湖北省黄冈中学九年级数学第三次模拟考试试题【含解析】

合集下载

湖北省黄冈市2019-2020学年中考数学三模考试卷含解析

湖北省黄冈市2019-2020学年中考数学三模考试卷含解析

湖北省黄冈市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米2.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()A.30 B.27 C.14 D.323.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.124.圆锥的底面半径为2,母线长为4,则它的侧面积为()A.8πB.16πC.43πD.4π5.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )A.50 B.0.02 C.0.1 D.16.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.110B.19C.16D.157.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°8.设a,b是常数,不等式1xa b+>的解集为15x<,则关于x的不等式0bx a->的解集是()A.15x>B.15x<-C.15x>-D.15x<9.一、单选题在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A. B.C.D.10.(﹣1)0+|﹣1|=()A.2 B.1 C.0 D.﹣111.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A. B. C.D.12.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B 之间的距离为_____m.14.若一个棱柱有7个面,则它是______棱柱.15.若一个多边形的每一个外角都等于40°,则这个多边形的内角和是_____.16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.17.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.18.函数y=13x-+1x-的自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?20.(6分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.21.(6分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.22.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD 的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.23.(8分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF=______,连接OF;(3)在CD边上取点G,使CG=______,连接OG;(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.24.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?25.(10分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:品种 A B原来的运费45 25现在的运费30 20(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.26.(12分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC中点,BC=26,tan∠B=125,求EF的长.27.(12分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠1)中的x与y的部分对应值如表x ﹣1 1 1 3y﹣1 3 5 3下列结论:①ac<1;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=1的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>1.其中正确的结论是.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.2.A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.3.A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.4.A【解析】【详解】解:底面半径为2,底面周长=4π,侧面积=12×4π×4=8π,故选A.5.D【解析】所有小组频数之和等于数据总数,所有频率相加等于1.6.A【解析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.7.B【解析】【分析】连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.8.C【解析】【分析】根据不等式1xa b+>的解集为x<15即可判断a,b的符号,则根据a,b的符号,即可解不等式bx-a<0【详解】解不等式10 xa b +>,移项得:1-xa b >∵解集为x<1 5∴1-5a b = ,且a<0 ∴b=-5a>0,15 15a b=- 解不等式0bx a ->,移项得:bx >a两边同时除以b 得:x >a b , 即x >-15 故选C【点睛】此题考查解一元一次不等式,掌握运算法则是解题关键9.B【解析】【分析】 根据反比例函数k y x =中k 的几何意义,过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|解答即可.【详解】解:A 、图形面积为|k|=1;B 、阴影是梯形,面积为6;C 、D 面积均为两个三角形面积之和,为2×(12|k|)=1. 故选B .【点睛】 主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 10.A【解析】【分析】根据绝对值和数的0次幂的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.11.C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.故选C【点睛】考核知识点:正方体的表面展开图.12.D【解析】试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.故选D.考点:实数与数轴二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(50﹣).3【解析】【分析】过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.【详解】解:如图,过点A 作AM ⊥DC 于点M ,过点B 作BN ⊥DC 于点N ,则AB =MN ,AM =BN .在直角△ACM ,∵∠ACM =45°,AM =50m ,∴CM =AM =50m .∵在直角△BCN 中,∠BCN =∠ACB +∠ACD =60°,BN =50m ,∴CN =60BN tan ︒3=5033(m ), ∴MN =CM−CN =503(m ). 则AB =MN =(503)m . 故答案是:(503). 【点睛】 本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.14.5【解析】分析:根据n 棱柱的特点,由n 个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.15.1260︒【解析】【分析】根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【详解】解:多边形的边数是:360°÷40°=9,则内角和是:(9-2)•180°=1260°.故答案为1260°.【点睛】本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.16【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴,.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等18.x≥1且x≠3【解析】【分析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠故答案为:1x ≥且 3.x ≠【点睛】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1);(2)20分钟.【解析】【详解】(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y 与x 的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y 与x 的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20, 因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.20.(1)6π;(2)GB=DF ,理由详见解析.【解析】【分析】(1)根据弧长公式l= 计算即可;(2)通过证明给出的条件证明△FDC ≌△GBC 即可得到线段GB 与DF 的长度关系.【详解】解:(1)∵AD=2,∠DAE=90°,∴弧DE的长l1==π,同理弧EF的长l2==2π,弧FG的长l3==3π,所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.(2)GB=DF.理由如下:延长GB交DF于H.∵CD=CB,∠DCF=∠BCG,CF=CG,∴△FDC≌△GBC.∴GB=DF.【点睛】本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.21.证明见解析.【解析】试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO.试题解析:证明:∵AB∥CD∴∠A=∠D ∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考点:等腰三角形的性质与判定,平行线的性质22.(1)证明过程见解析;(2)1.【解析】试题分析:(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.试题解析:(1)连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE•AE,∴11=2(2+AD),∴AD=1.考点:(1)切线的性质;(2)相似三角形的判定与性质.23.(1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】【分析】利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH=HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.即可.【详解】(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF=3,连接OF;(3)在CD边上取点G,使CG=2,连接OG;(4)在DA边上取点H,使DH=1,连接OH.由于AE=EB+BF=FC+CG=GD+DH=HA.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA.【点睛】此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.24.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A 和B 两种支付方式的购买者共有多少名.详解:(1)56÷28%=200, 即本次一共调查了200名购买者;(2)D 方式支付的有:200×20%=40(人),A 方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A 种支付方式所对应的圆心角为:360°×60200=108°, (3)1600×60+56200=928(名), 答:使用A 和B 两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)产品件数增加后,每次运费最少需要1120元.【解析】【分析】(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件,根据表中的数量关系列出关于x 和y 的二元一次方程组,解之即可,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元,根据(1)的结果结合图表列出W 关于m 的一次函数,再根据“总件数中B 产品的件数不得超过A 产品件数的2倍”,列出关于m 的一元一次不等式,求出m 的取值范围,再根据一次函数的增减性即可得到答案.【详解】解:(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件,根据题意得:4525120030201200300x y x y +⎧⎨+-⎩==, 解得:1030x y ⎧⎨⎩==,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+1060,由题意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函数W随m的增大而增大∴当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.26.(1)证明见解析;(2)EF=1.【解析】【分析】(1)如图1,利用折叠性质得EA=EC,∠1=∠2,再证明∠1=∠3得到AE=AF,则可判断四边形AECF 为平行四边形,从而得到四边形AECF为菱形;(2)作EH⊥AB于H,如图,利用四边形AECF为菱形得到AE=AF=CE=13,则判断四边形ABEF为平行四边形得到EF=AB,根据等腰三角形的性质得AH=BH,再在Rt△BEH中利用tanB=EHBH=125可计算出BH=5,从而得到EF=AB=2BH=1.【详解】(1)证明:如图1,∵平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,∴EA=EC,∠1=∠2,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=CE,而AF∥CE,∴四边形AECF为平行四边形,∵EA=EC,∴四边形AECF为菱形;(2)解:作EH⊥AB于H,如图,∵E为BC中点,BC=26,∴BE=EC=13,∵四边形AECF为菱形,∴AE=AF=CE=13,∴AF=BE,∴四边形ABEF为平行四边形,∴EF=AB,∵EA=EB,EH⊥AB,∴AH=BH,在Rt△BEH中,tanB=EHBH=125,设EH=12x,BH=5x,则BE=13x,∴13x=13,解得x=1,∴BH=5,∴AB=2BH=1,∴EF=1.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了平行四边形的性质、菱形的判定与性质.27.①③④.【解析】试题分析:∵x=﹣1时y=﹣1,x=1时,y=3,x=1时,y=5,∴a-b1 {35cca b c+=-=++=,解得a1{33ca=-==,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正确;对称轴为直线332(1)2x=-=⨯-,所以,当x>32时,y的值随x值的增大而减小,故②错误;方程为﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一个根,正确,故③正确;﹣1<x<3时,ax2+(b﹣1)x+c>1正确,故④正确;综上所述,结论正确的是①③④.故答案为①③④.【考点】二次函数的性质.。

湖北省黄冈市2019-2020学年中考第三次适应性考试数学试题含解析

湖北省黄冈市2019-2020学年中考第三次适应性考试数学试题含解析

湖北省黄冈市2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.反比例函数y=mx的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )A.1 B.2 C.3 D.42.如图由四个相同的小立方体组成的立体图像,它的主视图是().A.B.C.D.3.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A.4.67×107B.4.67×106C.46.7×105D.0.467×1074.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为()A.y=x+1 B.y=x-1 C.y=x D.y=x-25.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q6.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°7.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为()A.5 B.7 C.8 D.108.下列运算结果正确的是()A.3a2-a2 = 2 B.a2·a3= a6C.(-a2)3 = -a6D.a2÷a2 = a9.如图,Rt△ABC中,∠C=90°,AC=4,BC=43,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.2πB.4πC.6πD.8π10.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.1111.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个12.如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则△DEF的周长是()A.9.5 B.13.5 C.14.5 D.17二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.14.如图,在矩形ABCD中,2,E是BC的中点,AE⊥BD于点F,则CF的长是_________.15.已知式子1x-有意义,则x的取值范围是_____16.分解因式:a2-2ab+b2-1=______.17.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.18.如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.20.(6分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?21.(6分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?22.(8分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?23.(8分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE 的长(结果保留根号).24.(10分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)求证:DF=PG;(2)若PC=1,求四边形PEFD的面积.25.(10分)先化简,再求值:2222+244a b a ba b a ab b--÷++﹣1,其中a=2sin60°﹣tan45°,b=1.26.(12分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.27.(12分)已知Rt △ABC,∠A=90°,BC=10,以BC 为边向下作矩形BCDE,连AE 交BC 于F. (1)如图1,当AB=AC,且sin ∠BEF=35时,求BF CF 的值; (2)如图2,当tan ∠ABC=12时,过D 作DH ⊥AE 于H,求EH EA ⋅的值; (3)如图3,连AD 交BC 于G ,当2FG BF CG =⋅时,求矩形BCDE 的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:∵反比例函数的图象位于一三象限,∴m >0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y 随x 的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y =xm ,得到h =﹣m ,2k =m , ∵m >0故③正确;将P(x ,y)代入y =x m 得到m =xy ,将P′(﹣x ,﹣y)代入y =xm 得到m =xy , 故P(x ,y)在图象上,则P′(﹣x ,﹣y)也在图象上故④正确,故选:B .【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键. 2.D【解析】从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选D.3.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将4670000用科学记数法表示为4.67×106, 故选B.【点睛】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.4.A【解析】向左平移一个单位长度后解析式为:y=x+1.故选A.点睛:掌握一次函数的平移.5.D【解析】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q ,∴原点在点M 与N 之间,∴这四个数中绝对值最大的数对应的点是点Q .6.D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.A【解析】解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长=.故选A.8.C【解析】选项A,3a2-a2 = 2 a2;选项B,a2·a3= a5;选项C,(-a2)3 = -a6;选项D,a2÷a2 = 1.正确的只有选项C,故选C.9.B【解析】【分析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的14.【详解】在△ABC中,依据勾股定理可知,∵两等圆⊙A,⊙B外切,∴两圆的半径均为4,∵∠A+∠B=90°,∴阴影部分的面积=2904360π⨯=4π.故选:B.【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.10.A分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选A.点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.11.B【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B.【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.12.B【解析】【分析】由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,∴DE=12AC=4.1,DF=12BC=4,EF=12AB=1,∴△DEF的周长=12(AB+BC+AC)=12×(10+8+9)=13.1.故选B.【点睛】考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x<1【分析】根据一次函数的性质得出不等式解答即可.【详解】因为一次函数y=﹣2(x+1)+4的值是正数,可得:﹣2(x+1)+4>0,解得:x <1,故答案为x <1.【点睛】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.14.2 【解析】 试题解析:∵四边形ABCD 是矩形,90ABE BAD ∴∠=∠=o ,∵AE ⊥BD , 90AFB ∴∠=o ,90BAF ABD ABD ADB ∴∠+∠=∠+∠=o ,BAE ADB ∴∠=∠,∴△ABE ∽△ADB , AD AB AB BE,∴= ∵E 是BC 的中点, 2AD BE ∴=, 2222BE AB ∴==, 12BE BC ∴=∴=,,22223,6AE AB BE BD BC CD ∴=+==+=,6.AB BE BF AE ⋅∴== 过F 作FG ⊥BC 于G ,FG CD ∴P , BFG BDC V V ∽,∴ FG BF BG CD BD BC ∴==,22,33FG BG ∴==, 43CG ∴=, 22 2.CF FG CG ∴+=15.x≤1且x≠﹣1.【解析】根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.16.(a-b+1)(a-b-1)【解析】【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解.【详解】a2-2ab+b2-1,=(a-b)2-1,=(a-b+1)(a-b-1).【点睛】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.17.110【解析】试题解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考点:等腰三角形的性质、三角形外角的性质点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.18【解析】分析:延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.详解:延长AE交DF于G,如图,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵EAB GDAAD ABABE DAG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=22112+=.故答案为2.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形【解析】【分析】(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;(2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.【详解】(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;(2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.∵CA=CE,CB=CF,∴AE=BF.∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.【点睛】本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.20.(1) 每次下调10% (2) 第一种方案更优惠.【解析】【分析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【详解】解:(1)设平均每次下调的百分率为x,根据题意得5000×(1-x)2=4050解得x=10%或x=1.9(舍去)答:平均每次下调10%.(2)9.8折=98%,100×4050×98%=396900(元)100×4050-100×1.5×12×2=401400(元),396900<401400,所以第一种方案更优惠.答:第一种方案更优惠.【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键. 21.周瑜去世的年龄为16岁.【解析】【分析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.根据题意建立方程求出其值就可以求出其结论.【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.由题意得;10(x﹣1)+x=x2,解得:x1=5,x2=6当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为16岁,完全符合题意.答:周瑜去世的年龄为16岁.【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.22.(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.【解析】【分析】(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;(3)设进价为y元,根据售价-进价=利润,则可得出方程即可.【详解】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等;当顾客消费少于1500元时,300+0.8x>x不买卡合算;当顾客消费大于1500元时,300+0.8x<x买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.【点睛】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.CE的长为(4+)米【解析】【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×3=23(米),∵DH=1.5,∴CD=23+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE=23 1.53=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题24.(1)证明见解析;(2)1.【解析】【分析】作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG 从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出【详解】解:(1)证明:∵四边形ABCD为正方形,∴AD=AB,∵四边形ABPM为矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如图,∵PD=PG,∴MG=MD,∵四边形ABCD为矩形,∴PCDM为矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四边形PEFD为平行四边形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四边形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH ==,∴PH =PG ﹣GH =﹣=,∴四边形PEFD 的面积=DF•PH =×=1.【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值253【解析】【分析】 对待求式的分子、分母进行因式分解,并将除法化为乘法可得2-+a b a b ×()()()22a b a b a b ++--1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a 的值,再将a 、b 的值代入化简结果中计算即可解答本题.【详解】 原式=2-+a b a b ×()()()22a b a b a b ++--1 =2++a b a b -1 =2a b a b a b a b++-++ =b a b+, 当a═2sin60°﹣tan45°=2×32﹣3﹣1,b=1时, 原式33311=-+. 【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.26.(1) 反比例函数的解析式为y=6x,一次函数的解析式为y=﹣12x+1.(2)2.【解析】【分析】(1)根据反比例函数y2=mx的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.【详解】(1)∵反比例函数y2=mx的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=6x,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:2361k bk b+=⎧⎨+=⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+1.(2)如图,设直线y=﹣12x+1与x轴交于C,则C(2,0).S△AOB=S△AOC﹣S△BOC=12×2×3﹣12×2×1=12﹣1=2.【点睛】本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.27.(1)17;(2)80;(3)100.【解析】【分析】(1)过A作AK⊥BC于K,根据sin∠BEF=35得出35FKAK=,设FK=3a,AK=5a,可求得BF=a,故17BFCF=;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.【详解】解:(1)过A 作AK ⊥BC 于K,∵sin ∠BEF =35,sin ∠FAK =35, ∴35FK AK =, 设FK=3a,AK=5a,∴AK=4a,∵AB=AC,∠BAC=90°,∴BK=CK=4a,∴BF=a,又∵CF=7a, ∴17BF CF = (2)过A 作AK ⊥BC 于K,延长AK 交ED 于G ,则AG ⊥ED , ∵∠AGE=∠DHE=90°,∴△EGA ∽△EHD, ∴EH ED EG EA=, ∴·EH EA EG ED ⋅=,其中EG=BK, ∵BC=10,tan ∠ABC =12, cos ∠ABC =∴BA =BC· cos ∠ABCBK= BA·cos ∠ABC 8= ∴EG=8, 另一方面:ED=BC=10,∴EH·EA=80(3)延长AB 、ED 交于K,延长AC 、ED 交于T,∵BC ∥KT,BF AF FG KE AE ED==, ∴BF KE FG DE =,同理:FG ED CG DT =∵FG 2= BF·CG ∴BF FG FG CG =, ∴ED 2= KE·DT ∴KE ED DE DT= , 又∵△KEB ∽△CDT,∴KE CD BE DT =, ∴KE·DT =BE 2, ∴BE 2=ED 2 ∴ BE=ED∴1010100BCDE S =⨯=矩形【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.。

湖北省黄冈市2019-2020学年中考三诊数学试题含解析

湖北省黄冈市2019-2020学年中考三诊数学试题含解析

湖北省黄冈市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.88152.5x x+=B.8184 2.5x x+=C.88152.5x x=+D.8812.54x x=+2.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°3.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x﹣1 C.34y x=D.1yx=4.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.5.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D6.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或07.如图,在ABC ∆中,90, 4ACB AC BC ∠=︒== ,将ABC ∆折叠,使点A 落在BC 边上的点D 处, EF 为折痕,若3AE =,则sin CED ∠的值为( )A .13B .223C .24D .358.若关于x 、y 的方程组4xy k x y =⎧⎨+=⎩有实数解,则实数k 的取值范围是( ) A .k >4 B .k <4C .k≤4D .k≥4 9.下列运算中,正确的是( )A .(a 3)2=a 5B .(﹣x )2÷x=﹣xC .a 3(﹣a )2=﹣a 5D .(﹣2x 2)3=﹣8x 610.下列事件中为必然事件的是( )A .打开电视机,正在播放茂名新闻B .早晨的太阳从东方升起C .随机掷一枚硬币,落地后正面朝上D .下雨后,天空出现彩虹 119( )A .±3B .3C .9D .81 12.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x 台机器,根据题意可得方程为( )A .50035030x x =-B .50035030x x =-C .500350+30x x =D .500350+30x x= 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________.14.若关于x 的二次函数y =ax 2+a 2的最小值为4,则a 的值为______.15.△ABC 中,∠A 、∠B 都是锐角,若sinA 3cosB =12,则∠C =_____. 16.计算: (1)(23b a)2=_____;(2)210ab c 54a c÷=_____. 17.如果一个三角形两边为3cm ,7cm ,且第三边为奇数,则三角形的周长是_________. 18.分解因:22424x xy y x y --++=______________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数. 20.(6分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)21.(6分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.22.(8分)计算:﹣(﹣2)2+|﹣3|﹣20180×32723.(8分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A 1,A 2,A 3区域分别对应9折8折和7折优惠,B 1,B 2,B 3,B 4区域对应不优惠?本次活动共有两种方式.方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.(1)若顾客选择方式一,则享受优惠的概率为 ;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.24.(10分)如图,一次函数y=k 1x+b(k 1≠0)与反比例函数22 ( 0 )k y k x=≠的图象交于点A(-1,2),B(m ,-1).求一次函数与反比例函数的解析式;在x 轴上是否存在点P(n ,0),使△ABP 为等腰三角形,请你直接写出P 点的坐标.25.(10分)在等腰Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是边BC 上任意一点,连接AD ,过点C 作CE ⊥AD 于点E .(1)如图1,若∠BAD=15°,且CE=1,求线段BD 的长; (2)如图2,过点C 作CF ⊥CE ,且CF=CE ,连接FE 并延长交AB 于点M ,连接BF ,求证:AM=BM .26.(12分)计算:-2-2 - 12 + 21sin60π3⎛⎫-︒+- ⎪⎝⎭0 27.(12分)先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.详解:设乘公交车平均每小时走x千米,根据题意可列方程为:8812.54x x=+.故选D.点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.2.C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.3.D【解析】A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x 的增大而减小,故此选项错误B、k>0,y随x增大而增大,故此选项错误C、B、k>0,y随x增大而增大,故此选项错误D、y=1x(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确4.B 【解析】【分析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出. 【详解】∠ACB=90°,∠A=30°,BC=AB.BC=2,AB=2BC=22=4,D是AB的中点,CD=AB=4=2.E,F分别为AC,AD的中点,EF是△ACD的中位线.EF=CD=2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.5.C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.6.A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k =﹣1,故选:A .【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.B【解析】【分析】根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD 的长,然后利用正弦公式进行计算即可.【详解】解:由折叠性质可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt △CED 中,=sin 3CD CED DE ∠== 故选:B【点睛】 本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键. 8.C【解析】【分析】利用根与系数的关系可以构造一个两根分别是x ,y 的一元二次方程,方程有实数根,用根的判别式≥0来确定k 的取值范围.【详解】解:∵xy =k ,x+y =4,∴根据根与系数的关系可以构造一个关于m 的新方程,设x ,y 为方程240m m k -+=的实数根.241640b ac k =-=-≥V ,解不等式1640k -≥得4k ≤.故选:C .【点睛】本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.9.D【解析】【分析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C不符合题意;∵(-2x2)3=-8x6,∴选项D符合题意.故选D.【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.10.B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.故选B.11.C【解析】33故选C.12.A【解析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.【详解】现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.依题意得:500350x x30=-,故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3 5【解析】【分析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.【详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种,∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:3 5 .故答案为3 5 .14.1.【解析】【分析】根据二次函数的性质列出不等式和等式,计算即可.【详解】解:∵关于x的二次函数y=ax1+a1的最小值为4,∴a1=4,a>0,解得,a=1,故答案为1.【点睛】本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.15.60°.【解析】先根据特殊角的三角函数值求出∠A 、∠B 的度数,再根据三角形内角和定理求出∠C 即可作出判断.【详解】∵△ABC 中,∠A 、∠B 都是锐角cosB=12, ∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案为60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单. 16.429b a8b c 【解析】【分析】(1)直接利用分式乘方运算法则计算得出答案;(2)直接利用分式除法运算法则计算得出答案.【详解】(1)(23b a )2=429b a; 故答案为429b a; (2)210ab c 54a c ÷=21045ab c c a ⨯=8b c. 故答案为8b c . 【点睛】此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.17.15cm 、17cm 、19cm .【解析】试题解析:设三角形的第三边长为xcm ,由题意得:7-3<x <7+3,即4<x <10,则x=5,7,9,三角形的周长:3+7+5=15(cm ),3+7+7=17(cm ),3+7+9=19(cm).考点:三角形三边关系.18.(x-2y)(x-2y+1)【解析】【分析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】22424x xy y x y--++=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1) 60,90;(2)见解析;(3) 300人【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.20.-17.1【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【点睛】此题要注意正确掌握运算顺序以及符号的处理.21.这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【解析】【分析】设动车组列车的平均速度为x 千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】设动车组列车的平均速度为x 千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据题意得:﹣=3,解得:x 1=161,x 2=﹣264(不合题意,舍去),经检验,x=161是原方程的解,∴x+99=264,1320÷(x+99)=1.答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.22.﹣1【解析】【分析】根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.【详解】原式=﹣1+3﹣1×3=﹣1.【点睛】本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.23.(1)12;(2)16.【解析】【分析】(1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;(2)根据题意可以画出相应的树状图,从而可以求得相应的概率.【详解】解:(1)由题意可得,顾客选择方式一,则享受优惠的概率为:21 42 =,故答案为:12;(2)树状图如下图所示,则顾客享受折上折优惠的概率是:21 346=⨯,即顾客享受折上折优惠的概率是16.【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.24.(1)反比例函数的解析式为2yx=-;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(140)或(140)或(17,0)或(170)或(0,0).【解析】【分析】(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函数的解析式为.∵B(m,-1)在上,∴m=2,由题意,解得:,∴一次函数的解析式为y=-x+1.(2)满足条件的P点的坐标为(140)或(14,0)或(17,0)或(17,0)或(0,0).【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.25.(1) 223;(2)见解析【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2x3x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.详解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt△ACE中,CE=1,∴AC=2CE=2,Rt△CED中,∠ECD=90°﹣60°=30°,∴CD=2ED,设ED=x,则CD=2x,∴3,3,x=33,∴CD=2x=233,∴BD=BC﹣CD=AC﹣CD=2﹣23;(2)如图2,连接CM,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵AC=BC,CE=CF,∴△ACE≌△BCF,∴∠BFC=∠AEC=90°,∵∠CFE=45°,∴∠MFB=45°,∵∠CFM=∠CBA=45°,∴C、M、B、F四点共圆,∴∠BCM=∠MFB=45°,∴∠ACM=∠BCM=45°,∵AC=BC,∴AM=BM.点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.26.753 42 -【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.【详解】解:原式=137523113 442--+=-【点睛】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.27.-5【解析】【分析】根据分式的运算法则即可求出答案.【详解】原式=[2(1)(1)xx x--+(2)(2)(2)x xx x-++]÷1x=(1xx-+2xx-)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.。

2022年湖北省黄冈市中考数学三模试题及答案解析

2022年湖北省黄冈市中考数学三模试题及答案解析

2022年湖北省黄冈市中考数学三模试卷一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. −18的相反数是( )A. 18B. −18C. 118D. −1182. 下列事物所运用的原理不属于三角形稳定性的是( )A. 长方形门框的斜拉条B. 埃及金字塔C. 三角形房架D. 学校的电动伸缩大门3. 如图,正方形ABCD中,点F为AB上一点,CF与BD交于点E,连接AE,若∠BCF=20°,则∠AEF的度数( )A. 35°B. 40°C. 45°D. 50°4. 下列计算正确的是( )A. 3x2−2x2=1B. 2m⋅(−2m)2=8m3C. x10÷x10=0D. (2a2b)3=8a5b35. 已知关于x的一元二次方程(1−a)x2+2x−2=0有两个不相等的实数根,则a的取值范围是( )A. a<32B. a>12C. a<32且a≠1D. a>12且a≠16. 高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误的是( )A. 样本容量为400B. 类型D所对应的扇形的圆心角为36°C. 类型C所占百分比为30%D. 类型B的人数为120人7. 如图是小明做的一个风筝支架示意图,已知BC//DE,AB:BD=3:5,BC=30cm,则DE的长是( )A. 50cmB. 60cmC. 70cmD. 80cm8. 如图,在矩形ABCD中,AB=1,AD=√3,O是对角线的交点,过C作CE⊥BD于点E,EC的延长线与∠BAD的平分线相交于点H,AH与BC交于点F.给出下列四个结论:①AF=FH;②BF=BO;③AC=CH;④BE=3DE.其中正确结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)9. 式子√3+x中x的取值范围是______.10. 不等式−3x−1≥−10的正整数解为______.11. 如图,在△ABC中,点D、E分别在AB、BC上,AF//BC,且∠1=∠2,如果∠B=30°,且∠2=70°,那∠BAC=______.12. 已知a,b是方程x2+3x−5=0的两个实数根,则a2−3b+2020的值是______.13. 小张、小王和小李三人相约去参加“抗疫情党员志愿者进社区服务”活动,现在有A、B、C三个社区可供随机选择,他们三人恰好进入同一社区的概率是______.14. 如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80米,高度为200米.则离地面150米处的水平宽度(即CD的长)为___ ___ .15. 两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a 4=22,…,若按此规律继续下去,则a 6=______.16. 如图,正方形ABCD 中,点P 、Q 从点A 出发,以1cm/s 的速度分别沿A −B −C 和A −D −C 的路径匀速运动,同时到达点C 时停止运动.连接PQ ,设PQ 的长为y ,运动时间为x ,则y(cm)与x(秒)的函数图象如图所示.当x =2.5秒时,PQ 的长是______ cm .三、计算题(本大题共1小题,共6.0分)17. 已知a +b =12,ab =−38,先因式分解,再求值:a 3b +2a 2b 2+ab 3.四、解答题(本大题共7小题,共66.0分。

湖北省黄冈市2019-2020学年第三次中考模拟考试数学试卷含解析

湖北省黄冈市2019-2020学年第三次中考模拟考试数学试卷含解析

湖北省黄冈市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm29153)A.2到3之间B.3到4之间C.4到5之间D.5到6之间3.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数4.下列命题中,错误的是()A.三角形的两边之和大于第三边B.三角形的外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形D.三角形的一条中线能将三角形分成面积相等的两部分5.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28 B.26,26 C.31,30 D.26,226.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤7.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.28.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()A.4 B.﹣4 C.﹣6 D.69.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B10.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=011.若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是()A.3 B.6 C.9 D.3612.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A.两点之间的所有连线中,线段最短B.经过两点有一条直线,并且只有一条直线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过一点有且只有一条直线与已知直线垂直二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a 大约是_________.14.如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______.15.将直线y=x 沿y 轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.16.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x 轴、y 轴的正半轴上,点Q 在对角线OB 上,若OQ=OC ,则点Q 的坐标为_______.17.如图,在平面直角坐标系xOy 中,△ABC 的顶点A 、C 在坐标轴上,点B 的坐标是(2,2).将△ABC 沿x 轴向左平移得到△A 1B 1C 1,点1B 落在函数y=-6x .如果此时四边形11AAC C 的面积等于552,那么点1C 的坐标是________.18.在矩形ABCD 中,AB=6CM ,E 为直线CD 上一点,连接AC ,BE ,若AC 与BE 交与点F , DE=2,则EF :BE= ________ 。

【附5套中考模拟试卷】湖北省黄冈市2019-2020学年中考数学三模试卷含解析

【附5套中考模拟试卷】湖北省黄冈市2019-2020学年中考数学三模试卷含解析

湖北省黄冈市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=﹣2x的图象上,则( ) A .a <b <0B .b <a <0C .a <0<bD .b <0<a2.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 5C .(﹣x 2)3=x 8D .x 6÷x 2=x 33.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( ) A .平均数变小,方差变小 B .平均数变小,方差变大 C .平均数变大,方差变小D .平均数变大,方差变大4.如图,△ABC 纸片中,∠A =56,∠C =88°.沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD .则∠BDE 的度数为( )A .76°B .74°C .72°D .70°5.一次函数y kx k =-与反比例函数(0)ky k x=≠在同一个坐标系中的图象可能是( ) A . B . C . D .6.下图是由八个相同的小正方体组合而成的几何体,其左视图是( )A .B .C .D .7.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯8.如图,小明从A 处出发沿北偏西30°方向行走至B 处,又沿南偏西50°方向行走至C 处,此时再沿与出发时一致的方向行走至D 处,则∠BCD 的度数为( )A .100°B .80°C .50°D .20°9.4的平方根是( ) A .2B .2C .±2D .±210.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是() A .3y x =B .3y x=C .1y x=-D .2y x =11.下列条件中不能判定三角形全等的是( ) A .两角和其中一角的对边对应相等 B .三条边对应相等 C .两边和它们的夹角对应相等 D .三个角对应相等12.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限 C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.四张背面完全相同的卡片上分别写有0、·3、9、2、227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________. 14.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.15.如图,直线m ∥n ,△ABC 为等腰直角三角形,∠BAC=90°,则∠1= 度.16.已知一次函数y =ax+b ,且2a+b =1,则该一次函数图象必经过点_____. 17.已知|x|=3,y 2=16,xy <0,则x ﹣y=_____. 18.分解因式:9x 3﹣18x 2+9x= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O 的切线.交BC于点E.求证:BE=EC填空:①若∠B=30°,AC=23,则DE=______;②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.20.(6分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.21.(6分)如图,在Rt中,,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.(1)求;(直接写出结果)(2)当AB=3,AC=5时,求的周长.22.(8分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.23.(8分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD 的延长线于点E,交DC于点N.求证:△ABM ∽△EFA ;若AB=12,BM=5,求DE 的长.24.(10分)如图所示,在Rt ABC △中,90ACB ∠=︒,用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)连接AP 当B Ð为多少度时,AP 平分CAB ∠.25.(10分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?26.(12分)如图,轮船从点A 处出发,先航行至位于点A 的南偏西15°且点A 相距100km 的点B 处,再航行至位于点A 的南偏东75°且与点B 相距200km 的点C 处. (1)求点C 与点A 的距离(精确到1km ); (2)确定点C 相对于点A 的方向. (参考数据:)27.(12分)如图,在矩形ABCD 中,AB═2,3P 是BC 边上的一点,且BP=2CP . (1)用尺规在图①中作出CD 边上的中点E ,连接AE 、BE (保留作图痕迹,不写作法); (2)如图②,在(1)的条体下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并廷长交AB 的廷长线于点F ,连接AP ,不添加辅助线,△PFB 能否由都经过P 点的两次变换与△PAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】解:∵2y x =-,∴反比例函数2y x=-的图象位于第二、四象限,在每个象限内,y 随x 的增大而增大,∵点A (2,a )、B (3,b )在反比例函数2y x=-的图象上,∴a <b <0,故选A .2.B 【解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案. 详解:A 、不是同类项,无法计算,故此选项错误; B 、235x x x ⋅=, 正确; C 、()326x x -=-,故此选项错误; D 、624x x x ÷=, 故此选项错误; 故选:B .点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键. 3.A 【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188,方差为S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187,方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=593 ∵188>187,683>593,∴平均数变小,方差变小, 故选:A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.B 【解析】 【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用翻折变换的性质得出∠BDE 的度数. 【详解】解:∵∠A=56°,∠C=88°, ∴∠ABC=180°-56°-88°=36°,∵沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD , ∴∠CBD=∠DBE=18°,∠C=∠DEB=88°, ∴∠BDE=180°-18°-88°=74°. 故选:B . 【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键. 5.B 【解析】当k >0时,一次函数y=kx ﹣k 的图象过一、三、四象限,反比例函数y=kx的图象在一、三象限,∴A 、C 不符合题意,B 符合题意;当k <0时,一次函数y=kx ﹣k 的图象过一、二、四象限,反比例函数y=kx的图象在二、四象限,∴D 不符合题意.6.B【解析】【分析】【详解】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.7.C【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.考点:用科学计数法计数8.B【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.9.D【解析】【分析】4,然后再根据平方根的定义求解即可.【详解】4,2的平方根是±2,4±2故选D.【点睛】4正确化简是解题的关键,本题比较容易出错.【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=3x的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−1x的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.11.D【解析】【详解】解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D.12.C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y 随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3 4【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】∵在0.·3、227这四个实数种,有理数有0.·3227这3个, ∴抽到有理数的概率为34,故答案为34.【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 14.2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π. 15.1. 【解析】试题分析:∵△ABC 为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m ∥n ,∴∠1=1°;故答案为1.考点:等腰直角三角形;平行线的性质. 16.(2,1) 【解析】∵一次函数y=ax+b , ∴当x=2,y=2a+b , 又2a+b=1, ∴当x=2,y=1,即该图象一定经过点(2,1). 故答案为(2,1). 17.±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想. 详解:因为|x|=1,所以x=±1. 因为y 2=16,所以y=±2. 又因为xy <0,所以x 、y 异号, 当x=1时,y=-2,所以x-y=3; 当x=-1时,y=2,所以x-y=-3.故答案为:±3. 点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论. 18.9x 2(1)x - 【解析】试题分析:首先提取公因式9x ,然后利用完全平方公式进行因式分解.原式=9x (2x -2x+1)=9x 2(1)x -.考点:因式分解三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)见解析;(2)①3;②1. 【解析】 【分析】(1)证出EC 为⊙O 的切线;由切线长定理得出EC=ED ,再求得EB=ED ,即可得出结论;(2)①由含30°角的直角三角形的性质得出AB ,由勾股定理求出BC ,再由直角三角形斜边上的中线性质即可得出DE ;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论. 【详解】(1)证明:连接DO .∵∠ACB=90°,AC 为直径, ∴EC 为⊙O 的切线; 又∵ED 也为⊙O 的切线, ∴EC=ED , 又∵∠EDO=90°, ∴∠BDE+∠ADO=90°, ∴∠BDE+∠A=90° 又∵∠B+∠A=90°, ∴∠BDE=∠B , ∴BE=ED , ∴BE=EC ;(2)解:①∵∠ACB=90°,∠B=30°,,∴,∴,∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=12BC=3,故答案为3;②当∠B=1°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案为1.【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.证明见解析.【解析】【分析】想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.【详解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC 和△DEF 中,A DB E AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS )∴BC =EF .【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 21.(1)∠ADE=90°;(2)△ABE 的周长=1.【解析】试题分析:(1)是线段垂直平分线的做法,可得∠ADE=90°(2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE ,所以△ABE 的周长为AB+BE+AE=AB+BC=1试题解析:(1)∵由题意可知MN 是线段AC 的垂直平分线,∴∠ADE=90°;(2)∵在Rt △ABC 中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN 是线段AC 的垂直平分线,∴AE=CE ,∴△ABE 的周长=AB+(AE+BE )=AB+BC=3+4=1.考点:1、尺规作图;2、线段垂直平分线的性质;3、勾股定理;4、三角形的周长22.证明见解析.【解析】试题分析:首先根据等边对等角可得∠A=∠B ,再由DC ∥AB ,可得∠D=∠A ,∠C=∠B ,进而得到∠C=∠D ,根据等角对等边可得CO=DO .试题解析:证明:∵AB ∥CD∴∠A =∠D ∠B =∠C∵OA=OB∴∠A =∠B∴∠C =∠D∴OC =OD考点:等腰三角形的性质与判定,平行线的性质23.(1)见解析;(2)4.1【解析】【详解】试题分析:(1)由正方形的性质得出AB=AD ,∠B=10°,AD ∥BC ,得出∠AMB=∠EAF ,再由∠B=∠AFE ,即可得出结论;(2)由勾股定理求出AM ,得出AF ,由△ABM ∽△EFA 得出比例式,求出AE ,即可得出DE 的长. 试题解析:(1)∵四边形ABCD 是正方形,∴AB=AD ,∠B=10°,AD ∥BC ,∴∠AMB=∠EAF ,又∵EF ⊥AM ,∴∠AFE=10°,∴∠B=∠AFE ,∴△ABM ∽△EFA ;(2)∵∠B=10°,AB=12,BM=5,∴=13,AD=12,∵F 是AM 的中点,∴AF=12AM=6.5, ∵△ABM ∽△EFA , ∴BM AM AF AE =, 即5136.5AE=, ∴AE=16.1,∴DE=AE-AD=4.1.考点:1.相似三角形的判定与性质;2.正方形的性质.24.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.25.(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)若全部销售完,方案一获利最大,最大利润是1800元.【解析】分析:(1)设购进甲种纪念品每件价格为x 元,乙种纪念币每件价格为y 元,根据题意得出关于x 和y 的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a 件,根据题意列出关于x 的一元一次不等式,解不等式得出a 的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品a 件的函数关系式,由函数的增减性确定总利润取最值时a 的值,从而得出结论.详解:(1)设购进甲种纪念品每件需x 元,购进乙种纪念品每件需y 元.由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)设购进甲种纪念品a(a≥60)件,则购进乙种纪念品(80﹣a)件.由题意得:100a+50(80﹣a)≤7100解得a≤1又a≥60所以a可取60、61、1.即有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)设利润为W,则W=20a+30(80﹣a)=﹣10a+2400所以W是a的一次函数,﹣10<0,W随a的增大而减小.所以当a最小时,W最大.此时W=﹣10×60+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元.点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.26.(1)173;(2)点C位于点A的南偏东75°方向.【解析】试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.试题解析:解:(1)如答图,过点A作AD⊥BC于点D.由图得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=50.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=(km).答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,∴AB2+AC2=BC2. ∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理.27.(1)作图见解析;(2)EB是平分∠AEC,理由见解析;(3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF 折叠,②沿AE折叠.【解析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;(3)先判断出△AEP≌△FBP,即可得出结论.【详解】(1)依题意作出图形如图①所示;(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,3∵点E是CD的中点,∴DE=CE=12CD=1,在△ADE 和△BCE 中,90AD BC C D DE CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADE ≌△BCE ,∴∠AED=∠BEC ,在Rt △ADE 中,AD=3,DE=1,∴tan ∠AED=AD DE =3, ∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED ﹣∠BEC=60°=∠BEC , ∴BE 平分∠AEC ;(3)∵BP=2CP ,BC=3=,∴CP=33,23, 在Rt △CEP 中,tan ∠CEP=CP CE =33, ∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD ∥AB ,∴∠F=∠CEP=30°,在Rt △ABP 中,tan ∠BAP=BP AB 3 ∴∠PAB=30°, ∴∠EAP=30°=∠F=∠PAB ,∵CB ⊥AF ,∴AP=FP ,∴△AEP ≌△FBP ,∴△PFB 能由都经过P 点的两次变换与△PAE 组成一个等腰三角形,变换的方法为:将△BPF 绕点B 顺时针旋转120°和△EPA 重合,①沿PF 折叠,②沿AE 折叠.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP ≌△△FBP 是解本题的关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。

湖北省黄冈市中考数学三模试卷

湖北省黄冈市中考数学三模试卷

湖北省黄冈市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分) (2018七上·青山期中) 若|a|=4,b2=9,且a<b,那么a﹣b=________.2. (1分)函数y=的自变量x的取值范围是________.3. (1分) (2019八上·洪山期末) 计算﹣的结果为________.4. (1分) (2016七上·淳安期中) 用科学记数法表示6 850 000=________5. (1分)过多边形一个顶点的对角线把多边形分成2012个三角形,则这个多边形的边数是________ .6. (1分)(2020·无锡模拟) 已知圆锥的高为,它的底面直径为,则这个圆锥的母线长为________ .二、选择题 (共8题;共16分)7. (2分)实数a,b在数轴上的位置如图所示,则关于x的一元二次方程ax2+bx+1=0()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 不一定有实数根8. (2分)(2017·桂林模拟) 面积为5的正方形的边长在()A . 0和1之间B . 1和2之间C . 2和3之间D . 3和4之间9. (2分)(2020·成华模拟) 下列运算正确的是()A . (a+3)2=a2+9B . a8÷a2=a4C . a2+a2=2a2D . a2•a3=a610. (2分)(2016·江汉模拟) 如图,下列几何体的左视图不是矩形的是()A .C .D .11. (2分) (2018·玄武模拟) 如图,点A在反比例函数y=(x>0)的图像上,点B在反比例函数y =(x>0)的图像上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为()A . 10B . 12C . 14D . 1612. (2分)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,两组数据的平均数相同,其方差分别为s甲2=0.002、s乙2=0.03,则下列说法正确的是()A . 甲比乙的产量稳定B . 乙比甲的产量稳定C . 甲、乙的产量一样稳定D . 无法确定哪一品种的产量更稳定13. (2分)(2019·南海模拟) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .C .D .14. (2分)如图,内接于,,,点D在AC弧上,则的大小为()A .B .C .D .三、解答题 (共9题;共81分)15. (5分)(2017·邵阳) 计算:4sin60°﹣()﹣1﹣.16. (5分) (2016八上·台安期中) 如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.17. (5分) (2016九上·栖霞期末) 如图,一枚运载火箭从地面L处发射,当火箭到达A点时,从位于距发射架底部4km处的地面雷达站R(LR=4)测得火箭底部的仰角为43°.1s后,火箭到达B点,此时测得火箭底部的仰角为45.72°.这枚火箭从A到B的平均速度是多少(结果取小数点后两位)?(参考数据:sin43°≈0.682,cos43°≈0.731,tan43°≈0.933,sin45.72°≈0.716,cos45.72°≈0.698,tan45.72°≈1.025)18. (10分) (2020八下·高港期中) 把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.19. (11分)(2018·松桃模拟) 中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了________名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计该市城区80 000名中学生家长中有多少名家长持赞成态度?20. (10分) (2016九上·越秀期末) 如图所示,AB为半圆O的直径,C为圆上一点,AD平分∠BAC交半圆于点D,过点D作DE⊥AC,DE交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,DE= ,求线段AC的长21. (10分) (2018九上·宝应月考) 一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.22. (10分)(2020·淮安模拟) 学校计划为疫情期间表现优秀的学生购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的一半,请设计出最省钱的购买方案,并说明理由.23. (15分)如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点,顶点M关于x轴的对称点是M’.(1)求抛物线的解析式(2)若直线AM’与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.参考答案一、填空题 (共6题;共6分)1-1、2-1、3-1、4-1、5-1、6-1、二、选择题 (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共81分)15-1、16-1、17-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

湖北省黄冈市数学中考三模试卷

湖北省黄冈市数学中考三模试卷

湖北省黄冈市数学中考三模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)计算﹣5+1的结果为()A . -6B . -4C . 4D . 62. (2分)(2017·聊城) 如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()A .B .C .D .3. (2分)用科学记数法表示5700000,正确的是A . 0.57×107B . 57×105C . 570×104D . 5.7×1064. (2分) (2017九上·台州期中) 如图,在平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1 ,再将△A1B1C1绕点O旋转180°后得到△A2B2C2 ,则下列说法正确的是()A . A1的坐标为(3,1)B . S四边形ABB1A1=3C . B2C=2D . ∠AC2O=45°5. (2分) (2020八上·南召期末) 如图,在△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A . 10B . 6C . 4D . 不确定6. (2分) (2020九上·港南期末) 下列运算中,正确的是()A .B .C .D .7. (2分)若代数式和的值相等,则x=()A . 3B . 7C . ﹣4D . ﹣38. (2分)(2016·株洲) 已知,如图一次函数y1=ax+b与反比例函数y2= 的图象如图示,当y1<y2时,x的取值范围是()A . x<2B . x>5C . 2<x<5D . 0<x<2或x>59. (2分)如图,BD为⊙O的直径,∠A=30°,则∠CBD的度数为()A . 30°B . 45°C . 60°D . 80°10. (2分)如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A . mB . mC . mD . m11. (2分) (2019七下·台州月考) 已知a,b为实数,则解集可以为-2<x<2的不等式组是()A .B .C .D .12. (2分)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O 与CA也相切时,圆心O移动的水平距离为()A . 4B . 2πC . 4πD .二、填空题 (共6题;共7分)13. (1分) (2017七上·平邑期末) a的相反数是,则a的倒数是________。

2023年湖北省黄冈市某校中考三模数学试卷

2023年湖北省黄冈市某校中考三模数学试卷

(1)求反比例函数的解析式; (2)在 x 轴上求一点 P,使| PA PB |的值最大,并求出其最大值和 P 点为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、 某经销商购进甲、乙两种产品,甲种产品进价为 8 元/kg;乙种产品的进货总金额 y(单 位:元)与乙种产品进货量 x(单位:kg)之间的关系如图所示.已知甲、乙两种产品 的售价分别为 12 元/kg 和 18 元/kg.
(1)求 A,B 奖品的单价;
(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方
案:不超过预算资金且购买 A 奖品的资金不少于 720 元,A,B 两种奖品共 100 件,求
购买 A,B 两种奖品的数量,有哪几种方案?
19.某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,根据测
AC , BC 的中点,连接 A1B1 ,将VA1B1C 绕点 C 逆时针旋转 0 360 .
(1)如图
1,当
0
时,
BB1 AA1
__________,BB1 , AA1 所在直线相交所成的较小夹角的
度数为_________.
(2)将 VA1B1C 绕点 C 逆时针旋转至图 2 所示位置时,(1)中结论是否仍然成立?若成立, 请给出证明;若不成立,请说明理由;
(1)若 PC PF ,求证: AB ED ;
(2)试探究:当点 D 在劣弧 »AC 的什么位置时使得 AD2 DE DF ,请说明理由.
21.如图,一次函数 y 1 x 5 的图象与反比例函数 y k (k 0) 的图象交于 A,B 两
22
x
点,过点 A 作 x 轴的垂线,垂足为 M,VAOM 面积为 1.

湖北省黄冈市九年级上学期数学第三次月考试卷

湖北省黄冈市九年级上学期数学第三次月考试卷

湖北省黄冈市九年级上学期数学第三次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知3x=4y(xy≠0),则下列比例式成立的是()A .B .C .D .2. (2分)(2017·衡阳模拟) 如图,函数y=﹣2x2 的图象是()A . ①B . ②C . ③D . ④3. (2分) (2016八上·扬州期末) 下图中,既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分)已知广州市的土地总面积约为7434km2 ,人均占有的土地面积S(单位:km2/人)随全市人口n(单位:人)的变化而变化,则S与n的函数关系式为()A . S=7434nB . S=C . n=7434SD . S=5. (2分)在Rt△ABC中,∠C=90°,且tanA=,则sinB的值为()A .B .C .D .6. (2分) (2013·内江) 若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A . 抛物线开口向上B . 抛物线的对称轴是x=1C . 当x=1时,y的最大值为﹣4D . 抛物线与x轴的交点为(﹣1,0),(3,0)7. (2分)如图,AB是⊙O的直径,CD是弦,且AB∥CD,若AB=8,∠ABC=30°,则弦AD的长为()A .B .C .D . 88. (2分)在Rt△ABC中,∠C=90°,∠A=30°,则下列结论中正确的是()A . AB=2BCB . AB=2ACC . AC2+AB2=BC2D . AB2+BC2=AC29. (2分)某商场为吸引顾客设计了如图所示的自由转盘,当指针指向阴影部分是,该顾客可获奖品一份,那么该顾客获奖的概率为()A .B .C .D .10. (2分) (2017九上·上城期中) 如图,点,,在⊙ 上,,,则的度数为()A .B .C .D .11. (2分) (2017八下·丰台期中) 如图,矩形ABCD中,对角线AC、BD相交于点O,E、F分别是边BC、AD 的中点,AB=2,BC=4,一动点P从点B出发,沿着B—A—D—C的方向在矩形的边上运动,运动到点C停止.点M为图1中的某个定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.那么,点M的位置可能是图1中的()A . 点 CB . 点EC . 点FD . 点O12. (2分)将抛物线y=3x2平移得到抛物线y=3(x﹣4)2﹣1的步骤是()A . 向左平移4个单位,再向上平移1个单位B . 向左平移4个单位,再向下平移1个单位C . 向右平移4个单位,再向上平移1个单位D . 向右平移4个单位,再向下平移1个单位二、填空题 (共7题;共22分)13. (2分) (2019七下·洛宁期中) 已知,则x=________,y=________.14. (1分) (2018九上·灌阳期中) 点C把线段AB分成两条线段AC和BC(AC>BC),如果,那么称线段AB被点C黄金分割,AC与AB的比叫作黄金比,其比值为________.15. (1分)(2017·温州模拟) 如图,△ABC中,AB=BC=5,AC=8,将△ABC绕点C顺时针方向旋转60°得到△DEC,连接BD,则BD的长度为________.16. (1分)如图,P为圆外一点,PA切圆于A,PA=8,直线PCB交圆于C、B,且PC=4,连结AB、AC,∠ABC=α,∠ACB=β,则=________ .17. (1分)一直角三角形的斜边长是13 cm,内切圆的半径是2 cm,则这个三角形的周长是________.18. (1分)(2018·齐齐哈尔) 四边形ABCD中,BD是对角线,∠ABC=90 °,tan∠ABD= ,AB=20,BC=10,AD=13,则线段CD=________.19. (15分)(2016·襄阳) 如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD 交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2 ,求BE的长.三、解答题 (共7题;共51分)20. (5分)(2017·邹城模拟) 计算:sin260°+cos260°.21. (5分) (2019九上·泰山期末) 如图,是我国跨度最大的公路和铁路两用桥梁引申出的部分平面图,测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果保留根号)22. (10分)(2017·历下模拟) 解答题(1)如图1,AD、BC相交于点O,OA=OC,∠OBD=∠ODB.求证:AB=CD.(2)如图2,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若OD= ,求∠BAC的度数.23. (10分)(2019·黄冈模拟) 小明和小丽想利用摸球游戏来决定谁去参加学校举办的歌咏比赛,游戏规则是:在一个不透明的袋子里装有除数字以外其他均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和奇数,则小明去参赛;否则小丽去参赛.(1)用树状图或列表法求出小明参赛的概率;(2)你认为这个游戏公平吗?请说明理由.24. (5分) m为何值时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2?25. (10分) (2018九上·顺义期末) 已知:如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线交AB于点E,交AC的延长线于点F.(1)求证:DE⊥AB;(2)若tan∠BDE= , CF=3,求DF的长.26. (6分) (2019九上·西城期中) 阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:如图,过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,①连接OP,作线段OP的垂直平分线MN交OP于点C.②以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点.③作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:(1)连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________.(2)如果⊙O的半径等于3,点P到切点的距离为4,求点A与点B之间的距离.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共7题;共22分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、19-2、19-3、三、解答题 (共7题;共51分) 20-1、21-1、22-1、22-2、23-1、23-2、24-1、25-1、25-2、26-1、26-2、。

湖北省黄冈中学2015年九年级第三次模拟考试数学试题含答案

湖北省黄冈中学2015年九年级第三次模拟考试数学试题含答案

湖北省黄冈中学2015年九年级第三次模拟考试数学试题分数:120分时间:120分钟第Ⅰ卷选择题一、选择题(共7小题,每小题3分,满分21分)1、-2的倒数是()A.2 B.-2C.0 D.2、下列运算正确的是()A. B.C.x6÷x3=x2D.(x3)2=x53、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50° B.55°C.60° D.65°4、下列左图所示的立体图形的主视图是()5、把二次函数y=ax2+bx+c的图像向左平移4个单位或向右平移1个单位后都会经过原点,则二次函数图像的对称轴与x轴的交点是()A.(-2.5,0) B.(2.5,0)C.(-1.5,0) D.(1.5,0)6、设a,b是方程x2+x-2010=0的两个实数根,则a2+2a+b的值为()A.2007 B.2008C.2009 D.20107、如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1,以A1B、BA为邻边作□ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作□A1B1A2C2;…;按此作法继续下去,则C n的坐标是()A. B.C.D.第Ⅱ卷非选择题二、填空题(共7小题,每小题3分,满分21分)8、分解因式:2ab2-8a=__________.9、函数中自变量的取值范围是__________;10、如图,⊙O的直径CD垂直于弦AB,∠AOC=40°,则∠CDB的度数为__________.11、如图,在菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD的中点,若S4,则S五边形EBCDF=_____________.△AEF=12、已知关于x的方程的解是正数,则m的取值范围为____________.13、圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为____________.14、如图,在平面直角坐标系中,0为坐标原点,点A的坐标为(-4,0),直线BC经过点B(-4,3),C(0,3),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤l80°)得到四边形OA′B′C′,此时直线OA′、直线B′C′,分别与直线BC相交于P,Q.在四边形OABC旋转过程中,若,则点P 的坐标为__________.三、解答题(共10小题,满分78分)15、(5分)解不等式组:.并在数轴上表示出不等式组的解集.16、(本小题满分6分)黄州商场新进一种服装,每套服装售价100元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价和比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少?17、(本小题满分7分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,BE=DF.(1)求证:AE=AF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.18、(本小题满分7分)如图,直线y1=2x-1与反比例函数的图象交于A,B两点,与x轴交于C点,已知点A的坐标为(-1,m).(1)求反比例函数的解析式;(2)根据函数图象可知,当y1>y2时,则x的取值范围是__________.(3)若P是x轴上一点,且满足△PAC的面积是6,求点P的坐标.19、(本小题满分7分)小明在春节期间去给爷爷、奶奶和外公、外婆拜年,小明从家里去爷爷家有A1、A2、A3三条路线可走,从爷爷家去外公家有B1、B2、B3、B4四条路线可走,如果小明随机选择一条从家里出发先到爷爷家给爷爷、奶奶拜年,然后再从爷爷家去外公家给外公、外婆拜年.(1)画树状图分析小明所有可能选择的路线.(2)若小明恰好选到经过路线B3的概率是多少?20、(本小题满分8分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.21、(本小题满分9分)某小区共有5000个家庭,为了了解辖区居民的住房情况,居民委员会随机调查了本辖区内一定数量的家庭的住房面积,并将调查的资料绘制成直方图和扇形图.(m~n中含右端点,不含左端点)请你根据以上不完整的直方图和扇形图提供的信息,解答下列问题:(1)这次共调查了多少个家庭的住房面积?扇形图中的a、b的值分别是多少?(2)补全频数分布直方图;(3)被调查的家庭中,在未来5年内,计划购买第二套住房的家庭统计如下表:根据这次调查,估计本小区在未来的5年内,共有多少个家庭计划购买第二套住房?22、(本小题满分7分)如图,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.(1)求∠CAE的度数?(2)这棵大树折断前的高度?(结果精确到个位,参考数据:).23、(本小题满分10分)2015年年初,南方草莓进入采摘旺季,某公司经营销售草莓的业务,以3万元/吨的价格向农户收购后,分拣成甲、乙两类,甲类草莓包装后直接销售,乙类草莓深加工后再销售.甲类草莓的包装成本为1万元/吨,当甲类草莓的销售量x<8吨时,它的平均销售价格为y(万元/吨)且y=-x+14,当甲类草莓的销售量x≥8吨时,它的平均销售价格为6万元/吨;乙类草莓深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系为s=12+3t,平均销售价格为9万元/吨.(1)某次该公司收购了20吨的草莓,其中甲类草莓有x吨,经营这批草莓所获得的毛利润为w万元;①求w与x之间的函数关系;②若该公司获得了30万元的毛利润,求用于销售甲类的草莓有多少吨?(2)在某次收购中,该公司准备投入100万元资金(注:投入资金=收购费用+包装费用+深加工费用),请你设计一种经营方案,使该公司获得最大的毛利润,并求出最大的毛利润.24、(本小题满分12分)已知抛物线y=ax2+bx+c交x轴于点A(-1,0)、B(5,0),交y轴于点C(0,5),点D是该抛物线上一点,且点D的横坐标为4,连BD,点P是线段AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).(1)求抛物线解析式;(2)若点Q在线段AD上时,延长PQ与抛物线交于点G,求t为何值时,线段QG最长.(3)在AB上是否存在点P,使△OCM为等腰三角形?若存在,求正方形PQMN 的边长;若不存在,请说明理由;(4)设正方形PQMN与△ABD重叠部分面积为s,求s与t 的函数关系式.答案与解析:1、D2、B3、C ∵l1∥l2,∴∠2=∠4,又∵∠1=∠5,∠3+∠4+∠5=180°,∴∠3=180°-55°-65°=60°.4、A5、D 解:依题意可得抛物线与x轴交点分别为(4,0),(-1,0),且对称轴与x轴交点为两交点的中点,,∴选D.6、C 解:依题意,a2+a-2010=0,a+b=-1,∴a2+2a+b=a2+a+(a+b)=2010+(-1)=2009.7、C 解:依题意,在Rt△AOB中,∵∠AOB=60°,AO=1,,又∵平行四边形ABA1C1中,A1C1=AB,,在直角三角形A1A=3,A1O=4. 同理依次可推理得A2O=16=42,,A3O=43,,……,∴A n O=4n,.8、2a(b+2)(b-2)9、x≥3且x≠6解:依题意,可得x≥3且x2-36≠0,∴x≥3且x≠6.10、20°解:∵CO⊥AB,,∴∠AOC=2∠CDB,∴∠CDB=20°.11、28解:连接BD,∵E,F分别是AB,AD的中点,且EF∥BD.∴△ABD∽△AEF,∴S△ABD=4S△AEF=16,又∵在菱形ABCD中,∠BAD=60°,∴S△ABD=S△BCD,∴S五边形EBCDF=S△ABD+S△BCD-S△AEF=28.12、m>-6且m≠-413、300π解:设底面圆半径为r,圆锥母线长为l,则πr2=100π,∴r=10.又,n=120°,,∴l=30,∴S扇形=S圆锥侧面积=πrl=300π.14、15、解:由(1)可得:x≥3,由(2)可得:x>5,所以x>5.16、解:设裤子单价是x元,上衣原来的单价是y元,依题意得:解得:答:这套服装原来裤子的单价为20元,上衣的单价分别是80元.17、证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵AE=AF,∴Rt△ABE≌Rt△ADF.∴BE=DF.(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF,即CE=CF.∴OE=OF.∵OM=OA,∴四边形AEMF是平行四边形.∵AE=AF,∴平行四边形AEMF是菱形.18、解:(1)∵点 A(-1,m)在直线y=2x-1上,∴m=2×(-1)-1=-3,∴点A的坐标为(-1,-3).∵点A在函数的图象上,∴ k=-1×(-3)=3,∴反比例函数的解析式为.(2)或-1<x<0.(3)∵直线y=2x-1与x轴交于C点,∴当y=0时,,即C点的坐标为.设点P的坐标为(x,0),则.∵△PAC的面积是6,A(-1,-3),,解得,∴点P的坐标为.19、(1)解:所以小明选择的路线有12种.(2)由(1)知道从小明家到外公家共有12条路线,经过B3的路线有3条.∴小明恰好选到经过路线B3的概率是:.20、(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,∴DC是⊙O的切线.(2)解:连接CD,∵∠AED=90°,DE=6,AE=3,.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE...则AC=15(cm).∴⊙O的半径是7.5cm.21、(1)这次共调查了500户家庭,扇形图中a=20%,b=24%.(2)根据题意得:500×14.8%=74,500×24%=120.补全频数分布直方图如下.(3)所调查的500户家庭中计划未来5年内买房的有:由此可以预测该小区在未来五年计划购买第二套住房的家庭有.22、解:(1)延长BA交EF于点G.在Rt△AGE中,∠E=23°,∴∠GAE=67°.又∵∠BAC=38°,∴∠CAE=180°-∠BAC-∠GAE=75°.∴(2)过点A作AH⊥CD,垂足为H.在△ADH中,∠ADC=60°,AD=4,,∴DH=2.,.在Rt△ACH中,∠C=180°-75°-60°=45°,.答:这棵大树折断前高约10米.23、解:(1)①当0≤x<8时,w甲=x(-x+14)-x=-x2+13x;w乙=9(20-x)-[12+3(20-x)]=108-6x∴w=w甲+w乙-3×20=(-x2+13x)+(108-6x)-60=-x2+7x+48;当x≥8时,w甲=6x-x=5x;w乙=9(20-x)-[12+3(20-x)]=108-6x∴w=w甲+w乙-3×20=(5x)+(108-6x)-60=-x+48.∴w关于x的函数关系式为:②当0<x<8时,-x2+7x+48=30,解得x1=9,x2=-2,均不合题意;当x≥8时,-x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的甲类草莓有18吨.(2)设投入资金后,甲类分到收购的草莓为x吨,乙类为y吨,总投入资金为 3(x+y)+x+12+3y=100,即2x+3y=44.当x<8时总利润为x=4时取到最大值48.当x≥8时,总利润为为常数.故方案为收购16吨,甲类分配4吨,乙类分配12吨,总收益为48万元.24、解:(1)C点坐标为(0,5),则c=5.代入点A(-1,0),B(5,0)到y=ax2+bx+5中,得方程组,解得a=-1, b=4抛物线解析式为y=-x2+4x+5.(2)当x=4时,y=-42+4×4+5=5,∴D(4,5).由A(-1,0),D(4,5)得直线AD的解析式为:y=x+1,设P(t,0).∴Q(t,t+1),G(t,-t2+4t+5),∵点Q在线段AD上.,当时,QG最长为.(3)∵直线AD的解析式为:y=x+1,且P(t,0).∴Q(t,t+1),M(2t+1,t+1)当MC=MO时:,∴边长为.当OC=OM时:(2t+1)2+(t+1)2=52,解得∴边长为.当CO=CM时:(2t+1)2+(4-t)2=52,解得.∴边长为,或.(4)当时,正方形的边长为(t+1),故其面积为:s=(t+1)2;当时:;当2≤t≤4时:;当4≤t≤5时:.。

黄冈市中考数学三模试卷

黄冈市中考数学三模试卷

黄冈市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题(满分30分) (共10题;共30分)1. (3分)(2017·黄石港模拟) ﹣的倒数是()A .B .C .D .2. (3分)(2018·高安模拟) 下列运算正确的是()A . a3+a3=2a6B . a6÷a﹣3=a3C . a3a3=2a3D . (﹣2a2)3=﹣8a63. (3分)下列图形中,不一定是轴对称图形的是()A . 圆B . 长方形C . 等腰三角形D . 直角三角形4. (3分)(2020·西青模拟) 若点(x1 ,﹣1),(x2 , 1),(x3 , 2)在反比例函数y=﹣的图象上,则下列各式中正确的是()A . x1<x2<x3B . x2<x3<x1C . x2<x1<x3D . x1<x3<x25. (3分)(2019·五华模拟) 由大小相同的正方体木块堆成的几何体的三视图如图所示,则该几何体中正方体木块的个数是()A . 6个B . 5个C . 4个D . 3个6. (3分)(2017·定安模拟) 分式方程﹣ =0的解为()A . x=1B . x=2C . x=3D . x=47. (3分)(2019·山西模拟) 如图,在的网格中,A,B均为格点,以点A为圆心,以AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是()A .B .C .D .8. (3分) (2016九上·绵阳期中) 如图,圆内接四边形ABCD是正方形,点E是上一点,则∠E的大小为()A . 90°B . 60°C . 45°D . 30°9. (3分) (2018九上·宁县期中) 把抛物线先向右平移3个单位长度,再向下平移5个单位长度后,所得函数的表达式为()A .B .C .D .10. (3分)如图,已知:在▱ABCD中,E、F分别是AD、BC边的中点,G、H是对角线BD上的两点,且BG=DH,则下列结论中不正确的是()A . GF⊥FHB . GF=EHC . EF与AC互相平分D . EG=FH二、填空题(满分30分) (共10题;共30分)11. (3分)(2020·阿城模拟) 据报道,疫情期间自2020年3月1日至4月30日,我国共验放出口主要防疫物资价值71200000000元,请将71200000000用科学记数法表示为________.12. (3分)(2020·无锡模拟) 计算 ________.13. (3分) (2019八下·双鸭山期末) 函数y= –1的自变量x的取值范围是________.14. (3分)(2017·广州模拟) 因式分解:a3﹣a=________.15. (3分)不等式2﹣m<(x﹣m)的解集为x>2,则m的值为________16. (3分)(2019·济宁模拟) 如图,O为Rt△ABC直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E,已知BC= ,AC=3.则图中阴影部分的面积是________.17. (3分)小明与小亮在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中小明出“布”的概率是________18. (3分) (2019九上·天台月考) 某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送2450张照片,如果全班有x名同学,根据题意,列出方程为________19. (3分) (2019八上·新昌期中) 如图,折叠长方形纸片ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm.则△ADE的周长________.20. (3分)(2020·咸宁) 如图,四边形是边长为2的正方形,点E是边上一动点(不与点B,C重合),,且交正方形外角的平分线于点F,交于点G,连接,有下列结论:① ;② ;③ ;④ 的面积的最大值为1.其中正确结论的序号是________.(把正确结论的序号都填上)三、解答题(满分60分) (共7题;共60分)21. (7分) (2012九上·吉安竞赛) 先化简:,当时,再从-2<<2的范围内选取一个合适的整数代入求值.22. (7.0分)如图,在同一个平面内有四个点A,B,C,D.①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.23. (8分) (2017七下·大冶期末) 在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题(其中(1)、(2)直接填答案即可):(1)本次共调查了________名学生;(2)被调查的学生中,最喜爱丁类图书的学生有________人,最喜爱甲类图书的人数占本次被调查人数的________ %;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生2000人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人?24. (8分) (2019七下·揭西期末) 如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2) BE=CE.25. (10分)(2016·北区模拟) 某市为美化城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配成A、B两种园艺造型共60个,摆放于主干街道的两侧,搭配每个造型所需花卉数量的情况如下表所示,结合上述信息,解答下列问题:造型花卉甲乙A8040B5070(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为600元,搭配一个B种造型的成本为800元,试说明选用那种方案成本最低?最低成本为多少元?26. (10.0分)如图(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO= ,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=________°,AB=________.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO= ,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.27. (10.0分) (2017八下·金牛期中) 直线y=﹣ x+3和x轴、y轴的交点分别为B、C,点A的坐标是(﹣,0),另一条直线经过点A、C.(1)求线段AC所对应的函数表达式;(2)动点M从B出发沿BC运动,速度为1秒一个单位长度.当点M运动到C点时停止运动.设M运动t秒时,△ABM的面积为S.①求S与t的函数关系式;②当t为何值时,S= S△ABC ,(注:S△ABC表示△ABC的面积),求出对应的t值;③当t=4的时候,在坐标轴上是否存在点P,使得△BMP是以BM为直角边的直角三角形?若存在,请直接写出P点坐标,若不存在,请说明理由.参考答案一、选择题(满分30分) (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(满分30分) (共10题;共30分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题(满分60分) (共7题;共60分)21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、27-1、。

湖北省黄冈市中考数学三模试卷

湖北省黄冈市中考数学三模试卷

湖北省黄冈市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、单项选择题 (共10题;共20分)1. (2分) (2016七下·邻水期末) 9的平方根为()A . 3B . ﹣3C . ±3D .2. (2分)已知x2+16xy+ky2是一个完全平方式,则k的值是()A . 8B . 16C . 64D . ±643. (2分)(2017·新吴模拟) 2015年10月成立的无锡市新吴区总面积220平方公里,常住人口约55万人,下辖6个街道;2016年末,新吴区实现地区生产总值约1302亿元,用科学记数法表示该地区生产总值应记为()A . 1302×108B . 1.302×103C . 1.302×1010D . 1.302×10114. (2分)已知2x6y2和x3myn是同类项,则2m+n的值是()A . 6B . 5C . 4D . 25. (2分)对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格(60分为及格)人数为()A . 45B . 51C . 54D . 576. (2分)图所给的三视图表示的几何体是()A . 长方体B . 圆柱C . 圆锥D . 圆台7. (2分) (2019八下·云梦期中) 设直角三角形的两条直角边长及斜边上的高分别为a,b及h,则下列关系正确的是()A .B .C .D .8. (2分) (2016七下·宜昌期中) 在下列点中,与点A(,)的连线平行于y轴的是()A . (,﹣4)B . (4,﹣2)C . (﹣2,4)D . (﹣4,2)9. (2分)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△A MN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是()A .B .C .D .10. (2分)函数y=2x-1的图象不经过().A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共6题;共6分)11. (1分)(2017·达州) 因式分解:2a3﹣8ab2=________.12. (1分) (2019八下·东台月考) 当x=________ 时,分式的值为0.13. (1分)已知扇形的圆心角为40°,这个扇形的弧长是π,那么此扇形的面积是________ .14. (1分)某人从A处出发沿北偏东30°方向走了l00米到达B处,再沿北偏西60°方向走了100米到达C处,则他从C处回到A处至少要走________ 米.15. (1分) (2018八上·抚顺期末) 已知△ABC的两条边长分别是2和5,第三边c的取值范围是________.16. (1分) (2020九上·舒兰期末) 如图,将绕着直角顶点顺时针旋转,得到,连接,若,则 ________度.三、简答题 (共8题;共80分)17. (5分)计算:|﹣1|﹣﹣(cos60°)0+4cos45°.18. (5分) (2019九上·平房期末) 先化简,再求代数式的值,其中 .19. (4分)(2020·吉林模拟) 某年级共有 150 名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取 30 名女生进行测试,获得了她们的相关成绩,并对数据进行了整理,下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.66.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4 这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中 m 的值为________;②一分钟仰卧起坐成绩的中位数为________;(2)若实心球成绩达到 7.2 米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数________;②该年级某班体育委员将本班在这次抽样测试中被抽取的 8 名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.17.77.57.57.37.27.0 6.5一分钟仰卧起坐*4247*4752*49其中有 3 名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这 8 名女生中恰好有4 人两项测试成绩都达到了优秀,于是体育委员推测女生 E 的一分钟仰卧起坐成绩达到了优秀,你是否同意体育委员的说法?________(填“是”或“否”).20. (15分) (2016九上·桑植期中) 如图一次函数y=mx+n的图象与反比例函数y= 的图象交于A(﹣4,2)、B(1,a)两点,且与x轴交于点C.(1)试确定上述两个函数的解析式;(2)求△AOB的面积;(3)根据图象写出一次函数的值小于反比例函数的值时x的取值范围.21. (10分)△ABC中,AB=AC,∠BAC=90°,D是BC上一点,F是DE上一点,且EC⊥BC,EC=BD,DF=FE(1)求证:△ABD≌△ACE;(2)若AF=5,求△ADE的面积.22. (11分)(2014·遵义) 为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是________km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?23. (15分)(2018·夷陵模拟) 已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF ,设 =y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.24. (15分)(2019·长春模拟) 已知:如图,△ABC为等边三角形,AB=,AH⊥BC,垂足为点H,点D 在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作⊙P,设AP=x.(1)当x=3时,求⊙P的半径长;(2)如图1,如果⊙P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△PHD与△ABH相似,求x的值(直接写出答案即可).参考答案一、单项选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、简答题 (共8题;共80分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

(湖北卷)2021年中考数学第三次模拟考试-数学(全解全析)

(湖北卷)2021年中考数学第三次模拟考试-数学(全解全析)

2021届九年级第三次模拟考试【湖北卷】数学·全解全析1.【答案】C【解析】电梯上升5层记作+5,那么电梯下降2层,记作−2;故选C . 2.【答案】D 【解析】∵分式x xy2中的x 和y 同时扩大为原来的3倍,∴()23322333x x xx y x y x y⋅⋅==+++,则分式的值保持不变.故选D3.【答案】B【解析】A 、看起来像轴对称图形但不是轴对称图形,也不是中心对称图形,不符合题意; B 、是轴对称图形,不是中心对称图形,符合题意; C 、不是轴对称图形,也不是中心对称图形,不符合题意; D 、不是轴对称图形,也不是中心对称图形,不符合题意; 故选B . 4.【答案】A【解析】这句话中,13个字母“n ”出现了2次,所以字母“n ”出现的频率是213. 故选A . 5.【答案】B【解析】主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形.故选B . 6.【答案】B【解析】(3+2)210⨯=(cm ),故选B . 7.【答案】A 【解析】连接OA ,∵在圆O 中,M 为AB 的中点,AB =8,∴OM ⊥AB ,AM =12AB =4,在Rt △OAM 中,OM =3,AM =4,根据勾股定理得:OA==5.∴MN =5﹣3=2,故选A . 8.【答案】B【解析】39050x x -+<⎧⎨-<⎩①②,解不等式①得:x >3,解不等式②得:x <5,∴不等式组39050x x -+<⎧⎨-<⎩的解集为:3<x <5,∴不等式组的整数解为:4,即x =4,∵这组数据2,4,6,8,4的众数是4,这组数据从小到大排列为:2,4,4,6,8,则这组数据的中位数是4.故选B . 9.【答案】C【解析】过点C 作CD ⊥OA ,∵C 的坐标为(3,4),∴CD =4,OD =3,∵CB ∥AO ,∴B 的纵坐标是4,∴OC =√CD 2+OD 2=5,∴AO =OC =5,∵四边形COAB 是菱形,∴B 的横坐标是8,∴k =8×4=32,∴反比例函数的表达式为.故选C .10.【答案】D【解析】在横坐标上,第一列有一个点,第二列有2个点…第n 个有n 个点, 并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为1111222n n n n n n ---⎛⎫⎛⎫⎛⎫-⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,;偶数列的坐标为11222n n n n n n ⎛⎫⎛⎫⎛⎫-⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,由加法推算可得到第100个点位于第14列自上而下第六行. 代入上式得141452⎛⎫- ⎪⎝⎭,,即()142,. 故选D . 11.【答案】>【解析】∵故答案为>. 12.【答案】3a -.【解析】2933a a a -++=293a a -+=()()33 3a a a +-+=a –3,故答案为:a–3. 13.【答案】98【解析】∵方程有两个相等的实数根,∴240b ac -=,∵2,3,a b c k ==-=, ∴2(3)420k --⨯⨯=,解得:98k =,故答案为:98. 14.【答案】4【解析】如图所示,连接OA 、OB ,∵多边形ABCDEF 是正六边形,∴∠AOB =60°, ∵OA =OB ,∴△AOB 是等边三角形,∴AB =OA =OB =4,故答案为4. 15.【答案】4 【解析】如下图:∵PQ ∥AC ,∴∠QPB =∠ACB ,且∠B 为公共角,∴△BPQ ∽△BCA ,∴3=4=BP BC BQ BA ,设BP =3x ,则BQ =4x ,PQ =5x ,PE =PB =3x ,∵AE 恰好平分∠BAC ,∴∠QAE =∠EAC ,又PQ ∥AC ,∴∠EAC =∠AEQ ,∴∠QAE =∠AEQ ,∴△AQE 为等腰三角形,且AQ =QE =2x , ∴AB =AQ +BQ =2x +4x =6x ,又AB =8,∴6x =8,∴BP =3x =4.故答案为:4. 16.【答案】83【解析】如下图,连CD ,∵AE =3EC ,△ADE 的面积为32,∴△CDE 的面积为12,∴△ADC 的面积为2, 设A 点坐标为(a ,b ),则AB =a ,OC =2AB =2a ,∵点D 为OB 的中点,∴BD =OD =12b , ∵S 梯形OBAC =S △ABD +S △ADC +S △ODC ,∴12(a +2a )×b =12a ×12b +2+12×2a ×12b ,∴ab =83,把A (a ,b )代入双曲线y =k x得,∴k =ab =83.故答案为:83.17.【解析】2a ·(a +1)– a (3a –2)+2a 2 (a 2–1) =2a 2+2a – 3a 2+2a +2a 4 –2a 2=2a 4 –3a 2+4a . 18.【解析】(1)证明:∵DE ∥BC ,∴∠ADE =∠B ,∵CD ⊥AB ,EF ⊥CD ,∴AB ∥EF , ∴∠B =∠EFC ,∴∠ADE =∠EFC ;(2)解:∵∠ACB =72°,∠A =60°,∴∠B =180°-72°-60°=48°, ∵CD ⊥AB ,∴∠BDC =90°,∴∠DCB =90°-48°=42°.19.【解析】()1九()1班5位同学的成绩为:75、80、85、85、100,∴其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,∴九()2班的平均数为70100100758085(5++++=分),其众数为100分,补全表格如下:()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,∴在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,∴九()1班的成绩更稳定,能胜出.20.【解析】(1)证明:∵四边形ABCD 是菱形∴AB =CD ,AB ∥CD 又∵BE =AB , ∴BE =CD ,BE ∥CD∴四边形BECD 是平行四边形(2)解:∵四边形BECD 是平行四边形,∴BD ∥CE , ∵四边形ABCD 是菱形,∴AC ⊥BD , ∴AC ⊥CE ,∴∠ACE =90° ,∵Rt △ACE 中,∠E =60°,AC ∴∠EAC =30°,∴AE =2CE , 设CE =x ,AE =2x ,由题意得:(2x )2– x 22,解得x =1(负值舍去),∴CE =1,AE =2, ∵四边形BECD 是平行四边形,∴BD =CE =1,∴菱形ABCD 的面积=111222CE BD ⋅⋅=⨯=.21.【解析】(1)连接OE ,OF ,如图1所示:∵EF ⊥AB ,AB 是⊙O 的直径,∴BE BF =,∴∠DOF =∠DOE , ∵∠DOE =2∠A ,∠A =30°,∴∠DOF =60°,∵∠D =30°,∴∠OFD =90°.∴OF ⊥F D .∴FD 为⊙O 的切线; (2)连接OM .如图2所示:∵O 是AB 中点,M 是BE 中点, ∴OM ∥AE .∴∠MOB =∠A =30°.∵OM 过圆心,M 是BE 中点,∴OM ⊥BE .∴MB =12OB =1,OM =.∵∠DOF =60°,∴∠MOF =90°.∴MF ==22.【解析】(1)设乙型净水器的进价为x 元/台,则甲型净水器的进价为(x +200)元/台,∵用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等, ∴5000045000200x x=+,解得:x =1800,经检验:x =1800是原分式方程的解, ∴x +200=2000,答:甲型净水器的进价为2000元/台,乙型净水器的进价为1800元/台. (2)设购进甲型净水器x 台,则购进乙型净水器为(50–x )台, ∵计划花费不超过9.8万元购进两种型号的净水器共50台进行销售, ∴2000x +1800(50–x )≤98000,解得:x ≤40,∵x 为整数,∴0≤x ≤40,∵该公司售完50台净水器并捐献扶贫资金后获得的利润为W 元, ∴W =(2500–2000–a )x +(2200–1800)(50–x )=(100–a )x +20000, ∵70<a <80,∴100–a >0,∴W 随x 的增大而增大, ∴当x =40时,W 有最大值24000–40A . 23.【解析】(1)问题发现:∵∠B =90°,AB =2,BC =6,∴AC =∵点D ,E 分别是边BC ,AC 的中点,∴AE =EC ,BD =CD =3,∴3AE BD =,故答案为:3; (2)无变化;证明如下:∵点D ,E 分别是边BC ,AC 的中点, ∴由旋转的性质,12CE CD CA CB ==,ECD ACB ∠=∠, ∵ECA ECD α∠=∠+,DCB ACB α∠=∠+, ∴ECA DCB ∠=∠,∴ECA DCB ∆∆∽,∴AB CE BD CD ==(3)如图③,∵点D ,E 分别是边BC ,AC 的中点, ∴DE =12AB =1,DE ∥AB ,∴∠CDE =∠B =90°, ∵将△EDC 绕点C 顺时针方向旋转,∴∠CDE =90°=∠ADC ,∴AD ==AE =AD +DE 1;如图④,由上述可知:AD==∴1AE AD DE =-=;24.【解析】(1)将A 、C 两点坐标代入抛物线,得8436609c b c =⎧⎪⎨-⨯++=⎪⎩,解得:438b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为y =﹣49x 2+43x +8; (2)①∵OA =8,OC =6,∴AC,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB =QE QC =AB AC =35, ∴10QE m -=35,∴QE =35(10﹣m ),∴S =12•CP •QE =12m ×35(10﹣m )=﹣310m 2+3m ;②∵S =﹣310m 2+3m =﹣310(m ﹣5)2+152,∴当m =5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形, ∵抛物线的解析式为y =﹣49x 2+43x +8的对称轴为x =32, ∴D 的坐标为(3,8), ∵CP =AQ =5,∴CQ =5, 过Q 点作QG ⊥x 轴, ∴sin ∠ACO =AO QG AC CQ ==45,即455QG =, ∴QG =4,∴CG3=,∴OG =CO –CG =3,∴Q (3,4),设F (32,n ), 当∠FDQ =90°时,则F 在直线AB 上,∴F 1(32,8), 当∠FQD =90°时,则F 的纵坐标与Q 点纵坐标相同,∴F 2(32,4), 当∠DFQ =90°时,设F (32,n ),则FD 2+FQ 2=DQ 2,即94+(8﹣n )2+94+(n ﹣4)2=16,解得:n ,∴F 3(32,,F 4(32,6,满足条件的点F 共有四个,坐标分别为F 1(32,8),F 2(32,4),F 3(32,,F 4(32,6.。

湖北省黄冈市启黄中学九年级数学第三次模拟考试试题

湖北省黄冈市启黄中学九年级数学第三次模拟考试试题

ABB 1A 1 P Q ·5㎝B CAD E 黄冈市启黄中学初三第三次模拟考试数 学 试 题一、选择题(本大题共8题,每小题3分,共24分) 1、计算3(2)x x ÷的结果正确的是( )A. 28xB. 26xC. 38xD. 36x2、“天上星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( )A .2070010⨯ B .23710⨯C .230.710⨯D .22710⨯3、函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠4、在平面直角坐标系中,已知线段AB 的两个端点分别是A(4 ,-1),B(1,1), 将线段AB 平移后得到线段A 'B',若点A'的坐标为 (-2 , 2 ) ,则点 B'的坐标为( ) A .( -5 , 4 ) B . ( 4 , 3 ) C . ( -1 , -2 ) D .(-2,-1)5、如图,△ABC 的周长为30cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD ,若AE =4cm ,则△ABD 的周长是( ) A .22cm B .20 cm C .18cm D .15cm6、一个几何体的三视图如图所示:其中主视图和左视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( )A .2πB .12πC . 4πD .8π7、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32B .76C .256D . 28、正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin ∠EAB 的值为( )A .43B .34 C .45D .35二、填空题(本大题共8题,每小题3分,共24分)9、分解因式:2x 2-12x +18= .10、若222817a b a b +=--,则212ab ⎛⎫= ⎪⎝⎭.11、已知21+=m ,21-=n ,则代数式mn n m 322-+的值为 .12、如图,梯形ABCD 中,AD BC ∥,90C ∠=,4AB AD ==,6BC =,以A 为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是 .13、填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是 .14、如图所示,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高是 .15、如图,已知圆柱的高为80cm ,底面半径为20πcm ,轴截面上有两点P 、Q ,PA =40cm,BQ =30cm ,则圆柱的侧面上P 、Q 两点的最短距离是 .16、在直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x轴于点B ,斜4 2 2 4主视图左视图俯视图A DD 40302010y xC B A O CD A BC D E ABCED(0)ky x x=>的图像经过AO 的边4105AO AOB =∠=,sin ,反比例函数中点C ,且与AB 交于点D,则点D 的坐标为 . 三、解答题(本大题共9道题,共72分)17、(本小题满分5分)解不等式组,并将其解集在数轴上表示出来.3,273(1)8.x x x x -⎧≤⎪⎨⎪-->-⎩18、(本小题满分6分)小明家、王老师家、学校依次在同一条路上.小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小明的父母在外地工作,为了使小明能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,接小明上学时每天比平时步行上班多用了20分钟.问王老师的步行速度及骑自行车的速度各是多少?19、(本小题满分6分)如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D重合,连结BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.20、(本小题满分6分)物理兴趣小组20位同学在实验操作中的得分情况如下表: 得分(分) 10 9 8 7 人数(人)5843问:(1)求这20位同学实验操作得分的众数、中位数. (2)这20位同学实验操作得分的平均分是多少?(3)将此次操作得分按人数制成如图所示的扇形统计图,扇形①的圆心角度数是多少?21、(本小题满分8分)“五·一”假期,某公司组织部分员工分别到A 、B 、C 、D 四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题: (1)若去D 地的车票占全部车票的10%,请求出D 地 车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A 地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?22、(本小题满分7分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上 走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:3,AB =10米,AE =15米,求这块宣传 牌CD 的高度.(测角器的高度忽略不计,结果 精确到0.1米.参考数据:2≈1.414,3≈1.732)23、(本小题满分8分)如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC .(1)求证:CA 是圆的切线; (2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆的直径.24、(本小题满分12分)黄冈市英山县有一个茶叶厂,该厂的茶叶主要有两种销售方式,一种方式是卖给茶叶经销商,另一种方式是在各 超市的柜台进行销售,每年该厂生产的茶叶都可 以全部销售,该茶叶厂每年可以生产茶叶100万盒,其中,卖给茶叶经销商每盒茶叶的利润 y 1(元)与销售量x (万盒)之间的函数图 如图所示;在各超市柜台销售的每盒利 润y 2(元)与销售量x (万盒)之间的函数关系为:2380(040)440(40100)x x y x ⎧-+≤<⎪=⎨⎪≤≤⎩厂卖给茶叶经销商的销售总利润1z (万(1)写出该茶叶元)与其销售量x (万盒)之间的函数关系式,并指出x 的取值范围;1()y 元x (万盒) 06040 50100(2)求出该茶叶厂在各超市柜台销售的总利润2z (万元)与卖给茶叶经销商的销售量x (万盒)之间的函数关系式,并指出x 的取值范围;(3)求该茶叶厂每年的总利润w (万元)与卖给茶叶经销商的销售量x (万盒)之间的函数关系式,并帮助该茶叶厂确定卖给茶叶经销商和在各超市柜台的销量各为多少万盒时,该公司的年利润最大?25、(本小题满分14分)已知抛物线y =ax 2+bx +c (a >0)的图象经过点B (14,0)和C (0,-8),对称轴为x =4.(1)求该抛物线的解析式;(2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由; (3)在(2)的结论下,直线x =1上是否存在点M 使△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标,若不存在,请说明理由.黄冈市启黄中学初三第三次模拟考试数学参考答案1.A2.D3.B4.A5.A6.C7.B8.D9.22(3)x - 10.4 11.3 12.4π 13.15814. 4 15.10516.(6,2) 17、-3≤x <1,(数轴略) 18、解:设王老师步行速度为x 千米/小时,则骑车速度为3x 千米/小时,依题0.51 6.533x x+=, 意得:1.5+x=6.5,解得x=5. 经检验:x=5是原分式方程的解,所以 3x=15.答:王老师步行速度为5千米/小时,骑车速度为15千米/小时.19、解:BE =EC ,BE ⊥EC ,理由如下: ∵AC=2AB ,点D 是AC 的中点,∴AB=AD=CD. ∵∠EAD=∠EDA=45°,∴∠EAB=∠EDC=135°. ∵EA=ED ,∴△EAB ≌△EDC ,∴∠AEB=∠DEC ,EB=EC ,∴∠BEC=∠AED=90°,∴BE=EC ,BE ⊥EC.20、(1)众数:9 中位数:9(2)这20位同学实验操作得分的平均分为:1059884738.7520⨯+⨯+⨯+⨯=(3)扇形①的圆心角度数是:(1-20%-25%-40%)×360°=54°21、解:(1)设D 地车票有x 张,则x =(x +20+40+30)×10%, 解得x =10.即D 地车票有10张 (2)小胡抽到去A 地的概率为2020403010+++=15.(3)以列表法说明(下表)或者画树状图法说明(如下图)小李掷得数字 小王掷 得数字1 2 3 41 (1,1) (1,2) (1,3) (1,4)(1202540)--- 2 (2,1) (2,2) (2,3) (2,4)3 (3,1) (3,2) (3,3) (3,4) 4(4,1) (4,2) (4,3) (4,4)由此可知,共有16种等可能结果.其中小王掷得数字比小李掷得数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴小王掷得数字比小李掷得数字小的概率为616=38.则小王掷得数字不小于小李掷得数字的概率为318-=58.∵38≠58,∴这个规则对双方不公平. 22、解:过B 作BF CE ⊥于F ,BG AE ⊥于G ,∵AB 的坡度1:3i =, ∴13BG AG =,即3tan 3BAG ∠=,∴30BAG ∠=︒,∵AB =10,∴135,5322BG AB AG AB ====, ∴1553EG AE AG =+=+. 在Rt △BCF 中,45CBF ∠=︒,∴155 3.CF BF EG ===+ 在Rt △ADE 中,60DAE ∠=︒,∴3153DE AE ==,∴1535DF DE EF =-=-, ∴1553(1535) 2.7CD CF DF =-=+--≈. y DxBOAP QC23、解: (1)∵BC 是直径,∴∠BDC =90°,∴∠ABC +∠DCB=90°,∵∠ACD =∠ABC ,∴∠ACD +∠DCB=90°,∴BC ⊥CA ,∴CA 是圆的切线. (2)在Rt △AEC 中,tan ∠AEC=53,∴53AC EC =,35EC AC =; 在Rt △ABC 中,tan ∠ABC =23,∴23AC BC =,32BC AC =;∵BC -EC=BE ,BE =6,∴33625AC AC -=,解得AC =203, ∴BC=3201023⨯=.即圆的直径为10. 24、解:(1)1250(050)165(60100)4x x z x x x ⎧⎪=⎨-+<⎪⎩≤≤≤;(2)240(060)35(60100)4x y x x ⎧⎪=⎨+<⎪⎩≤≤≤,∴222400040(060)(100)370500(60100)4x x z x y x x x -⎧⎪=-=⎨-++<⎪⎩≤≤≤(3)1° 当060x ≤≤时,50400040104000W x x x =+-=+.∵10>0,∴W 随x 的增大而增大,∴当x =60时,max 4600W =万元.2° 当60100x <≤时,2222131356570500135500()5056.25442W x x x x x x x =-+-++=-++=--+, ∵10-<且x 为正整数,∴当x =67或68时,max 5056W =,∵4600>5056 ∴当x =67或68时,年利润最大,∴当卖给茶叶经销商37万盒,在各超市柜台销售67万盒或卖给茶叶经销商32万盒,在各超市柜台销售68万盒时,该公司的年利润最大. 25、(1)221682121y x x =--; (2)存在,理由如下: ∵CD 垂直平分PQ ,∴PDC QDC ∠=∠,∵AD AC =,∴ADC ACD ∠=∠,∴QDC ACD ∠=∠, ∴AC DQ ,在Rt △AOC 中,2210AC AO CO =+,AD =10. 又AO =6,∴OD =4,∴D 在对称轴上,根据对称性可知AD=BD ,又AC DQ ,∴Q 为BC 的中点,∴12CQ BC =.在Rt △BOC 中,22265BC OC OB +,∴65CQ D 、Q 为AB 、BC 的中点,∴152DQ AC ==. ∵DPQ DQP ∠=∠,∴5PD DQ ==,∴ 5.AP AD PD =-=∴51APt ==,∴65Q CQ v t == (3)设(1,)M y ,∴222222(11)(0)4,6(4)852, 5.PM y y QM y y y PQ =++-+++++=1° 当PQ=PM 时,2454y +,∴219y =±12(1,219),(1,19).M M -2° 当PQ=QM 时,245852y y ++,∴4211y =-±34(1,4211),(1,4211).M M -+-- 3° 当PM=QM 时,6y =-,∴5(1,6)M -综上所述:存在5个M 点,即12345(1,219),(1,219),(1,4211),(1,4211),(1,6).M M M M M --+---。

湖北省黄冈市九年级数学第三次模拟试题(扫描版)

湖北省黄冈市九年级数学第三次模拟试题(扫描版)

湖北省黄冈市2016届九年级数学第三次模拟试题答案:一.选择题1.B;2.C;3.A;4.D;5.A;6.B;二.填空题7. x≥2且x≠3; 8. a(a﹣3b)(a+3b); 9. 2.5×10﹣6;10. x=﹣1; 11. 4; 12. 30°; 13. ﹣1或﹣; 14. 6.4;三.解答题15. 解:解不等式①得:x≤2,解不等式②得:x>0,∴不等式组的解集为:0<x≤2,在数轴上表示不等式组的解集为:.16. 解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.17. (1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,OB=OD,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠B HF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.18. 解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.19. 解:(1)∵直线y=2x+b经过点A(﹣1,0),∴0=﹣2+b,解得b=2,∴直线的解析式为y=2x+2,由直线的解析式可知B(0,2),∵OB=OD=2,∴D(2,0),把x=2代入y=2x+2得,y=2×2+2=6,∴C(2,6),∵反比例函数y=(x>O)经过点C,∴k=2×6=12;(2)S△BDC=DC×OD=×6×2=6;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,∵B(0,2),D(2,0),∴直线BD的解析式为y=﹣x+2,∴直线CP的解析式为y=﹣x+2+6=﹣x+8,解得或,∴P点坐标为(6,2).20. (1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BO P,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.21. 解:(1)∵甲组的成绩为:2,5,5,5,5,5,6,7,8,9.∴甲组中位数为5,∵乙组的成绩为:5,5,6,7,7,8,8,8,8,9.∴乙组众数为8故答案分别为5,8.(2)∵小明的成绩为7分属中游略偏上,甲组的中位数是5,∴小明在甲组.故答案为甲.(3)∵S=3,41,S=1.69,∴>,∴乙成绩稳定.故答案为乙.(4)从平均分、中位数、众数、方差来看乙的成绩优于甲.从合格率来看甲的成绩优于乙.22. 解:(1)当PA=45cm时,连结PO.∵D为AO的中点,PD⊥AO,∴PO=PA=45cm.∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36cm,PC==27cm;(2)当∠AOC=120°,过D作DE⊥OC交BO延长线于E,过D作DF⊥PC于F,则四边形DECF是矩形.在Rt△DOE中,∵∠DOE=60°,DO=AO=12,∴DE=DO•sin60°=6,EO=DO=6,∴FC=DE=6,DF=EC=EO+OB+BC=6+24+12=42.在Rt△PDF中,∵∠PDF=30°,∴PF=DF•tan30°=42×=14,∴PC=PF+FC=14+6=20≈34.68>27,∴点P在直线PC上的位置上升了.23. 解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=741(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.24. 解:(1)∵抛物线y=﹣x2+mx+n经过点A(0,3),B(2,3),∴,解得:,∴抛物线的解析式为:y=﹣x2+x+3.令y=0,即﹣x2+x+3=0,解得x=6或x=﹣4,∵点C位于x轴正半轴上,∴C(6,0).(2)当正方形的顶点F恰好落在线段AC上时,如图1所示:设OE=x,则EF=x,CE=OC﹣OE=6﹣x.∵EF∥OA,∴△CEF∽△COA,∴=,即=,解得x=2.∴OE=2.(3)存在满足条件的t.理由如下:如答图2所示,易证△CEM∽△COA,∴=,即=,得ME=2﹣t.过点M作MH⊥DN于点H,则DH=ME=2﹣t,MH=DE=2.易证△MHN∽△COA,∴=,即=,得NH=1.∴DN=DH+HN=3﹣t.在Rt△MNH中,MH=2,NH=1,由勾股定理得:MN=.当△DMN是等腰三角形时,分三种情况:①若DN=MN,则3﹣t=,解得t=6﹣2;②若DM=MN,则DM2=MN2,即22+(2﹣t)2=()2,解得t=2或t=6(不合题意,舍去);③若DM=DN,则DM2=DN2,即22+(2﹣t)2=(3﹣t)2,解得t=1.综上所述,当t=1或2或6﹣2时,△DMN是等腰三角形.(4)当正方形DEFG与△ABC的重叠部分为五边形时,如答图3所示:设EF、DG分别与AC交于点M、N,由(3)可知:ME=2﹣t,DN=3﹣t.设直线BC的解析式为y=kx+b,将点B(2,3)、C(6,0)代入得:,解得,∴y=﹣x+.设直线BC与EF交于点K,∵x K=t+2,∴y K=﹣x K+=﹣t+3,∴FK=y F﹣y K=2﹣(﹣t+3)=t﹣1;设直线BC与GF交于点J,∵y J=2,∴2=﹣x J+,得x J=,∴FJ=x F﹣x J=t+2﹣=t﹣.∴S=S正方形DEFG﹣S梯形MEDN﹣S△FJK=DE2﹣(ME+DN)•DE﹣FK•FJ=22﹣[(2﹣t)+(3﹣t)]×2﹣(t﹣1)(t﹣)=﹣t2+2t﹣.过点G作GH⊥y轴于点H,交AC于点I,则HI=2,HJ=,∴t的取值范围是:2<t<.∴S与t的函数关系式为:S=﹣t2+2t﹣(2<t<).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省黄冈中学2015年九年级数学第三次模拟考试试题分数:120分时间:120分钟第Ⅰ卷选择题一、选择题(共7小题,每小题3分,满分21分)1、-2的倒数是()A.2 B.-2C.0 D.2、下列运算正确的是()A. B.C.x6÷x3=x2D.(x3)2=x53、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50° B.55°C.60° D.65°4、下列左图所示的立体图形的主视图是()5、把二次函数y=ax2+bx+c的图像向左平移4个单位或向右平移1个单位后都会经过原点,则二次函数图像的对称轴与x轴的交点是()A.(-2.5,0) B.(2.5,0)C.(-1.5,0) D.(1.5,0)6、设a,b是方程x2+x-2010=0的两个实数根,则a2+2a+b的值为()A.2007 B.2008C.2009 D.20107、如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作□ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作□A1B1A2C2;…;按此作法继续下去,则C n的坐标是()A. B.C.D.第Ⅱ卷非选择题二、填空题(共7小题,每小题3分,满分21分)8、分解因式:2ab2-8a=__________.9、函数中自变量的取值范围是__________;10、如图,⊙O的直径CD垂直于弦AB,∠AOC=40°,则∠CDB的度数为__________.11、如图,在菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD的中点,若S△AEF=4,则S五边形EBCDF=_____________.12、已知关于x的方程的解是正数,则m的取值范围为____________.13、圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为____________.14、如图,在平面直角坐标系中,0为坐标原点,点A的坐标为(-4,0),直线BC经过点B(-4,3),C(0,3),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤l80°)得到四边形OA′B′C′,此时直线OA′、直线B′C′,分别与直线BC相交于P,Q.在四边形OABC旋转过程中,若,则点P的坐标为__________.三、解答题(共10小题,满分78分)15、(5分)解不等式组:.并在数轴上表示出不等式组的解集.16、(本小题满分6分)黄州商场新进一种服装,每套服装售价100元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价和比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少?17、(本小题满分7分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,BE=DF.(1)求证:AE=AF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF 是什么特殊四边形?并证明你的结论.18、(本小题满分7分)如图,直线y1=2x-1与反比例函数的图象交于A,B两点,与x轴交于C点,已知点A的坐标为(-1,m).(1)求反比例函数的解析式;(2)根据函数图象可知,当y1>y2时,则x的取值范围是__________.(3)若P是x轴上一点,且满足△PAC的面积是6,求点P的坐标.19、(本小题满分7分)小明在春节期间去给爷爷、奶奶和外公、外婆拜年,小明从家里去爷爷家有A1、A2、A3三条路线可走,从爷爷家去外公家有B1、B2、B3、B4四条路线可走,如果小明随机选择一条从家里出发先到爷爷家给爷爷、奶奶拜年,然后再从爷爷家去外公家给外公、外婆拜年.(1)画树状图分析小明所有可能选择的路线.(2)若小明恰好选到经过路线B3的概率是多少?20、(本小题满分8分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM 交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.21、(本小题满分9分)某小区共有5000个家庭,为了了解辖区居民的住房情况,居民委员会随机调查了本辖区内一定数量的家庭的住房面积,并将调查的资料绘制成直方图和扇形图.(m~n中含右端点,不含左端点)请你根据以上不完整的直方图和扇形图提供的信息,解答下列问题:(1)这次共调查了多少个家庭的住房面积?扇形图中的a、b的值分别是多少?(2)补全频数分布直方图;(3)被调查的家庭中,在未来5年内,计划购买第二套住房的家庭统计如下表:40~70~100130~>160 根据这次调查,估计本小区在未来的5年内,共有多少个家庭计划购买第二套住房?22、(本小题满分7分)如图,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.(1)求∠CAE的度数?(2)这棵大树折断前的高度?(结果精确到个位,参考数据:).23、(本小题满分10分)2015年年初,南方草莓进入采摘旺季,某公司经营销售草莓的业务,以3万元/吨的价格向农户收购后,分拣成甲、乙两类,甲类草莓包装后直接销售,乙类草莓深加工后再销售.甲类草莓的包装成本为1万元/吨,当甲类草莓的销售量x<8吨时,它的平均销售价格为y(万元/吨)且y=-x+14,当甲类草莓的销售量x≥8吨时,它的平均销售价格为6万元/吨;乙类草莓深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系为s=12+3t,平均销售价格为9万元/吨.(1)某次该公司收购了20吨的草莓,其中甲类草莓有x吨,经营这批草莓所获得的毛利润为w万元;①求w与x之间的函数关系;②若该公司获得了30万元的毛利润,求用于销售甲类的草莓有多少吨?(2)在某次收购中,该公司准备投入100万元资金(注:投入资金=收购费用+包装费用+深加工费用),请你设计一种经营方案,使该公司获得最大的毛利润,并求出最大的毛利润.24、(本小题满分12分)已知抛物线y=ax2+bx+c交x轴于点A(-1,0)、B(5,0),交y轴于点C(0,5),点D是该抛物线上一点,且点D的横坐标为4,连BD,点P是线段AB 上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).(1)求抛物线解析式;(2)若点Q在线段AD上时,延长PQ与抛物线交于点G,求t为何值时,线段QG最长.(3)在AB上是否存在点P,使△OCM为等腰三角形?若存在,求正方形PQMN 的边长;若不存在,请说明理由;(4)设正方形PQMN与△ABD重叠部分面积为s,求s与t 的函数关系式.答案与解析:1、D2、B3、C ∵l1∥l2,∴∠2=∠4,又∵∠1=∠5,∠3+∠4+∠5=180°,∴∠3=180°-55°-65°=60°.4、A5、D 解:依题意可得抛物线与x轴交点分别为(4,0),(-1,0),且对称轴与x轴交点为两交点的中点,,∴选D.6、C 解:依题意,a2+a-2010=0,a+b=-1,∴a2+2a+b=a2+a+(a+b)=2010+(-1)=2009.7、C 解:依题意,在Rt△AOB中,∵∠AOB=60°,AO=1,,又∵平行四边形ABA1C1中,A1C1=AB,,在直角三角形A1A=3,A1O=4. 同理依次可推理得A2O=16=42,,A3O=43,,……,∴A n O=4n,.8、2a(b+2)(b-2)9、x≥3且x≠6解:依题意,可得x≥3且x2-36≠0,∴x≥3且x≠6.10、20°解:∵CO⊥AB,,∴∠AOC=2∠CDB,∴∠CDB=20°.11、28解:连接BD,∵E,F分别是AB,AD的中点,且EF∥BD.∴△ABD∽△AEF,∴S△ABD=4S△AEF=16,又∵在菱形ABCD中,∠BAD=60°,∴S△ABD=S△BCD,∴S五边形EBCDF=S△ABD+S△BCD-S△AEF=28.12、m>-6且m≠-413、300π解:设底面圆半径为r,圆锥母线长为l,则πr2=100π,∴r=10.又,n=120°,,∴l=30,∴S扇形=S圆锥侧面积=πrl=300π.14、15、解:由(1)可得:x≥3,由(2)可得:x>5,所以x>5.16、解:设裤子单价是x元,上衣原来的单价是y元,依题意得:解得:答:这套服装原来裤子的单价为20元,上衣的单价分别是80元.17、证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵AE=AF,∴Rt△ABE≌Rt△ADF.∴BE=DF.(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF,即CE=CF.∴OE=OF.∵OM=OA,∴四边形AEMF是平行四边形.∵AE=AF,∴平行四边形AEMF是菱形.18、解:(1)∵点 A(-1,m)在直线y=2x-1上,∴m=2×(-1)-1=-3,∴点A的坐标为(-1,-3).∵点A在函数的图象上,∴ k=-1×(-3)=3,∴反比例函数的解析式为.(2)或-1<x<0.(3)∵直线y=2x-1与x轴交于C点,∴当y=0时,,即C点的坐标为.设点P的坐标为(x,0),则.∵△PAC的面积是6,A(-1,-3),,解得,∴点P的坐标为.19、(1)解:所以小明选择的路线有12种.(2)由(1)知道从小明家到外公家共有12条路线,经过B3的路线有3条.∴小明恰好选到经过路线B3的概率是:.20、(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,∴DC是⊙O的切线.(2)解:连接CD,∵∠AED=90°,DE=6,AE=3,.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE...则AC=15(cm).∴⊙O的半径是7.5cm.21、(1)这次共调查了500户家庭,扇形图中a=20%,b=24%.(2)根据题意得:500×14.8%=74,500×24%=120.补全频数分布直方图如下. (3)所调查的500户家庭中计划未来5年内买房的有:由此可以预测该小区在未来五年计划购买第二套住房的家庭有.22、解:(1)延长BA交EF于点G.在Rt△AGE中,∠E=23°,∴∠GAE=67°.又∵∠BAC=38°,∴∠CAE=180°-∠BAC-∠GAE=75°.∴(2)过点A作AH⊥CD,垂足为H.在△ADH中,∠ADC=60°,AD=4,,∴DH=2.,.在Rt△ACH中,∠C=180°-75°-60°=45°,.答:这棵大树折断前高约10米.23、解:(1)①当0≤x<8时,w甲=x(-x+14)-x=-x2+13x;w乙=9(20-x)-[12+3(20-x)]=108-6x∴w=w甲+w乙-3×20=(-x2+13x)+(108-6x)-60=-x2+7x+48;当x≥8时,w甲=6x-x=5x;w乙=9(20-x)-[12+3(20-x)]=108-6x∴w=w甲+w乙-3×20=(5x)+(108-6x)-60=-x+48.∴w关于x的函数关系式为:②当0<x<8时,-x2+7x+48=30,解得x1=9,x2=-2,均不合题意;当x≥8时,-x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的甲类草莓有18吨.(2)设投入资金后,甲类分到收购的草莓为x吨,乙类为y吨,总投入资金为 3(x+y)+x+12+3y=100,即2x+3y=44.当x<8时总利润为x=4时取到最大值48.当x≥8时,总利润为为常数.故方案为收购16吨,甲类分配4吨,乙类分配12吨,总收益为48万元.24、解:(1)C点坐标为(0,5),则c=5.代入点A(-1,0),B(5,0)到y=ax2+bx+5中,得方程组,解得a=-1, b=4 抛物线解析式为y=-x2+4x+5.(2)当x=4时,y=-42+4×4+5=5,∴D(4,5).由A(-1,0),D(4,5)得直线AD的解析式为:y=x+1,设P(t,0).∴Q(t,t+1),G(t,-t2+4t+5),∵点Q在线段AD上.,当时,QG最长为.(3)∵直线AD的解析式为:y=x+1,且P(t,0).∴Q(t,t+1),M(2t+1,t+1)当MC=MO时:,∴边长为.当OC=OM时:(2t+1)2+(t+1)2=52,解得∴边长为.当CO=CM时:(2t+1)2+(4-t)2=52,解得.∴边长为,或.(4)当时,正方形的边长为(t+1),故其面积为:s=(t+1)2;当时:;当2≤t≤4时:;当4≤t≤5时:.。

相关文档
最新文档