…7时,2n ﹣5<﹣n+p总成立,当n=7时,27﹣5<﹣7+p ,∴p >11, n=9,10,11,…时,2n ﹣5>﹣n+p 总成立,当n=9时,29﹣5>﹣9+p ,成立,∴p <25,而c 8=a 8或c 8=b 8,若a 8≤b 8,即23≥p ﹣8,∴p ≤16,则c 8=a 8=p ﹣8,∴p ﹣8>b 7=27﹣5,∴p >12,故12<p ≤16,若a 8>b 8,即p ﹣8>28﹣5,∴p >16,∴c 8=b 8=23,那么c 8>c 9=a 9,即8>p ﹣9, ∴p <17, 故16<p <17, 综上,12<p <17. 故选:C .6. 【答案】D 【解析】考点:函数导数与不等式.1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,x g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.7. 【答案】D【解析】解:根据题意,设A={1,2},B={0,2},则集合A*B 中的元素可能为:0、2、0、4, 又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6; 故选D .【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.8. 【答案】A 【解析】试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A . 考点:几何体的结构特征. 9. 【答案】A【解析】10.【答案】C【解析】解:sin45°sin105°+sin45°sin15° =cos45°cos15°+sin45°sin15°=cos (45°﹣15°) =cos30°=.故选:C .【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.11.【答案】C【解析】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选C.12.【答案】A.【解析】二、填空题13.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣1814.【答案】.【解析】解:角α终边上一点为P(﹣1,2),所以tanα=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.0,115.【答案】()【解析】16.【答案】.【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.17.【答案】.【解析】解:∵tanβ=,α,β均为锐角,∴tan(α﹣β)===,解得:tanα=1,∴α=.故答案为:.【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.18.【答案】(±,0)y=±2x.【解析】解:双曲线的a=2,b=4,c==2,可得焦点的坐标为(±,0),渐近线方程为y=±x,即为y=±2x.故答案为:(±,0),y=±2x.【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)由4ρ2cos2θ+9ρ2sin2θ=36得4x2+9y2=36,化为;(Ⅱ)设P(3cosθ,2sinθ),则3x+4y=,∵θ∈R,∴当sin(θ+φ)=1时,3x+4y的最大值为.【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,∴SA⊥AB,又AB⊥AC,SA∩AC=A,∴AB⊥平面SAC,又AS⊂平面SAC,∴AB⊥SC.(Ⅱ)证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,∵D,F分别是AC,SA的中点,点G是△ABD的重心,∴AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FD∥SC,FM∥SB,∵FM∩FD=F,∴平面FMD∥平面SBC,∵FG⊂平面FMD,∴FG∥平面SBC.(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,,0),F(0,0,1),=(0,2,﹣1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD的法向量=(1,0,0),cos<,>==.∴二面角A﹣FD﹣G的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.21.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(a+b)2=a+b+2ab≤2(a+b)=4,∴a+b≤2,∴f(x)≥a+b=2≥a+b,即f(x)≥a+b.22.【答案】【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f(x)=cos(2x+).令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数的增区间为,k∈Z.(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.23.【答案】【解析】解:(1)由椭圆+=1,得a2=8,b2=4,∴c2=a2﹣b2=4,则焦点坐标为F(2,0),∵直线y=x为双曲线的一条渐近线,∴设双曲线方程为(λ>0),即,则λ+3λ=4,λ=1.∴双曲线方程为:;(2)由3x﹣4y﹣12=0,得,∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:y2=16x或x2=﹣12y.【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题.24.【答案】【解析】解(1)∵,∴根据直线的斜截式方程,直线AB:,化成一般式为:4x﹣3y+12=0,∴根据点到直线的距离公式,点C到直线AB的距离为;(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,∴AB边的高所在直线的方程为3x+4y﹣7=0.。

绥宁县高中2018-2019学年高二上学期第二次月考试卷数学

绥宁县高中2018-2019学年高二上学期第二次月考试卷数学

绥宁县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若cos (﹣α)=,则cos (+α)的值是( )A .B .﹣C .D .﹣2. 设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .4. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 5. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位 6. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( )A .1B .0C .﹣1D .0或﹣17. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1﹣B .﹣C .D .8. 设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣i D .﹣1+i9. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,+∞)C .(﹣1,0)D .(﹣∞,﹣1)10.已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对12.用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除 C .a ,b 不能被5整除 D .a ,b 有1个不能被5整除二、填空题13.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.14.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .15.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .16.已知(ax+1)5的展开式中x 2的系数与的展开式中x 3的系数相等,则a= .17.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.18.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .三、解答题19.已知数列{a n }满足a 1=﹣1,a n+1=(n ∈N *).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n =,数列{b n }的前n 项和为S n .①证明:b n+1+b n+2+…+b 2n <②证明:当n ≥2时,S n 2>2(++…+)20.已知函数f (x )=xlnx+ax (a ∈R ). (Ⅰ)若a=﹣2,求函数f (x )的单调区间;(Ⅱ)若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,求正整数k 的值.(参考数据:ln2=0.6931,ln3=1.0986)21.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.22.(本小题满分12分)若二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,且()01f =.(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.23.若数列{a n}的前n项和为S n,点(a n,S n)在y=x的图象上(n∈N*),(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若c1=0,且对任意正整数n都有,求证:对任意正整数n≥2,总有.24.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.绥宁县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵cos (﹣α)=,∴cos (+α)=﹣cos=﹣cos (﹣α)=﹣.故选:B .2. 【答案】B【解析】因为所以,对应的点位于第二象限 故答案为:B 【答案】B3. 【答案】A【解析】【知识点】空间几何体的表面积与体积 【试题解析】由题知:是直角三角形,又,所以。

绥宁县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

绥宁县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

绥宁县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力. 2. 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .3. 函数f (x ﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .104. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π105. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )6. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定7. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .08. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}9. 若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( ) A .1 B .2 C .3 D .410.设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D . 11.在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=12.已知命题p :存在x 0>0,使2<1,则¬p 是( )A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1 D .存在x 0≤0,使2<1二、填空题13.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .14.i 是虚数单位,若复数(1﹣2i )(a+i )是纯虚数,则实数a 的值为 . 15.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1);②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .16.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号)17.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= . 18. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.三、解答题19.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.20.设p :实数x 满足x 2﹣4ax+3a 2<0,q :实数x 满足|x ﹣3|<1. (1)若a=1,且p ∧q 为真,求实数x 的取值范围;(2)若其中a >0且¬p 是¬q 的充分不必要条件,求实数a 的取值范围.21.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F 为其左、右焦点,直线的参数方程为22x t y ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;(2)求点12,F F 到直线的距离之和.22.(本小题满分12分)已知函数f (x )=12x 2+x +a ,g (x )=e x .(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.23.已知椭圆C :22221x y a b+=(0a b >>),点3(1,)2在椭圆C 上,且椭圆C 的离心率为12.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 的直线与椭圆C 交于P ,Q 两点,A 为椭圆C 的右顶点,直线PA ,QA 分别交直线:4x =于M 、N 两点,求证:FM FN ⊥.24.已知数列{}n a 的前项和公式为2230n S n n =-. (1)求数列{}n a 的通项公式n a ; (2)求n S 的最小值及对应的值.绥宁县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A2.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B3.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.4.【答案】B【解析】考点:球与几何体5.【答案】【解析】选B.取AP的中点M,则P A=2AM=2OA sin∠AOM=2sin x2,PB=2OM=2OA·cos∠AOM=2cos x2,∴y=f(x)=P A+PB=2sin x2+2cos x2=22sin(x2+π4),x∈[0,π],根据解析式可知,只有B选项符合要求,故选B.6.【答案】C【解析】解:由点P(x0,y0)在圆C:x2+y2=4外,可得x02+y02 >4,求得圆心C(0,0)到直线l:x0x+y0y=4的距离d=<=2,故直线和圆C相交,故选:C.【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.7.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.8. 【答案】D【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x <},故可得f (10x )>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x <,即10x<10﹣lg2,由指数函数的单调性可知:x <﹣lg2 故选:D9. 【答案】A【解析】解:∵f (x )=acosx ,g (x )=x 2+bx+1,∴f ′(x )=﹣asinx ,g ′(x )=2x+b ,∵曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,∴f (0)=a=g (0)=1,且f ′(0)=0=g ′(0)=b , 即a=1,b=0. ∴a+b=1. 故选:A .【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.10.【答案】A【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 11.【答案】C 【解析】解:A.在定义域内没有单调性,∴该选项错误;B.时,y=,x=1时,y=0;∴该函数在定义域内不是减函数,∴该选项错误;C.y=﹣x|x|的定义域为R,且﹣(﹣x)|﹣x|=x|x|=﹣(﹣x|x|);∴该函数为奇函数;;∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;∴该函数在定义域R上为减函数,∴该选项正确;D.;∵﹣0+1>﹣0﹣1;∴该函数在定义域R上不是减函数,∴该选项错误.故选:C.【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.12.【答案】A【解析】解:∵命题p:存在x0>0,使2<1为特称命题,∴¬p为全称命题,即对任意x>0,都有2x≥1.故选:A二、填空题13.【答案】(x﹣1)2+(y+1)2=5.【解析】解:设所求圆的圆心为(a,b),半径为r,∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,∴圆心(a,b)在直线x+y=0上,∴a+b=0,①且(2﹣a)2+(1﹣b)2=r2;②又直线x﹣y+1=0截圆所得的弦长为,且圆心(a,b)到直线x﹣y+1=0的距离为d==,根据垂径定理得:r2﹣d2=,即r2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x﹣1)2+(y+1)2=5.故答案为:(x﹣1)2+(y+1)2=5.14.【答案】﹣2.【解析】解:由(1﹣2i)(a+i)=(a+2)+(1﹣2a)i为纯虚数,得,解得:a=﹣2.故答案为:﹣2.15.【答案】.【解析】解:由得,所以.又由f(x)g'(x)>f'(x)g(x),即f(x)g'(x)﹣f'(x)g(x)>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.16.【答案】③⑤【解析】解:①函数y=|x|,(x∈R)与函数,(x≥0)的定义域不同,它们不表示同一个函数;错;②奇函数y=,它的图象不通过直角坐标系的原点;故②错;③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;正确;④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域由0≤2x≤2,⇒0≤x≤1,它的定义域为:[0,1];故错;⑤设函数f(x)是在区间[a.b]上图象连续的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.故正确;故答案为:③⑤17.【答案】35.【解析】解:∵2a n=a n﹣1+a n+1,(n∈N*,n>1),∴数列{a n}为等差数列,又a2+a8=6,∴2a5=6,解得:a5=3,又a4a6=(a5﹣d)(a5+d)=9﹣d2=8,∴d2=1,解得:d=1或d=﹣1(舍去)∴a n=a5+(n﹣5)×1=3+(n﹣5)=n﹣2.∴a1=﹣1,∴S10=10a1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n}为等差数列,并求得a n=2n﹣1是关键,考查理解与运算能力,属于中档题.18.【答案】①②④【解析】三、解答题19.【答案】【解析】解:(1)设抽取x人,则,解得x=2,即年龄在20:39岁之间应抽取2人.(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,则对应的概率P=.【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.20.【答案】【解析】解:(1)由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由|x﹣3|<1,得﹣1<x﹣3<1,得2<x<4即q为真时实数x的取值范围是2<x<4,若p∧q为真,则p真且q真,∴实数x的取值范围是2<x<3.(2)由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0,若¬p 是¬q 的充分不必要条件, 则¬p ⇒¬q ,且¬q ⇏¬p ,设A={x|¬p},B={x|¬q},则A ⊊B , 又A={x|¬p}={x|x ≤a 或x ≥3a}, B={x|¬q}={x|x ≥4或x ≤2}, 则0<a ≤2,且3a ≥4∴实数a 的取值范围是.21.【答案】(1)直线的普通方程为2y x =-,曲线C 的普通方程为22143x y +=;(2). 【解析】试题分析:(1)由公式cos sin xyρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式. 22.【答案】【解析】解:(1)y =g (x )=e x 关于直线y =x 对称的曲线h (x )=ln x , 设曲线y =h (x )与切线mx -y -1=0的切点为(x 0,ln x 0), 由h (x )=ln x 得h ′(x )=1x ,(x >0),则有⎩⎪⎨⎪⎧1x 0=m mx 0-ln x 0-1=0,解得x 0=m =1. ∴m 的值为1.(2)φ(x )=12x 2+x +a -e x ,φ′(x )=x +1-e x , 令t (x )=x +1-e x , ∴t ′(x )=1-e x ,当x <0时,t ′(x )>0,x >0时,t ′(x )<0, x =0时,t ′(x )=0.∴φ′(x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴φ′(x )max =φ′(0)=0, 即φ′(x )≤0在(-∞,+∞)恒成立, 即φ(x )在(-∞,+∞)单调递减, 且当a =1有φ(0)=0.∴不论a 为何值时,φ(x )=f (x )-g (x )有唯一零点x 0, 当x 0∈(0,1)时,则φ(0)φ(1)<0, 即(a -1)(a -2e -32)<0,∴1<a <2e -32,即a 的取值范围为(1,2e -32).23.【答案】(1) 22143x y +=;(2)证明见解析. 【解析】试题分析: (1)由题中条件要得两个等式,再由椭圆中c b a ,,的等式关系可得b a ,的值,求得椭圆的方程;(2)可设直线P Q 的方程,联立椭圆方程,由根与系数的关系得122634m y y m -+=+,122934y y m -=+,得直线PA l ,直线QA l ,求得点 M 、N 坐标,利用0=⋅FN FM 得FM FN ⊥.试题解析: (1)由题意得22222191,41,2,a b c a a b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得2,a b =⎧⎪⎨=⎪⎩∴椭圆C 的方程为22143x y +=.又111x my =+,221x my =+, ∴112(4,)1y M my -,222(4,)1y N my -,则112(3,)1y FM my =-,222(3,)1y FN my =-,1212212121222499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++22222363499906913434m m m m m -+=+=-=---+++ ∴FM FN ⊥考点:椭圆的性质;向量垂直的充要条件.24.【答案】(1)432n a n =-;(2)当7n =或时,n S 最小,且最小值为78112S S =-. 【解析】试题分析:(1)根据数列的项n a 和数列的和n S 之间的关系,即可求解数列{}n a 的通项公式n a ;(2)由(1)中的通项公式,可得1270a a a <<<<,80a =,当9n ≥时,0n a >,即可得出结论.1试题解析:(1)∵2230n S n n =-,∴当1n =时,1128a S ==-.当2n ≥时,221(230)[2(1)30(1)]432n n n a S S n n n n n -=-=-----=-. ∴432n a n =-,n N +∈. (2)∵432n a n =-, ∴1270a a a <<<,80a =,当9n ≥时,0n a >.∴当7n =或8时,n S 最小,且最小值为78112S S =-. 考点:等差数列的通项公式及其应用.。

绥宁县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

绥宁县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

绥宁县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x =2. 设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i3. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)4. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .14 5. 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )A .B .C . +D . ++16. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线7. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( ) A .36种 B .18种 C .27种 D .24种8. 已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±39. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 10.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .11.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .10B .51C .20D .3012.如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③二、填空题13.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = .14.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .15.在(x 2﹣)9的二项展开式中,常数项的值为 .16.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.17.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.18.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .三、解答题19.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得x i =80,y i =20,x i y i =184,x i 2=720.(1)求家庭的月储蓄对月收入的回归方程; (2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.20.在直角坐标系xOy 中,过点P (2,﹣1)的直线l 的倾斜角为45°.以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cos θ,直线l 和曲线C 的交点为A ,B .(1)求曲线C 的直角坐标方程; (2)求|PA|•|PB|.21.设函数f (x )=ax 2+bx+c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x ﹣6y ﹣7=0垂直,导函数f′(x)的最小值为﹣12.(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.22.设F是抛物线G:x2=4y的焦点.(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.23.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知直线l过点P(1,0),斜率为,曲线C:ρ=ρcos2θ+8cosθ.(Ⅰ)写出直线l的一个参数方程及曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C交于A,B两点,求|PA|•|PB|的值.24.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(Ⅰ)证明:AD⊥BC(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.绥宁县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.2. 【答案】B【解析】解:设z=a+bi (a ,b ∈R ),则=a ﹣bi ,由z=2(+i ),得(a+bi )(a ﹣bi )=2[a+(b ﹣1)i],整理得a 2+b 2=2a+2(b ﹣1)i .则,解得.所以z=1+i . 故选B .【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.3. 【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(ex-e -x )(-12x +1+12) =(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-12,即不等式f (x )<f (1+x )的解集为{x |x >-12},故选C.4.【答案】A【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a>,0d<”判断前项和的符号问题是解答的关键.5.【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高.于是此几何体的表面积S=S△PAC+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.6.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.7.【答案】 C【解析】排列、组合及简单计数问题.【专题】计算题;分类讨论.【分析】根据题意,分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,④,P船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.【解答】解:分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33×A22=12种情况,③,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C32×2=6种情况,④,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C.【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式.8.【答案】B【解析】解:角θ的终边经过点P(4,m),且sinθ=,可得,(m>0)解得m=3.故选:B.【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.9.【答案】A【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 10.【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值. 【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8, 底面面积为: =4,另一个侧面的面积为: =4,四个面中面积的最大值为4;故选C . 11.【答案】D 【解析】试题分析:分段间隔为50301500=,故选D. 考点:系统抽样 12.【答案】 A【解析】解:如图所示,连接AC 、BD 相交于点O ,连接EM ,EN . 在①中:由异面直线的定义可知:EP 与BD 是异面直线, 不可能EP ∥BD ,因此不正确; 在②中:由正四棱锥S ﹣ABCD ,可得SO ⊥底面ABCD ,AC ⊥BD ,∴SO ⊥AC .∵SO ∩BD=O ,∴AC ⊥平面SBD , ∵E ,M ,N 分别是BC ,CD ,SC 的中点, ∴EM ∥BD ,MN ∥SD ,而EM ∩MN=M ,∴平面EMN ∥平面SBD ,∴AC ⊥平面EMN ,∴AC ⊥EP .故正确.在③中:由①同理可得:EM ⊥平面SAC ,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.二、填空题13.【答案】1 2考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.14.【答案】.【解析】解:AD取最小时即AD⊥BC时,根据题意建立如图的平面直角坐标系,根据题意,设A(0,y),C(﹣2x,0),B(x,0)(其中x>0),则=(﹣2x,﹣y),=(x,﹣y),∵△ABC的面积为,∴⇒=18,∵=cos=9,∴﹣2x2+y2=9,∵AD⊥BC,∴S=••=⇒xy=3,由得:x=,故答案为:.【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识.15.【答案】84.【解析】解:(x2﹣)9的二项展开式的通项公式为T r+1=•(﹣1)r•x18﹣3r,令18﹣3r=0,求得r=6,可得常数项的值为T7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.16.【答案】48 【解析】17.【答案】(【解析】()2310f x x x ⎛=-+>⇒∈ ⎝'⎭ ,所以增区间是⎛ ⎝⎭18.【答案】9 【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离.三、解答题19.【答案】【解析】解:(1)由题意,n=10, =xi =8, =y i =2,∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x ﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).20.【答案】【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…∵ρcosθ=x,ρsinθ=y,∴曲线C的直角坐标方程为y2=4x …(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…代入y2=4x 得t2﹣6t﹣14=0…设点A,B对应的参数分别t1,t2∴t1t2=﹣14…∴|PA|•|PB|=14.…21.【答案】【解析】解:(1)∵f(x)为奇函数,∴f(﹣x)=﹣f(x),即﹣ax3﹣bx+c=﹣ax3﹣bx﹣c,∴c=0.∵f′(x)=3ax2+b的最小值为﹣12,∴b=﹣12.又直线x﹣6y﹣7=0的斜率为,则f′(1)=3a+b=﹣6,得a=2,∴a=2,b=﹣12,c=0;(2)由(1)知f(x)=2x3﹣12x,∴f′(x)=6x2﹣12=6(x+)(x﹣),,)∵f(﹣1)=10,f()=﹣8,f(3)=18,∴f(x)在[﹣1,3]上的最大值是f(3)=18,最小值是f()=﹣8.22.【答案】【解析】解:(1)设切点.由,知抛物线在Q点处的切线斜率为,故所求切线方程为.即y=x0x﹣x02.因为点P(0,﹣4)在切线上.所以,,解得x0=±4.所求切线方程为y=±2x﹣4.(2)设A(x1,y1),C(x2,y2).由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.点A,C的坐标满足方程组,得x2﹣4kx﹣4=0,由根与系数的关系知,|AC|==4(1+k2),因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.同理可求得|BD|=4(1+),S ABCD=|AC||BD|==8(2+k2+)≥32.当k=1时,等号成立.所以,四边形ABCD面积的最小值为32.【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.23.【答案】【解析】解:(Ⅰ)∵直线l过点P(1,0),斜率为,∴直线l的一个参数方程为(t为参数);∵ρ=ρcos2θ+8cosθ,∴ρ(1﹣cos2θ)=8cosθ,即得(ρsinθ)2=4ρcosθ,∴y2=4x,∴曲线C的直角坐标方程为y2=4x.(Ⅱ)把代入y2=4x整理得:3t2﹣8t﹣16=0,设点A,B对应的参数分别为t1,t2,则,∴.【点评】本题考查了直线参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】(Ⅰ)证明:∵AB是圆O的直径,∴AC⊥BC,又∵DC⊥平面ABC∴DC⊥BC,又AC∩CD=C,∴BC⊥平面ACD,又AD⊂平面ACD,∴AD⊥BC.(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.则C(0,0,0),B(2,0,0),,D(0,0,a).由(Ⅰ)可得,AC⊥平面BCD,∴平面BCD的一个法向量是=,设=(x,y,z)为平面ABD的一个法向量,由条件得,=,=(﹣2,0,a).∴即,不妨令x=1,则y=,z=,∴=.又二面角A﹣BD﹣C所成角θ的正切值是2,∴.∴=cosθ=,∴==,解得a=2.∴V ABCDE=V E﹣ADC+V E﹣ABC=+=+==8.∴该几何体ABCDE的体积是8.【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.。

绥宁县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

绥宁县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

f x x3 a 4 x 2 4a b x c a, b, c R 有一个零点为 4,且满足 f 0 1 .
(2)试问:是否存在这样的定值 x0 ,使得当 a 变化时,曲线 y f x 在点 x0 , f x0 处的切线互相平行? (3)讨论函数 g x f x a 在 0, 4 上的零点个数.

4
个单位得到函数 f ( x

4
) 的图

4
) 的图象向上平移 3 个单位得到函数 f ( x

4
) 3 的图象,因此 g ( x) f ( x

4
)3
1 x 2 sin[ ( x ) ] 3 2 sin( ) 3 . 3 4 6 3 4
绥宁县第一高级中学 2018-2019 学年高二上学期数学期末模拟试卷含解析 班级__________ 一、选择题
1. 已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5) ,则回归直线方程为( A. B. C. D. =0.08x+1.23 )
座号_____
姓名__________
分数__________
5 1 . 2
20.已知函数 f(x)= x2﹣ax+(a﹣1)lnx(a>1). (Ⅰ) 讨论函数 f(x)的单调性; (Ⅱ) 若 a=2,数列{an}满足 an+1=f(an). (1)若首项 a1=10,证明数列{an}为递增数列; (2)若首项为正整数,且数列{an}为递增数列,求首项 a1 的最小值.
2 2 2
) )1111] D. [ )
A. (0,

绥宁县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

绥宁县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

绥宁县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2x y -=2. 已知实数x ,y 满足约束条件,若y ≥kx ﹣3恒成立,则实数k 的数值范围是( )A .[﹣,0]B .[0,] C .(﹣∞,0]∪[,+∞)D .(﹣∞,﹣]∪[0,+∞)3. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞) C .(2,+∞)D .(﹣1,0)4. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±35.=( )A .﹣iB .iC .1+iD .1﹣i6. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .7. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-8. 下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件9. 若a >0,b >0,a+b=1,则y=+的最小值是( )A .2B .3C .4D .510.已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A . B.C. D. 11.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm12.在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形二、填空题13.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .14.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)15.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .16.给出下列命题:①把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣);②若α,β是第一象限角且α<β,则cos α>cos β;③x=﹣是函数y=cos (2x+π)的一条对称轴;④函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同;⑤y=2sin (2x ﹣)在是增函数;则正确命题的序号 .17.方程(x+y ﹣1)=0所表示的曲线是 .18.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .三、解答题19.证明:f (x )是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.18.已知函数f(x)=是奇函数.20.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.21.已知函数f(x)的定义域为{x|x≠kπ,k∈Z},且对定义域内的任意x,y都有f(x﹣y)=成立,且f(1)=1,当0<x<2时,f(x)>0.(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在[2,3]上的最值.22.已知函数f (x )=﹣x 2+ax ﹣lnx (a ∈R ).(I )当a=3时,求函数f (x )在[,2]上的最大值和最小值; (Ⅱ)函数f (x )既有极大值又有极小值,求实数a 的取值范围.23.已知函数的图象在y 轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f (x )的解析式;(2)将y=f (x )图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g (x )的图象.写出函数y=g (x )的解析式.24.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.绥宁县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】试题分析:函数30,+∞上单调递减,不y x=-+是偶函数,但是在区间()=为奇函数,不合题意;函数21y x合题意;函数2x=为非奇非偶函数。

绥宁县三中2018-2019学年上学期高二数学12月月考试题含解析

绥宁县三中2018-2019学年上学期高二数学12月月考试题含解析

绥宁县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定2. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -3. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β4. 如图框内的输出结果是( )A .2401B .2500C .2601D .27045. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°6. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .27. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )A .B .C .D .8. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .9. 从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )A .20人B .40人C .70人D .80人10.给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错B .①错②对C .①②都对D .①②都错11.如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个 12.若函数1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )A .5B .1-C .7-D .2二、填空题13.已知函数f (x )=x m 过点(2,),则m= .14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.15.数列{a n }是等差数列,a 4=7,S 7= .16.对于映射f :A →B ,若A 中的不同元素有不同的象,且B 中的每一个元素都有原象,则称f :A →B 为一一映射,若存在对应关系Φ,使A 到B 成为一一映射,则称A 到B 具有相同的势,给出下列命题: ①A 是奇数集,B 是偶数集,则A 和B 具有相同的势;②A 是平面直角坐标系内所有点形成的集合,B 是复数集,则A 和B 不具有相同的势; ③若区间A=(﹣1,1),B=R ,则A 和B 具有相同的势.其中正确命题的序号是 .17.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .18.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是.三、解答题19.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.(1)求S n的最小值及相应n的值;(2)求T n.20.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为1()16t ay-=(a为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。

绥宁县外国语学校2018-2019学年高二上学期第二次月考试卷数学

绥宁县外国语学校2018-2019学年高二上学期第二次月考试卷数学

绥宁县外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D .2. 抛物线y 2=8x 的焦点到双曲线的渐近线的距离为( )A .1B .C .D .3. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+4. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为( )A .B .C .D .5. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧q C .p ∧¬qD .¬p ∧¬q6. 椭圆=1的离心率为( )A .B .C .D .7. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=8. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-< 9. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+410.若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( )A .1B .2C .3D .411.若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()32y f x x =-+的零点个数为( )A .1B .2C .3D .4 12.已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( ) A .38B .20C .10D .9二、填空题13.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).14.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .15.△ABC 中,,BC=3,,则∠C=.16.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .17.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0). 正确命题的个数是 .18.设抛物线24y x 的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则M 点的横坐标为 . 三、解答题19.已知F 1,F 2分别是椭圆=1(9>m >0)的左右焦点,P 是该椭圆上一定点,若点P 在第一象限,且|PF 1|=4,PF 1⊥PF 2. (Ⅰ)求m 的值; (Ⅱ)求点P 的坐标.20.如图在长方形ABCD 中,是CD 的中点,M 是线段AB 上的点,.(1)若M 是AB 的中点,求证:与共线;(2)在线段AB 上是否存在点M ,使得与垂直?若不存在请说明理由,若存在请求出M 点的位置;(3)若动点P 在长方形ABCD 上运动,试求的最大值及取得最大值时P 点的位置.21.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;22.已知函数f (x )=lg (2016+x ),g (x )=lg (2016﹣x ) (1)判断函数f (x )﹣g (x )的奇偶性,并予以证明. (2)求使f (x )﹣g (x )<0成立x 的集合.23.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.24.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.绥宁县外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 2. 【答案】A【解析】解:因为抛物线y 2=8x ,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A .【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.3. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.4. 【答案】C【解析】解:F1,F 2为椭圆=1的两个焦点,可得F 1(﹣,0),F 2().a=2,b=1.点P 在椭圆上,若线段PF 1的中点在y 轴上,PF 1⊥F 1F 2,|PF 2|==,由勾股定理可得:|PF 1|==.==.故选:C .【点评】本题考查椭圆的简单性质的应用,考查计算能力.5. 【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p :∀x ∈R ,2x <3x为假命题,则¬p 为真命题.令f (x )=x 3+x 2﹣1,因为f (0)=﹣1<0,f (1)=1>0.所以函数f (x )=x 3+x 2﹣1在(0,1)上存在零点, 即命题q :∃x ∈R ,x 3=1﹣x 2为真命题.则¬p ∧q 为真命题. 故选B .6. 【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D .【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分.7. 【答案】D 【解析】考点:直线的方程. 8. 【答案】D 9. 【答案】A【解析】∵f (x+1)=3x+2=3(x+1)﹣1∴f (x )=3x ﹣1 故答案是:A【点评】考察复合函数的转化,属于基础题.10.【答案】A【解析】解:∵f (x )=acosx ,g (x )=x 2+bx+1,∴f ′(x )=﹣asinx ,g ′(x )=2x+b ,∵曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,∴f (0)=a=g (0)=1,且f ′(0)=0=g ′(0)=b , 即a=1,b=0. ∴a+b=1. 故选:A .【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.11.【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.12.【答案】C【解析】解:根据等差数列的性质可得:a m﹣1+a m+1=2a m,则a m﹣1+a m+1﹣a m2=a m(2﹣a m)=0,解得:a m=0或a m=2,若a m等于0,显然S2m﹣1==(2m﹣1)a m=38不成立,故有a m=2,∴S2m﹣1=(2m﹣1)a m=4m﹣2=38,解得m=10.故选C二、填空题13.【答案】②【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,∵,∴OM<0<MP.故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.14.【答案】﹣3.【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值.当x=2时,f(x)=1﹣2×2=﹣3故答案为:﹣3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.15.【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.16.【答案】8π.【解析】解:由题意旋转体的体积V===8π,故答案为:8π.【点评】本题给出曲线y=x2与直线y=4所围成的平面图形,求该图形绕xy轴转一周得到旋转体的体积.着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题.17.【答案】 3个 .【解析】解:∵定义在(﹣∞,+∞)上的偶函数f (x ),∴f (x )=f (﹣x );∵f (x+1)=﹣f (x ),∴f (x+1)=﹣f (x ),∴f (x+2)=﹣f (x+1)=f (x ),f (﹣x+1)=﹣f (x ) 即f (x+2)=f (x ),f (﹣x+1)=f (x+1),周期为2,对称轴为x=1 所以①②⑤正确,故答案为:3个18.【答案】2【解析】由题意,得2p =,(1,0)F ,准线为1x =-,设11(,)A x y 、22(,)B x y ,直线AB 的方程为(1)y k x =-,代入抛物线方程消去y ,得2222(24)0k x k x k -++=,所以212224k x x k ++=,121x x =.又设00(,)P x y ,则01212112()[(1)(1)]22y y y k x k x k =+=-+-=,所以021x k =,所以212(,)P k k.因为0213||112PF x k =+=+=,解得22k =,所以M 点的横坐标为2.三、解答题19.【答案】【解析】解:(Ⅰ)由已知得:|PF 2|=6﹣4=2,在△PF 1F 2中,由勾股定理得,,即4c 2=20,解得c 2=5.∴m=9﹣5=4;(Ⅱ)设P 点坐标为(x 0,y 0),由(Ⅰ)知,,,∵,,∴,解得.∴P ().【点评】本题考查椭圆方程的求法,考查了椭圆的简单性质,属中档题.20.【答案】【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),,由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0≤t≤2),则B(2,0),D(0,1),M(t,0),,由=﹣2(t﹣2)﹣1=0,解得t=,∴线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4.【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.21.【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.(2)当0a =时,()ln f x bx x =-.假设存在实数b ,使()(]()ln 0,e g x bx x x =-∈有最小值3,11()bx f x b x x-'=-=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4()e 13,f x f be b e==-==(舍去).………8分 ②当10e b <<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤⎥⎝⎦上单调递增, ∴2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭,满足条件.……………………………10分③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4()e e 13,ef xg b b ==-==(舍去),………11分综上,存在实数2e b =,使得当(]0,e x ∈时,函数()f x 最小值是3.……………………………12分22.【答案】 【解析】解:(1)设h (x )=f (x )﹣g (x )=lg (2016+x )﹣lg (2016﹣x ),h (x )的定义域为(﹣2016,2016);h (﹣x )=lg (2016﹣x )﹣lg (2016+x )=﹣h (x );∴f(x)﹣g(x)为奇函数;(2)由f(x)﹣g(x)<0得,f(x)<g(x);即lg(2016+x)<lg(2016﹣x);∴;解得﹣2016<x<0;∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.23.【答案】【解析】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x∈[1,3],f(x)<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得.所以当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g(x)max=g(1)=m﹣6<0,解得m<6.所以m<0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.24.【答案】【解析】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.。

绥宁县第二中学校2018-2019学年高二上学期第二次月考试卷数学

绥宁县第二中学校2018-2019学年高二上学期第二次月考试卷数学

绥宁县第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设0<a<1,实数x,y满足,则y关于x的函数的图象形状大致是()A. B. C.D.2.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.3.袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为()A.B.C.D.4.设f(x)=e x+x﹣4,则函数f(x)的零点所在区间为()A.(﹣1,0)B.(0,1) C.(1,2) D.(2,3)5.在复平面内,复数(﹣4+5i)i(i为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.设集合A={ x|﹣3≤2x﹣1≤3},集合B为函数y=lg(x﹣1)的定义域,则A∩B=()A.(1,2) B.[1,2] C.[1,2)D.(1,2]7.下列计算正确的是()A、2133x x x÷=B、4554()x x=C、4554x x x=D、44550x x-=8.用秦九韶算法求多项式f(x)=x6﹣5x5+6x4+x2+0.3x+2,当x=﹣2时,v1的值为()A.1 B.7 C.﹣7 D.﹣59.已知i为虚数单位,则复数所对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.函数y=2|x|的图象是()A .B .C .D .11.已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 12.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )A .B .C .1D .二、填空题13.多面体的三视图如图所示,则该多面体体积为(单位cm ) .14.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .15.设函数f (x )=则函数y=f (x )与y=的交点个数是 .16.从等边三角形纸片ABC上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为.17.若正方形P1P2P3P4的边长为1,集合M={x|x=且i,j∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i,j)有4种不同取值;④当x=﹣1时,(i,j)有2种不同取值;⑤M中的元素之和为0.其中正确的结论序号为.(填上所有正确结论的序号)18.已知角α终边上一点为P(﹣1,2),则值等于.三、解答题19.化简:(1).(2)+.20.设定义在(0,+∞)上的函数f(x)=,g(x)=,其中n∈N*(Ⅰ)求函数f(x)的最大值及函数g(x)的单调区间;(Ⅱ)若存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值.(参考数据:ln4≈1.386,ln5≈1.609)21.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.22.已知f(x)=|﹣x|﹣|+x|(Ⅰ)关于x的不等式f(x)≥a2﹣3a恒成立,求实数a的取值范围;(Ⅱ)若f(m)+f(n)=4,且m<n,求m+n的取值范围.23.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.24.已知m ≥0,函数f (x )=2|x ﹣1|﹣|2x+m|的最大值为3. (Ⅰ)求实数m 的值;(Ⅱ)若实数a ,b ,c 满足a ﹣2b+c=m ,求a 2+b 2+c 2的最小值.绥宁县第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.2.【答案】A【解析】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选A.【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.3.【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P==,故选:B.【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.4.【答案】C【解析】解:f(x)=e x+x﹣4,f(﹣1)=e﹣1﹣1﹣4<0,f(0)=e0+0﹣4<0,f(1)=e1+1﹣4<0,f(2)=e2+2﹣4>0,f(3)=e3+3﹣4>0,∵f(1)•f(2)<0,∴由零点判定定理可知,函数的零点在(1,2).故选:C.5.【答案】B【解析】解:∵(﹣4+5i)i=﹣5﹣4i,∴复数(﹣4+5i)i的共轭复数为:﹣5+4i,∴在复平面内,复数(﹣4+5i)i的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.故选:B.6.【答案】D【解析】解:由A中不等式变形得:﹣2≤2x≤4,即﹣1≤x≤2,∴A=[﹣1,2],由B中y=lg(x﹣1),得到x﹣1>0,即x>1,∴B=(1,+∞),则A∩B=(1,2],故选:D.7.【答案】B【解析】试题分析:根据()a aβααβ⋅=可知,B正确。

绥宁县第一高级中学2018-2019学年高二上学期第二次月考试卷数学

绥宁县第一高级中学2018-2019学年高二上学期第二次月考试卷数学

绥宁县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为()1111]A.10B.51C.20D.302.设m,n是正整数,多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为﹣16,则含x2项的系数是()A.﹣13 B.6 C.79 D.373.已知两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,则实数a等于()A.1或﹣3 B.﹣1或3 C.1或3 D.﹣1或﹣34.抛物线x2=4y的焦点坐标是()A.(1,0)B.(0,1)C.()D.()5.运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为()A.y=x+2 B.y=C.y=3x D.y=3x36.已知圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,则直线l的方程为()A.x+y=0 B.x+y=2 C.x﹣y=2 D.x﹣y=﹣27.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.命题“∃x0∈R,x+x0﹣1<0”的否定是“∀x∈R,x2+x﹣1>0”C.命题“若x=y,则sin x=sin y”的逆否命题为假命题D.若“p或q”为真命题,则p,q中至少有一个为真命题8. 定义在R 上的奇函数f (x ),满足,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )A .B .C .D .9. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.10.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )A .B .C .D .11.四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为4512.三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56 C .0.56<60.5<log 0.56 D .0.56<log 0.56<60.5二、填空题13.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绥宁县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A .B .(4+π)C .D .2. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .3. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .564. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .5. 如图,棱长为的正方体1111D ABC A B C D 中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34 C. 2D .34 6. 函数y=x 3﹣x 2﹣x 的单调递增区间为( )A .B .C .D .7. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .8. 已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( ) A .2个 B .4个 C .6个 D .8个9. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是( )A .2mB .2mC .4 mD .6 m 10.数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( )A .1B .2C .3D .411.若椭圆+=1的离心率e=,则m 的值为( )A .1B .或C .D .3或12.PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定二、填空题13.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .14.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号). 15.已知函数f (x )=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写出你认为正确的所有结论的序号)①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点. ③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点.16.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .17.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,则四边形P 0P 1P 2P 3的面积为定值4k 2.其中,所有正确结论的序号是 .18.已知i是虚数单位,复数的模为.三、解答题19.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;111](2)求该几何体的表面积S.20.(本小题满分12分)某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生数有21人.(1)求总人数N和分数在110-115分的人数;)中任选3人,求其中恰好含有一名女生的概率;(2)现准备从分数在110-115的名学生(女生占13(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩.已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分 别为:^121()()()niii nii u u v v u u β==--=-∑∑,^^a v u β=-.21.双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F . (1)求弦AB 的中点M 的轨迹方程(2)是否存在以AB 为直径的圆过原点O ?若存在,求出直线AB 的斜率K 的值.若不存在,则说明理由.22.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且22OMOA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。

23.已知P (m ,n )是函授f (x )=e x ﹣1图象上任一于点(Ⅰ)若点P 关于直线y=x ﹣1的对称点为Q (x ,y ),求Q 点坐标满足的函数关系式(Ⅱ)已知点M (x 0,y 0)到直线l :Ax+By+C=0的距离d=,当点M 在函数y=h (x )图象上时,公式变为,请参考该公式求出函数ω(s ,t )=|s ﹣e x ﹣1﹣1|+|t ﹣ln (t ﹣1)|,(s ∈R ,t >0)的最小值.24.已知在△ABC 中,A (2,4),B (﹣1,﹣2),C (4,3),BC 边上的高为AD .(1)求证:AB ⊥AC ;(2)求向量.绥宁县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.2.【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE与AC所成角为θ,则cosθ===.故选:B.3.【答案】C【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.∴函数f (x )关于直线x=1对称, ∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),∴a 6+a 23=2.则{a n }的前28项之和S 28==14(a 6+a 23)=28.故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.4. 【答案】D【解析】解:A :y=的定义域[0,+∞),与y=x 的定义域R 不同,故A 错误B :与y=x 的对应法则不一样,故B 错误C :=x ,(x ≠0)与y=x 的定义域R 不同,故C 错误D :,与y=x 是同一个函数,则函数的图象相同,故D 正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题5. 【答案】B 【解析】试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x解得x =,即菱形1BED F =,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B. 考点:平面图形的投影及其作法. 6. 【答案】A【解析】解:∵y=x 3﹣x 2﹣x ,∴y ′=3x 2﹣2x ﹣1,令y ′≥0即3x 2﹣2x ﹣1=(3x+1)(x ﹣1)≥0解得:x≤﹣或x≥1故函数单调递增区间为,故选:A.【点评】本题主要考查导函数的正负和原函数的单调性的关系.属基础题.7.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A⊆B,A⊆C;∴A⊆B∩C={0,2}∴集合A可能为{0,2},即最多有2个元素,故最多有4个子集.故选:B.9.【答案】A【解析】解:建立如图所示的坐标系,设抛物线方程为x2=﹣2py(p>0),将点(4,﹣4)代入,可得p=2,所以抛物线方程为x2=﹣4y,设C(x,y)(y>﹣6),则由A(﹣4,﹣6),B(4,﹣6),可得k CA=,k CB=,∴tan∠BCA===,令t=y+6(t>0),则tan∠BCA==≥∴t=2时,位置C对隧道底AB的张角最大,故选:A.【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tan∠BCA,正确运用基本不等式是关键.10.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.11.【答案】D【解析】解:当椭圆+=1的焦点在x轴上时,a=,b=,c=由e=,得=,即m=3当椭圆+=1的焦点在y轴上时,a=,b=,c=由e=,得=,即m=.故选D【点评】本题主要考查了椭圆的简单性质.解题时要对椭圆的焦点在x轴和y轴进行分类讨论.12.【答案】A【解析】解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,∴甲地的方差较小.故选:A.【点评】本题考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础.二、填空题13.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.14.【答案】BC 【解析】【分析】验证发现,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2+(y ﹣2)2=1的切线的集合,A .M 中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B .存在定点P 不在M 中的任一条直线上,观察直线的方程即可得到点的坐标.C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,由直线系的几何意义可判断,D .M 中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出. 【解答】解:因为点(0,2)到直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π)表示圆x 2+(y ﹣2)2=1的切线的集合,A .由于直线系表示圆x 2+(y ﹣2)2=1的所有切线,其中存在两条切线平行,M 中所有直线均经过一个定点(0,2)不可能,故A 不正确;B .存在定点P 不在M 中的任一条直线上,观察知点M (0,2)即符合条件,故B 正确;C .由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上,故C 正确;D .如下图,M 中的直线所能围成的正三角形有两类,其一是如△ABB ′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC 型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等, 故本命题不正确. 故答案为:BC .15.【答案】②④【解析】解:①当k=0时,,当x≤0时,f(x)=1,则f(f(x))=f(1)==0,此时有无穷多个零点,故①错误;②当k<0时,(Ⅰ)当x≤0时,f(x)=kx+1≥1,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0;(Ⅱ)当0<x≤1时,,此时f(f(x))=f()=,令f(f(x))=0,可得:x=,满足;(Ⅲ)当x>1时,,此时f(f(x))=f()=k+1>0,此时无零点.综上可得,当k<0时,函数有两零点,故②正确;③当k>0时,(Ⅰ)当x≤时,kx+1≤0,此时f(f(x))=f(kx+1)=k(kx+1)+1,令f(f(x))=0,可得:,满足;(Ⅱ)当时,kx+1>0,此时f(f(x))=f(kx+1)=,令f(f(x))=0,可得:x=0,满足;(Ⅲ)当0<x ≤1时,,此时f (f (x ))=f ()=,令f (f (x ))=0,可得:x=,满足; (Ⅳ)当x >1时,,此时f (f (x ))=f ()=k +1,令f (f (x ))=0得:x=>1,满足;综上可得:当k >0时,函数有4个零点.故③错误,④正确. 故答案为:②④.【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.16.【答案】21≥a 【解析】试题分析:'21()a f x x x =-,因为(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒成立,2112a x x ∴-≤,(0,3]x ∈,x x a +-≥∴221,(0,3]x ∈恒成立,由2111,222x x a -+≤∴≥.1考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.17.【答案】 ②③④ .【解析】解:由题意设动点坐标为(x ,y ),则利用题意及点到直线间的距离公式的得:|x+1||y ﹣1|=k 2,对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;对于②,把方程中的x 被﹣2﹣x 代换,y 被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|≥|x+1|,|PB|≥|y ﹣1| ∴|PA|+|PB|≥2=2k ,③正确;对于④,由题意知点P 在曲线C 上,根据对称性,则四边形P 0P 1P 2P 3的面积=2|x+1|×2|y ﹣1|=4|x+1||y ﹣1|=4k 2.所以④正确.故答案为:②③④.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.18.【答案】 .【解析】解:∵复数==i ﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.三、解答题19.【答案】(12)6+. 【解析】(2)由三视图可知,该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDDC 均为矩形,2(11112)6S =⨯++⨯=+ 1考点:几何体的三视图;几何体的表面积与体积.【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键. 20.【答案】(1)60N =,6n =;(2)815P =;(3)115. 【解析】试题解析:(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21600.35N ==, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)AA ,24(,)A A ,21(,)AB ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为815P =. (3)12171788121001007x --+-++=+=;69844161001007y --+-+++=+=;由于与y 之间具有线性相关关系,根据回归系数公式得到^4970.5994b ==,^1000.510050a =-⨯=,∴线性回归方程为0.550y x =+,∴当130x =时,115y =.1考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同.21.【答案】【解析】解:(1)设M (x ,y ),A (x 1,y 1)、B (x 2,y 2),则x 12﹣y 12=2,x 22﹣y 22=2, 两式相减可得(x 1+x 2)(x 1﹣x 2)﹣(y 1+y 2)(y 1﹣y 2)=0, ∴2x (x 1﹣x 2)﹣2y (y 1﹣y 2)=0,∴=,∵双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F (2,0),∴,化简可得x 2﹣2x ﹣y 2=0,(x ≥2)﹣﹣﹣﹣﹣﹣﹣(2)假设存在,设A (x 1,y 1),B (x 2,y 2),l AB :y=k (x ﹣2) 由已知OA ⊥OB 得:x 1x 2+y 1y 2=0,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①,所以(k 2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②联立①②得:k 2+1=0无解所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣22.【答案】【解析】Ⅰ由已知224c a b a =+=,又222a b c =+,解得223,1a b ==,所以椭圆C 的长轴长Ⅱ以O 为坐标原点长轴所在直线为x 轴建立如图平面直角坐标系xOy ,不妨设椭圆C 的焦点在x 轴上,则由1可知椭圆C 的方程为2213x y +=;设A 11(,)x y ,D 22(,)x y ,则A 11(,)x y --∵22OM OA OM =⋅ ∴M 1(2,0)x根据题意,BM 满足题意的直线斜率存在,设1:(2)l y k x x =-,联立22113(2)x y y k x x ⎧+=⎪⎨⎪=-⎩,消去y 得2222211(13)121230k x k x x k x +-+-=,22222222111(12)4(13)(123)12(413)0k x k k x k x k ∆=--+-=-++>,2221112122212123,,1313k x k x x x x x k k --+=-⋅=++212111211212121212(2)(2)(5)4112313AD y y k x x k x x k x x kx k k k x x x x x x x k k --+---====-=----+ 11111(2)3AB y k x x k k x x ---===1AD AB k k ∴⋅=- ∴AD ⊥AB23.【答案】【解析】解:(1)因为点P ,Q 关于直线y=x ﹣1对称,所以.解得.又n=e m ﹣1,所以x=1﹣e (y+1)﹣1,即y=ln (x ﹣1).(2)ω(s ,t )=|s ﹣e x ﹣1﹣1|+|t ﹣ln (t ﹣1)﹣1|=,令u (s )=.则u (s ),v (t )分别表示函数y=e x ﹣1,y=ln (t ﹣1)图象上点到直线x ﹣y ﹣1=0的距离.由(1)知,u min (s )=v min (t ). 而f ′(x )=e x ﹣1,令f ′(s )=1得s=1,所以u min (s )=.故.【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义将问题转化为点到直线的距离,然后再利用函数的思想求解.体现了解析几何与函数思想的结合.24.【答案】【解析】解(1)∵=(﹣1,﹣2)﹣(2,4)=(﹣3,﹣6),=(4,3)﹣(2,4)=(2,﹣1),=﹣3×2+(﹣6)×(﹣1)=0,∴AB⊥AC.(2)=(4,3)﹣(﹣1,﹣2)=(5,5).设=λ=(5λ,5λ)则=+=(﹣3,﹣6)+(5λ,5λ)=(5λ﹣3,5λ﹣6),由AD⊥BC得5(5λ﹣3)+5(5λ﹣6)=0,解得λ=,∴=(,﹣).【点评】本题考查向量的垂直与共线的应用,向量的数量积的应用,考查计算能力.。

相关文档
最新文档