北师大版七年级下册数学讲义(4)
北师版七年级数学下同步经典讲义(最新版;可直接打印)
第1讲 幂的运算知识点1 同底数幂的乘法1.同底数幂的乘法(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.(m ,n 是正整数)(2)推广:(m ,n ,p 都是正整数)在应用同底数幂的乘法法则时,应注意:①底数必须相同,如与,与,与等;②可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.【典例】1.如果a 2n﹣1•a n+2=a 7,则n 的值是____【方法总结】本题考查了同底数幂的乘法,熟记同底数幂相乘,底数不变指数相加是解题的关键.根据同底数幂的乘法的性质,底数不变,指数相加,确定积的次数,再列方程即可求得m 的值.⎧⎪⎪⎨⎪⎪⎩同底数幂的乘法幂的乘方幂的运算积的乘方同底数幂的除法m n m n a a a +⋅=m n p m n p a a a a ++⋅⋅=3252()322a b ()422a b ()2x y -()3x y -a【随堂练习】1.若(a﹣b)•(a﹣b)3•(a﹣b)m=(a﹣b)11,则m的值为____【典例】1.已知a m=3,a n=6,a k=4,求a m+n+k的值.【方法总结】本题主要考查同底数幂的乘法法则逆用,熟练掌握性质并灵活运用是解题的关键,先根据同底数幂的乘法的运算法逆用,将a m+n+k变形为a m•a n•a k,然后将a m=3,a n=6,a k=4,代入a m•a n•a k,求解即可.【随堂练习】1.若3x+1=a,3y﹣1=b,则3x+y=____【典例】1.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013①,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014②将②减去①得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【方法总结】此题考查了同底数幂的乘法,弄清题中的技巧是解本题的关键.解答此题常用的方法是“a 倍的错位相减”即可求解.如:求1+a+a2+a3+a4+…+a n(a不等于0)的和.解:设S=1+a+a2+a3+a4+…+a n①,两边同时乘a得:aS=a+a2+a3+a4+…+a n+a n+1②,②﹣①得:aS﹣S=a n+1﹣1,即S=(a n+1﹣1),则1+a+a2+a3+a4+…+a n=(a n+1﹣1).注意:将①式乘以a得到②式,然后运用②﹣①,就是运用“a倍的错位相减”法.【随堂练习】1.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S-S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+9+92+93+…+92018的值是_____知识点2 幂的乘方1.幂的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.【典例】1.若81x=312,则x=__________.【方法总结】本题考查了幂的乘方的应用,关键是把原式化成底数相同的形式.先根据幂的乘方法则把81x化成34x,即可得出4x=12,解方程即可求解.【随堂练习】1.若(9m+1)2=316,则正整数m的值为_____【典例】1.已知3x=a,3y=b,则32x+3y=_____【方法总结】本题主要考查幂的乘方与积的乘方,要熟练掌握幂的乘方法则(底数不变,指数相乘)和积的乘方法则(把每一个因式分别乘方,再把所得的幂相乘).将32x+3y转化为(3x)2•(3y)3是解答本题的关键.【随堂练习】1.若2x+5y+3=0,则4x•32y的值为____【典例】1.比较3555,4444,5333的大小.【方法总结】本题主要考查了幂的大小比较的方法.一般说来,比较几个幂的大小,可以把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.【随堂练习】1.已知a=1621,b=3231,c=841,则a,b,c的大小关系为_____(用<连接)2. a=5140,b=3210,c=2280,则a、b、c的大小关系是______(用<连接)知识点3 积的乘方1.积的乘方(1)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n•b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【典例】1.用简便方法计算下列各题:(1)()2016×(﹣1.25)2017(2)(2)10×(﹣)10×()11.【方法总结】此题主要考查了积的乘方运算,利用底数转化法进行幂的运算是解题关键,如(1)中底数分别是和﹣,乘积正好是-1;如(2)中底数分别是、﹣、,乘积正是-1,-1的偶次幂是1,-1的奇次幂是-1,运算较为便捷.【随堂练习】1.计算()2016×(﹣)2017的结果是____2.计算(﹣)2017×(2)2016的结果是_____【典例】1.(1)已知a n=3,b n=5,求(a2b)n的值;(2)若2n=3,3n=4,求36n.【方法总结】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方法则:底数不变,指数相乘和积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.如(1)中,需要将(a2b)n转变为(a n)2 •b n,(2)中,需要将36n转变为(2n×3n)2.【随堂练习】1. 已知a2n=,b n=3,则(ab)4n的值为().知识点4 同底数幂的除法1.同底数幂的除法同底数幂的除法法则:底数不变,指数相减.a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.2.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00无意义.3.负整数指数幂负整数指数幂:a﹣p=(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.【典例】1.(a+b+c)n+3÷(a+b+c)n﹣1=( )A.(a+b+c)2B.(a+b+c)4C.(a+b+c)2n+1D.a4+b4+c4【方法总结】此题主要考查了同底数幂的乘除运算:底数不变,指数相减.【随堂练习】1.计算a2• a4•(2•a2)4÷(a2)5的结果是_____【典例】1.若2018m=5,2018n=4,则20183m﹣2n等于____【方法总结】本题考查同底数幂的除法、幂的乘方的性质,解答本题的关键是将20183m﹣2n转化成同底数幂的除法,即转化成20183m÷20182n的形式,再利用幂的乘方法则,将20183m,20182n 分别用(2018m)3、(2018n)2代换,即20183m÷20182n转化成为(2018m)3÷(2018n)2,然后将2018m=5,2018n=4代入(2018m)3÷(2018n)2即可求解.【随堂练习】1.已知10x=9,10y=4,则102x﹣3y的值为_____2.若a x=2,a y=3,则a3x﹣2y=_____综合运用1.已知m a+b•m a﹣b=m12,则a的值为_________.2.若102•10n﹣1=106,则n的值为_________.3.已知2a=5,2b=3,求2a+b+3的值.4.已知2x+3y﹣2=0,求9x•27y的值.5.根据已知求值:(1)已知a m=2,a n=5,求a3m+2n的值;(2)已知3×9m×27m=321,求m的值.6.用简便方法计算下列各题(1)()2015×(﹣1.25)2016.(2)(3)12×()11×(﹣2)3.7.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;第2讲 整式乘法与除法知识点1 单项式乘单项式单项式乘单项式(1)单项式乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:①在计算时,应先进行符号运算,积的系数等于各因式系数的积;②注意按顺序运算;③不要丢掉只在一个单项式里含有的字母因式;④此性质对于多个单项式相乘仍然成立.(2)单项式乘单项式的“三点规律”:①利用乘法交换律、结合律转化为数与数相乘,同底数幂相乘的形式,单独一个字母照抄;②不论几个单项式相乘,都可以用这个法则;③单项式乘单项式的结果仍是单项式.【典例】1.(﹣3x 2)•(﹣x 3m •y n )(﹣y m )的结果是____⎧⎪⎪⎪⎨⎪⎪⎪⎩单项式乘单项式单项式乘多项式整式乘除多项式乘以多项式单项式除以单项式多项式除以单项式【方法总结】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式,计算即可.【随堂练习】1.(﹣3a2)•(2ab2)•(﹣b)2的计算结果是____2.(﹣ab3)3•(﹣ab)•(﹣8a2b2)2等于_____【典例】1.已知(a2m b4)(a n+2b)=a9b m+2,求m+n2的值.【方法总结】本题考查了单项式乘单项式,根据单项式的乘法,可得同类项,根据同类项是所含字母相同,并且相同字母的指数也相同,列方程并解出m,n,将m,n的值代入m+n2.【随堂练习】1.已知单项式9a m+1b n+1与﹣2a2m﹣1b2n﹣1的积与5a3b6是同类项,求m n的值是_____2.已知3a n﹣6b﹣2﹣n和﹣a3m+1b2n的积与﹣a4b是同类项,则m n+n m等于____【典例】1.“三角”表示3xyz,“方框”表示﹣4a b d c,求×的值.【方法总结】本题考查了利用单项式的乘法解新定义中的有关计算,熟练掌握运算法则是解题的关键.根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式,计算即可.【随堂练习】1.如果“三角”表示4xyz,“方框”表示a b d c,则×的结果为____知识点2 单项式乘多项式单项式乘多项式(1)单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(2)单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.【典例】1.计算:(﹣a2bc+2ab2﹣ac)•(﹣ac)2.【方法总结】本题考查了单项式与多项式相乘,先算积的乘方,再根据单项式与多项式相乘,用单项式乘多项式的每一项,再把所得的积相加计算即可.计算时要注意符号的处理.【随堂练习】1. 化简(ab2﹣a2b﹣6ab)•(﹣6ab)的结果为_____【典例】1.已知xy2=﹣2,则﹣xy(x2y5﹣xy3﹣y)的值为____【方法总结】此题考查了单项式乘多项式,解题的关键是运用积的乘方的逆运算,使化简后的式子中出现xy2的因式,再整体代入xy2=﹣2计算即可.【随堂练习】1.已知pq2=1,则pq(p2q5﹣pq3﹣q)的值等于____【典例】1.当m、n为何值时,y[y(y+m)+ny(y+1)+m]的展开式中,不含有y2和y3的项?【方法总结】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.y[y(y+m)+ny (y+1)+m]去括号得到最简结果,根据结果中不含y2和y3的项,可令y2和y3的系数为0,列出方程,求出m与n的值即可.【随堂练习】1.若(mx2﹣nx+2)•(﹣2x2)﹣4x3的结果中不含x4项和x3项,则m,n的值分别为____知识点3 多项式乘多项式多项式乘多项式(1)多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.【典例】1.如果(x2+px+q)(x2+7)的展开式中不含x2与x3的项,那以p,q的值是___【方法总结】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0,列方程,求出p、q的值.【随堂练习】1.如果多项式x+1与x2﹣bx+c的乘积中既不含x2项,也不含x项,则b、c的值是___【典例】1.已知(x+2)(x-3)=x2+mx+n,则n m=_________.【方法总结】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及负整数指数幂.已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m与m 的值,代入n m,从而求出n m的值.【随堂练习】1.已知(x+m)(x﹣n)=x2﹣3x﹣4,则m﹣n+mn的值为____【典例】1.对于任意的代数式a,b,c,d,我们规定一种新运算:=ad﹣bc,根据这一规定,计算=___________.【方法总结】本题考查了多项式乘多项式和新定义.解题的关键是弄清楚新定义运算法则.【随堂练习】1.对于实数a ,b ,c ,d ,规定一种运算=ad﹣bc,如=4×(﹣2)﹣0×2=﹣8,那么当=27时,则x 等于_____知识点4 单项式除以单项式单项式相除,把它们的系数相除,同底数幂的指数相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形讲义(含答案)
全等三角形概念和性质1、知识与能力:理解全等三角形及相关概念,能够从图形中寻找全等三角形,探索并掌握全等三角形的性质,能够利用性质解决简单的问题。
2、过程与方法:在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径。
3、情感、态度与价值观:培养学生的识图能力、归纳总结能力和应用意识。
1.全等形(1)定义:能够________的两个图形叫做全等形。
理解要点:图形的全等与他们的位置无关,只要满足能够完全重合即可;而完全重合包含两层意思:图形的________、________;全等形的周长、面积分别相等,但周长或面积相等的两个图形不一定全等。
(2)几种常用全等变换的方式:平移、翻折、旋转。
2.全等三角形及相关的概念(1)全等三角形的定义:能够________的两个三角形叫做全等三角形。
(2)全等三角形对应元素:把两个全等的三角形重合到一起,①对应顶点:重合的顶点;②对应边:重合的边;③对应角:重合的角。
(3)全等三角形的表示方法:两个三角形全等用符号“≌”来表示,如图所示△ABC≌△DEF。
符号“≌”的含义:“∽”表示_______,“=”表示________,合起来就是形状相同,大小也相等,这就是全等。
(4)全等三角形的书写:①字母顺序确定法:根据书写规范,按照对应顶点确定对应边,对应角,如△CAB≌FDE,则AB 与__、AC与__、BC与__是对应边,∠A和∠D、∠B和∠E、∠C和∠F时对应角;②图形位置确定法:公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角;③图形大小确定法:两个全等三角形的最大的边(角)是________,最小的边(角)是对应边(角)。
(5)对应边(角)与对边(角)的区别:对应边、对应角是对两个三角形而言的,指两条边,两个角的关系;而对边、对角是指一个三角形的边和角的________。
对边是与对角相对的边,对角是与边相对的角。
易错提示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,字母顺序不能随意书写。
完整版北师大版七年级数学下册第四章知识点汇总全
完整版北师大版七年级数学下册第四章知识点汇总全第四章:有理数本章主要介绍有理数的概念和有理数的加法、减法运算,以及简单的有理数绝对值的计算等。
1. 有理数的概念有理数是可以用两个整数的比表示的数,包括整数、分数和小数。
有理数包括正有理数、零和负有理数。
2. 有理数的表示与比较有理数可以用数轴上的点来表示,数轴上的原点表示0,正有理数在原点的右侧,负有理数在原点的左侧。
比较有理数时,比较它们在数轴上所对应的位置。
3. 有理数的加法有理数的加法遵循以下规律:- 两个正数相加,结果为正数。
- 两个负数相加,结果为负数。
- 正数与负数相加,结果取正数的绝对值大的符号。
4. 有理数的减法有理数的减法可以转化为加法进行计算,即被减数加上减数的相反数。
5. 有理数的绝对值一个数的绝对值是它到0的距离,有理数的绝对值总是非负的。
计算绝对值时,去掉符号。
6. 有理数的乘法有理数的乘法遵循以下规律:- 同号相乘,结果为正数。
- 异号相乘,结果为负数。
7. 有理数的除法有理数的除法可以转化为乘法进行计算,即被除数乘以除数的倒数。
8. 混合运算混合运算是指有理数的加、减、乘、除等运算混合在一起进行,按照运算的优先级和规定的顺序进行计算。
9. 约分与化简约分是指将一个分数的分子和分母同时除以一个相同的数,使分数的值保持不变。
化简是指将一个分数做最简形式的处理。
10. 小数与分数的相互转化小数可以用分数表示,分子是小数点后的数字,分母是1后面有多少个0。
分数可以用小数表示,将分子除以分母,得到一个有限小数或无限循环小数。
11. 各种数的性质和运算法则有理数的性质和运算法则可以帮助我们更好地理解和应用有理数,包括交换律、结合律、分配律等。
以上就是完整版北师大版七年级数学下册第四章有理数的知识点汇总。
通过学习这些知识点,可以更好地掌握有理数的概念、运算规律以及与其他数的关系,为以后的数学学习打下坚实的基础。
七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版
例2 (2017四川宜宾中考)如图4-3-2,已知点B、E、C、F在同一条直线 上,AB=DE,∠A=∠D,AC∥DF.试说明:BE=CF.
图4-3-2 分析 由AC∥DF可得∠ACB=∠F,又∠A=∠D,AB=DE,可以利用AAS 得到△ABC≌△DEF,根据全等三角形的对应边相等可得BC=EF,都减 去EC即可得BE=CF.
AD BC,
因为DAB CBA,所以△ABD≌△BAC(SAS).
AB AB,
知识点一 判定三角形全等的条件——边边边 1.如图4-3-1,在△ABC和△FED中,AC=FD,BC=ED,要利用“SSS”来判 定△ABC和△FED全等,下面的4个条件中:①AE=FB;②AB=FE;③AE= BE;④BF=BE,可利用的是 ( )
AB=DE,BC=EF (2)已知两角
思路一(找第三边)
思路二(找角)
首先找出AC=DF,然后应用“SSS”判定全等
①找夹角:首先找出∠B=∠E,然后应用 “SAS”判定全等;②找直角用“HL”判定 全等(后面会学到)
思路一(找夹边)
思路二(找角的对边)
首先找出AB=DE,然后应用“ASA”判定全 等
A.①或②
B.②或③
图4-3-1 C.①或③ D.①或④
答案 A 由题意可得,要用“SSS”进行△ABC和△FED全等的判定, 只需AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可 以;显然②可以;若添加③AE=BE或④BF=BE,均不能得出AB=FE,故③④ 不可以,故选A.
架不变形,他至少要再钉上
根木条.
()
图4-3-5
A.0 解析 答案
B.1 C.2 D.3 连接AC或BD,构成三角形,三角形具有稳定性. B
()七年级数学下册第四章三角形1认识三角形三角形认识讲义(无答案)(新版)北师大版
三角形的认识段【根底知识】从三角形的一个顶知识点1三角形的定义点向它的对边所在1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形的高线的直线作垂线,顶点表示:三角形可用符号“△〞表示,如右图和垂足之间的线段三角形记作:△ABC b CAc a三角形中,连结一个B 顶点和它对边中点2.一个三角形有三条边,三个角、三个顶点三角形的中线的线段如图三角形中三边可表示为AB,BC,AC,顶点A所对的边BC也可表示为a,顶点B所对的边AC表示为b,顶点C所对的边AB表示为c 三角形一个内角的知识点2三角形的性质平分线与它的对边1.三角形三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于三角形的角平分相交,这个角顶点与第三边。
线交点之间的线段3.4.三角形的内角关系:三角形内角和为1805.三角形的分类:三角形按内角的大小可以分为锐角三角形、直角三角形、钝角结论总结:三角形。
其中直角三角形的两个锐角互余知识点3三角形的中线、角平分线和高线三角形的重要线概念图形表示法AE是△ABC的AB上的高线.CE⊥AB∠AEC=∠BEC=90°.AD是△ABC的BC上的中线.BD=CD=?BC.AE是△ABC的∠ABC的平分线1∴∠1=∠2=2ABC-1-/12【典例剖析】例1.有两根长度分别为5cm和8cm的木棒,再取一根长度为2cm的木棒,它们能摆成三角形吗?为什么?如果取一根长度为13cm的木棒呢?聪明的你能取一根木棒,与原来的两根木棒摆成三角形吗?(4)要选取的第三根木棒的长度x要满足什么条件呢?例2.假设△ABC的三边长a,b,c都是正整数,且满足a.bc,如果b=4,问这样的三角形有几个?例3.一个三角形有两边相等,并且周长为56cm,两不等边之比为3︰2,求这个三角形各边的长。
锐角三角形直角三角形钝角三角形角平分线〔有几中线条,是否相交,交高线点在那〕例4.判断满足以下条件的VABC是锐角三角形、直角三角形还是钝角三角形;〔1〕A80o,B25o〔2〕A B30o,BC36oA11CB6〔3〕2例5.三角形ABC的一个内角度数为40o,且A B,求C的外角的度数。
北师大版数学七年级下册第二章4用尺规作角(共28张PPT)
栏目索引
解答题 (2019河北保定十七中期中,29,★★☆)如图2-4-4甲,OA⊥OB,OC⊥OD. (1)∠AOC与∠BOD有何数量关系?依据是什么? (2)小明做完(1)后受到启发,在图2-4-4乙中用尺规作出了OD⊥OC,请你也 试一试.
图2-4-4
4 用尺规作角
解析 (1)∠AOC=∠BOD. 依据是同角的余角相等. (2)如图(在∠AOB外部作∠BOD=∠AOC即可).
4 用尺规作角
2.用尺规作一个角等于已知角 尺规作图一般有以下四步: 已知,求作,作法,写出结论. 如图2-4-1,已知∠AOB,求作∠A'O'B',使∠A'O'B'=∠AOB.
栏目索引
图2-4-1
图2-4-2
作法:①作射线O'A';
②以点O为圆心,任意长为半径画弧,交OA于点C,交OB于点D;
4 用尺规作角
A.以点F为圆心,OE长为半径画弧 B.以点F为圆心,EF长为半径画弧 C.以点E为圆心,OE长为半径画弧 D.以点E为圆心,EF长为半径画弧 答案 D
4 用尺规作角
栏目索引
如图2-4-6所示,用尺规作出∠OBF=∠AOB,作图痕迹弧MN是 ( )
图2-4-6 A.以点B为圆心,OD长为半径的弧 B.以点B为圆心,OC长为半径的弧 C.以点E为圆心,OD长为半径的弧 D.以点E为圆心,DC长为半径的弧
答案 D 圆规有两只脚,一只脚固定,另一只脚旋转.
4 用尺规作角
栏目索引
2.(2017广西南宁中考,7,★☆☆)如图2-4-5,△ABC中,AB>AC,观察图中尺规 作图的痕迹,则下列结论错误的是 ( )
图2-4-5
北师大版七年级下册数学课件
不等式的概念与分类
总结词
不等式是一个包含未知数和不等号的数学表达式,根据不等式的性质可以求解未知数的取值范围。
详细描述
不等式与方程很相似,但它们有一个重要的区别。不等式不能直接求解未知数的值,而是得到未知数的取值范围 。不等式的分类也可以根据未知数的个数和次数进行划分,如一元一次不等式、一元二次不等式、二元一次不等 式等。在解决实际问题时,不等式经常被用来表示数量关系和限制条件。
04
第四章:平面直角坐标系
平面直角坐标系的概念
平面直角坐标系的定义
平面直角坐标系是数学中的一种重要工具,它由两条互相 垂直的数轴构成,其中水平方向的数轴称为x轴,竖直方 向的数轴称为y轴。
坐标系中的点
在平面直角坐标系中,每一个点都有一个独特的坐标,坐 标由一个有序数对表示,第一个数表示x轴上的位置,第 二个数表示y轴上的位置。
感谢您的观看
THANKS
函数的应用
要点一
总结词
函数在现实生活中有着广泛的应用,如气温随时间的变化 曲线、银行利息计算等。通过分析实际问题中的数量关系 ,我们可以建立数学模型,利用函数来解决这些问题。
要点二
详细描述
函数的应用非常广泛,例如在物理学、工程学、经济学等 领域都有广泛的应用。在物理学中,牛顿的第二定律 F=ma描述了力与加速度之间的关系,这是一个函数关系 。在工程学中,很多参数之间的关系都可以用函数来表示 ,如电流与电压之间的关系可以用欧姆定律I=U/R来表示 。在经济学中,供求关系曲线描述了价格与需求量之间的 关系,这也是一个函数关系。通过分析实际问题中的数量 关系,我们可以建立数学模型,利用函数来解决这些问题 。
形式。
代数式的简化
简化代数式就是把同类项合并起 来,把系数化成最简形式。如 2x+3x可以写成(2+3)x=5x。
(精校版)北师大版七年级数学下册第四章知识点汇总(全)
(直打版)北师大版七年级数学下册第四章知识点汇总(全)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)北师大版七年级数学下册第四章知识点汇总(全)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)北师大版七年级数学下册第四章知识点汇总(全)(word版可编辑修改)的全部内容。
第四章 三角形三角形三边关系 三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”。
3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A 所对的边BC用a表示,边AC、AB分别用b,c来表示;4、∠A、∠B、∠C为ΔABC的三个内角。
二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为a+b>c,a+c〉b,b+c〉a;a-b〈c,a-c<b,b-c<a。
2、判断三条线段a,b,c能否组成三角形:当两条较短线段之和大于最长线段时,则可以组成三角形.3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即-<<+。
a b c a b三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
北师大版七年级下册数学课本知识点上课讲义
七年级下册知识点自结第一章 整式的运算1、(3页)像216b π,35x ,2a h 等,都是数与字母的乘积,这样的代数式叫做单项式。
几个单项式的和叫做多项式,例如216ab b π-,1122ab mn -等。
单项式和多项式统称整式。
2、(3页)一个单项式中,所有字母的指数和叫做这个单项式的次数。
如35x 是1次的,2a h 是3次的。
一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
例如216ab b π-是2次的,21213x y y +-是3次的。
3、(14页)同底数幂相乘法则:同底数幂相乘,底数不变,指数相加。
即(,)m n m n a a a m n +⋅=都是正整数。
4、(18页)幂的乘方法则:幂的乘方,底数不变,指数相加。
即()(,)n m mn a a m n =都是正整数。
5、(19页)积的乘方法则:积的乘方等于每一个因式乘方的积。
即()()nn n ab a b n =是正整数。
6、(22、23页)同底数幂的除法法则:同底数幂相除,底数不变,指数相减。
即(0,,)m n m n a a a a m n m n -÷=≠>都是正整数,且。
特别的,我们规定:01(0)a a =≠;1(0,)p p a a p a-=≠是正整数。
7、(27页)整式的乘法法则-单项式乘以单项式:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式:8、(29页)整式的乘法法则-单项式乘以多项式:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
9、(32页)整式的乘法法则-多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
10、(35页)平方差公式:两数和与这两数差的积,等于它们的平方差。
即()()22a b a b a b +-=-。
11、(40页)完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+。
北师大版 七年级数学下册 第四章 全等三角形的性质和判定的归纳总结 (无答案)
全等三角形的性质及判定运用知识清单全等三角形的认识与性质 全等图形:能够完全重合的两个图形就是全等图形. 全等三角形:能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.考点扫描板块一 全等三角形的认识【例1】 (四川遂宁)已知ABC ∆中,AB BC AC =≠,作与ABC ∆只有一条公共边,且与ABC ∆全等的三角形,这样的三角形一共能作出 个.【例2】 如图所示,ABD CDB ∆∆≌,下面四个结论中,不正确的是( )A.ABD ∆和CDB ∆的面积相等B.ABD ∆和CDB ∆的周长相等C.A ABD C CBD ∠+∠=∠+∠D.AD BC ∥,且AD BC =【拓展延伸1】已知ABC DEF ≌△△,DEF △的周长为32cm ,912DE cm EF cm ==,,则AB = ,BC = ,AC = .板块二、三角形全等的判定与应用DCBA全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.判定三角形全等的基本思路:SAS HL SSS →⎧⎪→⎨⎪→⎩找夹角已知两边 找直角 找另一边ASA AAS SAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASAAAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边全等三角形的图形归纳起来有以下几种典型形式: ⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型由全等可得到的相关定理:⑴ 角的平分线上的点到这个角的两边的距离相等.⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角). ⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边). ⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.平移全等模型【例3】 已知:如图,AB DE ∥,AC DF ∥,BE CF =. 求证:AB DE =.【例4】 如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.【拓展延伸1】如图所示:AB CD ∥,AB CD =.求证:AD BC ∥.对称全等模型【例5】 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.【拓展延伸1】已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.【拓展延伸2】已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.【例6】 如图所示, 已知AB DC =,AE DF =,CE BF =,证明:AF DE =.【拓展延伸1】在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.基本旋转全等模型【例7】 (成都市高中阶段教育学校统一招生考试)如图,在梯形ABCD 中,AD BC ∥,E 为CD 中点,连结AE 并延长AE 交BC 的延长线于点F .求证:FC AD =.【例8】 如图,AB CD ,相交于点O ,OA OB =,E 、F 为CD 上两点,AE BF ∥,CE DF =.求证:AC BD ∥.【例9】 已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.F DC BAM EDC BAK 字型模型【例10】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.【拓展延伸】E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.课后作业1、判定两个三角形全等的方法是:⑴ ;⑵ ;⑶ ;⑷ ;⑸ ;⑹ .全等三角形的性质是对应边、对应角、周长、面积都分别 .2、不能确定两个三角形全等的条件是( )A .三边对应相等B .两边及其夹角相等C .两角和任一边对应相等D .三个角对应相等3、如图,ABC △中,90C AC BC AD ∠=︒=,,平分CAB ∠交BC 于D ,DE AB ⊥于E 且6AB cm =,则DEB △的周长为( )A .40 cmB .6 cmC .8cmD .10cmPDQCBEAEDCBA4、如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为 ( ) A .40°B .35°C .30°D .25°5、已知:如图,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .求证:BCE FDE ∆∆≌.6、如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.7、如图所示,C 是AB 的中点,CD CE =,DCA ECB ∠=∠,求证DAE EBD ∠=∠.8、如图,AB AC =,D 、E 分别是AB 、AC 的中点,AM CD ⊥于M ,AN BE ⊥于N .求证:AM AN =.全等三角形与旋转问题知识清单把图形G 绕平面上的一个定点O 旋转一个角度θ,得到图形G ',这样的由图形G 到G '变换叫做旋转变换,点O 叫做旋转中心,θ叫做旋转角,G '叫做G 的象;G 叫做G '的原象,无论是什么图形,在旋转变换下,象与原象是全等形.很明显,旋转变换具有以下基本性质:①旋转变换的对应点到旋转中心的距离相等; ②对应直线的交角等于旋转角.旋转变换多用在等腰三角形、正三角形、正方形等较规则的图形上,其功能还是把分散的条件盯对集中,以便于诸条件的综合与推演.考点扫描“拉手”模型【例1】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:AN BM =.【例2】 如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC于M ,N 点.求证:CM CN =.【拓展延伸1】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:CF 平分AFB ∠.【拓展延伸2】如图,点为线段上一点,、是等边三角形,是中点,是中点,求证:是等边三角形.C AB ACM ∆CBN ∆D ANE BM CDE ∆等边三角形共顶点模型【例3】 如图,等边三角形与等边共顶点于点.求证:.等腰直角三角形共顶点问题【例4】 如图,等腰直角三角形中,,,为中点,.求证:为定值.【拓展延伸1】如图,正方形绕正方形中点旋转,其交点为、,求证:.正方形旋转模型【例5】 、分别是正方形的边、上的点,且,,为垂足,求证:.ABC ∆DEC ∆C AE BD=ABC 90B =︒∠AB a =O AC EO OF ⊥BE BF+OGHK ABCD O E F AE CF AB +=E F ABCD BC CD 45EAF =︒∠AH EF ⊥H AH AB =【拓展延伸1】如图,正方形的边长为,点在线段上运动,平分交边于点.求证:.【例6】 以△ ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE=BG ,且CE ⊥BG .对角和180°模型【例7】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120o 的等腰三角形,以D 为顶点作一个60o 的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.ABCD 1F CD AE BAF ∠BC E AF DF BE =+OGFEDCA【例8】 (1)如图,在四边形ABCD 中,AB =AD ,∠B =∠D =,E 、F 分别是边BC 、CD 上的点,且∠EAF=∠BAD .求证:EF =BE FD;(2) 如图,在四边形ABCD 中,AB =AD ,∠ B+∠ D =,E 、F 分别是边BC 、CD 上的点,且∠ EAF=∠ BAD , (1)中的结论是否仍然成立?不用证明.90︒12+FED CBA180︒12FEDB A课后作业1、如图,已知和都是等边三角形,、、在一条直线上,试说明与相等的理由.2、(湖北省黄冈市初中毕业生升学考试)已知:如图,点是正方形的边上任意一点,过点作交的延长线于点.求证:.3、已知:如图,点为线段上一点,、是等边三角形.、分别是、 的高.求证:.4、在等腰直角中,,,是的中点,点从出发向运动,交于点,试说明的形状和面积将如何变化.5、如图,正方形中,.求证:.ABC ∆ADE ∆B C D CE AC CD+E ABCD AB D DF DE ⊥BC F DE DF=C AB ACM ∆CBN ∆CG CH ACN ∆MCB ∆CG CH=ABC ∆90ACB ∠=o AC BC =M AB P B C MQ MP ⊥AC Q MPQ∆ABCD FAD FAE ∠=∠BE DF AE +=6、等边和等边的边长均为1,是上异于的任意一点,是上一点,满足,当移动时,试判断的形状.全等三角形与中点问题知识清单三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边. 中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.考点扫描倍长中线模型【例1】 在△ABC 中,9,5==AC AB ,则BC 边上的中线AD 的长的取值范围是什么?【拓展延伸1】已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+.ABD ∆CBD ∆E BE AD ⊥A D 、F CD 1AE CF +=E F 、BEF∆【例2】 如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.【拓展延伸1】如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.【例3】 如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥AB类倍长中线模型【例4】 已知AD 为ABC ∆的中线,ADB ∠,ADC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.【拓展延伸1】在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?中位线的运用【例5】 已知,如图四边形ABCD 中,AD BC =,E 、F 分别是AB 和CD 的中点,AD 、EF 、BC的延长线分别交于M 、N 两点. 求证:AME BNE ∠=∠.【例6】 在四边形ABCD 中,设M ,N 分别为CD ,AB 的中点,求证()12MN AD BC +≤,当且仅当AD BC ∥时等号成立.【例7】 如图,在五边形ABCDE 中,,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.课后作业1、如图,在等腰ABC ∆中,AB AC =,D 是BC 的中点,过A 作AE DE ⊥,AF DF ⊥,且AE AF =.求证:EDB FDC ∠=∠.2、如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,AF 与EF 相等吗?为什么?3、如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.全等三角形与角平分线问题知识清单与角平分线相关全等问题 角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上.它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,考点扫描角平分线基本性质与全等的关系【例1】 已知ABC ∆中,AB AC =,BE 、CD 分别是ABC ∠及ACB ∠平分线.求证:CD BE =.【例2】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.【拓展延伸1】如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.【拓展延伸2】如图所示,OP 是AOC ∠和BOD ∠的平分线,OA OC =,OB OD =.求证:AB CD =.两边作垂线问题【例3】 如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE AB E ⊥于,并且1()2AE AB AD =+,则ABC ADC ∠+∠等于多少?【拓展延伸1】ABC ∆中,D 为BC 中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥于F EG AC⊥于G .求证:BF CG =.作角平分线的垂线问题【例4】 如图所示,在ABC ∆中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,若CF AD ⊥且交AD 的延长线于F ,求证()12MF AC AB =-.【例5】 如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.取线段长度相等【例6】 如图所示,在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E ,求证:当BE 是B ∠的平分线时,有AD BC AB +=.【例7】 如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.课后作业1、在ABC ∆中,AD 平分BAC ∠,AB BD AC +=.求:B C ∠∠的值.2、如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE ⊥于E .求证:AD AE =.3、如图,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.4、如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.① 探讨线段AB 、CD 和BC 之间的等量关系. ② 探讨线段BE 与CE 之间的位置关系.全等三角形截长补短及方法总结知识清单常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中点或中线,倍长中线或倍长类中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”.5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.考点扫描截长模型【例1】 已知ABC ∆中,60A ∠=o ,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图所示,在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E ,求证:当BE 是B ∠的平分线时,有AD BC AB +=.“补短”模型【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .【例4】 点M ,N 在等边三角形ABC 的AB 边上运动,BD =DC ,∠BDC =120°,∠MDN =60°,求证MN =MB +NC .补形法【例5】 如图,在四边形ABCD 中,90A C ︒∠=∠=,AB AD =,若这个四边形的面积为16,则BC CD+=___________.对称法【例6】 如图,ABC △中,由点A 作BC 边上的高线,垂足为D . 如果2C B ∠=∠,求证:AC CD BD +=.旋转法【例7】 正方形ABCD 中,E 为上的一点,F 为CD 上的一点,BE DF EF +=,求EAF ∠的度数.【拓展延伸1】如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP AQ ⊥,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP OQ ,.求证:OP OQ ⊥.割补面积法【例8】 如图P 为等腰三角形ABC 的底边AB 上的中点,PE AC ⊥于点E ,PF BC ⊥于点F ,AD BC⊥于点D ,,求证:PE PF AD +=.【拓展延伸1】如图,点P 为等腰三角形ABC 的底边BA 的延长线上的一点,PE CA ⊥的延长线于点E ,PF BC ⊥于点F ,AD BC ⊥于点D .PE 、PF 、AD 之间存在着怎样的数量关系?【例9】 如图,点P 为正三角形ABC 内任意一点,PE AC ⊥于点E ,PF BC ⊥于点F ,PG AB ⊥于点G ,AD ⊥BC 于点D .PE 、PF 、PG 、AD 之间存在怎样的数量关系?。
北师大版七年级(下)数学第4讲:整式的乘法(教师版)——王琪
整式的乘法一、单项式与单项式相乘单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
二、单项式与多项式相乘单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
m(a+b)=ma+mb三、多项式与多项式相乘多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(m+n)(a+b)=ma+mb+na+nb四、多项式乘法的几何理解1.下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6C.(a3)2=a6D.2a3•3a2=6a6解:A、两项不是同类项,不能合并,故本选项错误;B、a3•a2=a5,故本选项错误;C、(a3)2=a6,故本选项正确;D、2a3•3a2=6a5,故本选项错误.故选C.2.计算x(y﹣z)﹣y(z﹣x)+z(x﹣y),结果正确的是()A.2xy﹣2yz B.﹣2yz C.xy﹣2yz D.2xy﹣xz解:原式=xy﹣xz﹣yz+xy+xz﹣yz =2xy﹣2yz故选 A。
3.计算(﹣2x+1)(﹣3x2)的结果为()A.6x3+1 B.6x3﹣3 C.6x3﹣3x2 D.6x3+3x2解:原式=6x3﹣3x2.故选:C.4.如果(x﹣2)(x+1)=x2+mx+n,那么m+n的值为()A.﹣1 B.1 C.﹣3 D.3解:(x﹣2)(x+1)=x2+x﹣2x﹣2=x2﹣x﹣2,则m=﹣1,n=﹣2,∴m+n=﹣3,故选:C.5.使(x2+px+8)(x2﹣3x+q)乘积中不含x2与x3项的p、q的值是()A.p=0,q=0 B.p=3,q=1 C.p=﹣3,q=﹣9 D.p=﹣3,q=1解:∵(x2+px+8)(x2﹣3x+q),=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q,=x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q.∵乘积中不含x2与x3项,∴p﹣3=0,q﹣3p+8=0,∴p=3,q=1.故选:B.6.如果(x﹣3)(2x+4)=2x2﹣mx+n,那么m、n的值分别是()A.2,12 B.﹣2,12 C.2,﹣12 D.﹣2,﹣12解:原方程可化为:2x2﹣2x﹣12=2x2﹣mx+n,∴﹣2=﹣m,n=﹣12,解得m=2,n=﹣12.故选C.7.下列运算正确的是()A.3a2+a=3a3 B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.8.计算:(2x2)3﹣6x3(x3+2x2+x)=()A.﹣12x5﹣6x4 B.2x6+12x5+6x4 C.x2﹣6x﹣3 D.2x6﹣12x5﹣6x4解:(2x2)3﹣6x3(x3+2x2+x)=8x6﹣6x6﹣12x5﹣6x4=2x6﹣12x5﹣6x4.故选:D.9.已知M,N分别表示不同的单项式,且3x(M﹣5x)=6x2y3+N()A.M=2xy3,N=﹣15x B.M=3xy3,N=﹣15x2C.M=2xy3,N=﹣15x2D.M=2xy3,N=15x2解:由题意得3xM﹣15x2=6x2y3+N,即N=﹣15x2,M=2xy3,故选:C.10.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2解:原式=x2+2x+x+2=x2+3x+2,故选B。
北师大版初中七年级数学下册第四章集体备课教学课件PPT
(1)
(2)
(3)
我们可以按三角形内角的大小把三角形 分为三类:
锐角三角形
直角三角形
钝角三角形
三个内角都是锐角 有一个内角是直角 有一个内角是钝角
直角三角形
➢ 通常,我们用符号“Rt△ABC”
C
表示“直角三角形 ABC”.
➢ 把直角所对的边称为直角三角
形的斜边,夹直角的两条边称
B
A
为直角边.
你知道直角三角形的两个锐角之间有什么关系吗?
第四章 三角形
1 认识三角形
第1课时 三角形与三角形的内角和
北师大版七年级数学下册
新课导入
在我们日常生活中经常能看到三角形的影子.
减速慢行
注意儿童
前方村庄
新课探究
观察下面的屋顶框架图:
(1)你能从图中找出四个不同的三角形吗? (2)这些三角形有什么共同的特点?
想一想
1.什么叫做三角形?
A
F
由不在同一直线上的三
课后作业
1.从教材习题中选取; 2.完成练习册本课时的习题.
第2课时 三角形的三边关系
北师大版七年级数学下册
新课导入
将三角形按角的大小可以分为几类? 锐角三角形 :三个内角都是锐角. 直角三角形 :有一个内角为直角. 钝角三角形 :有一个内角为钝角.
如果按边来分又可以分为几类
按 不等边三角形 边 分 类 等腰三角形
3.在△ABC 中,∠A = 80°,∠B = ∠C, 则∠C=___5_0_°__.
4.如果△ABC 中∠A∶∠B∶∠C = 2∶3∶5, 此三角形按角分类应为Hale Waihona Puke 直__角__三__角__形___.
5. 已知:如图,AB//CD,直线 EF 分别交 AB、 CD 于点 E、F,∠BEF 的平分线与∠DFE 的平 分线相交于点 P,则∠P =90°,请说明理由.
北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法
北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法一. 教材分析北师大版七年级数学下册第一章整式的乘除4整式的乘法,这部分内容是学生在学习了整式的加减法之后,进一步深化对整式的运算法则的理解。
本节内容主要包括整式乘法的基本概念、运算法则以及具体的运算方法。
通过这部分的学习,使学生能够熟练掌握整式的乘法运算,为后续学习分式的乘除法和函数的初步概念打下基础。
二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,例如整式的加减法、有理数的乘除法等。
但是,对于整式的乘法,学生可能还存在着一定的困惑,例如整式乘法的运算法则、如何快速准确地进行计算等。
因此,在教学过程中,需要结合学生的实际情况,用学生熟悉的生活实例引入整式的乘法,让学生在理解的基础上掌握整式的乘法运算。
三. 说教学目标1.知识与技能目标:使学生理解整式乘法的概念,掌握整式乘法的运算法则,能够熟练地进行整式的乘法运算。
2.过程与方法目标:通过合作交流、自主探究的学习过程,培养学生解决问题的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:整式乘法的概念、运算法则以及运算方法。
2.教学难点:整式乘法的运算方法,尤其是如何正确地合并同类项。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、自主探究法等,引导学生主动参与学习,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、教学卡片等辅助教学,使学生更直观地理解整式的乘法运算。
六. 说教学过程1.引入新课:通过生活实例,引导学生思考如何计算两个多项式的乘积,激发学生的学习兴趣。
2.讲解整式乘法的概念和运算法则:引导学生通过合作交流、自主探究的方式,总结整式乘法的运算法则。
3.演示整式乘法的运算方法:通过多媒体课件或教学卡片,展示整式乘法的具体运算过程,让学生更直观地理解。
最新北师大版七年级数学下册全册知识点汇总
5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。
6、完全平方公式可以逆用, 即: a2 2ab b2 (a b)2, a2 2ab b2 (a b)2.
十四、整式的除法
(一)单项式除以单项式的法则
1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后, 作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因 式。
( 2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项 式或多项式)。
(3)对于含有 3 个或 3 个以上的运算,法则仍然成立。
2、不同点:
( 1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
( 3)积的乘方是每个因式分别乘方,再将结果相乘。
八、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即: ( a≠0)。 2、此法则也可以逆用,即: am-n = a m÷an( a≠0)。
2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字 母与不相同字母三部分分别进行考虑。
(二)多项式除以单项式的法则
6
1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除 以单项式,再把所得的商相加。用字母表示为: (a b c) m a m b m c m.
性质 1:过一点有且只有一条直线与已知直线垂直。
性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
五、同位角、内错角、同旁内角
1、两条直线被第三条直线所截,形成了 8 个角。
2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样 的一对角叫做同位角。( F)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[教学课题】一元一次不等式组
【教学目标】1. 知识目标:
①理解一元一次不等式组解集的概念,掌握一元一次不等式组的解法. ②会利用数轴较简单的一元一次不等式组
③通过练习,理解并掌握一元一次不等式组解集的几种情况.
2. 能力目标:
①通过利用数轴来寻求不等式组的解,培养学生的观察能力、分析能力,
②让学生从练习中发现不等式组解集的四种情况,以培养学生归纳总结能力.
3. 情感目标:
将不等式组的解法和归纳留给学生在交流、讨论中完成,培养学生养成良好的学习习惯和转变一种观念——将老师与学习伙伴看成是自己有利的学习资源。
【教学重难点】在紧密联系不等式的同时,理解不等式组解集的意义。
教学难点:借助数形结合的方法找出不等式的解集。
【教学过程】回顾:解下列不等式,并把它的解集在数轴上表示出来。
(1)2x+3>5 (2)6x —5≤1
探索:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积
存的污水在1200吨到1500吨之间,那么大约需要多长时间才能将污水抽完? 比较解一元一次不等式和一元一次方程的步骤
解一元一次方程 解一元一次不等式
解法步骤 (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)系数化成1 (1)去分母;
(2)去括号;
(3)移项;
(4)合并同类项;
(5)系数化成1
在上面的步骤(1)和(5)
中,要注意不等式号方向
是否改变
解的情况 一元一次方程只有一个解 一元一次不等式的解集
含有无限多个数
用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水在1200吨到1500吨之间,那么大约需要多长时间才能将污水抽完?
同时满足①②的未知数x 应是个不等式的解集的公共部分。
在数轴上表示出来
∴x应取40≤x≤50 这就是所列不等式组的解集。
即答案为:大约需要40到50分钟才能将污水抽完。
概括:
几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。
解一元一次不等式组,其步骤通常为:
(1)先分别求出不等式组中的每一个不等式的解集;
(2)在数轴上把它们的解集表示出来;
(3)找出解集的公共部分,即不等式组的解集。
2.练习巩固,促进迁移
(1)例题:解不等式组
解:解不等式①,得x>2
解不等式②,得x>4
在数轴上表示出①②的解集
∴原不等式组的解集为x>4
(要让学生认识到准确、熟练得解不等式是解不等式组的基础,而运用数轴表示(找公共部分)是关键从练习的情况来看,
①当不等号的方向一致时(称同向不等式),即:
对这类不等式组可按“同大取大;同小取小”的法则,即取公共部分为它的解(如图).
②当不等号的方向相反时(称异向不等式),即:
则若未知数的取值比大数小,比小数大时,不等式组的解集在两数之间,取公共部分(如图);
③若未知数的取值比大数还大,比小数还小,不等式组的解集是空集,即没有公共部分(如图3).
1.基础运用,
例1. 解不等式组,并将解集标在数轴上.
例2.解不等式组
例3.求不等式组的正整数解。
例4.m为何整数时,方程组的解是非负数?
例5.解不等式<0。
例6. 解不等式-3≤3x-1<5。
【过手练习】)练习:
【课后作业】1(1)找出下列不关x的公共部分。
2、解不等式组
(3)求不等式组
的整数解(4)⎩⎨⎧>+-+<+x x x x 28)2(35)2(2 )
2()1(
(5)⎪⎪⎩⎪⎪⎨⎧-+>--<+4233225351x x x x x )2()1(
3、(1)有一个两位数,它的十位数字比个位数字大1,并且这个两位数大于30且小于42,求这个两位数。
(2)某公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p (万元)满足:1100﹤p ﹤1200.已知有关数据如下表所示,那么该公司明年应怎样安排甲、乙两种产品的生产量?
产品 每件产品的产
值
甲 45万元
乙 75万元
4、暑假期间,柳城县实验中学两位教师计划带若干名学生去桂林旅游,他们联系了报价都为每人500元的两家旅行社。
经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费。
假设这两位教师带x 名学生去桂林旅游,他们应该选择哪家旅行社?
5、在举国上下众志成城,共同抗击“非典”的非常时期,南宁某医药器械厂接受了一批高质量医用口罩的生产任务,要求在8天之内(含8天)生产A 型
和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只。
已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元。
设该厂在这次任务中生产了A型口罩x万只,问:
6、⑴该厂生产A型口罩可获得利润万元,生产B型口罩可获得利润万元。
⑵设该厂这次生产口罩的总利润是y万元,试写出y关于x的函数关系式,并求出自变量x的取值范围。
⑶如果你是该厂厂长:①在完成任务的前提下,你如何安排生产A型口罩和B 型口罩的只数,使获得的总利润最大?最大利润是多少?②若要在最短时间内完成任务,你又如何来安排生产A型和B型口罩的只数?最短时间是几天?
7某化工厂2000年12月在判定2001年某种化肥的生产计划时,收集到了如下信息:
1).生产该种化肥的工人数不超过200人;
2.)每个工人全年工作时数不得多于2100个;
3.)预计2001年该化肥至少可销售80000袋;
4).每生产一袋该化肥需要工时4个;
5.)每袋该化肥需要原料20千克;
6.)现库存原料800吨,本月还需用200吨,2001年可以补充1200吨.
请你根据以上数据确定2001年该种化肥的生产袋数的范围.
1、某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力x块.
(1)求该工厂加工这两种口味的巧克力有哪几种方案?
(2)设加工两种巧克力的总成本为y元,求y与x的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?
2、某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙
两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.
(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.
(2)若用19千克A 种果汁原料和17.2千克B 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;
请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,
3、园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
4、某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:
型号 A 型 B 型
成本(元/台) 2200 2600
售价(元/台) 2800 3000
(1)冰箱厂有哪几种生产方案?
(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民
买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方
案下政府需补贴给农民多少元? 每千
克饮料
果
汁含量
果汁
甲 乙 A 0.5千克 0.2千克 B 0.3千克 0.4千克
(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.。